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Abstract

The nominal response model(NRM) was proposed by (Bock, 1972) in order to improve the latent trait
(ability) estimation in multiple choice tests with nominal items. When the item parameters are known,
expectation & posterior or maximum a posterior methods are commonly employed to estimate the latent
traits, under symmetric normality assumption of the latent trait distribution. However, when this item set
is presented to a new group of examinees, it is not only necessary to estimate their latent traits but also the
population parameters of this group. This article has two main purposes: first, to develop a Monte Carlo
Markov Chain nlgorithm to estimate both latent traits and population parameters concurrently. Second, to
compare, in the latent trait recovering, the performance of this method with three other methods: maximum
likelihood (ML), expectation a posterior (EAP) and maximum a posterior (MAP). The comparisons are
performed by varying the total number of items (NI), the number of categories (NC) and the values of the
mean and the variance of the latent trait distribution. The results showed that MCMC+MH outperforms
the other methods concerning the latent traits estimation as well as it recoveries properly the population
parameters. Furthermore, we found that NI accounts for the highest percentage of the variability in the
accuracy of latent trait estimation.

Classiflcagao AMS: QA 277.24
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1 Introduction

The nominal response model (NRM), was proposed by Bock (1972) in order to improve the latent trait
estimation in nominal tests. Let us suppose that a test consisting of [ items with' h; categories each is
administered to n examinees, and a random variable ¥;;, which indicates the category chosen by subject j to




item i, by assuming value 1 for this category and O for the all remaining ones. The NRM, which represents
such probability, is given by

exploin (8 —bin)l  _ _ exp(din +ainl;) )
hy

Piyn = P(Yyn = 116;,€) = T exp (o G — bl T, exp (e + a0s03)

where

8; = latent trait of subject j,

¢t (dia) = (diny. .- ding, ity e 4 Bimy ),

a;n: slope {discrimination) parameter of the category A of item i,
bin : difficult parameter of the category h of item 1 ,

din = —aabin: intercept parameter of the category h of item i

Discussion about the interpretations of the model and the item parameters can be found in Bock (1972),
Ayala (1992), DeMars (2003), Azevedo (2003) and Baker and Kim (2004), for example.

Most of the articles that deal with estimation in NRM are concerned with item parameter estimation,
under different conditions. For instance, see Ayala and Sava-Bolesta (1999), Bolt et al. (2001), Wollack et al.
(2002) and DeMars (2003). Latent traits estimation are discussed in Ayala (1989), Ayala (1992) and Baker
and Kim (2004). The latter discusses also the estimation of the population parameters via marginal maximum
likelihood (MML}), but not jointly with the latent traits. The first two aforementioned articles use EAP method
to estimate the latent traits, while Baker and Kim (2004) consider ML, EAP and MAP. In both EAP and
MAP methods it is assumed a standard normal distribution for the latent traits.

In this work we are concerning with the situation where the item parameters in the NRM are known in
some metric, see for example Andrade and Tavares (2005), and we want to estimate the latent traits and the
population parameters of a group of examinees, different from that one used to calibrate the item parameters.
In this case, the population parameters are [ree to be estimated.

This paper has two goals: first, to develop a Metropolis-Hastings within Gibbs sampling algorithm to
estimate jointly the latent traits and the population parameters. Second, to compare, in the latent trait
recovering, the performance of this method with three others: maximum likelihood (ML), expectation a
posterior (EAP) and maximum a posterior (MAP). The comparisons are performed by varying the total
number of items (NI), the number of categories (NC) and the values of the mean and the variance of the latent
trait distribution. The NI and NG are known to have influence in the estimation accuracy, according to Ayala
and Sava-Bolesta (1999), Wollack et al. (2002) and DeMars (2003). Furthermore, we want to verify the impact



of different values of the mean and variance of the latent trait distribution. We believe that the latent traits
will be better estimated when one uses information about the population parameters.

