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Abstract 

Tbe nominal response model(NRM) was prop0600 by (Boc:k, 1972) in order to improve tbe Intent trait 
(oblllty) estimation in multiple choice tests with nominal items. When the item pare.meters are known, 

expectation a posterior or maximum a posterior methods are commonly employed to estimate the latent 

tro.it.s, under symmetric normality e.ssumption of the Intent trait distribution, However, ~hen this item set 

ls presented too. new group of examinees, It is not only necessary to estimate their latent traits but also the 

population parameters of thia group. This article has two main purposes: first, to develop a Monte Carlo 

Markov Chain o.lgorltbm to estimate both latent traits and population parameters concurrently. Second, to 

c.ompo.re, in the latent trait recovering, the performance of thL!I method with three other methods: maxjmum 

likelihood (ML), expectation a pooterior (EAP) and maximum a posterior (MAP). Tbe comparisons are 

performed by varying the total number of item., (NI), tho number of categories (NC) and tbe vnlues of the 

mean and the variance of the latent trait distribution. Tho result.a: showed that MCMC+MH outperforms 

the othe.- methods cooccming the latent trait.s estimation as well os it rocoveric., properly tho population 

par&met.crs. Furthermore, we found that NI &CCOunta for the hlgbe:!lt percentage or the varie.bility In the 

accuracy of latent trait estimation. 

Clnssinro~iio AMS: QA 277.24 
keywords: nomina.l response model, latent trait, population parameter, MCMCsimulatlon, Metropolis­

Ho.stinga 

1 Introduction 

The nominal resporu;c model (NRM), was proposed by Bock {1972) in order to improve the latent trait 

ootimntion in nominal tests. Let us suppose that a test consisting of I items with· h; categories ea,:h is 

administered to n examinees, and a random variable Yi;• which indicates the category chosen by subject j to 



item ~ by assuming value I for this category and O ror the all remaining ones. The NRM, which represents 

such probability, is given by 

exp(a,. (O; - b;•)I _ exp(d;• + a;•O;) 

~~;_1 exp (a;, (O; - b;,)] - I;~;_, exp (d;, + a;,O;) 

where 

8; : latent trait or subject ;, 

a;• : slope (discrimination) parameter or the category h or item ~ 

b;,. : difficult parameter of the category h or item i , 

d;,. = -a;.b;•: intercept parameter or the category h or item i. 

(1) 

Discussion about the interpretations of the model and the item parameters can be found in Bock (1972), 

Ayala (1992), DeMars (2003), Azevedo (2003) and Baker and Kim (2004), for example. 

Most of the articles that deal with estimation in NRM are concerned with item parameter estimation, 
under different conditions. For instance, see Ayala and Sava-Bolesta (1999), Bolt et al. (2001), Wollack et al. 

(2002) and DeMars (2003). Latent traits estimation are discussed in Ayala (1989), Ayala (1992) and Baker 
and Kim (2004). The latter discusses also the estimation of the population parameters via marginal maximum 
likelihood (MML), but not jointly with the latent traits. Tho first two aforementioned articles use EAP method 

to estimate the latent traits, while Baker and Kim (2004) consider ML, EAP and MAP. In both EAP and 
MAP methods it is ,...urned a standard normal distribution for the latent traits. 

In this work we are concerning with the situation where the item parameters in the NRM arc known in 

some metric, see for example Andrade and Tavares (2005), and we want to estimate the latent traits and the 
population parameters or a group or examinees, different from that one used to calibrate tho item parameters. 
In this case, the population parameters are Cree to be estimated. 

This paper has two goals: first, to develop a Metropolis-Hastings within Gibbs sampling algorithm to 

estimate jointly the latent traits and the population parameters. Second, to compare, in the latent trait 
recovering, the performance or this method with three others: maximum likelihood (ML), expectation a 

posterior (EAP) and maximum a posterior (MAP). The comparisons are performed by varying the total 

number of items (NI), the number of categories (NC) and the values or tho mean and the variance of the latent 

trait distribution. The NI and NG are known to have influence in the estimation accuracy, according to Ayala 

and Sava-Bolesta (1999), Wollack et al. (2002) and DcMars (2003). Furthermore, we want to verify tho impact 
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of different values of the mean and variance of the latent trait distribution. We believe that the latent traits 

will be better estimated when one uses information about the population parameters. 

