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Abstract

We refine previous results concerning the Renewal Contact Processes. We significantly widen the
family of distributions for the interarrival times for which the critical value can be shown to be strictly
positive. The result now holds for any dimension d > 1 and requires only a moment condition slightly
stronger than finite first moment. For heavy-tailed interarrival times, we prove a Complete Convergence
Theorem and examine when the contact process, conditioned on survival, can be asymptotically predicted
knowing the renewal processes. We close with an example of distribution attracted to a stable law of
index 1 for which the critical value vanishes.
© 2023 Published by Elsevier B.V.
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1. Introduction

In this note we address natural questions arising from the papers [10,11] that deal with
an extension of the classical contact process introduced by Harris in [13] as a model for the
spread of a contagious infection. The sites of Z¢ are thought as the individuals, the state of
the population being represented by a configuration £ € {0, I}Zd, where £(x) = 0 means
that the individual x is healthy and &(x) = 1 that x is infected. A Markovian evolution was
then considered: infected individuals get healthy at rate 1 independently of everything else,
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and healthy individuals get sick at a rate that equals a given parameter A times the number
of infected neighbours. Harris contact process, as it is usually called, is one of the most
studied interacting particle systems (see e.g. [18,20]) and has also opened a very wide road
to multiple generalizations that have distinct motivations and potential applications, including
space or time inhomogeneities, more general graphs and random graphs. A variety of random
environments may also be modelled by considering suitable families of random rates. Results
regarding survival and extinction for contact processes with random environments can be found
in [2,4,17,19,21]. Also, Garet and Marchand [12] prove a shape theorem in this context.

In [14], Harris introduced a percolation structure on which the contact process was built, also
known as graphical representation, in terms of a system of independent Poisson point processes.
This has shown to be extremely useful not only to prove various basic properties of the process,
but also for renormalization arguments (see e.g. [3,6]). It was exactly this angle that motivated
the investigation started in [10,11], leading to the consideration of more general percolation
structures, where the Poisson times would give place to more general point processes, so that
the Markov property is lost, but the percolation questions continue to be meaningful and pose
new challenges.

The extension of the contact process that we consider is what we call Renewal Contact
Process (RCP). It is a modification of the Harris graphical representation in which transmissions
are still given by independent Poisson processes of rate A > 0, but cure times are given by
i.i.d. renewal processes with interarrival distribution u, a model we denote by RCP(u). For
definiteness, we take the starting times of all renewal processes to be zero, but this choice does
not affect our arguments.

In this paper we improve the current understanding of survival and extinction in RCP(u)
provided by [10,11]. The critical parameter for RCP(w) is defined as

Ae(p) == inf{x : P(z° = c0) > 0},

where 79 := inf{r : 5,{0} =0} and E,{O} is the process started from the configuration in which
only the origin is infected. (As usual, we make the convention that inf ) = co.)

Ref. [11] considered sufficient conditions on wu to ensure that A.(u) > 0. The first
contribution of the present paper is a new construction, simpler than the one in [11], that results
in two meaningful improvements. Firstly, the present construction works for every dimension
d > 1. Secondly, we significantly relax the assumptions on u, as described by the following
result:

Theorem 1.1. Consider a probability distribution  satisfying
/ xexp[@(lnx)m]u(dx) < 00 for some 6 > 4~/dIn2. (@))
1

Then, the RCP(u) has A.(i) > 0. In particular, ,.(10) > 0 whenever
J x¥u(dx) < oo for some o > 1.

The construction that leads to Theorem 1.1 is presented in Section 2. Essentially, it shows
that if the probability that a renewal process R with interarrival distribution p has a large
gap is sufficiently small, then the critical parameter for the RCP is strictly positive. The
moment condition in (1), together with Lemma 2.3, can be seen as a quantitative control on
the probability of having large gaps.

Let us first discuss previous results that hold for the RCP on Z¢ with any spatial dimension
d > 1. Theorem 1 of [11] proves that A.(i) > O if © has finite second moment. On the other
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hand, in [10] it is proved that if there are ¢, C; > 0 and 7y > 0O such that u([¢, 00)) > Cl/tl’e
for all ¢+ > ¢y, then (under some auxiliary regularity hypothesis) A.(n) = 0. Notice that for
general dimension these previous results leave a large gap between distributions u for which
Ac(p) > 0 has been proven and those for which we know X.() = 0.

In the specific case of spatial dimension d = 1 this gap was considerably smaller. Theorem 2
of [11] proves that A.(u) > 0 if u satisfies ft"‘u(dt) < oo for some o > 1, has a density
and a decreasing hazard rate. Therefore, Theorem 1.1 represents a considerable improvement
on conditions for A.(u) > 0.

In the proof of Theorem 2 of [11], the density and decreasing hazard rate of u are used
to show that RCP(u) satisfies an FKG inequality, a tool repeatedly used in the proof of that
theorem, combined with a crossing property of infection paths which holds only in d = 1.
The construction used for proving Theorem 1.1 has a similar overall structure, with the crucial
difference that it does not require the path crossing property or FKG, and thus allows more
general distributions and dimensions.

We stress that the moment condition in (1) shows that there are distributions © on the domain
of attraction of a stable law with index 1 for which A.(x) > 0. On the other hand, in Section 5
we give an example (see Theorem 5.1) of a measure @ in the domain of attraction of stable
with index 1 for which the critical parameter vanishes. One may be tempted to conjecture that
Ac(p) > 0 is equivalent to u having a finite first moment. Up until now we have not been able
to find a counter-example to this statement.

The discussion so far is concerned with sufficient conditions to ensure that A.(u) is zero
or positive, and this is indeed one of the main goals of this paper. Nevertheless, it is also
natural to ask whether A.(t) < 0o, so that we may speak of a phase transition. Clearly, for a
degenerate v (e.g. n({1}) = 1) the infection always dies out (at time 1), so that A.(x) = oo.
This pathologic behaviour should not occur once we avoid the phenomenon of simultaneous
extinction. Proving a precise mathematical result demands care, and we still do not have a
complete answer. Of course, since A.(u) is clearly non-increasing in d, it suffices to consider
the case d = 1. A simple sufficient condition can be given if we restrict to the class of measures
w considered in [11]. If u has a density and a bounded and decreasing hazard rate, then A.(u)
is finite. This is further explained in Remark 2.9 in the next section. When d > 2 the situation
is much simpler, and one can avoid the dependencies within each renewal process, simply by
using each of them only once to construct an infinite infection path, i.e. through a coupling with
supercritical oriented percolation, analogously to what was done in the proof of Theorem 1.3(ii)
in [15].

The other results in the paper focus on the long time behaviour of the RCP(w) for w such
that A.(u) = 0. Ref. [10] provides the following conditions on w to ensure that a RCP(u) has
critical value equal to zero:

(A) There is 1 < M} < o0, €; > 0 and #; > 0 such that

for every t > 1, 61/ sp(ds) < tu(t, Mqt).
[0,2]

(B) There is 1 < M, < o0, €, > 0 and r, > 0 such that
for every r > ry, e[ M5, Mg“] < /L[Mé“, M;“].
(C) There is M3 < 00, €3 > 0 such that
fort > Ms, 7179 < p(r, 00) < 175,
104



L.R. Fontes, T.S. Mountford, D. Ungaretti et al. Stochastic Processes and their Applications 161 (2023) 102-136

These conditions require that p has a heavy, mildly regular tail. Under them, it is shown in [10]
that for any infection rate A > 0, one can find an event of positive probability in which the
infection survives — but see Remark 3.6, where we argue that the upper bound in (C) may be
dropped as a hypothesis for this result to hold; we will need it for the results of the present
article, though (as explained in Remark 3.7). In the event just mentioned, the path along which
the infection survives goes to “infinity” as time diverges, so there is no information in that
event about strong survival of the process (in whichever way this may be defined, see [22]).
In Section 3 we show the following result.

Theorem 1.2. Let interarrival distribution w satisfy conditions (A)—(C) of Theorem 1 of [10].
Then, for a RCP starting from any initial condition & we have that & converges in law, as
t — oo, to

P(t < 00)§y + P(t = 00)dy, 2)

where T = inf{t > 0: & = 0}, and &y and &, represent the Dirac measure on the configuration
with all sites healthy and all sites infected, respectively.

Given Theorem 1.2, it is natural to see the sites (conditional upon survival of the process)
as being a solid growing block of points which lose their infection ever more rarely and are
quickly reinfected by their infected neighbours. Section 4 develops this picture further, under
stricter regularity conditions for the tail of w, demanding that it be attracted to an «-stable
law with 0 < o < 1, with some extra regularity for « < 1/2. Given a fixed site (e.g. the
origin), it is natural to expect that given the information supplied by the renewal process, and
in the event of survival of the infection started at the origin, the conditional probability that
£(0) = 1 will be close to 1 — e~ 2% where R, is the renewal process at the origin and
Y,(0) := 1t — sup{Rp N [0, ¢]} is the age of Ry at time ¢, or, in other words, the time elapsed
up to time ¢ since the most recent renewal of Ry prior to .

We will effectively confirm this expectation for o < 1/2, showing that in this case

lim |P(£,(0) = 1 | R, survival) — (1 — e ") = 0,

see Theorem 4.1. For o > 1/2, things get more complex, and indeed we show (in the same
theorem) that

t@o@ _ e %O _ pg,0) = 1| R, survival)) >0
for @ > 1/2. A more precise result is stated in Theorem 4.4.

We close this introduction with a discussion on related papers. There are affinities between
our RCP and the treatment of contact processes in a class of random environment as in [17,21].
The main novel aspect of RCP is the loss of the Markov property. Similarities are also present
in the renormalization arguments used in Section 2 and those in [3].

In [8], RCP has been studied in the context of finite graphs. It deals with the RCP(u) on
finite connected graphs, say of size k, with p attracted to an a-stable law with 0 < o < 1.
Estimates close to optimal are derived for the critical size of the graph at and above which
we have A.(u) = 0 (and below which A.() = 00): except for countably many such «’s, the
estimates are sharp; for the exceptional «’s, there is exactly one value of k for which the value
of A. is undetermined. Similar ideas appear in connection with quantum versions of the Ising
model and highly anisotropic Ising models [1,9,16].

Finally, motivated by different random environments for the contact process, other variations
of RCP(u) have been considered in [15], where the transmissions are also given by renewal
processes.
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2. Extinction

2.1. Main events

Our construction relates the probability of crossing a box in some direction for a well-
chosen sequence of boxes that we define below. One important difference from the previous
construction from [11] is a crossing event which we call a temporal half-crossing. A general
space—time crossing is defined in [11] as follows.

