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Abstract

We refine previous results concerning the Renewal Contact Processes. We significantly widen the
amily of distributions for the interarrival times for which the critical value can be shown to be strictly
ositive. The result now holds for any dimension d ≥ 1 and requires only a moment condition slightly
tronger than finite first moment. For heavy-tailed interarrival times, we prove a Complete Convergence
heorem and examine when the contact process, conditioned on survival, can be asymptotically predicted
nowing the renewal processes. We close with an example of distribution attracted to a stable law of
ndex 1 for which the critical value vanishes.

2023 Published by Elsevier B.V.
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1. Introduction

In this note we address natural questions arising from the papers [10,11] that deal with
n extension of the classical contact process introduced by Harris in [13] as a model for the
pread of a contagious infection. The sites of Zd are thought as the individuals, the state of
he population being represented by a configuration ξ ∈ {0, 1}

Zd
, where ξ (x) = 0 means

hat the individual x is healthy and ξ (x) = 1 that x is infected. A Markovian evolution was
then considered: infected individuals get healthy at rate 1 independently of everything else,
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and healthy individuals get sick at a rate that equals a given parameter λ times the number
f infected neighbours. Harris contact process, as it is usually called, is one of the most
tudied interacting particle systems (see e.g. [18,20]) and has also opened a very wide road
o multiple generalizations that have distinct motivations and potential applications, including
pace or time inhomogeneities, more general graphs and random graphs. A variety of random
nvironments may also be modelled by considering suitable families of random rates. Results
egarding survival and extinction for contact processes with random environments can be found
n [2,4,17,19,21]. Also, Garet and Marchand [12] prove a shape theorem in this context.

In [14], Harris introduced a percolation structure on which the contact process was built, also
nown as graphical representation, in terms of a system of independent Poisson point processes.
his has shown to be extremely useful not only to prove various basic properties of the process,
ut also for renormalization arguments (see e.g. [3,6]). It was exactly this angle that motivated
he investigation started in [10,11], leading to the consideration of more general percolation
tructures, where the Poisson times would give place to more general point processes, so that
he Markov property is lost, but the percolation questions continue to be meaningful and pose
ew challenges.

The extension of the contact process that we consider is what we call Renewal Contact
rocess (RCP). It is a modification of the Harris graphical representation in which transmissions
re still given by independent Poisson processes of rate λ > 0, but cure times are given by
.i.d. renewal processes with interarrival distribution µ, a model we denote by RCP(µ). For
efiniteness, we take the starting times of all renewal processes to be zero, but this choice does
ot affect our arguments.

In this paper we improve the current understanding of survival and extinction in RCP(µ)
rovided by [10,11]. The critical parameter for RCP(µ) is defined as

λc(µ) := inf{λ : P(τ 0
= ∞) > 0},

where τ 0
:= inf{t : ξ

{0}

t ≡ 0} and ξ
{0}

t is the process started from the configuration in which
only the origin is infected. (As usual, we make the convention that inf ∅ = ∞.)

Ref. [11] considered sufficient conditions on µ to ensure that λc(µ) > 0. The first
contribution of the present paper is a new construction, simpler than the one in [11], that results
in two meaningful improvements. Firstly, the present construction works for every dimension
d ≥ 1. Secondly, we significantly relax the assumptions on µ, as described by the following
result:

Theorem 1.1. Consider a probability distribution µ satisfying∫
∞

1
x exp

[
θ (ln x)1/2

]
µ(dx) < ∞ for some θ > 4

√
d ln 2. (1)

hen, the RCP(µ) has λc(µ) > 0. In particular, λc(µ) > 0 whenever
xαµ(dx) < ∞ for some α > 1.

The construction that leads to Theorem 1.1 is presented in Section 2. Essentially, it shows
hat if the probability that a renewal process R with interarrival distribution µ has a large
ap is sufficiently small, then the critical parameter for the RCP is strictly positive. The
oment condition in (1), together with Lemma 2.3, can be seen as a quantitative control on

he probability of having large gaps.
Let us first discuss previous results that hold for the RCP on Zd with any spatial dimension

≥ 1. Theorem 1 of [11] proves that λ (µ) > 0 if µ has finite second moment. On the other
c
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hand, in [10] it is proved that if there are ϵ, C1 > 0 and t0 > 0 such that µ([t, ∞)) ≥ C1/t1−ϵ

or all t ≥ t0, then (under some auxiliary regularity hypothesis) λc(µ) = 0. Notice that for
eneral dimension these previous results leave a large gap between distributions µ for which
c(µ) > 0 has been proven and those for which we know λc(µ) = 0.

In the specific case of spatial dimension d = 1 this gap was considerably smaller. Theorem 2
of [11] proves that λc(µ) > 0 if µ satisfies

∫
tαµ(dt) < ∞ for some α > 1, has a density

nd a decreasing hazard rate. Therefore, Theorem 1.1 represents a considerable improvement
n conditions for λc(µ) > 0.

In the proof of Theorem 2 of [11], the density and decreasing hazard rate of µ are used
to show that RCP(µ) satisfies an FKG inequality, a tool repeatedly used in the proof of that
theorem, combined with a crossing property of infection paths which holds only in d = 1.

he construction used for proving Theorem 1.1 has a similar overall structure, with the crucial
ifference that it does not require the path crossing property or FKG, and thus allows more
eneral distributions and dimensions.

We stress that the moment condition in (1) shows that there are distributions µ on the domain
of attraction of a stable law with index 1 for which λc(µ) > 0. On the other hand, in Section 5
we give an example (see Theorem 5.1) of a measure µ in the domain of attraction of stable
with index 1 for which the critical parameter vanishes. One may be tempted to conjecture that
λc(µ) > 0 is equivalent to µ having a finite first moment. Up until now we have not been able
to find a counter-example to this statement.

The discussion so far is concerned with sufficient conditions to ensure that λc(µ) is zero
or positive, and this is indeed one of the main goals of this paper. Nevertheless, it is also
natural to ask whether λc(µ) < ∞, so that we may speak of a phase transition. Clearly, for a
degenerate µ (e.g. µ({1}) = 1) the infection always dies out (at time 1), so that λc(µ) = ∞.
This pathologic behaviour should not occur once we avoid the phenomenon of simultaneous
extinction. Proving a precise mathematical result demands care, and we still do not have a
complete answer. Of course, since λc(µ) is clearly non-increasing in d, it suffices to consider
the case d = 1. A simple sufficient condition can be given if we restrict to the class of measures
µ considered in [11]. If µ has a density and a bounded and decreasing hazard rate, then λc(µ)
is finite. This is further explained in Remark 2.9 in the next section. When d ≥ 2 the situation
is much simpler, and one can avoid the dependencies within each renewal process, simply by
using each of them only once to construct an infinite infection path, i.e. through a coupling with
supercritical oriented percolation, analogously to what was done in the proof of Theorem 1.3(ii)
in [15].

The other results in the paper focus on the long time behaviour of the RCP(µ) for µ such
that λc(µ) = 0. Ref. [10] provides the following conditions on µ to ensure that a RCP(µ) has
critical value equal to zero:

(A) There is 1 < M1 < ∞, ϵ1 > 0 and t1 > 0 such that

for every t > t1, ϵ1

∫
[0,t]

sµ(ds) < tµ(t, M1t).

(B) There is 1 < M2 < ∞, ϵ2 > 0 and r2 > 0 such that

for every r > r2, ϵ2µ[Mr
2 , Mr+1

2 ] ≤ µ[Mr+1
2 , Mr+2

2 ].

(C) There is M3 < ∞, ϵ3 > 0 such that
−(1−ϵ3) −ϵ3
for t ≥ M3, t ≤ µ(t, ∞) ≤ t .

104



L.R. Fontes, T.S. Mountford, D. Ungaretti et al. Stochastic Processes and their Applications 161 (2023) 102–136

t

T
t

w
w

a
q
s
l
o
i
ξ

u

s
t

These conditions require that µ has a heavy, mildly regular tail. Under them, it is shown in [10]
hat for any infection rate λ > 0, one can find an event of positive probability in which the

infection survives — but see Remark 3.6, where we argue that the upper bound in (C) may be
dropped as a hypothesis for this result to hold; we will need it for the results of the present
article, though (as explained in Remark 3.7). In the event just mentioned, the path along which
the infection survives goes to “infinity” as time diverges, so there is no information in that
event about strong survival of the process (in whichever way this may be defined, see [22]).
In Section 3 we show the following result.

Theorem 1.2. Let interarrival distribution µ satisfy conditions (A)–(C) of Theorem 1 of [10].
hen, for a RCP starting from any initial condition ξ0 we have that ξt converges in law, as
→ ∞, to

P(τ < ∞)δ0 + P(τ = ∞)δ1, (2)

here τ = inf{t > 0 : ξt ≡ 0}, and δ0 and δ1 represent the Dirac measure on the configuration
ith all sites healthy and all sites infected, respectively.

Given Theorem 1.2, it is natural to see the sites (conditional upon survival of the process)
s being a solid growing block of points which lose their infection ever more rarely and are
uickly reinfected by their infected neighbours. Section 4 develops this picture further, under
tricter regularity conditions for the tail of µ, demanding that it be attracted to an α-stable
aw with 0 < α < 1, with some extra regularity for α < 1/2. Given a fixed site (e.g. the
rigin), it is natural to expect that given the information supplied by the renewal process, and
n the event of survival of the infection started at the origin, the conditional probability that
t (0) = 1 will be close to 1 − e−2λdYt (0), where R0 is the renewal process at the origin and

Yt (0) := t − sup{R0 ∩ [0, t]} is the age of R0 at time t , or, in other words, the time elapsed
p to time t since the most recent renewal of R0 prior to t .

We will effectively confirm this expectation for α < 1/2, showing that in this case

lim
t→∞

⏐⏐P(ξt (0) = 1 | R, survival) − (1 − e−2λdYt (0))
⏐⏐ = 0,

ee Theorem 4.1. For α ≥ 1/2, things get more complex, and indeed we show (in the same
heorem) that

lim
t→∞

(
1 − e−2λdYt (0)

− P(ξt (0) = 1 | R, survival)
)

> 0

for α > 1/2. A more precise result is stated in Theorem 4.4.
We close this introduction with a discussion on related papers. There are affinities between

our RCP and the treatment of contact processes in a class of random environment as in [17,21].
The main novel aspect of RCP is the loss of the Markov property. Similarities are also present
in the renormalization arguments used in Section 2 and those in [3].

In [8], RCP has been studied in the context of finite graphs. It deals with the RCP(µ) on
finite connected graphs, say of size k, with µ attracted to an α-stable law with 0 < α < 1.
Estimates close to optimal are derived for the critical size of the graph at and above which
we have λc(µ) = 0 (and below which λc(µ) = ∞): except for countably many such α’s, the
estimates are sharp; for the exceptional α’s, there is exactly one value of k for which the value
of λc is undetermined. Similar ideas appear in connection with quantum versions of the Ising
model and highly anisotropic Ising models [1,9,16].

Finally, motivated by different random environments for the contact process, other variations
of RCP(µ) have been considered in [15], where the transmissions are also given by renewal
processes.
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2. Extinction

2.1. Main events

Our construction relates the probability of crossing a box in some direction for a well-
hosen sequence of boxes that we define below. One important difference from the previous
onstruction from [11] is a crossing event which we call a temporal half-crossing. A general
pace–time crossing is defined in [11] as follows.

efinition 2.1 (Crossing). Given space–time regions C, D, H ⊂ Zd
× R we say there is a

rossing from C to D in H if there is a path γ : [s, t] → Zd such that (γ (s), s) ∈ C ,
γ (t), t) ∈ D and for every u ∈ [s, t] we have (γ (u), u) ∈ H .

Given a space–time box B :=
(∏d

i=1[ai , bi ]
)
× [s, t] we usually denote its space projection

s [a, b] where a = (a1, . . . , ad ) and b = (b1, . . . , bd ). Also, we refer to its faces at direction
≤ j ≤ d by

∂−

j B := {(x, u) ∈ B; x j = a j } and ∂ j B := {(x, u) ∈ B; x j = b j }.

sing this notation, we have three crossing events of box B = [a, b]× [s, t] that are important
n our investigation.

emporal crossing. Event T (B) in which there is a path from [a, b] × {s} to [a, b] × {t} in
B.

emporal half-crossing. Event T̃ (B) := T ([a, b] × [s, t+s
2 ]). In words, we have a temporal

crossing from the bottom of B to the middle of its time interval.

patial crossing. For some fixed direction j ∈ {1, . . . , d} we define event S j (B) in which there
is a crossing from ∂−

j B to ∂ j B in B, i.e., there is a crossing connecting the opposite faces
of direction j .