In Section 2 we present the MCMC algorithm. In Section 3 we perform a simulation study to compare the 

aforementioned methods and in Section 4 we outline some commenu and conclusions. 

2 MCMC estimation and the other methods 

MCMC algorithms are powerful tools to make bayesian inference, see Gamerman & Lopes (2006), for 

details. One of the most used algorithm or this class is the Gibbs sampling one. This procedure calculates, 
empirically, joint posterior distributions trough the so-called full conditional distributions. In many situations 

it is not possible to obtain these distributions analytically. This is the case of NRM. A way of avoiding such 
problem is to use some auxiliary algorithm as the Metropolis-Hastings or the adaptive rejection, see Patz and 

Junker (1999) and Chen et al. (2000), for example. Wollack et al. (2002) proposed a MCMC Gibbs sampling 
with adaptive rejection sampling algorithm to fit the NRM under •tandard normal latent distribution by using 

WinBugs pa,:kage. On the other hand, Patz and Junker (1999) developed a Metropolis-Hastings within Gibbs 
sampling algorithm for the one, two and three parameter logistic models and for the ge,ieralized partial credit 

model. We considered such approach for the NRM, henceforth MCMC+MH approach. 

Fin,t, let us calculate the joint posterior distribution. Considering the usual assumptions of conditional 

independence, the likelihood, for the latent trait of subject j, is given by 

I m, 
L(9;lll.;.,C) II II p••J• 

,jh I (2) 
i ... lh.::al 

where P;;• i• as described in (1), 11.;. = (!11;1, • • . ,!11;m., • • . ,!ltJI,· • . ,!lt;m,) and C = (C1, •. . ,Cr)- For bayesian 
inference we assume the following prior 

p(o,.,,) 

where 9 = (01, ••• ,9.) and 'I•= (µ,,y,1). The prior for O; is assumed to be 

(3) 
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II 

For the population parameters, natural choices, which lead to conditional conjugate families, aee Gelman 

(2006), are: 

N(µ.,v,.} 

IG(vo/2, Ko/2) . 

Tberea.fore, from (2), (3}, (4) and (5) it follows that the joint posterior distribution is given by: 

p(B,11,111 .. J oc {nfi, Pl;~• }{11 exp [-(Oi;:,•>2

]} ,i,;"
12 

x { exp [- (µ, 2-,,,:•)2]} { ,i,;C .. /2+1) exp (-27,)}. 

(4) 

(5) 

(6) 

Tho distribution (6) has an intractable form. Also, the full conditional distribution of the latent traits is 

not known. However, the full distributions of the population parameters are known ..ad etlllY to llf-mple from. 

Therefore, a hybrid MCMC algorithm can be used to simulate from (6). This algorithm is composed by a 

Metropolis-Hastings within Gibbs sampling step for the latent traits and two Gibbs sampling step, to estimate 

'lo• A kernel function, see Patz and Junker (1999), is necessary to drawn from the latent traits. Following 

Patz and Junker (1999) we choosc: 

where 11j1> is the current simulated value of II and oJ•-1> is the simulated vnlue of the former iteration. Denoting 

(.) the set of all other parameters, the hybrid MCMC algorithm (MCMC+MH) is as follows: 

I. Attempt to draw 11}')1(.) ~p(O;l((•-1>,11 ... ) (full conditional distribution), for j = l, ..• ,n mutually 

independent: 

(a) Draw oj•> ~ N(oJ'-11,aj) 

(b) Accept oj'l = oj•> with probability 
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3. Draw ,i,~•l from 1/1,1(,) ~ N(v!1>,,.<1>), where: 

,.<•> 

~ [t (o}'l _ µ~•>)2 + "°] 
J ml 

n + /Co 
-2-

Giving suitable starting values ( o<0l, 'l(o)), the iteration of the three above steps comprises the MCMC+MH 

algorithm. 

The MV, EAP and MAP are well described in tho literature, see for example, Balcer and Kim (2004). 

Therefore they will be not presented in this work. In tho next section we will present a simulation study. 