In Section 2 we present the MCMC algorithm. In Section 3 we perform a simulation study to compare the
aforementioned methods and in Section 4 we outline some c« ts and concl

2 MOCMC estimation and the other methods

MCMC algorithms are powerful tools to make bayesian inference, see Gamerman & Lopes (2006), for
details. One of the most used algorithm of this class is the Gibbs sampling one. This procedure calculates,
empirically, joint posterior distributions trough the so-called full conditional distributions. In many situations
it is not possible to obtain these distributions analytically. This is the case of NRM. A way of avoiding such
problem is to use some auxiliary algorithm as the Metropolis-Hastings or the adaptive rejection, see Patz and
Junker (1999) and Chen et al. (2000), for example. Wollack et al. (2002) proposed a MCMC Gibbs sampling
with adaptive rejection sampling algorithm to fit the NRM under standard normal latent distribution by using
WinBugs package. On the other hand, Patz and Junker (1999) developed a Metropolis-Hastings within Gibbs
sampling algorithm for the one, two and three parameter logistic models and for the generalized partial credit
model. We considered such approach for the NRM, henceforth MCMC+MH approach.

First, let us calculate the joint posterior distribution. Considering the usual assumptions of conditional
independence, the likelihood, for the latent trait of subject j, is given by

I m

L@ly,.¢0) = JITIF5. @)

i=1l h=1

where P;y, is as described in (1), ¥ ; = (V151,-- -y Yismere -2 YLiy - -+ \¥Iim,) and ¢ = (¢,,. .., {y). For bayesian
inference we assume the following prior

{p(0In0)} p(n0)

ﬁp(f’:'lna)} P(ua)p(vo)

j=1

p(alnﬂ)

where 8 = (0y,...,0,) and 9, = (us, ). The prior for 0; is assumed to be

0;lmg ~ N(po, ve) - (3)

3




For the population parameters, natural choices, which lead to conditional conjugate families, see Gelman
(2006), are:

Be ~ N(l‘w‘bﬁl) (4)
Yo ~ IG(n/2,k0/2). ' 5)

Thereafore, from (2), (3), (4) and (5) it follows that the joint posterior distribution is given by:

POy, o {flﬁggw}{nm[ (0= m)]} -

i=1hal j=1

o (-2

The distribution (6) has an intractable form. Also, the full conditional distribution of the latent traits is
not known. However, the full distributions of the population parameters are known and easy to sample from.
Therefore, a hybrid MCMC algorithm can be used to simulate from (6). This algorithm is composed by a
Metropolis-Hastings within Gibbs sampling step for the latent traits and two Gibbs sampling steps to estimate
7. A kernel function, see Patz and Junker (1999), is necessary to drawn from the latent traits. Following
Patz and Junker (1999) we choose:

0]

o(09,081) ~ (8, aB)

where 0}‘} is the current simulated value of & and 0}"” is the simulated value of the former iteration. Denoting
(.) the set of all other parameters, the hybrid MCMC algorithm (MCMC+MH) is as follows:

1. Attempt to draw ﬂ:.')l(.) ~p(0,-|c""),ym) (full conditional distribution), for j = 1,...,n mutually
independent:

(a) Draw 6§ ~ N (0™, 02)

(b) Accept 6] o = 0}' with probability
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otherwise, set 9,(.') = 0§"1).

2. Draw s from pol() ~ N(BVEN, §1), where:

1 n
= ()
(] j=1 “

-1
a0 - [ L1
lﬁ,: = (¢gl-|) + ,l,,‘)

3. Draw y{" from yel(.) ~ N(Z®, &), where:

1| 2

70 = 2|3 (6 - ) +Uu]
j=1

U] Dok iko
* 2

Giving suitable starting values (0("’, n(°)) , the iteration of the three above steps comprises the MCMC+MH
algorithm.

The MV, EAP and MAP are well described in the literature, see for example, Baker and Kim (2004).
Therefore they will be not presented in this work. In the next section we will present a simulation study.