These events are the basis of our analysis of phase transition in RCP. Consider sequences
n, bn and fix a sequence of boxes Bn = [0, an]d

× [0, bn]. We want to relate

1. Crossings of box Bn to crossings of boxes at smaller scales.
2. Event {τ 0

= ∞} to crossings of boxes at some scale n.

From 1. we will obtain recurrence inequalities showing that the probability of crossing a box
f scale n is very small for large n and this in turn will imply that in 2. we have P(τ 0

= ∞) = 0.
Considering a box B = [−an/2, an/2]d

× [0, bn], we can see that if the infection of the
rigin survives till time bn then either we have T (B) or the infection must leave box B
hrough some of its faces ∂ j B or ∂−

j B for 1 ≤ j ≤ d . Fix some direction j and notice that
(x, u) ∈ Zd

× R; x j = 0} divides box B into two halves. Denote by B̃ j the half containing
ace ∂ j B. Since the infection path is càdlàg, if we have a path leaving B through ∂ j B then
vent S j (B̃ j ) occurred. Thus, by symmetry and the union bound one can write

P(τ 0
= ∞) ≤ P(T (B)) + 2d · P(S1(B̃1)). (3)

his quite simple relation already tells us that it suffices to prove that the probability of temporal
rossings of B and spatial crossings of half-boxes in the short direction go to zero as n → ∞.
106



L.R. Fontes, T.S. Mountford, D. Ungaretti et al. Stochastic Processes and their Applications 161 (2023) 102–136

N
o

f

2.2. General moment condition

We consider the sequence of space–time boxes Bn = [0, an]d
× [0, bn]. Also, we denote by

B̃ j (n) the half-box of Bn that contains the face ∂ j Bn . We are concerned with the probability
of the following events:

S j (Bn), T (Bn), T̃ (Bn) and S j (B̃ j (n)). (4)

otice that the probability of events in which some direction j appear are actually independent
f j by symmetry. Another important remark is that whenever we translate a box by (x, 0) ∈

Zd
×R the probability of any of these crossing events remains the same. However, in order to

disregard the specific position of our boxes in space–time and also the possible knowledge of
some renewal marks below the box in consideration, it is useful to define the following uniform
quantities.

Definition 2.2. We define

sn := sup P̂(S j ((x, t) + Bn)),
hn := sup P̂(S j ((x, t) + B̃ j (n))),

tn := sup P̂(T ((x, t) + Bn)),
t̃n := sup P̂(T̃ ((x, t) + Bn)),

(5)

where the suprema above are over all (x, t) ∈ Zd
× R+ and all product renewal probability

measures P̂ with interarrival distribution µ and renewal points starting at (possibly different)
time points strictly less than zero.

Notice also that the quantities in which some direction j appear are actually independent
of j by symmetry. Using (3) and the uniform quantities defined in (5), we can estimate

P(τ 0
= ∞) ≤ tn + 2d · hn ≤ t̃n + 2d · hn.

We just have to show the right hand side goes to zero, giving upper bounds to the quantities t̃n
and hn . This is done recursively, relating quantities from consecutive scales. Heuristically, we
prove that whenever we have a crossing on scale n we must have two ‘independent’ crossings
(either spatial crossings or temporal half-crossings) of boxes of the previous scale that are
inside the original box.

Notice that if we are moving on a spatial direction, then this independence is immediate.
For instance, it is clear that in order to cross Bn on the first coordinate direction we must cross
both B̃1(n) and Bn \ B̃1(n). Since these events rely on independent processes, we have that
sn ≤ h2

n .
However, when moving on the time direction we might have dependencies; here, the uniform

quantities prove their usefulness. The next lemma gives a uniform estimate on the probability
of not having renewal marks on an interval, making it useful to adjust our choice of sequence
bn that represents the time length of our sequence of boxes Bn .

Lemma 2.3 (Moment condition). Let µ be any probability distribution on R+ and R be a
renewal process with interarrival µ started from some t ≤ 0. Let f : [0, ∞) → [0, ∞)
be non-decreasing, differentiable and satisfying f (0) = 0 and f (x) ↑ ∞ as x → ∞. If∫

x f (x) µ(dx) < ∞, then uniformly on t we have

sup
t≥0

P(R ∩ [t, t + u] = ∅) ≤
C

f (u)
, (6)

or some positive constant C = C(µ, f ) whenever f (u) > 0.
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Proof. The proof is a standard application of renewal theorem. We can assume t = 0 since
the case t̃ < 0 is the same as taking a supremum over intervals [t, t + u] with t ≥ −t̃ and a
renewal started from 0.

Let us first assume µ is non-arithmetic. Denote by F the cumulative distribution function
of µ and let F̄ = 1 − F . Moreover, denote the overshooting at t for renewal R (i.e. the time
ill the next renewal mark after t) by Z t and let H (t) := E[ f (Z t )]. Conditioning with respect
o the first renewal T1, we have

H (t) = E[ f (T1 − t)1{T1 > t}] + E
[
1{T1 ≤ t}E[ f (Z t ) | T1]

]
= E[ f (T1 − t)1{T1 > t}] + E

[
1{T1 ≤ t}E[ f (Z t−T1 )]

]
=

∫
∞

t
f (x − t) dF(x) +

∫ t

0
H (t − x) dF(x).

enoting the first integral above by h(t), the equality above is the renewal equation H =

h + H ∗ F . Some alternative expressions for h(t) are

h(t) =

∫
∞

t
f ′(x − t)F̄(x) dx =

∫
∞

0
f ′(s)F̄(s + t) ds. (7)

o justify integration by parts in this step, we write
∫

∞

t f (x − t) dF(x) = limL→∞

∫ L
t f (x −

) dF(x), and then perform the latter integral by parts (assuming L > t), obtaining
∫ L

t f ′(x −

)F̄(x) dx + f (0)F̄(t) − f (L − t)F̄(L). Using the monotonicity of f and Markov’s inequality,
e find that

f (L − t)F̄(L) ≤ f (L)F̄(L) ≤ E[T1 f (T1)]/L ,

nd the justification follows immediately from our other assumptions on f .
Let X be a random variable with distribution µ. From (7) it is easy to see that

h(0) = E f (X ) < ∞ and that h is decreasing in t . Also, we can evaluate∫
∞

0
h(t) dt =

∫
∞

0

∫
∞

0
f ′(s)F̄(s + t) ds dt

=

∫
∞

0
f ′(s)

∫
∞

0
F̄(s + t) dt ds

≤

∫
∞

0
f ′(s)E

[
X1{X > s}

]
ds

= E
[

X
∫ X

0
f ′(s) ds

]
= E[X f (X )].

hus, we have that h is directly Riemann integrable when E[X f (X )] < ∞ and the renewal
heorem implies

H (t) = E[ f (Z t )] →
E[X f (X )]

EX
s t → ∞. Separating the cases in which t is large and t is small, we have a uniform
ound on t for H (t). For the latter control, notice that H (t) = E[ f (Z t )] may be written as
t

0 U (ds)
∫

∞

t−s µ(dr ) f (r − (t − s)), where U is the renewal measure associated to µ; from our
ssumptions on f , it follows that the innermost integral above is bounded by

∫
∞

0 µ(dr ) f (r ) =

< ∞, and thus H (t) ≤ c · U (0, t) is finite for every t > 0. From the fact that U is
ondecreasing, we get that H (t) is bounded on bounded intervals.
108



L.R. Fontes, T.S. Mountford, D. Ungaretti et al. Stochastic Processes and their Applications 161 (2023) 102–136

c

a
i
t

C
b
[

2

F
T
a

a
p

t

i

p
[
P
t

T

Since f is non-negative and non-decreasing, by Markov inequality we can write

P(Z t ≥ u) ≤
E f (Z t )

f (u)
≤

C
f (u)

.

The conclusion in (6) follows, under the assumption that µ is non-arithmetic. The arithmetic
ase is even simpler and a minor change in the argument yields the same bound. □

When we know that in a box [0, an]d
× [s, t] every site x ∈ [0, an]d has a renewal mark,

nalysing crossing events on [0, an]d
× [t, ∞) gets easier since we are able to forget all

nformation from time interval [0, s]. Our next result uses Lemma 2.3 to estimate the probability
hat such event does not occur.

orollary 2.4. Let µ satisfy (1) and f (x) := eθ(ln x)1/2
1{x≥1}. Define Jn(t, s) as the event in

ox [0, an]d
× [t, t + s] in which there is some site x ∈ [0, an]d with no renewal marks on

t, t + s]. Then, for any s ≥ 2 we have

sup
t≥0

P(Jn(t, s)) ≤
Cad

n

f (s)
.

Proof. Modify f in [1, 2] to ensure differentiability and use the union bound. □

.3. Relating successive scales

In this section we prove uniform upper bounds for t̃n and hn in terms of hn−1 and t̃n−1.
rom here on we consider boxes Bn with an = 2n .
emporal half-crossings. Let us upper bound the quantity t̃n . For this part we work under the
ssumption that µ satisfies (1). Define

G i := T
(
[0, 2n]d

× [ibn−1, (i + 1)bn−1]
)

nd notice that event G i is measurable with respect to the σ -algebra that looks all renewal
rocesses and Poisson processes of Bn up to time (i + 1)bn−1. Moreover, consider event

J = Jn(bn−1, bn−1) defined in Corollary 2.4 and notice J is depends on the point processes up
o time 2bn−1.

Assuming that bn/2 > 3bn−1, notice that we have

T̃ (Bn) ⊂ J ∪ (G0 ∩ J c
∩ G2),

mplying that we can write

P̂(T̃ (Bn)) ≤ P̂(J ) + P̂(G0) · P̂(G2 | G0 ∩ J c).

Corollary 2.4 provides an upper bound for P̂(J ). Moreover, we can estimate the conditional
robability by integrating over all possible collections {tx ; x ∈ [0, 2n]d

} of time points in
bn−1, 2bn−1] the probability of event G2. For any fixed choice of such collection, denote by
˜ the probability measure with starting renewal marks given by (x, tx − 2bn−1). This leads to
he bound

P̂(T̃ (Bn)) ≤
C2dn

f (bn−1)
+ P̂(G0) · sup

{tx }

P̃(G0).

he last product on the right hand side may be estimated by

sup
(
P̂(T ([0, 2n]d

× [0, bn−1]))
)2

,

{tx }
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where in the supremum we now consider any possible starting collection of time points
{tx ; x ∈ Zd , tx ≤ 0} and we use notation P̂ to emphasize this. We look for an upper bound
that is valid for any starting renewal marks. In order to bound P̂(T ([0, 2n]d

× [0, bn−1])), we
partition [0, 2n]d into sub-boxes of side length 2n−2. Considering projections of our crossing
into space, we can prove

Lemma 2.5 (Temporal Half-Crossing). Suppose µ satisfies (1). For every n ≥ 2 it holds that

t̃n ≤
C2dn

f (bn−1)
+ (3d tn−1 + 2d · 3d−1hn−1)2. (8)

roof. For v ∈ {0, 1, 2, 3} let us define

Iv := 2n−2v + [0, 2n−2].