3 Simulation study 

'lb compare the performance of the four estimation methods we conducted a Monte Carlo simulation study, 

according to Harwell et al. (1988). That is, considering replication of data aeta and using appropriate statistics 

to mcuure tho goodnesa of the estimates. The number of replication was R = 20. This choice was based on 

previous worka, see Ayala and Sava-Bolesta (1999), DeMars (2003) and Wollack et al. (2002). The factors 

(number of levels) considered were: the number of items (NI) (20, 30, 40), the number of categories per item 
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(NC) (4, 5), the values of the population means (·2, 0, 2) and the values of the population variance (0.5, 1, 
1.5). Hence, there are 3 x 2 x 3 x 3 = 54 combinations. Once that our interest lies on the main factors (and not 

in the possible interactions) and also because the large time demanding by the MCMC methods, we considered 
a fractional factorial experiment using 18 of the 54 combinations. These combinations were generated in order 

to ensure the estimability of the main effects and they are presented in Table 1. In all simulations we set n = 
600 examinees. 

Tables 6 and 7 present the items used to built the 4 alternatives and 5 alternatives tests, respectively. The 

20 items tests were built using the 20 first items and in the 40 item tests we considered all the items. The 30 
items tests were built considering the 21 first itema and the items: 23, 25, 27, 29, 32, 34, 36, 38 and 40. This 

allows to have tests in which the items range properly in terms of difficult and discrimination. That is, it is 

possible to cover the latent trait range and also to discriminate between examinees with different abilities. 

One of the most important aspects of the MCMC methods is to verify the convergence of the simulated 

values to the po5terior densities of interest. There are several suggestions in the literature but no agreement 

about the most suitable one, sec Gamerman and Lopes (2006), for exampio. In this work we considered: the 
monitoring of the chains generate by three different set of starting values, trace plots and Geweke statistics. 

In the first starting values set the latent traits were drawn from a N(0,l) distribution and µ, and ,J,a were 
fixed equal to O and 1, respectively. In the second set, the latent traits were all fix<.d to 0, µ, was drawn 
from N(0,l) and ,J,, was drawn from U(0,2). Finally, in the third set, the standardized scores were used as the 

latent t raits starting values. For µ, and ,J,, we calculated the sample mean and variance of the standardized 
scores plus values generated from a N(0,l) distribution. We simulated a set of responses for the combination 

(NI= 20,NC = 4,µ, = -2,,J,, = 1.5) and applied the convergence assessment procedures aforementioned. 

The Geweke statistics were calculated considering independent samples of size 100 after 2000 iterations. They 
showed that the convergence occurred for all observed parameters (the population parameters and some latent 

traits randomly chosen). Also the observation of trace plots indicated that a burn-in of 2000 is enough to drawn 
from the posterior densities. The Figure 1 shows the autocorrelations and trace plots of the generated chains 

for one latent trait (randomly chooen), the mean and the variance obtained from different starting values. It 
shows that the autocorrelations become negligible after a lag of 20. Therefore we decided to consider a bur-in 
of 2000, simulating more 18000 values after that and retaining every 20 values. Hence we have 900 values to 
estimate the posterior densities. 
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Table J · Level factor combinations of the fractional factorial design 
NI NG '" ,J,, NI NG µ, ,J,, NI NG µ, t/1, 
20 4 -2.0 1.5 30 4 -2.0 1.0 40 4 -2.0 0.5 
20 4 2.0 0.5 30 4 2.0 1.5 40 4 2.0 1.0 
20 4 0.0 1.0 30 4 0.0 0.5 40 4 0.0 1.5 
20 5 -2.0 1.5 30 5 -2.0 1.0 40 5 -2.0 0.5 
20 5 2.0 0.5 30 5 2.0 1.5 40 5 2.0 1.0 
20 5 0.0 1.0 30 5 0.0 0.5 40 5 0.0 1.5 

To compare the performance of the estimation methods we considered the following decomposition 

BIAS2 + Variance 

( "" )' I R (- "' )' 8; - O; + R L 8;, - 8; 
· rel 

where DJ, is the estimate of the latent trait of examinee j obtained from the data set r and '3; = Ji Efa, B;,. 
The four statistics used to evaluate the accuracy of the latent trait estimation were: 

Corr mean of the correlation between O; and O; among the examinees . 

Bias ¼ Ei'a1 (o, _ j,)-
! • t R (- _ "'-)' Var • E;at 1l E,at o,, o, . 

MSE square root of¼ Ei'at Ji E~al (o, - B;, )'. 

Table 2 presents the aforementioned statistics for each estimation method for all level factors combination. 
The results indicate that the MCMC performs equally or better than the other methods. When the true 
population parameters match with that considered in the usual methods, the four estimation procedures 
produce quite similar results. However, when this is not true, the MCMC produce more accurate results. 