3 Simulation study

To compare the performance of the four estimation methods we conducted a Monte Carlo simulation study,
according to Harwell et al. (1988). That is, considering replication of data sets and using appropriate statistics
to measure the goodness of the estimates. The number of replication was R = 20. This choice was based on
previous works, see Ayala and Sava-Bolesta (1999), DeMars (2003) and Wollack et al. (2002). The factors
(number of levels) considered were: the number of items (NI} (20, 30, 40), the number of categories per item



(NC) (4, 5), the values of the population means (-2, 0, 2) and the values of the population variance (0.5, 1,
1.5). Hence, there are 3x 2 x 3 x3 = 54 combinations. Once that our interest lies on the main factors (and not
in the possible interactions) and also because the large time demanding by the MCMC methods, we considered
a fractional factorial experiment using 18 of the 54 combinations. These combinations were generated in order
to ensure the estimability of the main effects and they are presented in Table 1. In all simulations we set n =
600 examinees,

Tables 6 and 7 present the items used to built the 4 alternatives and 5 alternatives tests, respectively. The
20 items tests were built using the 20 first items and in the 40 item tests we considered all the items. The 30
items tests were built considering the 21 first items and the items: 23, 25, 27, 29, 32, 34, 36, 38 and 40. This
allows to have tests in which the items range properly in terms of difficult and discrimination. That is, it is
possible to cover the latent trait range and also to discriminate between examinees with different abilities.

One of the most important aspects of the MCMC methods is to verify the convergence of the simulated
values to the posterior densities of interest. There are several suggestions in the literature but no agreement
about the most suitable one, see Gamerman and Lopes (2008}, for example. In this work we considered: the
monitoring of the chains generate by three different set of starting values, trace plots and Geweke statistics.
In the first starting values set the latent traits were drawn from a N(0,1) distribution and pg and ¥ were
fixed equal to 0 and 1, respectively. In the second set, the latent traits were all fixed to 0, pg was drawn
from N(0,1) and s was drawn from U(0,2). Finally, in the third set, the standardized scores were used as the
latent traits starting values. For pp and v we calculated the sample mean and variance of the standardized
scores plus values generated from a N(0,1) distribution. We simulated a set of responses for the combination
(NI =20,NC = 4,up = —2,1p = 1.5) and applied the convergence assessment procedures aforementioned.
The Geweke statistics were calculated considering independent samples of size 100 after 2000 jterations. They
showed that the convergence occurred for all observed parameters (the population parameters and some latent
traits randomly chosen). Also the observation of trace plots indicated that a burn-in of 2000 is enough to drawn
from the posterior densities. The Figure 1 shows the autocorrelations and trace plots of the generated chains
for one latent trait (randomly chosen), the mean and the variance obtained from different starting values. It
shows that the autocorrelations become negligible after a lag of 20. Therefore we decided to consider a bur-in
of 2000, simulating more 18000 values after that and retaining every 20 values. Hence we have 900 values to
estimate the posterior densities.



Table 1: Level factor combinations of the fractional factorial design

NI NG e Ws [NI NG 8 %o [NI NG pe o
20 4 20 15|30 4 -20 10|40 4 -20 05
20 4 20 05)30 4 20 15|40 4 20 1.0
20 4 00 10|30 4 00 05|40 4 00 LS
20 5 20 15 30 5 -2.0 10| 40 5 20 05
20 5 20 05|30 5 20 15|40 5 20 10
20 5 00 10|30 5 00 05|40 5 00 15

To compare the performance of the estimation methods we considered the following decomposition

MSE BIAS? + Variance

P R -
i8] = (0-8) 4365
= re

where b}, is the estimate of the latent trait of examinee j obtained from the data set r and §; = 'lli Zﬁ,l é},.
The four statistics used to evaluate the accuracy of the latent trait estimation were:

Corr mean of the correlation between 5; and §; among the examinees .
Bias 1 ¥0, (aj = ?Jj).
~\2
n R Ly 5
Var %E,}l # L=t (air = 0:') .

~ N2
MSE square root of 1 $°% ¥ T8 | (0j - 0j,-) .