Definition 2.1 (Crossing). Given space—time regions C, D, H C Z¢ x R we say there is a
crossing from C to D in H if there is a path y : [s,t] — Z¢ such that (y(s),s) € C,
(y(t),t) € D and for every u € [s,t] we have (y(u),u) € H.

Given a space—time box B = (]—[?:l[a,-, b,-]) X [s, t] we usually denote its space projection
as [a, b] where a = (a;,...,ay) and b = (by, ..., by). Also, we refer to its faces at direction
1 <j<dby

9, B = {x,u) e B; xj=a;} and 0;B :={(x,u) € B; x; =b;}.

Using this notation, we have three crossing events of box B = [a, b] X [s, t] that are important
in our investigation.

Temporal crossing. Event 7(B) in which there is a path from [a, b] x {s} to [a, b] x {t} in
B.

Temporal half-crossing. Event T(B) = T([a, b] x [s, &2]). In words, we have a temporal

crossing from the bottom of B to the middle of its time interval.

Spatial crossing. For some fixed direction j € {1, ..., d} we define event S;(B) in which there
is a crossing from 9; B to 9; B in B, i.e., there is a crossing connecting the opposite faces
of direction j.

These events are the basis of our analysis of phase transition in RCP. Consider sequences
a,, b, and fix a sequence of boxes B, = [0, a,]? x [0, b,]. We want to relate

1. Crossings of box B, to crossings of boxes at smaller scales.
2. Event {r° = oo} to crossings of boxes at some scale 7.

From 1. we will obtain recurrence inequalities showing that the probability of crossing a box
of scale n is very small for large n and this in turn will imply that in 2. we have P(z° = o) = 0.

Considering a box B = [—a,/2,a, /214 x [0, b,], we can see that if the infection of the
origin survives till time b, then either we have T'(B) or the infection must leave box B
through some of its faces 9; B or 8]7B for 1 < j < d. Fix some direction j and notice that
{(x,u) e Z¢ x R; x ; = 0} divides box B into two halves. Denote by B ; the half containing
face d;B. Since the infection path is cadlag, if we have a path leaving B through 9; B then
event S j(1§ ;) occurred. Thus, by symmetry and the union bound one can write

P(z° = o0) < P(T(B)) + 2d - P(S1(B))). A3)

This quite simple relation already tells us that it suffices to prove that the probability of temporal
crossings of B and spatial crossings of half-boxes in the short direction go to zero as n — 0.
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2.2. General moment condition

~ We consider the sequence of space-time boxes B, = [0, a,]? x [0, b,]. Also, we denote by
Bj(n) the half-box of B, that contains the face d;B,. We are concerned with the probability
of the following events:

S;(B,), T(B,), T(B,) and S;(B;(n)). )

Notice that the probability of events in which some direction j appear are actually independent
of j by symmetry. Another important remark is that whenever we translate a box by (x, 0) €
Z x R the probability of any of these crossing events remains the same. However, in order to
disregard the specific position of our boxes in space—time and also the possible knowledge of
some renewal marks below the box in consideration, it is useful to define the following uniform
quantities.

Definition 2.2. We define

su = sup P(S;((x, 1) + B,)), ty = sup P(T((x, 1) + By)),
hy = supP(S;((x, 1) + B;j(n))), 1y = supP(T((x, 1) + By)),
where the suprema above are over all (x,1) € Z? x R, and all product renewal probability

measures P with interarrival distribution n and renewal points starting at (possibly different)
time points strictly less than zero.

&)

Notice also that the quantities in which some direction j appear are actually independent
of j by symmetry. Using (3) and the uniform quantities defined in (5), we can estimate

P(TOZOO)Stn'i_Zdhnan‘l‘Zdhn

We just have to show the right hand side goes to zero, giving upper bounds to the quantities 7,
and h,. This is done recursively, relating quantities from consecutive scales. Heuristically, we
prove that whenever we have a crossing on scale n we must have two ‘independent’ crossings
(either spatial crossings or temporal half-crossings) of boxes of the previous scale that are
inside the original box.

Notice that if we are moving on a spatial direction, then this independence is immediate.
For instance, it is clear that in order to cross B,, on the first coordinate direction we must cross
both B](n) and B, \ él(n). Since these events rely on independent processes, we have that
Sp < hi

However, when moving on the time direction we might have dependencies; here, the uniform
quantities prove their usefulness. The next lemma gives a uniform estimate on the probability
of not having renewal marks on an interval, making it useful to adjust our choice of sequence
b, that represents the time length of our sequence of boxes B,.

Lemma 2.3 (Moment condition). Let | be any probability distribution on R, and R be a
renewal process with interarrival | started from some t < 0. Let f : [0,00) — [0, c0)
be non-decreasing, differentiable and satisfying f(0) = 0 and f(x) 1t oo as x — oo. If
fxf(x) u(dx) < oo, then uniformly on t we have

C
PRm , - = L >
fgg ( [t,t +ul=9) < 70

for some positive constant C = C(u, f) whenever f(u) > 0.

(6)
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Proof. The proof is a standard application of renewal theorem. We can assume t = 0 since
the case t < 0 is the same as taking a supremum over intervals [f, f + u] with t > —fand a
renewal started from O.

Let us first assume p is non-arithmetic. Denote by F the cumulative distribution function
of u and let F = 1 — F. Moreover, denote the overshooting at ¢ for renewal R (i.e. the time
till the next renewal mark after #) by Z; and let H(t) := E[ f(Z;)]. Conditioning with respect
to the first renewal 77, we have

H(1) =E[f(Ty = OU{Ti > ] +E[U{T < )E[f(Z) | T1]]

=E[f(Ty — HI{Ty > t}] + E[1{Ty < 3EL[f(Z,_7,)]]
=/ f(x—t)dF(x)+/ H(t — x)dF(x).
t 0

Denoting the first integral above by h(¢), the equality above is the renewal equation H =
h + H % F. Some alternative expressions for A(¢) are

h(t) = /oo f'(x —)F(x)dx = /Oo F'($)F(s + 1) ds. (7)
t 0

To justify integration by parts in this step, we write ftoo fx —t)dF(x) = limy ftl‘ flx —
1)dF(x), and then perform the latter integral by parts (assuming L > ), obtaining ffL flix —
HF(x)dx + f(0O)F(t) — f(L —t)F(L). Using the monotonicity of f and Markov’s inequality,
we find that

f(L=nF(L) < f(L)F(L) < E[Ti f(TD]/L,
and the justification follows immediately from our other assumptions on f.

Let X be a random variable with distribution w. From (7) it is easy to see that
h(0) = Ef(X) < oo and that 4 is decreasing in t. Also, we can evaluate

/ooh(t)dt = /OO /OO f'(s)F(s + t)ds dt
0 0 0

= /Oof’(s)/oo F(s 4+ 1)drds
0 0

< /Oo F(OE[XL{X > s}]ds
0

X
=E|X "(s)d
[ /0 £ S]
= E[Xf(X)].

Thus, we have that 4 is directly Riemann integrable when E[X f(X)] < oo and the renewal
theorem implies
E[Xf(X)]

EX
as t — o0o0. Separating the cases in which ¢ is large and ¢ is small, we have a uniform
bound on ¢ for H(t). For the latter control, notice that H(t) = E[ f(Z;)] may be written as
fot U(ds) fto_oY wu(dr)f(r — (t —s)), where U is the renewal measure associated to w; from our
assumptions on f, it follows that the innermost integral above is bounded by fooo udr)f(r)=
¢ < oo, and thus H(t) < c¢ - U(0,t) is finite for every ¢t > 0. From the fact that U is
nondecreasing, we get that H(¢) is bounded on bounded intervals.

H(t) =E[f(Z)] —
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Since f is non-negative and non-decreasing, by Markov inequality we can write

Ef(Z C
O AU
f(u) S u)
The conclusion in (6) follows, under the assumption that u is non-arithmetic. The arithmetic
case is even simpler and a minor change in the argument yields the same bound. [

When we know that in a box [0, a,]¢ x [s, ¢] every site x € [0, a,]¢ has a renewal mark,
analysing crossing events on [0, a,]? x [t, 00) gets easier since we are able to forget all
information from time interval [0, s]. Our next result uses Lemma 2.3 to estimate the probability
that such event does not occur.

Corollary 2.4. Let p satisfy (1) and f(x) := e"(lnx)]/z]l{le}. Define J,(t,s) as the event in
box [0, a,1? % [t,t + s] in which there is some site x € [0, a,]? with no renewal marks on
[t,t + s]). Then, for any s > 2 we have

Ca¢
P(J, (¢, < n
SUp P s) = 205

Proof. Modify f in [1, 2] to ensure differentiability and use the union bound. [
2.3. Relating successive scales

In this section we prove uniform upper bounds for 7, and h, in terms of h,_; and f,_;.
From here on we consider boxes B, with a, = 2".
Temporal half-crossings. Let us upper bound the quantity 7,. For this part we work under the
assumption that w satisfies (1). Define

G = T([0,2"1* x [iby-1, (i + Dby—11)

and notice that event G; is measurable with respect to the o-algebra that looks all renewal
processes and Poisson processes of B, up to time (i + 1)b,_;. Moreover, consider event
J = J,(b,—1, by—1) defined in Corollary 2.4 and notice J is depends on the point processes up
to time 2b,_;.

Assuming that b, /2 > 3b,_, notice that we have

T(B,) C JU(GyNJ°NG>),
implying that we can write
B(T(B,) < B(J) + P(Go) - (G2 | Go N JO).

Corollary 2.4 provides an upper bound for I@’(J ). Moreover, we can estimate the conditional
probability by integrating over all possible collections {t,; x € [0,2"]¢} of time points in
[bn—1, 2b,—1] the probability of event G,. For any fixed choice of such collection, denote by
P the probability measure with starting renewal marks given by (x, t, — 2b,_;). This leads to
the bound

dn
i) +P(Go) ilr; P(Go).