This is clear when the true population parameters are far from (0,1). Hence we concluded that estimating the 
population parameters improved the latent traits estimates. Also, the MCMC+MH approach presented the 
most accurate results. 

Figures 2, 3 and 4 present the MSE per latent trait ranges for different combinations of level factors. One 

can see that, even though the MCMC+MH was the most accurate estimation procedure, the MSE of the 
estimates of the other methods are smaller than that of the MCMC+MH ones, for some latent trait ranges. 
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Therefore the MCMC+MH is not unifonnly better than the other three methods (concerning the latent trait 

values). Also, we can notice that the highest MSE occur for the more extreme latent trait values. Furthennorc, 

when the population parameters are far from (0,1) values, the MSE tend to be higher. In general, one can say 

that MCMC+MH algorithm outperforms the other methods. 

An ANOVA was calculated for the fractional factorial design by considering In (MSE) as the response 

variable, see Ayala and Savn,.Bolesta (1999) and DeMan (2003). Since that there are many observations 

(number of examinees) by each combination of factor leveb, tho statistic c.12 was considered Instead of the 

F one. This allows to evaluate the contribution of each main effect In the difference of the accuracy of the 

estimates, see Ayala and Sava-Bolesta (1999) and DeMan (2003), for example. Table 3 presents such results. 

We see that the NI accounts for the highest percentage of tho difference In the In (MSE), while the other 

f&ctors (NC, mean and variance) have a small impact. The remaining effects, Including possible interactions 

and other factors which could be considered as the sample size ratio, seo DeMan (2003), have, all together, a 

reasonable influence. However, in the design that wu considered It is not pos,ible to id,ntify the contribution 

of each one. By inspecting Table 4, one can see that the population parameters were all well recovered by the 

MCMC+MH approach. Table S presents the number or iterations necessary to obtain the convergence in the 

iterative prOGCSS for MV and MAP as well as tho precision achieved. Also, the time spent by tho estimation 

process is displayed for the two fonner methods and MCMC+MH algorithm. It is clear that MAP requires 

less iterations and then, It is less time demanding. Also, we can see that the MCMC+MH algorithm spent 

much more time than the other methods. 

8 



Table 2: Statislice for lbe latenl trait estimalion 

NI NC µ, ,J,, E.'-t Corr Var Bio.s RMSE 

20 4 -2.0 1.s MV 0.988 0.571 -0.134 0.813 

MAP 0.980 0.101 0.405 0.648 

EAP 0.981 0.105 0.388 0.633 

MCMc+MH 0.989 0.159 -0.010 0.462 

20 4 2.0 o.s MV 0.987 0.240 0.041 0.509 

MAP 0.990 0.110 -0.322 0.491 

EAP 0.990 0.113 -0.312 0.486 

MCMC+MH 0.990 0.092 0.003 0.369 

20 4 0.0 1.0 MV 0.995 0.164 -0.001 0.417 

MAP 0.995 0.113 0.000 0.379 

EAP 0.995 0.114 -0.001 0.379 

MCMc+MH 0.995 0.115 --0.001 0.379 

20 5 -2.0 1.5 MV 0.980 1.416 -0.113 1.234 

MAP 0.977 0.113 0.474 0.729 

EAP 0.978 0.116 0.455 0.712 

MCMC+MH 0.987 0.177 0.004 0.502 

20 5 2.0 0.5 MV 0.987 0.233 0.031 0.499 

MAP 0.987 0.124 -0.353 0.531 

EAP 0.986 0.126 -0.345 0.526 

MCMc+MH 0.987 0.098 0.003 0.39; 