7

Table 2 presents the aforementioned statisties for each estimation method for all level factors combination.
The results indicate that the MCMC performs equally or better than the other methods. When the true
population parameters match with that considered in the usual methods, the four estimation procedures
produce quite similar results. However, when this is not true, the MCMGC produce more accurate results.
This is clear when the true population parameters are far from (0,1). Hence we concluded that estimating the
population parameters improved the latent traits estimates. Also, the MCMC+MH approach presented the
most accurate results,

Figures 2, 3 and 4 present the MSE per latent trait ranges for different combinations of level factors. One
can see that, even though the MCMC+MH was the most accurate estimation procedure, the MSE of the
estimates of the other methods are smaller than that of the MCMC+MH ones, for some latent trait ranges.
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Therefore the MCMC+MH is not uniformly better than the other three methods (concerning the latent trait
values). Also, we can notice that the highest MSE occur for the more extreme latent trait values. Furthermore,
when the population parameters are far from (0,1) values, the MSE tend to be higher. In general, one can say
that MCMC+MH algorithm outperforms the other methods.

An ANOVA was calculated for the fractional factorial design by considering In (MSE) as the response
variable, see Ayala and Sava-Bolesta (1999) and DeMars (2003). Since that there are many observations
(number of examinees) by each combination of factor levels, the statistic w? was considered instead of the
F one. This allows to evaluate the contribution of each main effect in the difference of the accuracy of the
estimates, see Ayala and Sava-Bolesta (1999) and DeMars (2003), for example. Table 3 presents such results.
We see that the NI accounts for the highest percentage of the difference in the In (M SE), while the other
factors (NC, mean and variance) have a small impact. The remaining effects, including possible interactions
and other factors which could be considered as the sample size ratio, see DeMars (2003), have, all together, a
rensonable influence. However, in the design that was considered it is not possible to idzntify the contribution
of each one. By inspecting Table 4, one can see that the population parameters were all well recovered by the
MCMC+MH approach. Table 5 presents the number of iterations necessary to obtain the convergence in the
iterative process for MV and MAP as well as the precision achieved. Also, the time spent by the estimation
process is displayed for the two former methods and MCMC+MH algorithm. It is clear that MAP requires
less iterations and then, it Is less time demanding. Also, we can see that the MCMC-+MH algorithm spent
much more time than the other methods.



Table 2: Statistics for the latent trait estimation

NI NC  ps  ¥o _EM Cort | Var __ Bias RMSE
20 4 20 1.5 MV 0988 0571 -0.134 03813
MAP 0.080 0.101 0405 0.648