This collection of 4 intervals of length 2n−2 covers [0, 2n]. On T ([0, 2n]d
× [0, bn−1]) we can

choose a path γ : [0, bn−1] → [0, 2n]d that realizes the temporal crossing and consider its range
I = γ ([0, bn−1]). Project set I in each coordinate direction j , obtaining a discrete interval
I j ⊂ [0, 2n], and define the box count of I j by

c j := min{|I |; I ⊂ {0, 1, 2, 3}, I j ⊂ ∪v∈I Iv}. (9)

We decompose our event with respect to what is observed on each I j .
If for every 1 ≤ j ≤ d we have c j ≤ 2 then the whole path γ is contained inside a

d-dimensional box with side length 2n−1. In this case, we have some choice of v ∈ {0, 1, 2}
d

uch that

I ⊂ 2n−2v + [0, 2n−1]d ,

nd the number of possible v is given by 3d .
Now, let us consider the case in which some c j ≥ 3 and thus I is not contained in some

f the boxes with side length 2n−1 described above. In this case, we refine the argument by
onsidering time. For any time t ∈ [0, bn−1] we define I(t) := γ ([0, t]) and for any fixed
irection j we consider its projection I j (t) and its box count c j (t). Define

t1 := inf{t ∈ [0, bn−1]; ∃1 ≤ j ≤ d such that c j (t) ≥ 3}.

ince γ can only change value when there is transmission to a neighbouring site, at time t1
e have c j0 (t1−) = 2 and c j0 (t1) = 3 for some special direction j0 and c j (t1) ≤ 2 for every
ther direction. Thus, there is v ∈ {0, 1, 2}

d such that

I(t1−) ⊂ 2n−2v + [0, 2n−1]d , but I j0 (t1) ⊈ 2n−2v + [0, 2n−1]d

and c j0 (t1) = 3.

otice that this means path γ must have crossed a half-box of 2n−2v + [0, 2n−1]d on direction
j0 during time interval [0, t1] ⊂ [0, bn−1], see Fig. 1. There are 2d · 3d−1 possible half-boxes
o be crossed, which implies

P̂(T ([0, 2n]d
× [0, bn−1])) ≤ 3d tn−1 + 2d · 3d−1hn−1.

ince the bound above holds for any choice of renewal starting points {tx ; tx ≤ 0, x ∈ [0, 2n]d
},

aking the supremum over all such collections the result follows. □
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Fig. 1. Depiction of the argument in Lemma 2.5 for the case d = 2. When the space projected temporal crossing
is not contained in one of the 3d sub-boxes of side length 2n−1 we must have a spatial crossing of a half-box of
scale n − 1.

Spatial crossing. Now we prove a similar bound for quantity hn . Recall that independence of
the Poisson processes implies that for crossing Bn in some fixed spatial direction we need to
perform two independent crossings of half Bn in that direction, implying

sn ≤ h2
n.

A similar bound for hn implies the following lemma.

Lemma 2.6 (Spatial Crossing). For n ≥ 2 it holds that

hn ≤ 4 · 36d−1
·

⌈ bn

bn−1

⌉2
· (hn−1 + t̃n−1)2. (10)

roof. Independence of Poisson processes implies that

hn ≤ sup P̂
(
S1([0, 2n−2] × [0, 2n]d−1

× [0, bn])
)2

.

Let us simplify notation here. Since in a first moment we will work with boxes with time
ength [0, bn] we omit it from the notation. Also, on space coordinates we only work with
ntervals of length 2n, 2n−1 or 2n−2, so we write simply

B(l1, . . . , ld ) =

( d∏
i=1

[0, 2n−li ]
)

× [0, bn] for li ∈ {0, 1, 2}.

e refer to a crossing of such box on direction j as S j (l1, . . . , ld ). Using this notation we want
o show that on S1(2, 0, . . . , 0) we can find some crossing of boxes whose side lengths are all
t most 2n−1, leading to an estimate of the form

P̂
(
S1(2, 0, . . . , 0)

)
≤ C(d) · P̂

(
S1(2, 1, . . . , 1)

)
,

ecalling that P̂ refers to a probability measure starting from some fixed collection {tx ; tx ≤

, x ∈ Zd
} of starting renewal marks. The main step in this simplification is the following.
Consider event S1(2, l2, . . . , ld ) and suppose that in direction j we have l j = 0, meaning that the

111



L.R. Fontes, T.S. Mountford, D. Ungaretti et al. Stochastic Processes and their Applications 161 (2023) 102–136

a

i
t
c

v

c
a
o
d

a
t
h

w
#
w

F
s

Fig. 2. Crossing of a half box at scale n implies two independent spatial crossings. For each crossing, on direction
2 ≤ j ≤ d there are 2 possibilities: either the crossing traverses some interval of length 2n−2 or it remains inside
n interval of length 2n−1.

nterval length in that direction is 2n . Consider a path γ : [s1, t1] → Zd with [s1, t1] ⊂ [0, bn]
hat realizes event S1(2, l2, . . . , ld ) and let I j be the projection of γ ([s1, t1]) on direction j and
j be its box count, i.e.,

c j := min{|I |; I ⊂ {0, 1, 2, 3}, I j ⊂ ∪v∈I Iv}.

When c j ≤ 2 we can ensure that I j is contained in [v2n−2, (v + 2)2n−2] for some
∈ {0, 1, 2}. Thus, instead of the original box B(2, l2, . . . , ld ) we can observe the same

rossing on the smaller box in which on direction j we replace [0, 2n] by [v2n−2, (v +2)2n−2],
n interval with length 2n−1. Similarly, if c j ≥ 3 we know that I j must have crossed either I1

r I2, implying the crossing on direction j of a smaller box, since now the interval length on
irection j is 2n−2.

In both cases, the crossing of our original box implies the occurrence of some crossing of
smaller box inside it, see Fig. 2. Abusing notation, we do not specify the exact position of

hese smaller boxes, since in the final bound we use the uniform quantities from (5). Thus, we
ave

P̂(S1(2, l1, . . . , 0, . . . , ld ))

≤ 3P̂(S1(2, l1, . . . , 1, . . . , ld )) + 2P̂(S j (2, l1, . . . , 2, . . . , ld ))

= 3P̂(S1(2, l1, . . . , 1, . . . , ld )) + 2P̂(S1(2, l1, . . . , 2, . . . , ld ))

here the equality above follows from symmetry. For l ∈ {1, 2}
d−1 let us denote a(l) =

{i; li = 1}. Applying the reasoning above to directions 2 ≤ j ≤ d successively, we can
rite

P̂(S1(2, 0, . . . , 0)) ≤

∑
l∈{1,2}d−1

P̂(S1(2, l)) · 3a(l)
· 2d−1−a(l).

inally, notice that any P̂(S1(2, l)) with l ∈ {1, 2}
d−1 is upper bounded by P̂(S1(2, 1, . . . , 1))
ince increasing the box in some direction 2 ≤ j ≤ d can only make it easier to find a crossing.
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This leads to the bound

P̂(S1(2, 0, . . . , 0)) ≤ P̂(S1(2, 1, . . . , 1)) · 2d−1
∑

l∈{1,2}d−1

(3/2)a(l)

≤ 6d−1
· P̂(S1(2, 1, . . . , 1)).

Returning to our previous notation, now we want to bound

P̂(S1(2, 1, . . . , 1)) = P̂(S1([0, 2n−2] × [0, 2n−1]d−1
× [0, bn]))

in terms of hn−1 and so we need to fix the time scale above. We use a collection of overlapping
boxes

Ri = [0, 2n−2] × [0, 2n−1]d−1
× [ibn−1, (i + 1)bn−1] for i ∈

1
2Z

to cover the time interval [0, bn]. Then, either our path γ ensures we have S1(Ri ) for some i or
t must make a temporal crossing of some box [0, 2n−2]× [0, 2n−1]d−1

× [ibn−1, (i +1/2)bn−1],
hich is event T̃ (Ri ). Thus, we can write

P̂(S1([0, 2n−2] × [0, 2n−1]d−1
× [0, bn])) ≤ 2

⌈ bn

bn−1

⌉
· (hn−1 + t̃n−1).

utting the bounds above together and taking the supremum over all possible collections of
tarting times, we obtain (10). □

implifying recurrence. Looking at the expressions obtained in Lemmas 2.5 and 2.6, it seems
seful to work with a simpler recurrence based on the quantity

un := hn + t̃n.

oticing that tn ≤ t̃n we can write

un ≤
[
C(d) · (bn/bn−1)2

· (hn−1 + t̃n−1)2]
+

[
C(d)(t̃n−1 + hn−1)2

+
C2dn

f (bn−1)

]
≤ C(d) · (bn/bn−1)2

· u2
n−1 +

C2dn

f (bn−1)
. (11)

emma 2.7. Let µ be any probability distribution on R+ and R be a renewal process with
nterarrival µ started from some t ≤ 0. Suppose∫

∞

1
xeθ (ln x)1/2

µ(dx) for some θ > 4
√

d ln 2. (12)

here is a choice of sequence bn and a natural number n0(µ, θ, d) such that if un0 ≤ 2−dn0

hen for every n ≥ n0 we have un ≤ 2−dn . Consequently, there exists λ0(µ, θ, d) > 0 such that
(τ 0

= ∞) = 0 for any λ ∈ (0, λ0).

roof. Consider the sequence of boxes Bn = [0, 2n]d
× [0, bn]. Recall function f is given by

f (x) := eθ (ln x)1/2
· 1{x ≥ 1}.

e want to take f (bn−1) := eα(n−1) for α > 0 a parameter to be chosen later so that 2nd/ f (bn−1)
ends to zero sufficiently fast. This can be accomplished by taking bn := e(α/θ )2n2

. Recurrence
elation (11) then becomes

un ≤ C(d)
( bn

· un−1

)2

+ C(µ, θ) exp[(d ln 2)n − α(n − 1)].

bn−1
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Because of the error term above, the decay of un cannot be faster than e−α(n−1). Based on this,
e suppose un−1 ≤ e−β(n−1) for some parameter α > β > 0. Under this assumption we can

stimate( bn

bn−1
· un−1

)2
=

(
e(α/θ )2(2n−1)

· un−1

)2
≤ e2(α/θ )2(2n−1)−2β(n−1),

hich leads to

un ≤ C(d)e2(α/θ )2(2n−1)−2β(n−1)
+ Ce(d ln 2−α)n+α

≤ C(d, α, β, θ )e[4(α/θ )2
−β]n

· e−βn
+ C(µ, θ, α)e(β+d ln 2−α)n

· e−βn. (13)

he induction will follow once we ensure{
4(α/θ )2

− β < 0
β + d ln 2 − α < 0

or, equivalently,

{
θ2 > 4α2

β

α > β + d ln 2.

e want to choose parameters α, β in order to make θ as small as possible while still being
ble to perform the induction. Notice that combining the two inequalities above we have

θ2 > 4
(√

β +
d ln 2
√

β

)2
≥ 16d ln 2,

y AM-GM inequality, with equality when β = d ln 2. So, hypothesis (12) is the best we can
hope in this setup. Fix β = d ln 2. Looking at the possible values of α, we need to choose

2d ln 2 < α <

√
θ2d ln 2

4
.

Since (12) implies
√

θ2d ln 2
4 > 2d ln 2, we can take for instance α(d, θ) :=

1
2

(
2d ln 2+

√
θ2d ln 2

4

)
.

ake n0 = n0(µ, d, θ) sufficiently large so that{
C(d, α, β, θ )e[4(α/θ )2

−β]n
≤

1
4

C(µ, θ, α)e(β+d ln 2−α)n
≤

1
4 ,

for all n ≥ n0. (14)

his is possible since both left hand sides tend to zero as n → ∞. Suppose that un0 ≤ e−βn0 =

−dn0 , recalling that β = d ln 2. Then, we have by (13) that

un ≤
1
4

e−βn
+

1
4

e−βn
≤ e−βn for every n ≥ n0.

The induction just described will hold if we can ensure that the base case n = n0 holds.
ut if n0(µ, θ, d) is fixed we can take λ0 sufficiently small for it to hold. Indeed, just notice

that for any box (x, t) + Bn0 if we denote by N the number edges contained in [0, 2n0 ]d we
ave that

P̂(H ) := P̂(no transmission on (x, t) + Bn0 ) = e−λbn0 ·N
→ 1

s λ → 0. Clearly, we have hn0 ≤ P̂(H c). Moreover, we can control t̃n0 similarly, since if
here is no transmission the only possibility for a temporal half-crossing of box (x, t) + Bn0
s achieving it by a single site, an event which we recall was denoted J = Jn0 (t, bn0/2) in
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Corollary 2.4. Hence, we have

P̂(H ∩ J ) ≤
C(µ, θ)2dn0

f (bn0/2)
= C2dn0 exp

[
−θ

(α2

θ2 n2
0 − ln 2

) 1
2
]

= C2dn0 exp
[
−αn0

(
1 −

θ2 ln 2
(αn0)2

) 1
2
]

= Ce(d ln 2−α)n0+O(n−1
0 )

s n0 → ∞. Making a small change in (14), we can increase n0 if needed to ensure
ˆ (H ∩ J ) ≤

1
4 e−βn0 and write

max{hn0 , t̃n0} ≤ sup{P̂(H c) + P̂(H ∩ J )} ≤ 1 − e−λbn0 N
+

1
4

e−βn0 ≤
1
2

e−βn0

or λ sufficiently small. We conclude un0 ≤ e−βn0 . □

roof of Theorem 1.1. It follows from the conclusion of Lemma 2.7. □

emark 2.8. The exponent 1/2 in the definition of function f is the best possible, meaning
hat the same reasoning does not work for a function g = exp[θ (ln x)δ] with δ < 1/2.