20 5 0.0 1.0 MV 0.994 0.182 -0.003 0.440 

MAP 0.995 0.118 0.003 0.395 

EAP 0.995 0.120 0.001 0.395 

MCMC+MH 0.995 0.120 0.001 0.395 

30 -2.0 1.0 MV 0.991 0.260 -0.065 0.539 

MAP 0.987 0.086 0.304 0.499 

EAP 0.987 0.088 0.287 0.487 

MCMc+MH 0.991 0.108 0.002 0.380 

30 4 2.0 1.5 MV 0 .995 0.2•11 0.052 0.517 

MAP 0.983 0.073 -0.284 0.511 

EAP 0.983 0.074 -0.273 0.502 

MCMC+MH 0.992 0 .104 -0.013 0.376 

30 0.0 0.5 MV 0.995 0.100 -0.008 0.324 

MAP 0.995 0.080 -0.002 0.299 

EAP 0.995 0.081 -0.006 0.300 

MCMc+MH 0.995 0.066 -0.002 0.295 

30 5 -2.0 1.0 MV 0.986 0.519 -0.059 0 .747 

MAP 0.988 0.098 0.346 0.538 

EAP 0.988 0.101 0.327 0.525 

MCMC+MH 0.992 0.127 -0 .001 0.404 

30 5 2.0 1.5 MV 0.995 0.206 0.045 0.47b 

MAP 0.990 0.084 -0.279 0.490 

EAP 0.989 0.084 -0.273 0.487 

MCMC+MH 0.995 0.112 0.004 0.371 

30 5 0.0 0.5 MV 0.993 0.121 -0.008 0.358 

MAP 0.993 0.093 -0.001 0.326 

EAP 0.993 0.094 -0.006 0.326 

MCMC+MH 0.993 0.075 -0.001 0.319 



. . . . . . . . . . - . . . . . - . - - -

Figure I: Autocorrelations and trace plota for chains generated Crom different starting values. 
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(mHn • 0.0, var• 1.0, categoriH • 4) 

~ :1 i ~•MH !I 

: mJ RD_,_,_, lllll Im 

---
(mean• 0.0, var• 1.0. e.ale9orle1 • 5) 

---

(mean • 2.0, vat • 0,5, categories • 4) 

---
{mean• 2.0, ya,• 0.5, categorle1 • S) 

.... . ..,.,. 
El EAi' 
C MCMC•MH 

---
Figure 2: MSE per latent trait range for some 20 items tests. 
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Figure 3: MSE per latent trait range for some 30 items testa. 

12 



(mean• 0.0. var• 1.5, categorlea • 4) (mHn • -2.0 • ..,., • 0.5, categoriH • 4) 

_ ... _ _ ... _ 
(mean• 0.0, var• 1.5, categoriea • 5) (mean • -2.0, var• 0.5, categoriea • 5) 

--- ....,nil,.,... 

Figure 4: MSE per latent trait range for some 40 items tests. 
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Continuation or Table 2 
NI NC µ, ,J,, E.M. Corr Var Biu RMSE 
40 -2.0 0.5 MV 0.994 0.130 -0.035 0.374 

MAP 0.991 0.070 0.193 0.355 
EAP 0.991 0.072 0.179 0.348 
MCMC+MH 0.991 0.066 0.000 0.298 

40 4 2.0 1.0 MV 0.995 0.155 0.032 0.412 
MAP 0.990 0.065 -0.212 0.393 
EAP 0.990 0.066 -0.202 0.387 
MCMC+MH 0.994 0.078 -0.008 0.316 

40 4 0.0 1.5 MV 0.999 0.082 0.000 0 .295 
MAP 0.998 0.063 0.003 0.285 
EAP 0.998 0.064 0.002 0.284 
MCMC+MH 0.998 0.069 0.001 0.280 

40 5 -2.0 0 .5 MV 0.992 0.146 -0 .031 0.396 
MAP 0.990 0.079 0.232 0.395 
EAP 0.990 0.082 0.215 0 .386 
MCMC+MH 0.991 0.075 0.003 0.320 

40 5 2.0 1.0 MV 0.997 0.118 0 .024 0.354 
MAP 0.995 0.072 -0 .210 0.379 
EAP 0.994 0.072 -0.202 0.375 
MCMC+MH 0.996 0.083 0 .005 0.312 

40 5 0.0 1.5 MV 0.998 0.095 -0.005 0.316 
MAP 0.997 0.072 0.001 0.311 
EAP 0.997 0.073 -0.001 0 .310 
MCMC+MH 0.998 0 .079 -0.002 0.3(),1 

Table 3: Anovn for the latent trait estimation 

Source of vnrJntion ss df MS F ..,, 
NumM:r or items 161.64 2 80.82 1713.28 0.22 
Number of catcgoriu 9.50 1 9.50 201.33 0.01 ,,. 41.37 2 20.68 438.47 0 .06 

"'' 24.70 2 12.35 261.80 0.03 
Other effocta 271.88 10 27. 19 576.36 0 .36 
Error 509.08 10702 0.05 
Total corrected 746.28 
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Table 4: Results of the population parameter Cl!ltimation 

lt<mo Cat trueµ, true 1/1, Statistic est.. JJf 
est. "'' 