EAp 0981 0.105 0388 0633

MCMC+MH 0.989 0.15¢ -0.010 0462

0 4 20 05 MV 0.957 0240 0041 0509
MAP 0090 0110 -0.322 0.491

EAP 0990 0113 -0312 0486

MCMC4+MH 099 0092 0.003  0.369

0 4 00 1.0 MV 0005 0164 -0.001 0417
MAP 0.995 0113 0000 0379

EAP 0.995 0114 -0.001 0379

MCMC+MH 0995 0115 -0.001 0.379

20 5 20 15 MV 098 1416 -0.113 1.234
MAP 0977 0.113 0474 0729

EAP 0978 0116 0455 0.712

MCMC+MH 0987 0177 0004  0.502

05 20 05 MV 0087 0233 0031 0499
MAP 0.087 0124 -0.353 0531

EAP 0986 0126 -0.345 0.526

MCMC+MH 0987 0098 0003  0.39%

0 5 00 1.0 MV 0.004 0182 -0.003 0.440
MAP 0995 0118 0003 0395

EAP 0.995 0.120 0.001 0.395

MCMC+MH 0.995 0.120 0.001  0.395

0 4 20 10 MV 0.991 0.260 -0.065 0.539
MAP 0.987 0.086 0304 0.499

EAP 0.087 0088 0287 0487

MCMC+MH 0991 0.108 0.002 _ 0.380

30 4 20 15 MV 0095 0241 0052 0517
MAP 0983 0073 -0.284 0511

EAP 0083 0074 -0.273 0.502

MCMC+MH 0992 0.104 -0.013 0.376

30 4 00 05 MV 0.995 0.100 -0.008 0324
MAP 0.095 0.080 -0.002 0.299

EAP 0.005 0081 -0.006 0.300

MCMC+MH 0995 0.066 -0.002 0.295

B 5 20 10 MV 0.086 0519 -0.050 0.747
MAP 0988 0008 0.346 0538

EAP 0988 0.01 0327 0525

MCMC+MH 0092 0.127 -0.001  0.404

30 5 20 15 MV 0005 0206 0.045 0.476
MAP 0990 0084 -0.279 0.490

EAP 0989 0084 -0.273 0.487

MCMC+MH 0995 0112 0004 0371

30 5 00 05 MV 0.093 0.121 -0008 0338
MAP 0.003 0093 -0.001 0.326

EAP 0.993 0094 -0.006 0.326

0.993 0.075 -0.001 0319

MCMC+MH
g
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Figure 1: Autocorrelations and trace plots for chains generated from different starting values.
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Figure 2: MSE per latent trait range for some 20 items tests.
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Figure 4: MSE per latent trait range for some 40 items tests.
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Continuation of Table 2

NI NC pe o EM Corr Var  Bias RMSE

40 4 20 05 MV 0.994 0130 -0.035 0.374

MAP 0.991 0.070 0.193 0355

EAP 0.991 0.072 0.179 0348

MCMC+MH 0.991 0066 0.000 0.208

40 4 20 1.0 MV 0.995 0.155 0.032 0412

MAP 0.990 0.065 -0.212 0.393

EAP 0.990 0.066 -0.202 0.387

MCMC+MH 0.994 0078 -0.008 0.316

40 [] 00 15 MV 0.999 0.082 0.000 0.295

MAP 0.998 0.063 0.003 0.285

EAP 0.998 0.064 0.002 0284

MCMC+MH 0.998 0.069 0.001 0280

40 5 .20 05 MV 0.992 0.146 -0.031 0.39%

MAP 0.990 0.079 0.232 0.395

EAP 0.990 0082 0215 0.386

MCMC+MH 0.991 0.075 0.003 0.320

40 5 20 1.0 MV 0.997 0.118 0.024 0.354

MAP 0995 0.072 .0.210 0.379

EAP 0994 0.072 -0.202 0375

MCMC+MH 099 0.083 0005 0.312

40 5 00 15 MV 0.998 0.095 -0.005 0.316

MAP 0.997 0.072 0.001 0.311

EAP 0.997 0.073 -0.001 0.310

MCMC+MH 0.998 0.079 -0.002 0.304

Table 3: Anova for the Jatent trait estimation

Source of varlation SS df MS F W
Number of items 161.64 2 80.82 1713.28 0.22
Number of categorias 9.50 1 950 201.33 0.01
e 41.37 2 2068 438.47 0.06
W 24.70 2 1235 261.80 0.03
Other effects 271.88 10 27.19 576.36 0.36
Error 500.08 10792 0.05 - -
Total corrected 746.28 - - - -
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Table 4: Results of the population parameter estimation

Jtems Cat true ug true Yp Statistic  est. ug  est. Y
20 4 -2 15 mean -2.010 1.516
meanse 0.055 0.110

var < 0.001 0.003

20 4 2,0 0.5 mean 2.003 0.506
meanse 0.034 0.042

var < 0.001 0.001

20 4 0.0 1.0 mean 0.000 0.998
meanse 0.044 0.069

vor < 0.001 0.001

20 5 -2.0 1.5 mean -1.996 1.481
meanse 0.055 0.111

vor < 0.001 0.003

20 5 2.0 0.5 mean 2.003 0.503
meanse 0.035 0.043

var < 0.001 0.001

20 5 0.0 1.0 mean 0.001 0.987
mennse 0.044 0.070

var < 0.001 0.001

30 4 -2.0 1.0 mean -1.998 0.992
meanse 0.044 0.071

var < 0.001 0.001

30 4 2.0 1.5 mean 1.987 1.460
meanse 0.052 0.100

var < 0.001 0.002

30 4 0.0 0.5 mcan -0.002 0.496
meanse 0.032 0.035

var < 0.001 0.001

30 5 -2.0 1.0 mean -2.001 1.026
meanse 0.045 0.075

var < 0.001 0.001

30 5 2.0 15 mean 2.004 1.505
meanse 0.052 0.100

var < 0.001 0.001

30 5 0.0 0.5 mean -0.001 0.502
meanse 0.033 0.037

var < 0.001 0.000
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Continuation of Table 4
NI NC s s Statistic est. yp  est. Yu
4