Remark 2.9. We recall (see e.g. Section 2 of [11]) that when the interarrival distribution µ has
a density f and hµ(t) = f (t)/µ(t, ∞) is the hazard rate function, the corresponding renewal
process starting at some point t0 ∈ R can be easily obtained in terms of a homogeneous Poisson
point process on R×R+ with intensity 1. The construction shows that when the hazard rate is
decreasing, the corresponding renewal point process, hereby denoted by Rµ, is an increasing
function of points in the Poisson point process. As already mentioned, this property was used
in [11] to guarantee the FKG property. Moreover, as easily verified, it also yields the following:

If ν is another probability measure on (0, ∞) with a density g and hazard rate hν , and
hν(t) ≥ hµ(t) for all t , then the two renewal processes starting at some t0 ∈ R can be coupled
in such a way that Rµ ⊂ Rν with probability one.

Using this observation with ν being an exponential distribution, we conclude that if hµ

is decreasing and bounded, then Rµ can be embedded in a Poisson point process. Thus, the
classical result on Harris contact process yields λc(µ) < ∞. It is easy to come up with a wide
range of examples of such µ’s.

3. Complete convergence

In this section we prove Theorem 1.2, which relies on a variant of the argument of [10]. We
begin with a sketch of the argument. In the following, λ is a fixed strictly positive infection
rate. For our RCP equipped with its natural filtration (At )t≥0, we say a stopping time T is
xtreme if

max
{
∥x∥∞ : ξT (x) = 1

}
> max

s<T

{
∥x∥∞ : ξs(x) = 1

}
,

here ∥x∥p denotes the usual ℓp-norm on Zd .
An extreme stopping time T is useful as it implies the existence of a site xT such that

T (xT ) = 1 and a Euclidean unit vector e⃗ in Zd so that all renewal processes (RxT +me⃗ ; m ≥ 1)
re conditionally i.i.d. independent of AT .

On Lemma 3.2 we show that the probability of the infection surviving only inside a finite
ylinder is zero. This means that we can find arbitrarily large extreme stopping times, which

ives us a way to build independent events.

115



L.R. Fontes, T.S. Mountford, D. Ungaretti et al. Stochastic Processes and their Applications 161 (2023) 102–136

p
m
t
i
h

t
f

D
o
s
t

i
p

t
t

L

i

P
t
w
l
o
e

h

Then, on Corollary 3.3 we build a tunnelling event inspired in the construction of [10]. We
rove that almost surely we can find a sequence of (random) sites that do not have any cure
arks for a very long time. These intervals have a sizeable overlap, allowing the infection

o travel from one to another and making them to work as hubs for sustaining the infection
ndefinitely. Corollary 3.3 provides a quantitative control for the space–time position of such
ubs.

Finally, on Lemma 3.5 we leverage the existence of these hubs and show they can be used
o infect every site in a suitably sized region around the hub. This construction is based on the
ollowing definition.

efinition 3.1. We say (x, u) freely-infects (y, v) in the set A ⊂ Zd if there exists a sequence
f points x = x0, x1, . . . , xn = y and times u < t1 < t2 < · · · < tn < v so that for each i the
ites xi−1 and xi are nearest neighbours and xi ∈ A, and there is an infection mark from xi−1

o xi at time ti .

We stress that we are not assuming that ξu(x) = 1. The event “(x, u) freely-infects (y, v)
n A” depends purely on the collection of Poisson processes and does not concern the renewal
rocesses, i.e. it does not take into account the recovery times.

The proof of Theorem 1.2 puts all these pieces together to conclude that, on the event that
he infection survives, the probability that any fixed finite set K ⊂ Zd is infected at a large
ime tends to 1.

emma 3.2. For a RCP with τ = inf{s > 0 : ξs ≡ 0} we have

P
(
{τ = ∞} ∩

{⏐⏐{x :
∫

∞

0 ξs(x)ds > 0}
⏐⏐ < ∞

})
= 0.

This lemma implies that for all time t there a.s. exists on the set {τ = ∞} an extreme time
T > t . Indeed, just take the next time after t when the process encounters a site whose norm
s a new maximum among sites infected or previously infected.

roof. Without loss of generality we assume that
∑

x ξ0(x) < ∞ as otherwise the result is
rivial. The idea is that if the result were not true, then for some m < ∞ the infected sites
ould remain a subset of [−m, m]d for ever. But as time becomes large there will be arbitrarily

arge intervals of time on which there are no renewal points for any x ∈ [−m, m]d and so no
pposition to the process infecting sites outside this finite set. It is enough to prove that for
ach m ∈ N, the event

{τ = ∞} ∩
{
ξs(x) = 0, ∀s ≥ 0, ∀x /∈ [−m, m]d}

as probability zero. But by Proposition 7 in [10], for all n large enough the probability that
at least one of the renewal processes on [−m, m]d intersects the time interval [2n, 2n

+ 2nϵ1 ] is
less than (2m + 1)d2−nϵ1 , provided ϵ1 is fixed strictly positive but small enough. Furthermore,
the probability (conditional upon ξ2n (x) = 1 for some x ∈ [−m, m]d ) that there does not exist
a sequence x = x0, x1 · · · xk with k ≤ m + 1 of nearest neighbour sites that satisfy

(i) ξ2n+2nϵ1 (xk) = 1, with xk /∈ [−m, m]d ;
(ii) ∥xi − xi−1∥1 = 1, for all 1 ≤ i ≤ k; and

(iii) ξ2n (x0) = 1 with x0 ∈ [−m, m]d .
tends to zero as n → ∞, which implies the lemma. □
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Fig. 3. On HT we have an infinite infected path (in blue) that passes through points (XT + L i , 2ni ). The grey
reas represent absence of cure marks. For 2ni−1 < t ≤ 2ni we choose xt = XT + L i−2, which ensures ξs (xt ) = 1
n the whole interval [2ni−2 , t] ⊃ [t/2, t]. (For interpretation of the references to colour in this figure legend, the
eader is referred to the web version of this article.)

orollary 3.3. On the event {τ = ∞}, for all t large there is a site xt within distance ln3 t
f the origin so that ξs(xt ) = 1 for all s ∈ [t/2, t].

roof. For purely notational reasons we suppose that the dimension, d, is equal to one. We
rst treat the case

∑
x ξ0(x) < ∞ and then note how the argument given can be extended to

he infinite case. Given an extreme stopping time T , we define a suitable tunnelling event HT

see Fig. 3). What is important is that its conditional probability given AT should be bounded
way from zero on {T > N }, where N is a large constant. In this description and calculation
f probability bounds, we suppose

XT > max{x : ∃s < T so that ξs(x) = 1}.

f XT < min{x : ∃s < T so that ξs(x) = 1} then we simply reflect the definitions and all
robability bounds will be the same. Define

HT :=

∞⋂
n=0

HT,n, (15)

here the events HT,n are defined recursively via the random integers {L j }
∞

j=0 and {n j }
∞

j=0:
HT,0 is simply the event {RXT ∩ [T, 2n0+2] = ∅}, where 2n0 = inf{2n

: 2n > T }. By Lemma
in [10], there exists c > 0 so that

P(HT,0|AT ) ≥ c > 0 on {T > N }

or all N fixed. We take L0 := 0. Given n0, . . . , ni−1 and L0, L1, . . . , L i−1 we set ni = ni−1+1
nd define

L := inf{k > L : R ∩ [2ni−1 , 8 · 2ni−1 ] = ∅}.
i i−1 XT +k
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Our event HT,i is given by the following conditions:

(i) L i − L i−1 ≤ in0;
(ii) There exists an infection path from (XT +L i−1, 2ni−1 ) to (XT +L i , 2ni ) in the space–time

rectangle [XT + L i−1, XT + L i ] × [2ni−1 , 2ni ].

From the argument in Section 4 of [10], we have that if N is fixed sufficiently large then

P(HT | AT ) = P
( ∞⋂

i=0

HT,i

⏐⏐⏐AT

)
≥ c1 > 0,

for some c1, uniformly on {T > N }. The argument of [10] uses Markov properties in the
environment on [XT + L i−1) given our realization of L i−1. The heavy-tailed distribution
or the renewals ensures that for each x > XT + L i−1, the corresponding renewal process
as probability (uniformly in x and i) bounded away from zero of satisfying the emptiness
ondition entering in the definition of L i , and so condition (i) holds outside exponentially
mall probability. We then show that the process will infect site XT + L i outside exponentially
mall probability in i . From this, we easily obtain

P
(
{τ = ∞} ∩ {∄ extreme T such that HT occurs}

)
= 0. (16)

ndeed, whenever event HT does not happen we have a random finite index U such that HT,U
s the first event HT,i that did not happen. Consider the random time S = 2nU . By Lemma 3.2
e can find an extreme stopping time T2 > S and once again we have P(HT2 | AT2 ) ≥ c1.

terating this reasoning, we deduce (16).
By (16) we can conclude that a.s. there is some extreme time T for which HT happens.

onsider the sequences {L j }
∞

j=0 and {n j }
∞

j=0 associated with T and let t > 2n1 . Let i be the
nique index such that 2ni−1 < t ≤ 2ni and define xt := XT + L i−2. By construction of event

HT , we have ξs(xt ) = 1 on the whole interval [2ni−2 , t] ⊃ [t/2, t]. We estimate xt by noticing

xt = XT + L i−2 ≤ XT +

i−2∑
j=1

jn0 ≤ XT +
n0

2
(i − 1)2

≤ XT +
n0

2

( ln t
ln 2

− n0

)2
≪ ln3 t,

s t → ∞. This implies the corollary for finite initial configurations. If
∑

x ξ0(x) = ∞ then
t is easy to see that there exists x so that taking T = 0 and XT = x the event HT occurs
though of course T is not extreme in this case). □

emark 3.4. It should be noted that the event HT in higher dimensions involves a direction
long one of the coordinate axes in Zd away from the origin.

Before proving Theorem 1.2 we need some definitions and basic lemmas.

emma 3.5. Let d ≥ 1 and B(r ) = [−r, r ]d . Let Vt be the event that for every x, y ∈ B(ln3 t)
e have (x, t − tϵ1 ) freely-infects (y, t) in B(ln3 t), where again ϵ1 arises from Proposition 7
f [10]. Then limt→∞ P(Vt ) = 1.

roof. Fix x and y and take a shortest path x = x0, x1, . . . , xn = y from x to y, where xi
s a nearest neighbour of xi−1, and xi ∈ B(ln3 t) for every i . Clearly, n ≤ C(d) ln3 t for some
ositive constant C . Then we see that

P
(

(x, t − tϵ1 ) does not freely-
3

)
≤ P

(
Poi(λtϵ1 ) ≤ C(d) ln3 t

)
≤ e−c tϵ1

, (17)

infect (y, t) in B(ln t)
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for some positive c = c(λ) as t → ∞, where Poi(u) denotes a Poisson random variable of rate
. Thus, we can write

P(Vt ) ≥ 1−

∑
x,y∈B(ln3 t)

P
(

(x, t − tϵ1 ) does not freely-
infect (y, t) in B(ln3 t)

)
≥ 1−C(d)(ln3 t)2de−c tϵ1

. □

roof of Theorem 1.2. Notice that on {τ = ∞} if we also ensure the occurrence of events
Vt ,

Wt :=
{
∃x ∈ B(ln3 t) : ξs(x) = 1 on [t/2, t]

}
, and

Ut :=
{
Rx ∩ (t − tϵ1 , t) = ∅, ∀x ∈ B(ln3 t)

}
hen every site of B(ln3 t) is infected at time t . Then, we can write for any fixed x ∈ Zd that

P(τ = ∞, ξt (x) = 0) ≤ P(V c
t ) + P({τ = ∞} ∩ W c

t ) + P(U c
t )

or sufficiently large t . Notice that all three terms on the right hand side tend to zero as t → ∞.
ndeed, the first one tends to zero by Lemma 3.5, the second one by Corollary 3.3, and for the
hird one we have by Proposition 7 of [10] that it has probability less than C(d)(ln3 t)d t−ϵ1 .

e conclude that for any finite set K ⊂ Zd we have

P({τ = ∞} ∩ {ξt (x) = 1, ∀x ∈ K }) ≥ P(τ = ∞) −

∑
x∈K

P(τ = ∞, ξt (x) = 0)

→ P(τ = ∞)

s t → ∞ and Theorem 1.2 follows. □

emark 3.6. As brought up at the introduction, the upper bound on the tail of µ prescribed
n Condition C), may indeed be dropped as a hypothesis in Theorem 1 of [10]. We briefly
xplain an alternative argument for that result, dispensing with the upper bound. For short, we
efer to the notation and passages in [10].