The last product on the right hand side may be estimated by
sup(B(T ([0, 2717 x [0, b,-11)°,

{tx}

B(T(B,)) <
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where in the supremum we now consider any possible starting collection of time points
{t;; x € Z4,t, <0} and we use notation P to emphasize this. We look for an upper bound
that is valid for any starting renewal marks. In order to bound ]fD(T([O, 219 x [0, b,y_11)), we
partition [0, 2"]? into sub-boxes of side length 2"~2. Considering projections of our crossing
into space, we can prove

Lemma 2.5 (Temporal Half-Crossing). Suppose u satisfies (1). For every n > 2 it holds that
dn

JACISY

+ 3%, +2d -3 h,_ ) 8)

tn <

Proof. For v € {0, 1, 2, 3} let us define
I, = 2""2v 410, 2" 2.

This collection of 4 intervals of length 2”2 covers [0, 2"]. On T'([0,2"]¢ x [0, b,_,]) we can
choose a path y : [0, b,_1] — [O, 2714 that realizes the temporal crossing and consider its range
T = y([0, b,_1]). Project set Z in each coordinate direction j, obtaining a discrete interval
Z; C [0,2"], and define the box count of Z; by

Cj = mln{|l|; I C {07 17 29 3}5 I] C UUGIIU}' (9)

We decompose our event with respect to what is observed on each Z;.

If for every 1 < j < d we have ¢; < 2 then the whole path y is contained inside a
d-dimensional box with side length 2"=! In this case, we have some choice of v € {0, 1, 2}¢
such that

T 2" 2y 4[0,2" 1,

and the number of possible v is given by 3¢,

Now, let us consider the case in which some ¢; > 3 and thus Z is not contained in some
of the boxes with side length 2"~! described above. In this case, we refine the argument by
considering time. For any time ¢ € [0, b,_;] we define Z(¢) := y ([0, ¢]) and for any fixed
direction j we consider its projection Z;(¢) and its box count c;(t). Define

f = inf{r € [0, b,—1]; 31 < j < d such that ¢;(r) = 3}.

Since y can only change value when there is transmission to a neighbouring site, at time
we have ¢ (tj—) = 2 and cj,(t;) = 3 for some special direction jy and c¢;(t;) < 2 for every
other direction. Thus, there is v € {0, 1, 2}¢ such that
I(th—) Cc 2" 2v +10,2"""1, but Z; (1) ¢ 2" *v+1[0,2""1?
and Cjo(tl) =3.

Notice that this means path y must have crossed a half-box of 2"~2v + [0, 2"~']¢ on direction
Jjo during time interval [0, #;] C [0, b,—_], see Fig. 1. There are 2d - 3d-1 possible half-boxes
to be crossed, which implies

BT ([0, 2"1¢ x [0, by1]) < 34,1 +2d -39 h, .

Since the bound above holds for any choice of renewal starting points {t,; t, <0, x € [0, 2”]d},
taking the supremum over all such collections the result follows. [J
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4 - 2n—2 2n—2

Fig. 1. Depiction of the argument in Lemma 2.5 for the case d = 2. When the space projected temporal crossing
is not contained in one of the 3¢ sub-boxes of side length 2"~! we must have a spatial crossing of a half-box of
scale n — 1.

Spatial crossing. Now we prove a similar bound for quantity %,. Recall that independence of
the Poisson processes implies that for crossing B, in some fixed spatial direction we need to
perform two independent crossings of half B, in that direction, implying

Sy < hi

A similar bound for /4, implies the following lemma.

Lemma 2.6 (Spatial Crossing). For n > 2 it holds that

b
h, <4.36%7". {_”
- b

n—1

T <yt + Bpm1) (10)

Proof. Independence of Poisson processes implies that
i < supP(S1([0,2"72] x [0,2"1"" x [0, b, 1))

Let us simplify notation here. Since in a first moment we will work with boxes with time
length [0, b,] we omit it from the notation. Also, on space coordinates we only work with
intervals of length 2", 2"~! or 2”72, so we write simply

d
B, ... L) = (]‘[[0, 2”‘“]) % [0, b,] forl; € {0,1,2}.
i=1
We refer to a crossing of such box on direction j as S;(/, ..., ;). Using this notation we want
to show that on S;(2,0, ..., 0) we can find some crossing of boxes whose side lengths are all
at most 2"~1, leading to an estimate of the form

B(812,0,...,0) < C(d) - B(812, 1,..., 1),

recalling that P refers to a probability measure starting from some fixed collection {t,; t, <
0,x € Z% of starting renewal marks. The main step in this simplification is the following.
Consider event S1(2, I, ..., I4) and suppose that in direction j we have [; = 0, meaning that the
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Fig. 2. Crossing of a half box at scale n implies two independent spatial crossings. For each crossing, on direction
2 < j <d there are 2 possibilities: either the crossing traverses some interval of length 2”2 or it remains inside
an interval of length 2"~

interval length in that direction is 2”. Consider a path y : [sy, ;] — Z¢ with [sy, ;] C [0, b,]
that realizes event S1(2, [, ..., ly) and let Z; be the projection of y([si, #1]) on direction j and
¢; be its box count, i.e.,

cj=min{|I|; I C({0,1,2,3}, Z; C Uy}

When ¢; < 2 we can ensure that Z; is contained in [v2"72, (v + 2)2"7%] for some
v € {0, 1,2}. Thus, instead of the original box B(2,l,,...,l;) we can observe the same
crossing on the smaller box in which on direction j we replace [0, 2"] by [v2"2, (v+2)2"2],
an interval with length on-1 Similarly, if ¢; > 3 we know that Z; must have crossed either /
or I,, implying the crossing on direction j of a smaller box, since now the interval length on
direction j is 2"72.

In both cases, the crossing of our original box implies the occurrence of some crossing of
a smaller box inside it, see Fig. 2. Abusing notation, we do not specify the exact position of
these smaller boxes, since in the final bound we use the uniform quantities from (5). Thus, we
have

P(S1(2,11,...,0,...,1)
<3PS12, 0, L L) 2P 2 0 2, L)
=3P\, Ly L L)+ 2P(S 2 1,2, L)
where the equality above follows from symmetry. For [ € {1,2}¢"! let us denote a(l) =

#{i; [; = 1}. Applying the reasoning above to directions 2 < j < d successively, we can
write

Bsi2,0.....0n < Y BSi2.0)-30 207170,
lef{1,2)4-1
Finally, notice that any IAP’(Sl (2,0) with I € {1,2}4 ! is upper bounded by ]fD(Sl(Z, 1,...,1))
since increasing the box in some direction 2 < j < d can only make it easier to find a crossing.
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This leads to the bound
P(S1(2,0,...,0) < B(Si(2,1,.... 1)) - 27 Y~ (372"
lef(1,2)d-1
<6 P(S2, 1, ..., 1).
Returning to our previous notation, now we want to bound
BSi(2,1,..., 1)) = B($;([0, 2" 2] x [0, 211! x [0, b,]))

in terms of /,_; and so we need to fix the time scale above. We use a collection of overlapping
boxes

R =10,2""1x[0,2""1"" x [iby_1, (i + Dby_1] fori € iZ

to cover the time interval [0, b, ]. Then, either our path y ensures we have S;(R;) for some i or
it must make a temporal crossing of some box [0, 221 % [0, 2"~ 114 x [ib,_1, (i + 1/2)b,—11,
which is event T(R;). Thus, we can write

n

B(S1(10. 2721 x 10,27 171 x 0.5, 1) = 2] 72 | - (et + 7o)

n—1
Putting the bounds above together and taking the supremum over all possible collections of
starting times, we obtain (10). [J

Simplifying recurrence. Looking at the expressions obtained in Lemmas 2.5 and 2.6, it seems
useful to work with a simpler recurrence based on the quantity

Uy = hy, +1,.

Noticing that t,, < f, we can write

X i ) . ) C2dn
tn = [C@) - Bu/ba)? haor + ]+ [C@Grt + a1 + 7 1)]

C2d n

< C(d) - (by/bp1)*-u>_| + o

(11)

Lemma 2.7. Let u be any probability distribution on Ry and R be a renewal process with
interarrival  started from some t < 0. Suppose

oo
/ xeo(h”)l/zu(dx) for some 60 > 4+/d In2. (12)

1

There is a choice of sequence b, and a natural number no(j, 0, d) such that if u,, < 2—dno
then for every n > ng we have u, < 2-dn, Consequently, there exists Lo(iL, 0, d) > 0 such that
P(r° = 00) = 0 for any A € (0, Ao).

Proof. Consider the sequence of boxes B, = [0, 2"]¢ x [0, b,]. Recall function f is given by
F(x) = M0 g >y,

We want to take f(b,_;) := e*”~D for & > 0 a parameter to be chosen later so tlzlazt 2" | f(bp_1)
tends to zero sufficiently fast. This can be accomplished by taking b, := ¢@/?7"*" Recurrence
relation (11) then becomes

b 2
", < C(d)(b " u,,,l) + C(u, ) expl(dIn2n — a(n — D).

n—1

113



L.R. Fontes, T.S. Mountford, D. Ungaretti et al. Stochastic Processes and their Applications 161 (2023) 102-136

Because of the error term above, the decay of u, cannot be faster than e~ =D Based on this,
we suppose u,_; < e P"~D for some parameter @ > B > 0. Under this assumption we can
estimate

b 2 2 2 2
(b n_ Mn—1> _ (e(a/e) @n—1) Mn—l) < (2@/0PCn=1)=2p(n=1),
n—1

which leads to

2
U, < C(d)e2 @/’ Cn=0=26(-1) |, (@dn2-an+a

< C(d, a, B, )M/ =BV P11 C(u, 9, @)ePrdm2—am . g=hn, (13)

The induction will follow once we ensure

Ha/0)? — 0 S
(a/0)” =B < or, equivalently, P
B+din2—a <0 «>p+din2.