40 <20 0.5 mean -2.000 0.502
meanse 0.032 0.037
var < 0.001 < 0.001
40 4 20 1.0 mean 1.992 0.980
meanse 0.043 0.066
var < 0.001 0.001
40 4 0.0 1.5 mean 0.001 1.487
meanse 0.051 0.093
var < 0.001 0.001
40 5 -20 0.5 mean -1.997 0.510
meanse 0.033 0.039
var < 0.001 0.001
0 5 20 1.0 mean 2.005 1.019
meanse 0.043 0.068
var < 0.001 0.001
40 5 00 1.5 mesn -0.002 1.472
meanse 0.051 0.093
var < 0.001 0.001

mean = mean of the cstimales, meanse = mean of the standard errors, var = variance of the estimates

Table 5: Spent time (ST), achieved precision (AP) ad number of required iterations (NRI) in the simulation
study

Items Cat py MV MAP MCMC
PA NRI1 ST PA NRI ST ST

20 1.0 0.000009 7685 28.34 | 0.000009 59.10 21.91 | 4282.20
00 1.5 0.000009 49.55 20.81 | 0.000009 42.30 18.08 | 4807.37

10
40

20 4 -20 15]0000009 5200 6.65 [ 0.000009 41.10 530 | 1539.69
20 4 20 0.5 0.000607 97.55 10.43 | 0.000009 d8.15 5.22 1316.58
20 4 0.0 1.0 0.000009 52.00 6.65 | 0.000009 41.10 5.30 1539.69
20 5 -20 150000007 2720 4.43 | 0.000008 2940 4.76 | 1810.29
20 5 20 0.5 0003033 100.00 20.24 | 0.000010 70.25 14.27 | 2392.73
20 5 0.0 1.0 0.000008 2530 3.56 | 0.000008 31.65 4.38 1653.41
30 4 -20 1.0]0.000332 89.20 1530 | 0.000008 31.45 5.55 | 2095.55
30 4 20 1.5 0.000122 9990 29.92 [ 0.000010 76.95 23.11 | 3511.32
30 4 0.0 0.5 ] 0.000008 23.50 4.87 | 0.000008 36.65 7.47 | 2396.07
30 § -2.0 1.0 0000008 2480 6.49 | 0000008 3065 7.73 | 3028.68
30 5 2.0 150000063 74.70 9.01 | 0.000009 36.95 4.52 1475.86
30 5 0.0 0.5 (0000007 19.80 505 [ 0.000008 31.10 7.74 2848.61
40 4 -20 050000031 7115 19.39 | 0.000009 32.10 8.90 | 3221.85
40 4 20 1.0 { 0.001557 100.00 27.32 | 0.000009 80.80 22.21 | 3276.54
40 4 0.0 15| 0.000025 69.55 22.28 | 0.000009 54.40 17.29 | 3708.44
40 5 -20 050000007 2060 8.84 | 0000008 2625 11.16 | 4719.00

5

L)