In the argument leading up to the proof of Theorem 1 in [10], we use Proposition 7 of [10],
or which we require the upper bound; but we may instead use Corollary 4 [10], for which that
ound is not required. In that corollary, there figures an interval, denoted by I , and a subinterval

J ⊂ I . We apply it with I = Ii = [t02i , t02i+1] and obtain J = Ji =
(
σi , σi + (t02i )γ

′)
,

= 1, 2, . . ., where γ ′
:= ϵ3/2, with ϵ3 as in Corollary 4 [10], for some σi ∈ Ii such that

Ji ⊂ Ii . We then modify the argument on page 2911 of [10] as follows:

1. We replace (II) by (II′), where the interval [t02i
− (t02i )γ , t02i ] in (II) is replaced with

Ji in (II′);
2. We next replace (III) by (III′), where the interval(

(t02i
− (t02i )γ +

k − L i−1

i log t0
(t02i )γ , t02i

− (t02i )γ +
k + 1 − L i−1

i log t0
(t02i )γ )

)
in (III) is replaced by(

σi +
k − L i−1

i log t0
(t02i )γ

′

, σi +
k + 1 − L i−1

i log t0
(t02i )γ

′
)

in (III′);
3. We finally replace the last paragraph in the proof of Lemma 9 in [10] by the following

′
(parallel) paragraph: By Corollary 4 in [10], the probability of (II ) occurring and
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L i ≤ L i−1 + i log t0 is bounded by i log(t0)(t02i )−γ ′′

, where γ ′′
:= 2γ ′/3 = ϵ3/3, (again

supposing t0 is large). Similarly the intersection of (III′) and L i ≤ L i−1 + i log t0 has a
probability bounded by

i log(t0)e−λ(t02i )γ
′′
/ i log(t0).

emark 3.7. As pointed out above, the argument in Remark 3.6 dispenses with Proposition
of [10], relying exclusively on Corollary 4 of [10] to establish Theorem 1 of [10]. But to

rgue Theorem 1.2, as we did above in this section, we require the full force of Proposition 7
f [10]. Indeed, in the proof of Theorem 1.2, in the event Ut we are not able to replace the fixed
nterval (t − tϵ1 , t), for which we may claim the absence of cure marks with high probability
sing Proposition 7, by an interval with similar properties provided by Corollary 4, since (the
losure of) the latter interval might not contain t , and that would invalidate our argument.

. Closeness to determinism

In this section we consider a strengthening of Theorem 1.2. This requires greater regularity
n our renewal distribution. We require not merely that condition C) of [10] holds but that F
as a regular tail power:

F̄(t) ≡ 1 − F(t) ∈ RV (−α)

or some 0 < α < 1, where RV (β) denotes the set of functions that for large t are of the
orm tβ L(t) for L slowly varying. If α ≤ 1/2 we require, in addition, the second condition of
heorem 1.4 of [5] that function

I +

1 (δ; t) :=

∫
1≤z≤δt

F(t − dz)

z F̄(z)
2 satisfies lim

δ→0
lim

t→∞
t F̄(t) · I +

1 (δ; t) = 0, (18)

hich in the notation of [5] is saying that I +

1 (δ; t) is asymptotically negligible.
Theorem 1.2 tells us that on the event {τ = ∞} the configuration ξt converges to δ1 in

istribution as t → ∞, which is equivalent to

for every x ∈ Zd , ξt (x)
P

−→ 1 as t → ∞.

This is because the renewal (or healing) points become so sparse as t becomes large that
he infection process infects all sites in a bounded region “deterministically” if there are no
ealing points nearby.

One way of expressing this is to introduce the σ -field G generated by the renewal processes
(Ru)u∈Zd and the extinction random variable τ . We should have that, when the infection
urvives, the conditional probability P(ξt (x) = 1 | G) should be close to 1 for large t if
here are no points of Rx ∩ [0, t] close to t . Refining further, one might hope that on {τ = ∞}

it holds

lim
t→∞

⏐⏐P(ξt (x) = 0 | G) − e−2λdYt (x)
⏐⏐ = 0 for every x ∈ Zd ,

here Yt (x) := t − sup{Rx ∩ [0, t]} is the age process. In fact this depends on the power decay
f F̄ .
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Theorem 4.1. If F̄ ∈ RV (−α) for 0 < α < 1 then for all x ∈ Zd :

(i) If α < 1/2 and also (18), it holds on {τ = ∞} that

lim
t→∞

⏐⏐P(ξt (x) = 0 | G) − e−2λdYt (x)
⏐⏐ = 0.

(ii) If α > 1/2 and also F(t) > 0, for every t > 0, it holds on {τ = ∞} that

lim
t→∞

(
P(ξt (x) = 0 | G) − e−2λdYt (x)

)
> 0.

Remark 4.2. The case α = 1/2 is not explicitly treated (though it is treatable) as it depends
on how F̄(t)/t1/2 behaves as t → ∞.

Remark 4.3. In the case α > 1
2 we do not need the full force of [5], the preceding strong

enewal theorem of [7] suffices.

The same proof can be adapted to reach a more precise conclusion when α ∈ (1/2, 1).

heorem 4.4. Assume that F̄ ∈ RV (−α) for α ∈ (1/2, 1) and that F(t) > 0 for every t > 0.
or all x ∈ Zd :

(i) If 1 ≤ k < 2d and 1 − α ∈
( 1

k+2 , 1
k+1

)
, then on {τ = ∞} we have

lim
t→∞

(
P(ξt (x) = 0 | G) − e−(2d−k)λYt (x)

)
= 0.

(ii) If 1 − α < 1
2d+1 then for every 0 ≤ s < ∞ we have on {τ = ∞} that

lim
t→∞

1{Yt (x)=s} P(ξt (x) = 0 | G) = 1.

We provide a detailed proof for Theorem 4.1. The same steps are used (in generalized form)
or Theorem 4.4 but the extra details involved do not add any insight to the result. Considering
his, we opted to only sketch the proof of Theorem 4.4, pointing out the differences to its
impler version. We require preliminary lemmas first.

Given an integer M and t ≥ 0 we define the event H (M, t) to be that for some stopping time
T < t with XT /∈ [−M, M]d the event HT occurs (see Remark 3.4 following Corollary 3.3).
The next lemma is immediate from the argument in Corollary 3.3.

Lemma 4.5. For any M ∈ N and finite ξ0 we have that as t → ∞

P(H (M, t) | G)
a.s.
−→ 1{τ=∞}.

Proof. From the proof of Corollary 3.3 we know P
(
{τ = ∞} ∩

(
∪t≥1 H (M, t)

)c)
=

0. Since H (M, t) is increasing in t , we have that the limit of P(H (M, t) | G) as t → ∞

is almost surely

P(∪t≥1 H (M, t) | G) = P(τ = ∞ | G) − P
(
{τ = ∞} ∩

(
∪t≥1 H (M, t)

)c
| G

)
= 1{τ=∞}. □

here □

For the next lemma, let us define θt as the time-shift by t of the infection Poisson processes
{N x,y

}. It holds
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Lemma 4.6. Given M ∈ N and t0 > 0, let A be some event generated by Poisson processes
N x,y

∩ [0, t0] for x, y ∈ [−M, M]d . Then,

lim
t→∞

P
(
θt (A) | G

)
= P(A) a.s. on {τ = ∞}.

roof. The conditional probability P
(
θt (A) | G

)
on the event {τ = ∞} can be written as

P(θt (A) | G) = P(θt (A) ∩ H (M, t) | G) + P(θt (A) ∩ H (M, t)c
| G).

We now claim that P
(
θt (A) ∩ H (M, t) | G

)
= P(A) · P(H (M, t) | G). Indeed, consider the

families

C :=
{
C ∈ G; P(θt (A) ∩ H (M, t) ∩ C) = P(A) · P(H (M, t) ∩ C)

}
,

P :=
{

V ∩ W ; V ∈ σ (Rz; z ∈ Zd ), W ∈ σ (τ )
}
.

It is straightforward to check that C is a λ-system and P is a π -system that generates G. Notice
that H (M, t) ⊂ {τ = ∞}. If W ⊃ {τ = ∞} we have

P(θt (A) ∩ H (M, t) ∩ (V ∩ W ))= P(θt (A) ∩ (H (M, t) ∩ V ))= P(A) · P(H (M, t) ∩ V ),

since A does not depend on renewals, only on a region of infection that is disjoint of the one
event H (M, t) ∩ V depends. If W ⊉ {τ = ∞}, then both sides are zero. Thus, we conclude
that P ⊂ C and by Dynkin’s π − λ Theorem the claim follows. The result follows from
Lemma 4.5. □

Remark 4.7. The limit also holds a.s. on {τ < ∞}, with a simpler proof, but this is not needed
in our argument.

Corollary 4.8. For x ∈ Zd and t > 0, let

At := {∀z ∼ x, N z,x
∩ [t − Yt (x), t] = ∅},

where ∼ signifies the relation of being neighbour. Then,

lim
t→∞

⏐⏐P
(

At | G
)
− e−2dλ(Yt (x))

⏐⏐ = 0 a.s. on {τ = ∞}.

Proof. Fix 0 < M < ∞ and consider events

Ai,M
t =

{
∀z ∼ x, N z,x

∩
[
t −

i
M

, t
]

= ∅

}
.

By Lemma 4.6, for each 0 ≤ i ≤ M2, P(Ai,M
t | G) → e−2dλi/M as t becomes large on

{τ = ∞}. So by monotonicity for each i and for t large, on {τ = ∞}

−
1
M

≤ 1
{Yt (x)∈[ i

M , i+1
M ]}

(
e−2dλi/M

− P(At | G)
)

≤
3dλ

M
nd similarly for t large on {τ = ∞}

0 ≤ 1{Yt (x)≥M} P(At | G) ≤ e−dλM .

he result now follows by the arbitrariness of M . □

emark 4.9. The argument generalizes with At replaced by

{∀(z , y ), i = 1, 2, . . . r, N zi ,yi ∩ [t − Y , t] = ∅}.
i i t
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We now bring in two probability estimates. The first is a generalization of Lemma 3.5 and
ollows quickly from the bounds arrived at in its proof.

orollary 4.10. Fix ϵ2 ∈ (0, 1). Let Cn = Cn(ϵ2) be the event that there exists a (time) interval
I = [T, T + 2nϵ2 ] ⊂ [2n−1, 2n+1] and sites x, y ∈ B(n3) such that (x, T ) does not freely-infect
(y, T +2nϵ2 ) in B(n3). There exist constants c(λ), K (d), n0(λ, d, ϵ2) > 0 such that for all n ≥ n0

e have

P(Cn) ≤ K 2n(1−ϵ2)n6d
· e−c2nϵ2

.

roof. Let t j := 2n−1
+ j · 2nϵ2/2 and notice that intervals I j = [t j , t j+1] for 0 ≤ j ≤

3·2n(1−ϵ2)
⌋ cover [2n−1, 2n+1]. Moreover, if Cn happens then the interval [T, T +2nϵ2 ] obtained

ust contain some I j . The argument from Lemma 3.5 shows that for any I j the probability
hat there are x, y ∈ B(n3) such that (x, t j ) does not freely-infect (y, t j+1) in B(n3) is bounded
y ∑

x,y∈B(n3)

P
(

Poi
(
λ · (2nϵ2/2)

)
≤ C(d)n3

)
≤ K (d)n6d

· e−c(λ)2nϵ2

or positive constants K (d) and c(λ). The result follows from union bound. □

emma 4.11. Let α < 1/2, F̄ ∈ RV (−α) satisfying (18), and fix ϵ ∈ (0, 1
2 − α). The event

Bn = Bn(ϵ) defined by

Bn :=

{
∃ distinct z, z′

∈ B(n3), s ∈ [2n−1, 2n+1] such that
Rz ∩ [s, s + 1] ̸= ∅, Rz′ ∩ [s, s + 2 · 2nϵ] ̸= ∅

}
atisfies

P(Bn) < K · n6d
· 2−n(1−2α−2ϵ)

or a positive constant K = K (α, d) and sufficiently large n.

roof. We simply write event Bn as the union of Bn(z, z′) for z, z′
∈ B(n3), where

Bn(z, z′) := {∃s ∈ [2n−1, 2n+1] : Rz ∩ [s, s + 1] ̸= ∅, Rz′ ∩ [s, s + 2 · 2nϵ] ̸= ∅}.

e then note that Bn(z, z′) is in turn a subset of the union

2n+1⋃
j=2n−1

{Rz ∩ [ j, j + 2] ̸= ∅, Rz′ ∩ [ j, j + 2 · 2nϵ
+ 1] ̸= ∅},

hose events for fixed z, z′ and j will be denoted Bn(z, z′, j). By independence, since z ̸= z′

e have

P
(
Bn(z, z′, j)

)
= P

(
Rz ∩ [ j, j + 2] ̸= ∅

)
· P(Rz′ ∩ [ j, j + 2 · 2nϵ

+ 1] ̸= ∅).