We want to choose parameters «, 8 in order to make 6 as small as possible while still being
able to perform the induction. Notice that combining the two inequalities above we have

, dIn2y2
o >4(\/B+ JE> > 16d1n2,

by AM-GM inequality, with equality when 8 = d In2. So, hypothesis (12) is the best we can
hope in this setup. Fix 8 = d In2. Looking at the possible values of o, we need to choose

62d1n2

2dIn2 < a <
4

Since (12) implies 4/ ‘92‘{# > 2d In 2, we can take for instance «(d, 0) := %(Zd In2+ 92”{#).
Take ng = no(u, d, 0) sufficiently large so that

[4(a/6)>—BIn
{C(d, a, B,0)e for all n > ny. 19

C(ﬂ’ 9’ Ol)e(/Seranfoz)n

IN IA
N[N

s

This is possible since both left hand sides tend to zero as n — 0o. Suppose that u,,, < e Pro =
2-dno, recalling that 8 = d In2. Then, we have by (13) that
1 1
u, < Zefﬂ" + Zef’g” < e P for every n > ny.
The induction just described will hold if we can ensure that the base case n = ng holds.
But if no(u, 8, d) is fixed we can take X sufficiently small for it to hold. Indeed, just notice

that for any box (x,t) + By, if we denote by N the number edges contained in [0, 2"0]¢ we
have that

P(H) := P(no transmission on (x, 1) + B,,) = e MmN — 1

as A — 0. Clearly, we have h,, < ]fD(H ). Moreover, we can control f,,o similarly, since if
there is no transmission the only possibility for a temporal half-crossing of box (x, #) + B,
is achieving it by a single site, an event which we recall was denoted J = J, (¢, b,,/2) in
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Corollary 2.4. Hence, we have

R C , 0 2dn0 2 1
B gy < SHDET _ i exp[—e(a—ng — 1n2)2]
S (bny/2) 62
2 1
— 2dno exp[—ano(l _¢ ln2>2] — Celdn2=amg+0amy")
(ang)?

as ngp — 00. Making a small change in (14), we can increase nq if needed to ensure
P(H N J) < 177" and write

- A A 1 1
max{f,,, fny} < sup{P(H®) +P(H N J)} < 1 — e ol + Ze_ﬁ"o < ze_ﬁ”o

for A sufficiently small. We conclude u,, < e Fro. O
Proof of Theorem 1.1. It follows from the conclusion of Lemma 2.7. O

Remark 2.8. The exponent 1/2 in the definition of function f is the best possible, meaning
that the same reasoning does not work for a function g = exp[#(In x)°] with § < 1/2.

Remark 2.9. We recall (see e.g. Section 2 of [11]) that when the interarrival distribution u has
a density f and h,(¢t) = f(t)/u(t, 00) is the hazard rate function, the corresponding renewal
process starting at some point #y € R can be easily obtained in terms of a homogeneous Poisson
point process on R x R with intensity 1. The construction shows that when the hazard rate is
decreasing, the corresponding renewal point process, hereby denoted by R, is an increasing
function of points in the Poisson point process. As already mentioned, this property was used
in [11] to guarantee the FKG property. Moreover, as easily verified, it also yields the following:

If v is another probability measure on (0, co) with a density g and hazard rate h,, and
hy(t) > h,(t) for all ¢, then the two renewal processes starting at some #, € R can be coupled
in such a way that R, C ‘R, with probability one.

Using this observation with v being an exponential distribution, we conclude that if 7,
is decreasing and bounded, then R,, can be embedded in a Poisson point process. Thus, the
classical result on Harris contact process yields A.(u) < oo. It is easy to come up with a wide
range of examples of such u’s.

3. Complete convergence

In this section we prove Theorem 1.2, which relies on a variant of the argument of [10]. We
begin with a sketch of the argument. In the following, A is a fixed strictly positive infection
rate. For our RCP equipped with its natural filtration (A;),>9, we say a stopping time 7T is
extreme if

maxllxloe : &) = 1} > max{lixllo : &) =1},

where ||x||, denotes the usual £”-norm on 74,

An extreme stopping time 7 is useful as it implies the existence of a site xy such that
&r(x7) = 1 and a Euclidean unit vector ¢ in Z¢ so that all renewal processes (Ry,4mz; m > 1)
are conditionally i.i.d. independent of A7.

On Lemma 3.2 we show that the probability of the infection surviving only inside a finite
cylinder is zero. This means that we can find arbitrarily large extreme stopping times, which
gives us a way to build independent events.
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Then, on Corollary 3.3 we build a tunnelling event inspired in the construction of [10]. We
prove that almost surely we can find a sequence of (random) sites that do not have any cure
marks for a very long time. These intervals have a sizeable overlap, allowing the infection
to travel from one to another and making them to work as hubs for sustaining the infection
indefinitely. Corollary 3.3 provides a quantitative control for the space—time position of such
hubs.

Finally, on Lemma 3.5 we leverage the existence of these hubs and show they can be used
to infect every site in a suitably sized region around the hub. This construction is based on the
following definition.

Definition 3.1. We say (x, u) freely-infects (y, v) in the set A C Z¢ if there exists a sequence
of points x = x¢, Xy,...,Xx, =y and times u < t; <t < --- < t, < v so that for each i the
sites x;_; and x; are nearest neighbours and x; € A, and there is an infection mark from x;_;
to x; at time ;.

We stress that we are not assuming that £,(x) = 1. The event “(x, u) freely-infects (y, v)
in A” depends purely on the collection of Poisson processes and does not concern the renewal
processes, i.e. it does not take into account the recovery times.

The proof of Theorem 1.2 puts all these pieces together to conclude that, on the event that
the infection survives, the probability that any fixed finite set K C Z¢ is infected at a large
time tends to 1.

Lemma 3.2. For a RCP with t = inf{s > 0: & = 0} we have
P({t — o0} N ||{x L [P (x)ds > 0} < oo]) —0.

This lemma implies that for all time ¢ there a.s. exists on the set {t = 0o} an extreme time
T > t. Indeed, just take the next time after + when the process encounters a site whose norm
is a new maximum among sites infected or previously infected.

Proof. Without loss of generality we assume that ) &)(x) < oo as otherwise the result is
trivial. The idea is that if the result were not true, then for some m < oo the infected sites
would remain a subset of [—m, m]? for ever. But as time becomes large there will be arbitrarily
large intervals of time on which there are no renewal points for any x € [—m, m]¢ and so no
opposition to the process infecting sites outside this finite set. It is enough to prove that for
each m € N, the event

{t =00} N{&(x) =0, Vs =0, Vx ¢ [-m, m]"}

has probability zero. But by Proposition 7 in [10], for all n large enough the probability that
at least one of the renewal processes on [—m, m]? intersects the time interval [2", 2" 4 2"€1] is
less than (2m + 1)427"€1, provided ¢, is fixed strictly positive but small enough. Furthermore,
the probability (conditional upon & (x) = 1 for some x € [—m, m]?) that there does not exist

a sequence x = xg, X] --- Xy with k <m + 1 of nearest neighbour sites that satisfy
(i) &xngoner (xx) = 1, with x; ¢ [—m, m]%;
@) ||x; —xi—1]ji =1, forall 1 <i <k; and

(i) & (x) = 1 with xg € [—m, m].
tends to zero as n — oo, which implies the lemma. [J
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Fig. 3. On Hr we have an infinite infected path (in blue) that passes through points (X7 + L;,2"). The grey
areas represent absence of cure marks. For 2"i-1 <t < 2" we choose x; = X7 + L;_, which ensures & (x;) = 1
on the whole interval [2"i-2,¢] D [¢/2,t]. (For interpretation of the references to colour in this figure legend, the
reader is referred to the web version of this article.)

Corollary 3.3. On the event {T = oo}, for all t large there is a site x, within distance In> t
of the origin so that &(x;) = 1 for all s € [t/2,¢].

Proof. For purely notational reasons we suppose that the dimension, d, is equal to one. We
first treat the case ) &y(x) < oo and then note how the argument given can be extended to
the infinite case. Given an extreme stopping time 7, we define a suitable tunnelling event Hy
(see Fig. 3). What is important is that its conditional probability given A7 should be bounded
away from zero on {T > N}, where N is a large constant. In this description and calculation
of probability bounds, we suppose

X7 > max{x : Is < T so that &(x) = 1}.

If Xr < min{x : 3s < T so that &(x) = 1} then we simply reflect the definitions and all
probability bounds will be the same. Define

9]
Hy = () Hr.. (15)
n=0

where the events Hr,, are defined recursively via the random integers {L;}72, and {n;}32,:
Hr is simply the event {Rx, N [T, 2M0+2] = @}, where 270 = inf{2" : 2" > T}. By Lemma
2 in [10], there exists ¢ > 0 so that

P(HrolA7) > ¢ >0 on{T > N}

for all N fixed. We take L := 0. Given ng, ...,n;_yand Ly, Ly, ..., L;_; wesetn; =n;_;+1
and define

Ly :=inflk > Ly : Ry, N[2"-1,8-2"1] = @}
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Our event Hr; is given by the following conditions:

(i) L; — Li—y <ing;
(i1) There exists an infection path from (X7 +L;_;, 2"-1) to (X7 +L;, 2™) in the space-time
rectangle [Xr + L;—1, X7 + L;] x [2"i-1,2"].

From the argument in Section 4 of [10], we have that if N is fixed sufficiently large then

oo
P(Hr | Ar) = P( ﬂHT,i AT) >c; >0,

i=0
for some c;, uniformly on {T > N}. The argument of [10] uses Markov properties in the
environment on [X7 + L;_;) given our realization of L, ;. The heavy-tailed distribution
for the renewals ensures that for each x > Xy + L;_;, the corresponding renewal process
has probability (uniformly in x and i) bounded away from zero of satisfying the emptiness
condition entering in the definition of L;, and so condition (i) holds outside exponentially
small probability. We then show that the process will infect site X1 4 L; outside exponentially
small probability in i. From this, we easily obtain

P({T =o0o}N {39 extreme 7 such that Hy occurs}) =0. (16)

Indeed, whenever event Hr does not happen we have a random finite index U such that Hr y
is the first event Hy; that did not happen. Consider the random time S = 2"V. By Lemma 3.2
we can find an extreme stopping time 7> > S and once again we have P(Hy, | Ar,) > ci.
Iterating this reasoning, we deduce (16).

By (16) we can conclude that a.s. there is some extreme time 7 for which Hy happens.
Consider the sequences {L;}2, and {n;}7Z, associated with T and let 7 > 2". Let i be the
unique index such that 2"i-! < ¢ < 2" and define x; := X7 + L;_;. By construction of event
Hr, we have &;(x;) = 1 on the whole interval [2"-2,¢] D [¢/2, t]. We estimate x; by noticing

= n no /Int 2

X =Xr+ Ly < Xr +j2;jno < Xp+ 26— 17 = X+ 2 (55 —no) < I,

as t — oo. This implies the corollary for finite initial configurations. If D" &(x) = oo then

it is easy to see that there exists x so that taking 7 = 0 and X7 = x the event Hr occurs
(though of course T is not extreme in this case). [

Remark 3.4. It should be noted that the event Hy in higher dimensions involves a direction
along one of the coordinate axes in Z¢ away from the origin.