16



‘Table 6: Item parameters used in the simulation studies : 4 alternatives

Item b a Item b a Item b a Item b a

-4.00  -0.50 11 -0.80 .0.60 21 -4.00 -0.60 a -0.80 -0.70
-3.80 .0.20 11 -040 -0.70 21 -3.80 -0.20 31 -0.40 -0.70
-340 0.10 11 -0.20  0.40 n -3.40 010 31 -0.20 0.0
-3.00 060 11 0.16  0.90 21 =250 070 31 0.16 1.00
-3.20 -1.20 12 -060 -1.70 22 -3.20 -1.10 32 060 -1.60
-2.00 -0.0 12 -0.20 -0.30 22 -2.80 -0.40 32 -0.20  -0.30
-2.80 020 12 0.10  0.80 22 -2.40 020 32 0.10 0.80
=268 1.40 12 047 120 22 <224 130 32 047 110
-3.00 -0.60 13 -0.20 -0.50 23 -3.00 -0.70 33 -0.20 -0.60
-2.80 -0.70 13 010 -0.20 23 -2.80 -0.70 a3 0.10 -0.20
-2.50 0.40 13 030 0.10 23 <250 040 33 030 o010
-2.37 090 13 0.79  0.60 23 -1.97 100 k&) 079 070
-280 -1.70 14 010 -1.20 4 -2.80 -1.60 34 010 -1.10
-260 -0.30 14 040 -0.40 24 -2.60 -0.30 34 040 -0.40
-2.40 080 14 080 0.20 24 -2.40 0.80 K2} 080 0.20
=205 1.20 14 111 1.40 24 171 110 M 111 130
-2.50  -0.50 15 0.40 -0.60 25 -2.50 -0.60 35 040 -0.70
-2.20 -0.20 15 080 -0.70 25 -2.20 -0.20 kL 080 -0.70
-1.8¢  0.10 15 1.00 040 25 -1.90 0.10 35 1.00 040
-1.74 060 15 142 0.90 25 -144 070 35 142 1.00
-200 -1.20 16 060 -1.70 26 -200 -1.10 36 0.60 -1.60
-1.80 -0.40 16 1.00  -0.30 26 -1.80 -0.40 36 100 -0.30
-1.60 0.20 16 1.20 0.80 26 -1.60 0.20 36 120  0.80
-142 140 16 174 120 26 -1.18 1.30 36 1.74 110
-1.80 -0.60 17 1.00 -0.50 27 -1.80 -0.70 37 1.00 -0.60
-1.60 -0.70 17 1.20 -0.20 27 -1.60 -0.70 37 120 -0.20
-1.40 040 17 1.60 010 27 -1.40  0.40 37 160 0.10
=111 0.90 17 205 0.60 27 -082 100 37 205 070
-1.50  -1.70 18 120 -1.20 -1.50 .1.60 38 120 -1.10
-1.30  -0.30 18 1.60 -0.40 -1.30 -0.30 as 1.60 -040
-1.00 080 18 200 020 -1.00  0.80 a8 200 0.20
-0.79 1.20 18 237 140 <066 110 38 237 130
-1.20 -0.50 19 140 -0.60 -1.20  -0.60 39 140 -0.70
-1.00 -0.20 19 200 -0.70 -1.0¢ -0.20 39 260 -0.70
-0.80 0.10 19 220 040 -0.80¢ 0.10 39 220 040
-0.47  0.60¢ 19 268 0.9 -0.3%  0.70 39 268 1.00
10 -1.00  -1.20 20 1.60 -1.70 -1.00  -1.10 40 1.60 -1.60
10 -0.80 -0.40 20 200 -0.30 -0.80 040 40 200 -0.30
10 -0.40 0.20 20 260 080 040 0.20 40 260 080
10 -0.16  1.40 20 300 120 -0.13 130 40 3.00 1.10