Let us assume that R is a non-arithmetic renewal process. The Strong Renewal Theorem
Theorem 1.4 of [5]) provides an estimate

P
(
R ∩ [ j, j + 2] ̸= ∅

)
≤ U ([ j, j + 2]) ∼ C(α)

L( j)
as j → ∞,
j1−α
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where U denotes the renewal measure associated to F , L is a slowly varying function, and
(α) is a positive constant. Also, the definition of slowly varying function implies the bounds

P
(
R ∩ [ j, j + 2] ̸= ∅

)
≪ 2−n(1−α−ϵ/2), and

P
(
R ∩ [ j, j + 2 · 2nϵ

+ 1] ̸= ∅
)

≤

j+2·2nϵ
−1∑

k= j

P
(
R ∩ [k, k + 2] ̸= ∅

)
≪ (2 · 2nϵ) · 2−n(1−α−ϵ/2).

he result now follows from the usual union bound, at least for the non-arithmetic case. For
he arithmetic case, we just have to consider intervals [ j, j + h] for h being the span of R and
he same reasoning applies. □

Finally, the following estimate, a result which is similar to Lemma 3 of [10], shows that
ven in the case in which there are renewal marks on some interval [2n−1, 2n+1], the probability
hat these marks are too dense on this interval decays rapidly with n.

emma 4.12. Fix α, ϵ ∈ (0, 1). There is g(α) ∈ (0, 1) such that the event Dn = Dn(ϵ) defined
y

Dn := {∃z ∈ B(n3), I ⊂ [2n−1, 2n+1] : |I | = 2nϵ, |Rz ∩ I | ≥ n22nϵg(α)
}

atisfies

P(Dn) ≤ K (d)n3d
· 2n

· 2−cϵ2n2

or constants c > 0 and K (d) > 0 and sufficiently large n.

roof. Consider the collection of intervals I j = [2n−1
+ j, 2n−1

+ j + 2nϵ
+ 1] for integer j

atisfying 0 ≤ j ≤ 3 · 2n−1. Then [2n−1, 2n+1] ⊂ ∪ j I j and whenever event Dn(ϵ) happens the
nterval I obtained must be contained in some I j and implies there are many renewal marks
nside I j . Denoting |I j | = 2nϵ

+ 1 by l, the proof of Lemma 3 of [10] gives the following
stimate

P(|R ∩ I j | ≥ l1−ϵ3 ln2 l) ≤ 2 · e− ln2 l
≤ 2−cϵ2n2

for large n, (19)

here constant ϵ3 > 0 satisfies t−(1−ϵ3)
≤ F̄(t) for large t (the proof of Lemma 3 of [10]

nly uses the lower bound of condition C). Since F̄(t) ∈ RV (−α) and α ∈ (0, 1), we can take
3 := (1 − α)/2. Let us define g(α) := 1 − ϵ3/2, so that g(α) > 1 − ϵ3. It is straightforward to
heck that

n22nϵg(α)
≫ l1−ϵ3 ln2 l as n → ∞.

sing (19) we conclude that

P(Dn) ≤

∑
z∈B(n3)

3·2n−1∑
j=0

P
(
|R ∩ I j | ≥ n22nϵg(α))

≤ K (d)n3d
· 2n

· 2−cϵ2n2
. □

roof (Proof of Theorem 4.1, Part (i)). We assume without loss of generality that x is the origin
nd denote Yt (0) simply by Yt and recall that our estimates hold a.s. on the event {τ = ∞}.
or t > 0 define n = n(t) := ⌊log2 t⌋, so that t ∈ [2n, 2n+1). Fix ϵ ∈ (0, 1/2 − α) and consider
vents B (ϵ) and D (ϵ), which are both G-measurable. These events can be used to ensure that
k k

124



L.R. Fontes, T.S. Mountford, D. Ungaretti et al. Stochastic Processes and their Applications 161 (2023) 102–136

O
o
t

w
i
C

b

B
G

s
a

A

I
C
s
n
M
i
o

as t → ∞ the renewal marks near {0} × {t} are relatively sparse, almost surely. Indeed, by
Lemmas 4.11 and 4.12, we have∑

k≥1

P(Bk ∪ Dk) < ∞, implying that 1Bc
k ∩Dc

k

a.s.
−→ 1 as k → ∞.

n the event Gn := Bc
n ∩ Dc

n there is at most one site z ∈ B(n3) with Rz ∩[t −2nϵ, t] ̸= ∅, since
therwise event Bn happens. Moreover, on Dc

n we must have some interval I ⊂ [t − 2nϵ, t]
hat has no cure marks of Rz with length

|I | ≥
2nϵ

n22nϵg(α) =
1
n2 · 2nϵ(1−g(α))

≫ 2nϵ′

as t → ∞, (20)

for ϵ′
:= ϵ(1 − g(α))/2. This implies B(n3) × I is free of renewals.

Event Gn ∈ G provides some control on the renewal structure of B(n3)× [2n−1, 2n+1]. Now,
e discuss two other events that are not G measurable but will help us handle the infections

n B(n3) × [2n−1, 2n+1]. The first event is Cn = Cn(ϵ′). By the estimates for P(Cn) from
orollary 4.10 and the Borel–Cantelli Lemma we have that

P(lim
n

Cn) = 0 implies P(lim
n

Cn | G) = 0 a.s. ,

and hence lim
n

P(Cn | G) = 0 a.s.

y Fatou’s Lemma. The second event is denoted Hn and defined as

Hn := {∀ m ≥ n, ∃ y ∈ B(m3) \ B(2) with ξs(y) = 1, ∀ s ∈ [2m, 2m+1]}.

y Corollary 3.3 and monotone convergence for conditional expectations, we have P(Hn |

) → 1 on event {τ = ∞}.
We consider P(ξt (0) = 1 | G) on survival and on event Gn . There are two cases. We first

uppose that Yt ≤ 2nϵ . The fact that the renewal environment belongs to Gn implies that there
re no renewals on B(n3) × (t − Yt , t]. Obviously, the event {ξt (0) = 0} contains the event

At = {∀z ∼ 0, N z,0
∩ [t − Yt (0), t] = ∅} (recall Corollary 4.8).

lso, on Gn we have

Hn−1 ∩ Cc
n ∩ Ac

t ⊂ {ξt (0) = 1}.

ndeed, if 2nϵ′

≤ Yt ≤ 2nϵ then the infected site given by Hn−1 will infect the origin on event
c
n . If Yt < 2nϵ′

then by our discussion next to (20) we can find an interval I ⊂ (t −2nϵ, t −Yt )
uch that the infection provided by Hn−1 will spread throughout I and guarantee that all
eighbours of the origin, which we denote by Γ0, will be infected at time sup I ≤ t − Yt .
oreover, on Gn the only cure mark in [t − 2nϵ, t] is the one at the origin at time t − Yt ,

mplying that Γ0 is infected at time t − Yt . Hence, the transmission given by Ac
t will infect the

rigin and we can write {ξt (0) = 0}\At ⊂ H c
n−1 ∪ Cn , implying

P(At | G) ≤ P(ξt (0) = 0 | G) ≤ P(At | G) + P(H c
n−1 | G) + P(Cn | G).

By Corollary 4.8, on survival and Gn we have

1 nϵ

⏐⏐P(ξ (0) = 0 | G) − e−2dλ·Yt
⏐⏐ → 0 as t → ∞.
{Yt ≤2 } t
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If Yt ≥ 2nϵ , then the interval I ⊂ [t − Yt , t] provided by (20) is long enough for event Cc
n to

nfect the origin. Thus, on Yt ≥ 2nϵ we have

0 ≤ P(ξt (0) = 0 | G) ≤ P(H c
n−1 | G) + P(Cn | G),

0 ≤ e−2dλ·Yt ≤ e−2dλ2nϵ

mplying that |P(ξt (0) = 0 | G) − e−2dλ·Yt | → 0 as t → ∞. □

Now, we turn to the proof of Theorem 4.1(ii) and fix α > 1/2. We rely on two preliminary
esults. Given ϵ > 0 and z ∈ Zd we say time interval I is an ϵ-block (for Rz) if I\Rz contains
nly intervals of length less than ϵ.

In order to motivate our next proposition, we prove:

emma 4.13. Given M, δ > 0, there is ϵ = ϵ(d, M, δ, λ) > 0 so that for s sufficiently large
nd z a fixed site

P(z infects a neighbour in [s, s + M] | G) < δ

n the event where [s, s + M] is an ϵ-block (for Rz).

Proof. Write I0, I1, . . . , IK for the (ordered) intervals of [s, s + M]\Rz . Denote by N z

(resp. N z
i ) the union of Poisson processes N y,z (resp. N z,y) with y ∼ z. We note that event

{z infects a neighbour in [s, s + M]} is contained on

{N z
∩ I0 ̸= ∅} ∪ ∪

K
j=1{I j contains points in N z

i and N z
}.

Consider event

D :=

{
∀r ∈ [0, M] ∩ N z, ∀u ∈ [0, M] ∩ N z

i
we have |r − u| > ϵ, and r > ϵ and u > ϵ

}
.

On event [s, s + M] is an ϵ-block we have that

P(z infects a neighbour in [s, s + M] | G) ≤ P(θs(Dc) | G) → P(Dc) as s → ∞

by Lemma 4.6. Now, we simply notice that fixed λ, d, M > 0 the probability on the right hand
side is continuous function of ϵ and converges to 0 as ϵ ↓ 0. □

Let us fix z a neighbour of 0. We define event An
M,ϵ to be the event that in [2n, 2n+1) there

exists t such that [t, t +1]∩R0 ̸= ∅, [t +1, t + M +1]∩R0 = ∅ and [t, t + M +1] is an ϵ-block
(for Rz). Our following result will use the following notation for comparing sequences: we say
that f ≍ g if there is K ≥ 1 such that (1/K )|g(n)| ≤ | f (n)| ≤ K |g(n)| for every n ≥ 1.

roposition 4.14. Let F satisfy the conditions of Theorem 4.1 with α > 1/2. For ϵ > 0, M <

,

P(lim
n

An
M,ϵ) = 1.

Proof. It is based on a second moment argument. We assume ϵ < 1. Consider events
A j = A j (M, ϵ) defined by

A j :=

{ [ j, j + 1] ∩ R0 ̸= ∅, [ j + 1, j + M + 1] ∩ R0 = ∅,
}

and [ j, j + M + 1] is an ϵ-block for Rz

126



L.R. Fontes, T.S. Mountford, D. Ungaretti et al. Stochastic Processes and their Applications 161 (2023) 102–136

c

n
c
r

w
p

and for n ≥ 1 define the random variables

Xn :=

2n+1
−1∑

j=2n

1A j

that count the number of occurrences of events A j for 2n
≤ j < 2n+1. Clearly, the event An

M,ϵ

ontains the event {Xn > 0}.
The largest part of the proof consists of showing the existence of a δ > 0 independent of

so that P(Xn > 0) > δ for all n ≥ 1. Once we have this, we simply note that the desired
onclusion follows from Hewitt–Savage’s 0–1 law, considering that limn An

M,ϵ is invariant with
espect to finite permutations of the family of i.i.d. random variables {(T 0

i , T z
i ); i ≥ 0}.