Before proving Theorem 1.2 we need some definitions and basic lemmas.

Lemma 3.5. Letd > 1 and B(r) = [—r, r]%. Let V, be the event that for every x, y € B(In? 1)
we have (x,t — t°) freely-infects (y,t) in B(ln3 t), where again €, arises from Proposition 7
of [10]. Then lim,_., P(V;) = 1.

Proof. Fix x and y and take a shortest path x = x¢, x1,...,x, = y from x to y, where x;
is a nearest neighbour of x;_;, and x; € B(In® 7) for every i. Clearly, n < C(d) In®¢ for some
positive constant C. Then we see that

( (x,t — t1) does not freely-

. rn L€ 3 —ct€l
infect (y, ) in B(In® 1) ) < P(Poi(u1) < C)In’r) <ee ’ 17
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for some positive ¢ = ¢(A) as t — oo, where Poi(u) denotes a Poisson random variable of rate
u. Thus, we can write

(x,t —t°!) does not freely- 3 \2d —ci€l
PV =1 23 P( infect (y, 1) in B(In* 1) z 1-C@nTe™ . O
x,yeB(n’ 1)

Proof of Theorem 1.2. Notice that on {t = oo} if we also ensure the occurrence of events
Vl’

W, = {3x e Bn 1) : £,(x) = 1 on [t/2,¢]}, and
U = {R:N (@t —1,1) =0, Vx € B(In’ 1)}

then every site of B(In®¢) is infected at time 7. Then, we can write for any fixed x € Z¢ that
P(t = 00,&(x) =0) < P(VS)+ P({t = co} N W) + P(US)

for sufficiently large ¢. Notice that all three terms on the right hand side tend to zero as t — oo.
Indeed, the first one tends to zero by Lemma 3.5, the second one by Corollary 3.3, and for the
third one we have by Proposition 7 of [10] that it has probability less than C(d)(In® £)?s.
We conclude that for any finite set K C Z¢ we have

P({r = oo} N{&(x) =1,Vx € K}) = P(t = 00) — ZP(I = 00, §(x) =0)
xek

— P(t = 00)

as t — oo and Theorem 1.2 follows. O

Remark 3.6. As brought up at the introduction, the upper bound on the tail of u prescribed
in Condition C), may indeed be dropped as a hypothesis in Theorem 1 of [10]. We briefly
explain an alternative argument for that result, dispensing with the upper bound. For short, we
refer to the notation and passages in [10].

In the argument leading up to the proof of Theorem 1 in [10], we use Proposition 7 of [10],
for which we require the upper bound; but we may instead use Corollary 4 [10], for which that
bound is not required. In that corollary, there figures an interval, denoted by I, and a subinterval
J C I. We apply it with I = I; = [1p2",%2"""] and obtain J = J; = (0;,0; + (t02")”/),
i =1,2,..., where y' := €3/2, with €3 as in Corollary 4 [10], for some o; € I; such that
Ji C I;. We then modify the argument on page 2911 of [10] as follows:

1. We replace (II) by (II'), where the interval [£o2" — (£,27)7, t2'] in (II) is replaced with
J. in (I);
2. We next replace (IIT) by (III'), where the interval

k+1—-L;_

i iy k—Liy iy i iy Li iy
(102" — (102")" + — (02", 102" — (102")" + (t02")")
gt ilogty

ilo
in (IIT) is replaced by
k+1-1L;

k - Ll_ ) / 1— . !
(01' + ——L@2y, o+ H(12) )

ilogt, ilogty

in (IIT');
3. We finally replace the last paragraph in the proof of Lemma 9 in [10] by the following
(parallel) paragraph: By Corollary 4 in [10], the probability of (II') occurring and
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L; < L;,_1+ilogty is bounded by ilog(to)(t()Z")’V”, where y” :=2y’/3 = €3/3, (again
supposing 7y is large). Similarly the intersection of (II') and L; < L;_| +ilogt, has a
probability bounded by

i log(to)e—)»(lo?)yﬁ/i log(t)

Remark 3.7. As pointed out above, the argument in Remark 3.6 dispenses with Proposition
7 of [10], relying exclusively on Corollary 4 of [10] to establish Theorem 1 of [10]. But to
argue Theorem 1.2, as we did above in this section, we require the full force of Proposition 7
of [10]. Indeed, in the proof of Theorem 1.2, in the event U, we are not able to replace the fixed
interval (¢ — ¢¢!, ), for which we may claim the absence of cure marks with high probability
using Proposition 7, by an interval with similar properties provided by Corollary 4, since (the
closure of) the latter interval might not contain ¢, and that would invalidate our argument.

4. Closeness to determinism

In this section we consider a strengthening of Theorem 1.2. This requires greater regularity
on our renewal distribution. We require not merely that condition C) of [10] holds but that F
has a regular tail power:

F(t)=1—F(t) € RV(—a)

for some 0 < a < 1, where RV (B) denotes the set of functions that for large ¢ are of the
form t#L(t) for L slowly varying. If o < 1/2 we require, in addition, the second condition of
Theorem 1.4 of [5] that function

F(it—d .
17 (8;1) = / (_—ZZ) satisfies  lim lim 1F(¢) - I} (8; 1) = 0, (18)
I<z<st zF(z) 8—=>01—>00
which in the notation of [5] is saying that [ 1+ (8; t) is asymptotically negligible.
Theorem 1.2 tells us that on the event {r = oo} the configuration & converges to §; in
distribution as t — oo, which is equivalent to

for every x € 7e, &(x) Lolast - oo

This is because the renewal (or healing) points become so sparse as ¢t becomes large that
the infection process infects all sites in a bounded region “deterministically” if there are no
healing points nearby.

One way of expressing this is to introduce the o-field G generated by the renewal processes
(Ru)yeze and the extinction random variable v. We should have that, when the infection
survives, the conditional probability P(&(x) = 1 | G) should be close to 1 for large ¢ if
there are no points of R, N[0, ¢] close to ¢. Refining further, one might hope that on {t = oo}
it holds

lim |P($,(x) =0]9)— e’ZAdY’(X)| =0 forevery x € Z¢,
11— 00

where Y;(x) :=t —sup{R, N[0, ¢]} is the age process. In fact this depends on the power decay
of F.
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Theorem 4.1. If F € RV(—a) for 0 < a < 1 then for all x € 7%:
(i) If o < 1/2 and also (18), it holds on {t = oo} that
lim |P(&(x)=0]G) — e 20| =0.
t—>00

(ii) If « > 1/2 and also F(t) > 0, for every t > 0, it holds on {t = oo} that
Tim (P(g,(x) —0|G)— e—WW)) 0.

Remark 4.2. The case « = 1/2 is not explicitly treated (though it is treatable) as it depends
on how F(t)/tl/2 behaves as t — oo.

Remark 4.3. In the case o > % we do not need the full force of [5], the preceding strong

renewal theorem of [7] suffices.

The same proof can be adapted to reach a more precise conclusion when « € (1/2, 1).

Theorem 4.4. Assume that F € RV (—a) for a € (1/2, 1) and that F(t) > 0 for every t > 0.
For all x € 7°:

(i) If 1 §k<2dand1—ae($,ﬁ), then on {t = 0o} we have

Tim (P& =01 G) — e 1) = g,

(i) If ] —a < zcilﬁ then for every 0 < s < oo we have on {t = oo} that

tllT?o]l{m):s}P(&(x) =06 =1.

We provide a detailed proof for Theorem 4.1. The same steps are used (in generalized form)
for Theorem 4.4 but the extra details involved do not add any insight to the result. Considering
this, we opted to only sketch the proof of Theorem 4.4, pointing out the differences to its
simpler version. We require preliminary lemmas first.

Given an integer M and ¢ > 0 we define the event H(M, 1) to be that for some stopping time
T <t with X7 ¢ [—M, M]¢ the event Hy occurs (see Remark 3.4 following Corollary 3.3).
The next lemma is immediate from the argument in Corollary 3.3.

Lemma 4.5. For any M € N and finite & we have that as t — 00
P(HM, 1) | G) = Tjr=og)-
Proof. From the proof of Corollary 3.3 we know P({r = oo} N (U,le(M, t))c) =

0. Since H(M, 1) is increasing in ¢, we have that the limit of P(H(M,t) | G) as t — o0
is almost surely

PWU1HM, 1) | G) = P(t =0 | §) — P({t = 00} N (Uit H(M, 1))° | G)
= ]1{1-:00}. [l
here O

For the next lemma, let us define 6; as the time-shift by ¢ of the infection Poisson processes
{N*}. Tt holds
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Lemma 4.6. Given M € N and ty > 0, let A be some event generated by Poisson processes
N*Y N[0, t] for x,y € [-M, M. Then,

lim P(6:(A) | G) = P(A) a.s. on {t = oo},

Proof. The conditional probability P(@,(A) | g) on the event {t = oo} can be written as
P6:(A) | G) = PO(ANHWM, 1) | G)+ POA)NHM,1)°|G).

We now claim that P(G,(A) NHM,¢t) | g) = P(A)- P(H(M,1t) | G). Indeed, consider the
families

C={Ceq; POMAYNHWM,1)NC)= P(A)- P(HM,1)NC)},
P={VNW; VeoaR; zeZ) Wea()

It is straightforward to check that C is a A-system and P is a w-system that generates G. Notice
that H(M,t) C {t = oo}. If W D {r = oo} we have

POANHM,)yN(VNW)=POANHM,t)NV))=P(A)- PHM,t)NV),

since A does not depend on renewals, only on a region of infection that is disjoint of the one
event H(M,t) NV depends. If W ;_é {t = o0}, then both sides are zero. Thus, we conclude
that P C C and by Dynkin’s 7 — A Theorem the claim follows. The result follows from
Lemma 4.5. O

Remark 4.7. The limit also holds a.s. on {t < oo}, with a simpler proof, but this is not needed
in our argument.
Corollary 4.8. Forx € Z¢ and t > 0, let
A ={Vz~x, N N[t — Y, (x),t] =0},
where ~ signifies the relation of being neighbour. Then,

lim ’P(Ar | g) — e’Zd’\(Y’(x)w =0 as. on{r = o0}
— 00

Proof. Fix 0 < M < oo and consider events
. i
ARM {vz ~x, N* N[t - R t] = @].