COVORNEREITILIREBR NN D D bl W0 NN NN -

8888838388888

17



Table 7: Item parameters used in the simulation studies : 5 alternatives

Item b o Item b a Item b a Item b o

1 420 -0.40 11 -1.00 -0.90 21 -4.00 .0.50 31 -100  -0.90
-390 020 11 -0.70 -0.20 21 -3.80 -0.20 31 -080 -0.70
-3.60 -0.10 11 -0.40 -0.20 21 -3.60 .0.10 31 -0.50 0.20
-3.40 0.10 11 -0.20  0.40 21 -3.40 0.10 31 -0.20 0.0
-3.00 0.60 11 0.16 0.90 21 -2.50  0.70 31 016 1.00
-3.40 -0.80 12 -0.60 -1.20 22 -3.20 -1.00 32 -0.60 -1.00
-3.00 -0.50 12 -0.20 -0.60 22 -3.00 -0.60 32 -0.20  -0.60
-2.70 -0.30 12 000 -0.20 22 =270 -0.30 32 000 .0.30
-2.40 0.20 12 010 0380 22 =240 0.60 32 0.10 0.80
-268 140 12 0.47 1.20 22 -224 130 32 0.47 1.10
-3.20 -0.90 13 -0.40 -0.40 23 -3.20 -0.90 a3 <040 -0.50
-3.00 -0.20 13 -0.20  -0.20 23 -3.00 .0.70 33 -0.20 -0.20
-280 -0.20 13 000 -0.10 23 -2.80 0.20 a3 000 -0.10
=250 0.0 13 030 0.10 23 <250  0.40 33 030 0.0
<237 0.50 13 079 060 23 -1.97 100 33 0.79 0.70
-3.00 -1.20 4 000 .0.80 24 -3.00 -1.00 3 010 -1.00
=277  -0.60 14 010 .-0.50 b2 | -2.80 -0.60 34 040 -0.60
-2.50 -0.20 14 040 -0.30 24 -2.60 030 3 0.60 .0.30
-240 080 14 080 020 2 -2.40 0.80 34 0.80 0.60
<205 1.20 14 1 1.40 2] -1.71 110 34 1 1.30
-2.50 -0.40 15 0.40 -0.90 25 <280 -0.50 35 0.10 -0.90
-2.20 -0.20 15 060 -0.20 25 -2.30 -0.20 35 030 -0.70
-2.00 -0.10 16 0.80 -0.20 25 -210 -D.10 a5 060 020
-1.90 0.10 15 1.00 0.0 25 -1.90  0.10 a5 100 0.0
-1L.74  0.60 15 142 090 25 -l.44  0.70 35 142 1.00
=220 -0.80 16 0.40 .1.20 26 -230  -1.00 36 0.40 -1.00
-1.90 -0.50 16 070 -0.60 26 =200 -0.60 36 090 -0.60
-1.80  -0.30 16 1.00 -0.20 26 -1.80 -0.30 36 1.00 -0.30
-1.60 020 16 1.20  0.80 26 -1.60 0.60 s 1.20 080
-142 140 16 1.74 1.20 26 -1.18 130 36 1.74 1.10
-2.00 -0.90 17 090 -0.40 27 =220 -0.90 37 090 -0.50
-1.80 -0.20 17 L0 -0.20 27 <200 -0.70 37 1.10 -0.20
-1.60  -0.20 17 140 -0.10 27 -1.80 0.20 37 130 -0.10
-1.40  0.40 17 1.60 0.10 27 =140 0.40 37 1.60 0.10
-L11  0.50 17 205 060 27 -0.92  1.00 37 2.05 0.70
-1.50 -1.20 18 1.20 .0.80 28 -1.80 -1.00 a8 100 -1.00
-1.30 -0.60 18 1.60 -0.50 28 -1.60 -0.60 kI 120 -0.60
-1.10 -0.20 18 180 .0.30 28 -1.30  -0.30 38 140 -0.30
-1.00  0.80 18 200 020 28 -1.00 0.80 38 200 0.60
-0.79 120 18 237 140 28 066 1.10 38 237 130
-1.50 -0.40 19 140 -0.00 29 -1.40 -0.50 39 140 -0.90
-1.30 -0.20 19 180 -0.20 29 -110 -0.20 39 160 -0.70
-1.10  -0.10 19 200 -0.20 29 -1.00 .0.10 39 2.00 0.20
-0.80 0.10 19 220 040 29 -0.80 010 39 220 040
9 047 0.60 19 2.68 0.90 29 039  0.70 a9 2.63 1.00
10 -1.00 -0.80 20 1.60 -1.20 30 -1.00  -1.00 410 1.60 -1.00
10 -0.8¢ -0.50 20 200 -0.60 30 -1.20  .0.60 40 200 -0.60
10 -0.60 -0.30 20 230 -0.20 30 -0.90 .0.30 40 220 -0.30
10 <040 0.20 20 2.60 0.80 30 -0.40 0.60 40 260 0.0
10 -0.16 1.40 20 3.00 1.20 30 -0.13  1.30 40 3.00 1.10
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4 Concluding remarks

The MCMC+MH procedure that was proposed recoveries properly both latent traits and population pa-
rameters. Its computational implementation is straightforward and it can be extended to other situations
such as, when the item parameters are unknown and for a different latent trait distributions. It is clear that
estimating the population parameters provides a better latent traits estimates. Furthermore, we notice that
the number of items accounts for the highest percentage in the variability of the accuracy of the latent traits
estimation. The other factors, number of categories and the values of the item parameters, account for a small
percentage of these variability.
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