By Paley–Zygmund inequality, it suffices to find K = K (M, ϵ) < ∞ so that for n large

E X2
n ≤ K (E Xn)2.

The Strong Renewal Theorem of [5] will play a key role in the bounding of both moments.
This states (in our context, recalling that F(t) > 0 for t > 0 implies that our renewal process
is non-arithmetic) that as x becomes large

U (x, x + h)x1−α L(x) → cαh, (21)

where U (I ) := E(|R ∩ I |) and cα is a positive constant. Notice that for all intervals I =

[x, x + h] with 0 < h ≤ 1 we have that U (I ) is comparable to P(R ∩ I ̸= ∅). Indeed, by
Markov inequality we have

P(R ∩ I ̸= ∅) = P
(
|R ∩ I | ≥ 1

)
≤ U (I ).

On the other hand, we have

U (x, x + h) =

∑
j≥1

P(|R ∩ I | ≥ j) ≤

∑
j≥1

P(|R ∩ I | ≥ 1)P(T ≤ h) j−1

=
P(|R ∩ I | ≥ 1)

F̄(h)
,

where we recall T d
= µ and F̄(t) > 0 for any t > 0. This leads to the estimate

P
(
R ∩ [x, x + h] ̸= ∅

)
≤ U (x, x + h) ≤ F̄(1)−1

· P
(
R ∩ [x, x + h] ̸= ∅

)
.

We now show that P(A j ) is comparable to U ( j, j +1)2 by decomposing P(A j ) with respect
to what happens at the origin and at z.

It is immediate that

P(A j ) ≤ P(R0 ∩ [ j, j + 1] ̸= ∅)P(Rz ∩ [ j, j + ϵ] ̸= ∅) ≤ U ( j, j + 1)2,

For a lower bound, we have that

P
(
R0 ∩ [ j + 1, j + M + 1] = ∅, R0 ∩ [ j, j + 1] ̸= ∅

)
≥ K · U ( j, j + 1) · F̄(M + 2)

We claim that P([ j, j +M+1] is an ϵ-block) satisfies a similar lower bound, for some constant
K = K (M, ϵ). Indeed, notice that we can find η = η(ϵ) > 0 such that F(ϵ) > F(η) > 0. If

e have Rz ∩ [ j, j + ϵ] ̸= ∅ and the next ⌈(M + 1)/η⌉ random variables Ti of the renewal
rocess satisfy Ti ∈ [η, ϵ] we will have an ϵ-block, which leads to the bound

P([ j, j + M + 1] is an ϵ-block) ≥ U ( j, j + ϵ) · (F(ϵ) − F(η))⌈(M+1)/η⌉.
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These estimates imply that P(A j ) ≍ U ( j, j + 1)2 for some constant K (M, ϵ). Using the
stimate given by the Strong Renewal Theorem (21), defining n = n( j) as the only integer
atisfying 2n

≤ j < 2n+1 we have

P(A j ) ≍

( cα

L( j) j1−α

)2
=

( cα

L(2n)2n(1−α) ·
L(2n)2n(1−α)

L( j) j1−α

)2
≍ L(2n)−222n(α−1).

hus, E Xn satisfies

E Xn =

2n+1
−1∑

j=2n

P(A j ) ≍ L(2n)−22(2α−1)n,

which by our assumption on α tends to infinity as n becomes large. To finish the proof we
must show that E X2

n has an upper bound of the same order of magnitude as (E Xn)2. While
roving first moment estimates, we concluded that P(A j ) is comparable to the probability of
he event

A′

j := {[ j, j + 1] ∩ R0 ̸= ∅} ∩ {[ j, j + 1] ∩ Rz ̸= ∅}.

he same argument shows that P(A j ∩ Ak) ≤ P(A′

j ∩ A′

k), so it suffices to give an appropriate
pper bound to

E
[(2n+1

−1∑
j=2n

1A′
j

)2]
= 2

∑
2n≤ j<k<2n+1

P(A′

j ∩ A′

k) +

2n+1
−1∑

j=2n

P(A′

j ).

ur analysis rests on bounding P(A′

k | A′

j ). We note that for j < k an application of the
arkov property on the first renewal inside [ j, j + 1] implies

inf
x∈[k− j−1,k− j]

U (x, x + 1)2/K 2
≤ P(A′

k |A
′

j ) ≤ sup
x∈[k− j−1,k− j]

U (x, x + 1)2

for some positive K (ϵ, M). In particular, an upper bound on P(A′

k | A′

j ) will follow from
bounding

Cr := sup
r−1≤x≤r

U (x, x + 1)2 for r = k − j .

Let ν = ν(α) > 1 be a fixed constant whose precise value we will determine later. We fix
M ′

≥ M + 1 so that whenever x ≥ M ′ we have in addition that{ L(y)
L(x) : x ≤ y ≤ 4x

}
∪

{
U (x, x + 1)x1−α L(x)

cα

}
∪

{ U (x,x+1)
U (x ′,x ′+1) : |x − x ′

| ≤ 1
}
⊂ ( 1

ν
, ν).

Then for r ≥ M ′: U (r, r + 1)2ν−2
≤ Cr ≤ U (r, r + 1)2ν2,

and so: c2
αr−2(1−α)L(r )−2ν−4

≤ Cr ≤ c2
αr−2(1−α)L(r )−2ν4.

nce again, our choice of M ′ yields that for r ≥ M ′

C2r−1 + C2r

Cr
≥

C2r

Cr
≥ ν−8

( L(r )
L(2r )

)2
22(α−1)

≥ ν−1022(α−1). (22)

otice that for any fixed j ∈ [2n, 2n+1), we have

2n+1
−1∑

P(A′

k | A′

j ) ≤ M ′
+ 1 +

2n+1
−1∑

Cr ≤ M ′
+ 1 +

R∑ ∑
Cr (23)
k= j M ′+1 l=1 r∈Jl
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where Jl := (M ′2l−1, M ′2l] and R := inf{l : M ′2l
≥ 2n+1

}. The bound on (22) implies∑
r∈Jl

Cr ≤ ν102−2(α−1)
∑

r∈Jl+1

Cr , for any 1 ≤ l < R.

hoosing ν > 1 so that q := ν102−2(α−1) < 1, we have from (23) that

2n+1
−1∑

k= j

P(A′

k | A′

j ) ≤ M ′
+ 1 + (1 + q + · · ·+ q R−1)

∑
r∈JR

Cr ≤ M ′
+ 1 + (1 − q)−1

∑
r∈JR

Cr .

ince JR has at most 4 · 2n integer points and our conditions for M ′ ensure that each Cr , for
∈ JR , is comparable to one another, we conclude that

2n+1
−1∑

k= j

P(A′

k | A′

j ) ≤ K 2nC2n+1 ≤ K L(2n)−22(2α−1)n

or some positive K (α) and the proof is completed. □

roof (Proof of Theorem 4.1, Part (ii)). We fix M = 1 and postpone the definition of
= δ(d, λ) > 0 and ϵ = ϵ(δ) > 0 that provide a suitable choice of event A := limn An

1,ϵ .
By Proposition 4.14, the event A occurs a.s. for any choice of ϵ > 0. On A we can find
rbitrarily large times t such that

R0 ∩ [t, t + 1] ̸= ∅, R0 ∩ [t + 1, t + 2] = ∅, and [t, t + 2] is ϵ-block for Rz .

he above property ensures that Yt+2 ∈ [1, 2]. Recall that Γ0 denotes the neighbours of the
rigin. Using Lemma 4.13 we have that on A ∩ {τ = ∞}

P(ξt+2(0) = 1 | G) ≤ δ + P
(
∪y∈Γ0\{z}{N y,0

∩ [t + 2 − Yt+2, t + 2] ̸= ∅} | G
)

≤ δ +
(
1 − e−(2d−1)λYt+2 + δ

)
for a suitable time t , where the last inequality follows from Corollary 4.8 and Remark 4.9 when
t is sufficiently large. Hence, defining

η(d, λ) := inf
x∈[1,2]

(
e−(2d−1)λx

− e−2dλx)
we can estimate(

1 − e−2dλYt+2
)
− P(ξt+2(0) = 1 | G) ≥

(
e−(2d−1)λYt+2 − e−2dλYt+2

)
− 2δ ≥ η − 2δ,

which is positive once we define δ := η/4. The choice of ϵ is made accordingly, using
Lemma 4.13. □

The proof of Theorem 4.4 follows the same lines of the proof of Theorem 4.1. Instead of
writing down every detail for this similar proof, we give a sketch of the argument, singling out
the main differences.

Proof (Sketch of Proof of Theorem 4.4). The proof is equivalent to showing that

(a) If 1 − α > 1
k+2 then limt

(
P(ξt (0) = 0 | G) − e−(2d−k)λYt

)
≤ 0.

(b) If 1 − α < 1
k+1 then for each s > 0

lim1{Y =s}
(
P(ξt (0) = 0 | G) − e−(2d−k)λYt

)
≥ 0.
t t
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We consider first b), that is 1 − α < 1
k+1 . For 0 < ϵ, M < ∞ and z1, . . . , zk ∈ Γ0 distinct, we

efine An
M,ϵ(k) to be the event that

An
M,ϵ(k) :=

{
∃t ∈ [2n, 2n+1); [t, t + 1] ∩ R0 ̸= ∅, [t+1, t+M+1] ∩ R0 = ∅,
and [t, t + M + 1] is an ϵ-block for Rz j , for every 1 ≤ j ≤ k

}
.

he next claim follows Proposition 4.14 closely:

laim 4.15. For any M < ∞ and ϵ > 0 we have P(limn An
M,ϵ(k)) = 1.

roof (Sketch of Proof). Proposition 4.14 is the claim with k = 1. For k ≥ 2, introduce random
variable Xn =

∑2n+1
−1

i=2n 1G(i) where

G(i) =

{
[i, i + 1] ∩ R0 ̸= ∅, [i + 1, i + M + 1] ∩ R0 = ∅ and

[i, i + M + 1] is an ϵ-block for Rz j , for every 1 ≤ j ≤ k

}
.

o, Xn > 0 implies that event An
M,ϵ(k) occurs. As in Proposition 4.14, for all n large and

n
≤ i < 2n+1 we have that

P(G(i)) ≍ L(2n)−(k+1)2−n(k+1)(1−α),

so that E(Xn) ≍ L(2n)−(k+1)2n(1−(k+1)(1−α)).

lso, for 2n
≤ j − i < 2n+1

− 1 we have that

P(G( j) ∩ G(i)) ≤ P(G(i)) · sup
x∈[ j−i−1, j−i]

U (x, x + 1)k+1

and similar computations to Proposition 4.14 lead to

2n+1
−1∑

j=i

P(G( j) | G(i)) ≤ K L(2n)−(k+1)2n(1−(k+1)(1−α))

for universal K (depending on ϵ and M). This suffices to bound E(X2
n) by a universal multiple

of (E Xn)2 and leads to the proof of the claim. □

Hence, fixing M, δ > 0 we can follow the proof of Theorem 4.1(ii) (with a slight
generalization of Lemma 4.13) to show that for any s ∈ [0, M] > 0 there are infinitely many
tn tending to infinity so that Ytn = s and

P(ξtn (0) = 0 | G) − e−(2d−k)λs
≥ −kδ.

So that by the arbitrariness of M and δ we have

∀s > 0, lim
t→∞

1{Yt =s}
(
P(ξt (0) = 0 | G) − e−(2d−k)λYt

)
≥ 0.

n particular if 1 − α < 1
2d+1 , then for every s > 0 we have

lim
t→∞

1{Yt =s} P(ξt (0) = 0 | G) = 1.

or the proof of a), we essentially follow the same structure of the proof of Theorem 4.1(i).
otice that when α ∈ (1/2, 1) the estimates for the probability of events Cn(ϵ′) and Dn(ϵ)

are still available (see Corollary 4.10 and Lemma 4.12, respectively) for ϵ and ϵ′ to be chosen
below. One important difference is that now we have to consider a variation of event Bn defined
in Lemma 4.11. The higher value of α will imply that we expect to have a structure of renewals
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that is not as extremely sparse as in the case α ∈ (0, 1/2), but is still sparse nonetheless. We
define Bk

n = Bk
n (ϵ) by

Bk
n :=

{
∃ distinct {z j }

k+1
j=0 ∈ B(n3), s ∈ [2n−1, 2n+1];

Rz0 ∩ [s, s + 1] ̸= ∅, Rz j ∩ [s, s + 2 · 2nϵ] ̸= ∅ for 1 ≤ j ≤ k + 1

}
.

dapting the argument of Lemma 4.11 shows that for ϵ > 0 fixed so that 1 − α > 1
k+2 + ϵ we

ave for some universal K = K (k)

P(Bk
n ) ≤ K n3d(k+2)2−n(k+1−(k+2)α−(k+2)ϵ)

nd P(Bk
n ) is summable on n. We choose ϵ′ < ϵ so that on event Dc

n for every z0, z1, z2, . . . , zk ∈

(n3) and every interval I ⊂ [2n−1, 2n+1] of length 2nϵ/2 there is an interval of length 2nϵ′

ith no cure points in ∪
k
i=0Rzi .