By Lemma 4.6, for each 0 < i < M2, P(A'™ | G) — ¢ 244/M 45 t becomes large on
{r = oo}. So by monotonicity for each i and for ¢ large, on {t = oo}

! ~2di/M 3dx
~21 = Lnwerg (e = P(A19) = 7=

and similarly for ¢ large on {r = oo}
0 < Liy,c=m P(A; | G) < ™M,

The result now follows by the arbitrariness of M. [

Remark 4.9. The argument generalizes with A, replaced by
{V(zi, vi), i =1,2,...r, NNt —Y,t] =0}
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We now bring in two probability estimates. The first is a generalization of Lemma 3.5 and
follows quickly from the bounds arrived at in its proof.

Corollary 4.10. Fix e; € (0, 1). Let C,, = C,(€2) be the event that there exists a (time) interval
I =[T, T +2"] c[2"}, 2" and sites x, y € Bn?) such that (x, T) does not freely-infect
(y, T+2"2)in B(?). There exist constants c()), K(d), no(r, d, €) > 0 such that for all n > ny
we have

P(Cn) S KZ”(I—Gz)nﬁd . e_cznez.

Proof. Let t; := 2"~!' + j . 2"2/2 and notice that intervals I; = [z;,;41] for 0 < j <
|3-21=€2) | cover [2"~!, 2"*+1]. Moreover, if C, happens then the interval [T, T +2"<2] obtained
must contain some /;. The argument from Lemma 3.5 shows that for any /; the probability
that there are x, y € B(n?) such that (x, t;) does not freely-infect (y, ¢;41) in B(n?) is bounded
by

> p(Poi(r-2"2/2) = Cla®) = K@n®™ - @2
x,yeB®n3)

for positive constants K(d) and c(x). The result follows from union bound. [

Lemma 4.11. Let o < 1/2, F € RV(—a) satisfying (18), and fix € € (0, 1 — ). The event
B, = B,(€) defined by

B — 3 distinct z, 7 € B(n®), s € [2"7', 2"t such that
e R.N[s,s+1]1#0, RyN[s,s +2-2"]1#0

satisfies
P(Bn) < K . nﬁd . 27!1(1720(726)

for a positive constant K = K(«, d) and sufficiently large n.

Proof. We simply write event B, as the union of B,(z, z’) for z, z’ € B(n?), where
By(z,Z)={3Fs 2L 2" R, N[s,s +11#£0, RaN[s,s+2-2"] 0@}

We then note that B,(z, z') is in turn a subset of the union
2n+1

U (RNl j+21#0, Ronlj,j+2-2"+ 110},

j:2n—1

whose events for fixed z, z/ and j will be denoted B,(z, 7/, j). By independence, since z # 7’
we have

P(Bu(z, 2, ))) = P(R:N1j, j +21 #9) - P(Ry N [j, j +2-2" + 1] # B).

Let us assume that R is a non-arithmetic renewal process. The Strong Renewal Theorem
(Theorem 1.4 of [5]) provides an estimate

L(j)
jl—a

P(RN[j, j+21#9) <Uj, j+2]) ~ Cla) as j — oo,
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where U denotes the renewal measure associated to F, L is a slowly varying function, and
C(a) is a positive constant. Also, the definition of slowly varying function implies the bounds

P(RN[j,j+21#9) <2772 and
j2.2m€ 1
PRN[j.j+2-2"+11#0)< > PRNIkk+2]#09)
k=j
< (2 X 2116) . an(lfafe/Z)_
The result now follows from the usual union bound, at least for the non-arithmetic case. For

the arithmetic case, we just have to consider intervals [, j + h] for & being the span of R and
the same reasoning applies. [

Finally, the following estimate, a result which is similar to Lemma 3 of [10], shows that
even in the case in which there are renewal marks on some interval [2"~!, 2"*1], the probability
that these marks are too dense on this interval decays rapidly with n.

Lemma 4.12. Fix o, € € (0, 1). There is g(o) € (0, 1) such that the event D, = D, (¢) defined
by

D, ={3zeB@), I c[2',2""]: 1| =2", |R,NI| > n*2"¢*)}
satisfies

P(D,) < K(dn3 . 2" . p—ce’n?
for constants ¢ > 0 and K(d) > 0 and sufficiently large n.
Proof. Consider the collection of intervals I; = [27=' 4 j,2"71 4 j 4 2"€ 4 1] for integer j
satisfying 0 < j <3 27=1 Then [2"~!, 2"*1] ¢ U;1; and whenever event D, (¢) happens the
interval I obtained must be contained in some /; and implies there are many renewal marks

inside /;. Denoting |I;| = 2"¢ 4+ 1 by I, the proof of Lemma 3 of [10] gives the following
estimate

P(RNL| > 1"%1n?l) <2-e ™! <27 for large n, (19)

where constant €3 > 0 satisfies r~(!=¢) < F(¢) for large ¢ (the proof of Lemma 3 of [10]
only uses the lower bound of condition C). Since F(t) € RV(—«a) and « € (0, 1), we can take
€3 := (1 —«)/2. Let us define g(«) := 1 — €3/2, so that g(a) > 1 — €3. It is straightforward to
check that

n22nes@ 1= 2 ] as n — oo.

Using (19) we conclude that

3,2n—1
POy < > Y P(RNIL|=n*2"@) < K(@n* 2" 27" O
zeBm3) Jj=0

Proof (Proof of Theorem 4.1, Part (i)). We assume without loss of generality that x is the origin
and denote Y,(0) simply by Y, and recall that our estimates hold a.s. on the event {t = oo}.
For ¢ > 0 define n = n(t) := |log, t], so that t € [2",2"*!). Fix € € (0, 1/2 — «) and consider
events By (¢€) and Dy (¢), which are both G-measurable. These events can be used to ensure that
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as t — oo the renewal marks near {0} x {t} are relatively sparse, almost surely. Indeed, by
Lemmas 4.11 and 4.12, we have

Z P(B;, U Dy) < oo, implying that ]lesz %1 ask — oo.
k=1

On the event G, := BSN DS there is at most one site z € B(n?) with R N[t —2", t] # @, since
otherwise event B, happens. Moreover, on DS we must have some interval I C [t — 2"¢, 1]
that has no cure marks of R, with length

one 1 ,
— - 28 s, one as t — 00, (20)

> — =
|I| - n22nsg(a) n

for € := e(1 — g(a))/2. This implies B(n®) x I is free of renewals.

Event G, € G provides some control on the renewal structure of B(n?) x [2"~!, 2"*+1]. Now,
we discuss two other events that are not G measurable but will help us handle the infections
in B(n?) x [2"~',2"*!]. The first event is C, = C,(¢’). By the estimates for P(C,) from
Corollary 4.10 and the Borel-Cantelli Lemma we have that

P(@ C,) =0 implies P(@ C,16) =0 as.,
and hence liin P(C,|1G)=0 as.
by Fatou’s Lemma. The second event is denoted H,, and defined as
H, ={Ym=>n, 3yeBm®\BQ)with &(y) =1, Vs € [2",2"]}.

By Corollary 3.3 and monotone convergence for conditional expectations, we have P(H, |
G) — 1 on event {t = oo}.

We consider P(&,(0) = 1 | G) on survival and on event G,,. There are two cases. We first
suppose that ¥, < 2"¢. The fact that the renewal environment belongs to G,, implies that there
are no renewals on B(n?) x (t — Y;, t]. Obviously, the event {£(0) = 0} contains the event

A, ={Vz~0, N°ON[t — Y,(0), 1] = ¥} (recall Corollary 4.8).
Also, on G, we have
H,_i1NCSN A C {£(0) = 1}.

Indeed, if one’ <Y, < 2" then the infected site given by H,_; will infect the origin on event
C.IfY, < 2"¢ then by our discussion next to (20) we can find an interval I C (t —2"¢,t—Y;)
such that the infection provided by H,_; will spread throughout / and guarantee that all
neighbours of the origin, which we denote by [, will be infected at time sup/ < ¢ — Y.
Moreover, on G, the only cure mark in [f — 2", #] is the one at the origin at time t — Y;,
implying that I is infected at time 7 — Y;. Hence, the transmission given by A® will infect the
origin and we can write {&(0) = 0}\A, C HS_, U C,, implying

P(A 1G) <= PEO0)=01G) < P(A | G+ P(H,_; | §) + P(Cy | §).

By Corollary 4.8, on survival and G, we have

PEO)=0]G) - >0  ast— oo.
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If Y, > 2"¢, then the interval I C [t — Y;, t] provided by (20) is long enough for event C¢ to
infect the origin. Thus, on Y, > 2" we have

0<PEW0)=0|9) < P(H;_ 19+ P(C,10),
0< ef2d)vY, < e*2d}\.2n€

implying that |[P(£,(0) =0 |G) —e 2| 5 0ast — co. O

Now, we turn to the proof of Theorem 4.1(ii) and fix o« > 1/2. We rely on two preliminary
results. Given € > 0 and z € Z¢ we say time interval I is an e-block (for R.) if I\'R. contains
only intervals of length less than €.

In order to motivate our next proposition, we prove:

Lemma 4.13. Given M, > 0, there is € = €(d, M, 8, 1) > 0 so that for s sufficiently large
and z a fixed site

P(z infects a neighbour in [s,s + M] | G) < 8

on the event where [s, s + M] is an €-block (for R;).

Proof. Write Iy, I1,..., I for the (ordered) intervals of [s,s + M]\'R,. Denote by N*
(resp. NY) the union of Poisson processes N (resp. N*¥) with y ~ z. We note that event
{z infects a neighbour in [s, s + M]} is contained on

{N*N Iy # @} UU_ {I; contains points in Ni and N7}.

Consider event
D'—{ Vr € [0, M]N N*, Yu € [0, M]N N} ]
" | wehave |r —u| >¢,andr >eandu > ¢ |’

On event [s, s + M] is an e-block we have that
P(z infects a neighbour in [s,s + M] | G) < P(6,(D°%) | G) — P(D%as s — oo

by Lemma 4.6. Now, we simply notice that fixed A, d, M > 0 the probability on the right hand
side is continuous function of € and converges to 0 as e | 0. O

Let us fix z a neighbour of 0. We define event A}, _ to be the event that in [2", 2"*") there
exists # such that [, t+1]NRy # @, [t+1,t+M+1]NRy = @ and [z, t + M + 1] is an e-block
(for R;). Our following result will use the following notation for comparing sequences: we say
that f =< g if there is K > 1 such that (1/K)|g(n)| < |f(n)| < K|g(n)| for every n > 1.

Proposition 4.14. Let F satisfy the conditions of Theorem 4.1 with @ > 1/2. For € > 0, M <
o0,

P(lim A}, )= 1.

Proof. It is based on a second moment argument. We assume € < 1. Consider events
Aj = A;(M, ¢) defined by

A~'—{ [j,J+1NRy # Y, [j+1,j+M+1]ﬂR0=@,}
I and [/, j + M + 1] is an e-block for R,
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and for n > 1 define the random variables
2n+l_l

X, = Y Ay,

=2

that count the number of occurrences of events A; for 2" < j < 2"*!. Clearly, the event A}, _
contains the event {X, > 0}. '
The largest part of the proof consists of showing the existence of a § > 0 independent of
n so that P(X, > 0) > § for all n > 1. Once we have this, we simply note that the desired
conclusion follows from Hewitt—Savage’s 0-1 law, considering that lim,, A’), . is invariant with
respect to finite permutations of the family of i.i.d. random variables {(T°, T?); i > 0}.
By Paley—Zygmund inequality, it suffices to find K = K (M, €) < oo so that for n large

EX? < K(EX,) .

The Strong Renewal Theorem of [5] will play a key role in the bounding of both moments.
This states (in our context, recalling that F(t) > O for + > 0 implies that our renewal process
is non-arithmetic) that as x becomes large

Ux,x +m)x'""%L(x) = cyh, 210

where U(I) = E(|RNI|) and ¢, is a positive constant. Notice that for all intervals I =
[x,x + k] with 0 < h < 1 we have that U(/) is comparable to P(R NI # ). Indeed, by
Markov inequality we have
P(RNI #0¥) = P(|R01| > 1) <u().
On the other hand, we have
U, x+h)=) P(RNI|=j)< )y P(RNI| = DHPT <h)™
Jj=1 j=1
_P(RNII=1)
N F(h)

)

where we recall T < w and F(t) > 0 for any ¢t > 0. This leads to the estimate
PRN[x,x +hl#0) <Ux,x+h) < F()™'- P(RN[x,x +h] #9).

We now show that P(A;) is comparable to U(j, j+1)* by decomposing P(A ;) with respect
to what happens at the origin and at z.
It is immediate that

P(A) < P(RoN[j, j+1I#DPRN[j.j+el #D) <UG, j+1),
For a lower bound, we have that
P(Roﬂ[j—}-l,j—i-M—i-l]:Q], Roﬂ[j,j—i-l];é@) ZK-U(j,j+1)~F(M+2)

We claim that P([j, j+M+1] is an e-block) satisfies a similar lower bound, for some constant
K = K(M, ¢). Indeed, notice that we can find n = n(e) > 0 such that F(e) > F(n) > 0. If
we have R, N [j, j + €] # @ and the next [(M + 1)/n] random variables 7; of the renewal
process satisfy T; € [n, €] we will have an e-block, which leads to the bound

P([j, j + M + 1] is an e-block) > U(j, j + €) - (F(€) — F(n))M+b/m,
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These estimates imply that P(A;) < U(j,j + 1)> for some constant K (M, €). Using the
estimate given by the Strong Renewal Theorem (21), defining n = n(j) as the only integer
satisfying 2" < j < 2" we have

. nyyn(l—a
P = (1) = (prms - B2 < e,
(Hjl— L(@2m2nd=e L(j)jl~«
Thus, E X, satisfies
on+l_g
EX, = Z P(Aj) = L") 22@a=bn,
j=2

which by our assumption on « tends to infinity as n becomes large. To finish the proof we
must show that £X2 has an upper bound of the same order of magnitude as (EX,)*. While
proving first moment estimates, we concluded that P(A;) is comparable to the probability of
the event

A =11, j+ TINR # BN (1), j + 11N R, # 0).

The same argument shows that P(A; N Ay) < P(A/j N A}), so it suffices to give an appropriate
upper bound to

on+l_q ) antl_y
E[( 3 nA})]zz Y P@ANAD+ Y PA).
j=2" M <j<k<2ntl j=2"

Our analysis rests on bounding P(A] | A}). We note that for j < k an application of the
Markov property on the first renewal inside [j, j + 1] implies

inf  Ux,x+1/K* < P(A}|A) < sup  Ux,x + 1)?
xe€lk—j—1,k—j] xelk—j—1,k—j]

for some positive K (e, M). In particular, an upper bound on P(A} | A’j) will follow from
bounding

C,= sup U, x+ 1)2 forr =k —j.
r—1<x<r
Let v = v(«) > 1 be a fixed constant whose precise value we will determine later. We fix
M’ > M + 1 so that whenever x > M’ we have in addition that

{M . SyS4X}U{U(x’x+l)xl—aij)}u{m . |x—x/| < I}C(%,V).

L(x) C U x"+1) *
Then for r > M’ Ur,r+ D22 <C <U@,r+ D2,
and so: cor 2L T < 6 < G TOL) TRt

Once again, our choice of M’ yields that for r > M’

Coro1 + Cy > Cor > v_g( L(r) )222(a—1) S p=10p2e—D), 22)
C, C, L(2r)
Notice that for any fixed j € [2", 2"*!), we have
on+l_g ontl_q R
Y OPALIADSM 14+ Y G <M H1+Y 3G (23)
k=j M'+1 =1 reJ;
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where J; := (M'2!~', M'2'] and R := inf{l : M'2! > 2"*1}. The bound on (22) implies
ZC, < pl0p—2e=D Z C,, foranyl <[ <R.

reJ; VEJH,l

Choosing v > 1 so that g := v'°272@=D < 1, we have from (23) that

2n+|71
Y PAIAD <M +1+(I4q+---+¢" DY C <M +1+0-9)" ) C.
k=j reJgp reJgp

Since Jg has at most 4 - 2" integer points and our conditions for M’ ensure that each C,, for
r € Jg, is comparable to one another, we conclude that
n+l_
Z P(A, | A) < K2"Cpurt < KL(2") 22007 D"
k=j

for some positive K (o) and the proof is completed. [J

Proof (Proof of Theorem 4.1, Part (ii)). We fix M = 1 and postpone the definition of
6 = 6(d,A) > 0 and € = €(§) > 0 that provide a suitable choice of event A = lim,, A?,e’
By Proposition 4.14, the event A occurs a.s. for any choice of € > 0. On A we can find
arbitrarily large times ¢ such that

RoN[t,t+11#0, RoN[t+1,t+2]=0, and [¢,1+ 2]is e-block for R,.

The above property ensures that Y;,» € [1,2]. Recall that Iy denotes the neighbours of the
origin. Using Lemma 4.13 we have that on A N {t = oo}

PE420)=116) <84 P(Uyerp (NNt +2 = Yo, t +21 £ 0} | G)
< S+ (1 _ e*(Zd*I))LYHrZ +8)

for a suitable time ¢, where the last inequality follows from Corollary 4.8 and Remark 4.9 when
t is sufficiently large. Hence, defining

d, A) = inf ef(del))Lx _ e*Zd)xx
n( ) xe[1,2]( )

we can estimate
(1= e72M2) — P(42(0) = 1] G) = (77 VM2 — ¢72Mi2) — 25 > i — 25,

which is positive once we define § := n/4. The choice of € is made accordingly, using
Lemma 4.13. O

The proof of Theorem 4.4 follows the same lines of the proof of Theorem 4.1. Instead of
writing down every detail for this similar proof, we give a sketch of the argument, singling out
the main differences.

Proof (Sketch of Proof of Theorem 4.4). The proof is equivalent to showing that

(@) If 1 —a > 5 then lim, (P(£,(0) = 0 | G) — e~ @=P41) <0,

(b) Ifl—a<ﬁthenf0reachs>0

T Ly (PE(0) = 0 G) — & -9477) = 0,
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1

We consider first b), that is 1 —a < o

define A’} (k) to be the event that

It e2n,2"); [t +1INRe £, [t+1,t+M+11NRy =0,
and [f,t + M + 1] is an e-block for RZJ., forevery 1 < j <k ’

For0 <e,M < oo and zy, ..., z; € I distinct, we

Aly (k)= {

The next claim follows Proposition 4.14 closely:
Claim 4.15. For any M < 0o and € > 0 we have P(lim, A}, (k)) = 1.

Proof (Sketch of Proof). Proposition 4.14 is the claim with k = 1. For k > 2, introduce random
. on+l_q
a variable X, = Y7 ,,~ 1g() where

[i+11NRy#D, i +1,i + M+ 1NRy =9 and }

G@) = { [i,i + M + 1] is an e-block for R, for every 1 < j <k

So, X, > 0 implies that event A}, (k) occurs. As in Proposition 4.14, for all n large and
2" < i < 2"l we have that

P(G(i)) = L") *+hy—nk+h-a)
so that E(Xn) = L(2")—(k+l)2n(l—(k+1)(1_a)).

Also, for 2" < j —i < 2"t — 1 we have that

P(G(j)NG()) < P(G@)) - sup U(x, x 4 D!

xelj—i—1,j—i]
and similar computations to Proposition 4.14 lead to
ol
Z P(G(j) | G(i)) < KL(2")_(k+1)2"(1_(k+1)(1_°‘))
J=l
for universal K (depending on € and M). This suffices to bound E(X?2) by a universal multiple
of (EX,)?* and leads to the proof of the claim. [J

Hence, fixing M,§ > 0 we can follow the proof of Theorem 4.1(ii) (with a slight
generalization of Lemma 4.13) to show that for any s € [0, M] > 0O there are infinitely many
t, tending to infinity so that ¥; = s and

P(,(0)=0]G) — e ®70% > ks,
So that by the arbitrariness of M and § we have
Vs >0, lim Ly, (PE©0)=0]G) —e ®0M7) > 0.
—00

L
2d+1°

,@ﬂm:s;l’(&(o) =0]G) =1.