Thus, taking ϵ(k, α) small we can ensure that

1(Bk
j )c∩Dc

j
→ 1 a.s. as j → ∞.

rguing as in the proof of Theorem 4.1(i), taking n(t) = ⌊log2 t⌋ we show that on event Gn :=

Bk
n )c

∩ Dc
n there will be at most k + 1 different sites z ∈ B(n3) such that Rz ∩ [t − 2nϵ, t] ̸= ∅,

nd also some interval I ⊂ [t −2nϵ, t −2nϵ/2] with B(n3)× I without cure marks and satisfying
I | = 2nϵ′

. We define event Cn = Cn(ϵ′) for this ϵ′. We have, as in the proof of Theorem 4.1(i)
hat P(Cc

n ∩ Hn−1 | G) → 1 a.s. Given this, we have on event Yt ≥ 2nϵ that during interval
I ⊂ [t − Yt , t] the origin is infected and then

lim
t
1{Yt >2nϵ }∩Gn

(
P(ξt (0) = 1 | G) − 1

)
= 0.

Now let us consider {Yt ≤ 2nϵ
}∩Gn . Here, the origin is one of the k +1 sites with renewals

n B(n3) × [t − 2nϵ, t]. There are at most k neighbours of the origin with cure marks on
he interval [t − 2nϵ, t], so we have that if Cn ∪ H c

n−1 does not occur, then at least 2d − k
eighbours of the origin have no cure marks and must be infected during this whole interval.
he probability that none of these neighbours has a transmission to the origin during [t −Yt , t]
an be controlled as t → ∞, see Remark 4.9 succeeding Corollary 4.8. If any of these infected
eighbours transmits the infection to the origin then the origin must end up infected at time t .
n other words, we have on {τ = ∞} that

lim
t
1{Yt ≤2nϵ }∩Gn

(
P(ξt (0) = 1 | G) −

(
1 − e−(2d−k)λYt

))
≥ 0,

or equivalently, lim
t
1{Yt ≤2nϵ }∩Gn

(
P(ξt (0) = 0 | G) − e−(2d−k)λYt

)
≤ 0.

his finishes the sketch of the proof of Theorem 4.4. □

. An example

As anticipated in the Introduction, we now give an example of distribution µ on (0, ∞) that
elongs to the domain of attraction of a stable law of index one, but for which the associated
ontact renewal process has λc = 0. Of course, it suffices to consider d = 1. The question of
hether infinite first moment could be enough for λc = 0 remains open for the moment.

heorem 5.1. Let t0 > e be fixed, and consider the probability measure µ on (0, ∞), given
y

¯
µ(t, ∞) = F(t) := K L(t)/t, t > t0, (24)
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where L(t) = exp (ln t/ ln ln t), and K is the normalizing constant. If we consider the renewal
contact process on Z with interarrival distribution µ as above, then λc = 0.

The proof follows the same line of argument as in [10], identifying suitable scales for the
tunnelling event to happen with positive probability. Before setting the convenient scales, we
recall information about the renewal process under consideration.

Notation. For a renewal process (starting at time zero, say) identified by renewal times
Sk = T1 + · · · + Tk , k ≥ 1, where the random variables {Ti }i are i.i.d. with distribution µ, we
write Z t and Yt for the corresponding overshooting and age processes:

Z t = SNt +1 − t; Yt = t − SNt , where Nt is defined by SNt ≤ t < SNt +1. (25)

Let also m(t) =
∫ t

0 F̄(s)ds, for t > 0. Moreover, when referring to the renewal process attached
to site j ∈ Z we shall add a superscript j to the corresponding variables.

Remark 5.2. Theorem 6 in [7] implies that if 0 < θ < 1, then

P
(
Z t > m−1(θm(t))

)
∼ 1 − θ as t → ∞. (26)

Lemma 5.3. For the distribution µ under consideration and α > 0 one has

lim
t→∞

m(t/(ln t)α)
m(t)

= e−α (27)

roof. We first note that we may apply L’Hôpital’s rule to the quotient on the left hand side
f (27), thus reducing to looking at the quotient of derivatives of its respective terms, which
esults in

exp
[{ ln t

ln(ln t − α ln ln t)
−

ln t
ln ln t

}
− α

{ ln ln t
ln(ln t − α ln ln t)

}]
·

(
1 −

α

ln t

)
(28)

nd the claim of the lemma follows readily by checking that the expressions in braces in (28)
onverge, respectively, to 0 and 1 as t → ∞. □

For the tunnelling event, let us consider the following (time and space) scales: we set
> 0, R0 ≥ e and L0 = 0; then, for k ≥ 0, let

Rk+1 = Rk +
Rk

(ln Rk)α
,

Lk+1 = min{ j ≥ Lk + 1 : Z j
Rk

> Rk+1 − Rk}.

or convenience, let us write rk = Rk − Rk−1 for k ≥ 1, r0 = R0, Mk = ln rk and ℓk = ln Rk ; let
lso I0 = [1, L1], and Ik = [Lk, Lk+1], k ≥ 1. The following statement estimates the growth
ate of sequence ℓk .

emma 5.4. Let β = (1 + α)−1. Then, provided R0 = R0(α) is large enough, we have that
k ≥ (ℓ0 + k)β for every k ≥ 0.

roof. We have Rk+1 = Rk(1 + ln−α Rk), implying that

ℓk = ℓk−1 + ln
(
1 + ℓ−α

k−1

)
≥ ℓk−1 + βℓ−α

k−1 =: g(ℓk−1), (29)

s soon as R is large enough.
0
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We argue the claim of the lemma by induction. It clearly holds true for k = 0, since ℓ0 ≥ 1.
ssuming it so does for k = n ≥ 0, and using the fact that g is increasing in [1, ∞), it follows

rom (29) that

ℓn+1 ≥ g(ℓn) ≥ g((ℓ0 + n)β) = (ℓ0 + n)β + β(ℓ0 + n)−αβ
≥ (ℓ0 + n + 1)β,

nd the argument for the induction step is complete as soon as the latter inequality is justified.
his may be done by writing (ℓ0 + n + 1)β − (ℓ0 + n)β , using the Mean Value Theorem, as

β

(ℓ0 + n + ζ )1−β
≤

β

(ℓ0 + n)1−β
=

β

(ℓ0 + n)αβ
,

or some ζ ∈ [0, 1]; the latter identity follows from the choice of β. □

We also need a lower bound on the growth of m(Rk).

Lemma 5.5. Let Lk = m(Rk+1) − m(Rk). Then, if R0 is large enough, we have that for every
k ≥ 0.

Lk ≥ e
√

ℓk (30)

Proof.
For R0 large, we may write m(Rk+1) − m(Rk) as

K
∫ Rk+1

Rk

e
ln s

ln ln s
ds
s

= K
∫ ℓk+1

ℓk

e
s

ln s ds ≥ K (ℓk+1 − ℓk) e
ℓk

ln ℓk . (31)

ow,

ℓk+1 − ℓk = ln
(

Rk +
Rk

ℓα
k

)
− ln(Rk) = ln

(
1 +

1
ℓα

k

)
≥

1
2ℓα

k
, (32)

nd the claim of the lemma follows readily by using the above inequality in (31). □

roof of Theorem 5.1. Since the probability of no renewals on {0} × [0, R0] is positive for
ny R0, for the tunnelling it suffices to show that for any value λ > 0 of the infection rate, we
ay take R0 so large that

∑
k≥0 P(Bk) < 1, where Bk are events to be shortly defined, such

hat in the complement of ∪k≥0 Bk there exists an infection path starting at {0} × [0, R0] and
continuing forever, see Fig. 4. We stress that in order for this strategy to work, R0 has to be
taken sufficiently large along all of the steps of the argument. Similarly to Section 4 of [10],
the events Bk are defined as the union of the following events:

(I) {Lk+1 > Lk + Mk};
(II) For a suitable Vk (as defined below), the rectangle Ak := Ik × [Rk − Vk, Rk] is not free

of renewal (cure) marks;
(III) (Lk, Rk − Vk) does not freely-infect (Lk+1, Rk) in Ak (see Definition 3.1).

In order for this proof strategy to work we need:

(a) To control P(Lk+1 > Lk + Mk).
(b) To show that for suitable random variables Vk the sum of the probabilities of the events

Bk as defined above is indeed less than 1.

Using (26) and Lemma 5.3 we see that for each k, the random variable Lk+1 − Lk is
−α
stochastically dominated by a geometric distribution with parameter 1−θ , where e < θ < 1.
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Fig. 4. Construction on Theorem 5.1. On the complement of ∪k≥0 Bk , grey regions Ak and intervals {Lk} ×

Rk−1 − Vk−1, Rk ] are free of cure marks, providing sufficient space for the infection from the origin to survive in
straightforward way.

hus,

P(Lk+1 − Lk > Mk) < θ Mk . (33)

As natural candidate for Vk we have Vk = min{rk, Y Lk+1
Rk

, . . . , Y Lk+1
Rk

} which we shall explore
hen Lk+1 ≤ Lk + Mk .
Note that if [a, a + M]× [s, s + V ] is a space–time interval free of cure marks and such that

ite a is infected at time s, then the probability that the infection does not reach the space–time
oint (a + M, s + V ) is bounded by that of G(M, λ) > V , where G(M, λ) has distribution
amma with parameters M and λ. Indeed, the rightmost infection path will simply move as a
oisson process with rate λ. The result follows if we can prove that, for suitable R0, the sum
ver k ≥ 0 of the probabilities in (33) and those in (34) are less than one,

P
(

min{rk, Y Lk+1
Rk

, . . . , Y Lk+Mk
Rk

} < G(Mk, λ)
)

(34)

ith G(Mk, λ) as above, independent of the renewal processes. The probability in (34) is easily
een to be bounded from above by

P(G(Mk, λ) > rk) + Mk P(G(Mk, λ) > YRk )

≤ Mke−
λ

Mk
rk

+ Mk
2 E(e−

λ
Mk

YRk ). (35)

or the second summand on the r.h.s. of (35), we write it in terms of the renewal measure U
or µ:

E(e−
λ

Mk
YRk ) =

∫ Rk

0
U (ds)F̄(Rk − s)e−

λ
Mk

(Rk−s)

≤ e−λMk + U (Rk) − U (Rk − Mk
2)

= e−λMk +

Mk
2∑

i=1

[
U (Rk − Mk

2
+ i) − U (Rk − Mk

2
+ i − 1)

]
.
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Using now Lemma 10 (b) in [7] the last sum is bounded from above by 2Mk
2

m(Rk ) so that the second
erm in the last line of (35) is bounded from above by

Mk
2e−λMk +

2Mk
4

m(Rk)
≤ Mk

2e−λMk +
2Mk

4

Lk−1
, (36)

ince m(Rk) = Lk−1 + m(Rk−1) ≥ Lk−1. Recall that Mk = ln Rk−1
(ln Rk−1)α and ℓk = ln Rk . If we

hoose a sufficiently large R0(α) then
1
2
ℓk−1 ≤ Mk ≤ ℓk−1, for every k ≥ 1.

Hence, putting the inequalities above together and using Lemma 5.5, we get∑
k≥0

P(Bk) ≤

∑
k≥0

(
θ Mk + Mke−

λ
Mk

eMk
+ Mk

2e−λMk + 2Mk
4e−M1/2

k

)
inally, we notice that the estimate ℓk ≥ (ℓ0 + k)β of Lemma 5.4 ensures that Mk grows fast
nough so that the series above converges. Moreover, given ϵ > 0 we may take R̄(ϵ) so that

k≥0 P(Bk) < ϵ if R0 > R̄(ϵ). □
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