In particular if 1 —« < then for every s > 0 we have

For the proof of a), we essentially follow the same structure of the proof of Theorem 4.1(i).
Notice that when o € (1/2, 1) the estimates for the probability of events C,(¢’) and D,(€)
are still available (see Corollary 4.10 and Lemma 4.12, respectively) for € and €’ to be chosen
below. One important difference is that now we have to consider a variation of event B, defined
in Lemma 4.11. The higher value of « will imply that we expect to have a structure of renewals
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that is not as extremely sparse as in the case a € (0, 1/2), but is still sparse nonetheless. We
define BX = BX(e) by
Bk { 3 distinct {zj}];:(l) € B(n?), s e [2"71, 2n+1];
ne Ry Nls,s + 1] #0, szﬂ[s,s+2~2"€]7£@f0r 1<j<k+1

Adapting the argument of Lemma 4.11 shows that for € > 0O fixed so that 1 —« > ﬁ +€ we
have for some universal K = K (k)

P(B,f) < Kn3d(k+2)2,n(k+l7(k+2)a7(k+2)e)
and P(B,’f) is summable on n. We choose €’ < € so that on event D¢ for every 29, 21, 22, - .., 2k €

B(n3) and every interval / C [2"~!, 2"+1] of length 2"¢/2 there is an interval of length 2"
with no cure points in U*_ R...
Thus, taking €(k, o) small we can ensure that

IL(Bf)cijc_ — 1 a.s. as j — oo.

Arguing as in the proof of Theorem 4.1(i), taking n(¢) = |log, t| we show that on event G, :=
(B,’;)C N D¢ there will be at most k + 1 different sites z € B(n?) such that R, N[t —2"¢, t] # 0,
and also some interval I C [t —2"¢, t —2"¢/2] with B(n?) x I without cure marks and satisfying
|I| = 2"¢. We define event C, = C,(¢’) for this ¢’. We have, as in the proof of Theorem 4.1(i)
that P(CSN H,_; | G) — 1 a.s. Given this, we have on event ¥; > 2"¢ that during interval
I C [t — Y;, t] the origin is infected and then

litn‘l]l{y,>2nf}mG,, (P(ét(o) =116 - l) =0.

Now let us consider {Y; < 2"“}NG,. Here, the origin is one of the k+ 1 sites with renewals
on B(n?®) x [t — 2"¢,t]. There are at most k neighbours of the origin with cure marks on
the interval [t — 2"¢, t], so we have that if C,, U H,‘LI does not occur, then at least 2d — k
neighbours of the origin have no cure marks and must be infected during this whole interval.
The probability that none of these neighbours has a transmission to the origin during [¢ — Y7, t]
can be controlled as t — oo, see Remark 4.9 succeeding Corollary 4.8. If any of these infected
neighbours transmits the infection to the origin then the origin must end up infected at time ¢.
In other words, we have on {t = oo} that

lim 1y, e, (PE©) = 11G) — (1 — e ®0M)) = 0,
t

or equivalently, @ 1y, <2n)nG, ( PEW0)=0]G) — e%zmk)ay,) <o
This finishes the sketch of the proof of Theorem 4.4. [

5. An example

As anticipated in the Introduction, we now give an example of distribution @ on (0, co) that
belongs to the domain of attraction of a stable law of index one, but for which the associated
contact renewal process has A, = 0. Of course, it suffices to consider d = 1. The question of
whether infinite first moment could be enough for A, = 0 remains open for the moment.

Theorem 5.1. Let ty > e be fixed, and consider the probability measure |1 on (0, 00), given
by
u(t,00) = F(t) == KL(t)/t, t> 1, (24)
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where L(t) = exp(Int/Inlnt), and K is the normalizing constant. If we consider the renewal
contact process on 7 with interarrival distribution u as above, then A, = 0.

The proof follows the same line of argument as in [10], identifying suitable scales for the
tunnelling event to happen with positive probability. Before setting the convenient scales, we
recall information about the renewal process under consideration.

Notation. For a renewal process (starting at time zero, say) identified by renewal times
Sy =Ty +---+ Ty, k > 1, where the random variables {7;}; are i.i.d. with distribution u, we
write Z, and Y; for the corresponding overshooting and age processes:

Zy = SN41—t; Yy =t — Sy,, where N; is defined by Sy, <t < Sy, 41. (25)

Let also m(t) = fot F(s)ds, for t > 0. Moreover, when referring to the renewal process attached
to site j € Z we shall add a superscript j to the corresponding variables.

Remark 5.2. Theorem 6 in [7] implies that if 0 < 6 < 1, then
P(Z, >m™'Om)) ~1—6 ast— oo. (26)

Lemma 5.3. For the distribution 1 under consideration and a > 0 one has

. m(t/(In1)*) e
Iim ————=¢

t—00 m(t) 27)

Proof. We first note that we may apply L’Hopital’s rule to the quotient on the left hand side
of (27), thus reducing to looking at the quotient of derivatives of its respective terms, which
results in

| 1 Inl
eXp[{ In(In £ —n; Ininz) lnr;rit } - “{ In(In 7 ri Ztln Int) H ' (1 - %) (28)

and the claim of the lemma follows readily by checking that the expressions in braces in (28)
converge, respectively, to 0 and 1 as t — co. [

For the tunnelling event, let us consider the following (time and space) scales: we set
a >0, Ry > e and Ly = 0; then, for k > 0, let

Ry

Riz1=R ,
k+1 t+ (n Rp)*

Ly =min{j > L; + IZ;Qk > Rpy1 — Ri}.

For convenience, let us write ry = Ry —Ry_; fork > 1, rg = Ry, M; = Inr and £; = In Ry; let
also Zy = [1, L], and Zy = [Ly, Lx+1], k > 1. The following statement estimates the growth
rate of sequence £.

Lemma 54. Let B = (1 +a)~'. Then, provided Ry = Ro(a) is large enough, we have that
O > (Lo + k)P for every k > 0.
Proof. We have R, ;1 = Ry (1 +1n™% R;), implying that

O =+ In(1+62) = by + BEGE, = gk, (29)
as soon as Ry is large enough.
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We argue the claim of the lemma by induction. It clearly holds true for £k = 0, since £; > 1.
Assuming it so does for k = n > 0, and using the fact that g is increasing in [1, 00), it follows
from (29) that

Cop1 > g(8,) = g((Lo +n)P) = (Lo + )P 4+ B(lo + 1) > (Ly +n + 1P,

and the argument for the induction step is complete as soon as the latter inequality is justified.
This may be done by writing ({y 4+ n + D — Ly + n)P, using the Mean Value Theorem, as

B __ B _ B
Cotn+OF = lo+m'=F — (Lo+n?’
for some ¢ € [0, 1]; the latter identity follows from the choice of 8. [

We also need a lower bound on the growth of m(Ry).

Lemma 5.5. Let L = m(Ry+1) —m(Ry). Then, if Ry is large enough, we have that for every
k> 0.

Ly > eV (30)
Proof.
For Ry large, we may write m(Ry4+1) — m(Ry) as
Ry Ins dS Zk+l s i
K/ ehins — = K/ ens ds > K(lgy — ) e, 3D
Ry § 17

Now,

Ry 1
Ay, =1<R —)—1 R =1<1 _)>_,
k1 — & =1In k+£% n(Ry) =1In +Kz = 2w

and the claim of the lemma follows readily by using the above inequality in (31). O

(32)

Proof of Theorem 5.1. Since the probability of no renewals on {0} x [0, Ry] is positive for
any Ry, for the tunnelling it suffices to show that for any value A > 0 of the infection rate, we
may take Ry so large that ) ,_, P(Bx) < 1, where By are events to be shortly defined, such
that in the complement of Ukz_OBk there exists an infection path starting at {0} x [0, Rg] and
continuing forever, see Fig. 4. We stress that in order for this strategy to work, Ry has to be
taken sufficiently large along all of the steps of the argument. Similarly to Section 4 of [10],
the events B; are defined as the union of the following events:

(D {Lig1 > L + My}
(IT) For a suitable V; (as defined below), the rectangle Ay := Z; x [Ry — Vi, R] is not free
of renewal (cure) marks;
(1) (Lg, Ry — Vi) does not freely-infect (Ly1, Ry) in Ag (see Definition 3.1).

In order for this proof strategy to work we need:

(a) To control P(Ly; > Ly + My).
(b) To show that for suitable random variables V; the sum of the probabilities of the events
B, as defined above is indeed less than 1.

Using (26) and Lemma 5.3 we see that for each k, the random variable L;,; — Ly is
stochastically dominated by a geometric distribution with parameter 1 —6, where e™* < 6 < 1.
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Fig. 4. Construction on Theorem 5.1. On the complement of Ui>oBy, grey regions Ay and intervals {L;} x
[Rk—1 — Vk—1, Ri] are free of cure marks, providing sufficient space for the infection from the origin to survive in
a straightforward way.

Thus,

P(Lis1 — Ly > My) < Mk, (33)

As natural candidate for V; we have V = min{ry, Y,g :H, e Y,? k"“} which we shall explore

when Ly < Ly + M.

Note that if [a, a + M] x [s, s + V] is a space—time interval free of cure marks and such that
site a is infected at time s, then the probability that the infection does not reach the space—time
point (a + M, s + V) is bounded by that of G(M, A) > V, where G(M, 1) has distribution
Gamma with parameters M and A. Indeed, the rightmost infection path will simply move as a
Poisson process with rate A. The result follows if we can prove that, for suitable R, the sum
over k > 0 of the probabilities in (33) and those in (34) are less than one,

P(min{rk, Yet LYy < G, x)) (34)

with G(Mg, 1) as above, independent of the renewal processes. The probability in (34) is easily
seen to be bounded from above by

P(G(My, 1) > ry) + M P(G(My, &) > Yg,)
_ _
< Mye M 4 MPE(e” Mk TR, (35)
For the second summand on the r.h.s. of (35), we write it in terms of the renewal measure U
for w:
— YR R = — e (Ry—s)
E(e M k) = / U(ds)F(Ry — s)e Mk
0

< MMy U(Ry) — U(Ry, — Mkz)
Mk2
=M+ SOUR = M2 +1) = URe — M2 +i = 1)].

i=1
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2Mk2

=k 30 that the second
m(Ry)

Using now Lemma 10 (b) in [7] the last sum is bounded from above by
term in the last line of (35) is bounded from above by

Moy By 2ML (36)
ke < M’e ==
m(Ry) Ly
since m(Ry) = Li_1 + m(Ry_1) > Li_1. Recall that M; = In —(mljekk:ll)a and ¢; = In R;. If we
choose a sufficiently large Ro(«) then
1
Eﬁk—l < My <, for every k > 1.

Hence, putting the inequalities above together and using Lemma 5.5, we get

A M, 12
INBED) (eMk F M T f M e M 4 Mt e Mk )
k>0 k>0

Finally, we notice that the estimate ¢; > ({o + k)? of Lemma 5.4 ensures that M;_grows fast
enough so that the series above converges. Moreover, given € > 0 we may take R(e) so that
> i=0 P(Br) < € if Ry > R(e). [
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