20 4 -2 1.5 mean -2.010 1.516 
me&DM 0.055 0.110 
var < 0.001 0.003 

20 4 2.0 0.5 mean 2.003 0.506 
meanN 0.034 0.0-12 
var < 0.001 0.001 

20 4 o.o 1.0 meao 0.000 0.998 
mcaDH 0.044 0.069 
var < 0.001 0.001 

20 5 -2.0 1.5 mean -1.996 1.481 
me&nN 0.055 0.111 
var < 0.001 0.003 

20 5 2.0 0.5 meAD 2.003 0.503 
mcoDM 0.035 0.043 
var < 0.001 0.()01 

20 5 0.0 1.0 mean 0.001 0.987 
meanH 0.044 0.070 
var < 0.001 0.001 

30 -2.0 1.0 mean -1.!>98 0.992 
meanH 0.044 0.071 
var < 0.001 0.001 

30 2.0 1.5 fflCDD 1.987 1.460 
mcaoM 0.052 0.100 
var < 0.001 0.002 

30 4 0.0 0.5 meAD -0.002 0.496 
fflt6DN 0.032 0.035 
var < 0.001 0.001 

30 5 -2.0 1.0 mean -2.001 1.026 
meanN 0.045 0.075 
var < 0.001 0.001 

30 5 2.0 1.5 mean 2.004 1.505 
rne&OM 0.052 0.100 
var < 0.001 0.001 

30 5 0.0 0.5 mean -0.001 0.502 
meaOM 0.033 0.037 
var < 0.001 0.000 
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Continuation of Tobie 4 
NI NC ,,, 

"'' 
Statistic est. }JI est. t/,, 

40 4 -2.0 0.5 mean -2.000 0.502 
meansc 0.032 0.037 - < 0.001 < 0.001 

40 4 2.0 1.0 mean 1.992 0.980 
mcanse 0.043 0.066 ,,,,, < 0.001 0.001 

40 4 0.0 1.5 mean 0.001 1.487 
mcansc 0.051 0.093 ,,,,, < 0.001 0.001 

40 5 -2.0 0.5 mun -1.997 0.510 
mcanae 0.033 0.039 - < 0.001 0.001 

40 5 2.0 1.0 mean 2.005 1.019 
mcaDMO 0.043 0.068 ,,,,, < 0.001 0.001 

40 5 o.o 1.5 mean -0.002 1.472 
mcansc 0.051 0.093 ,,,,, < 0.001 0.001 

mean = mean of the estimates, mcanse = mean of the at.andard errora, var =r: variance of the estimatel 

Tnble 5: Spent time (ST), achieved precision (AP) ad number of required iterations (NRI) In tho simulation 
study 

Items Cnt /JI t/,, MV MAP MCMC 
PA NRI ST PA NRI ST ST 

20 4 -2.0 1.5 0.000009 52.00 6.65 0.000009 41.10 5.30 1539.69 
20 4 2.0 0.5 0.000607 97.55 10.43 0.000009 48.15 5.22 1316.58 
20 4 0.0 J.O 0.000009 52.00 6.65 0.000009 41.10 5.30 1539.69 
20 5 -2.0 1.5 0.000007 27.20 4.43 0.000008 29.40 4.76 1810.29 
20 5 2.0 0.5 0.003033 100.00 20.24 0.000010 70.25 14.27 2392.73 
20 5 0.0 1.0 0.000008 25.30 3.56 0.000008 31.65 4.38 1653.11 
30 4 -2.0 1.0 0.000332 89.20 15.30 0.000008 31A5 5.55 2095.55 
30 4 2.0 1.5 0.000122 99.90 29.92 0.000010 76.95 23.JJ 3511.32 
30 4 0.0 0.5 0.000008 23.50 4.87 0.000008 36.65 7.47 2396.07 
30 5 - 2.0 1.0 0.000008 24.80 6.49 0.000008 30.65 7.73 3028.68 
30 5 2.0 J.5 0.000063 74.70 9.01 0.000009 36.95 4.52 1475.86 
30 5 0.0 0.5 0.000007 19.90 5.05 0.000008 31.10 7.74 2848.61 
40 4 -2.0 0.5 0.000031 71.15 19.39 0.000009 32.10 8.90 3221.85 
40 4 2.0 J.O 0.001557 100.00 27.32 0.000009 80.80 22.21 3276.54 
40 4 0.0 J.5 0.000025 69.55 22.28 0.000009 54.40 17.29 3708.44 
40 5 -2.0 0.5 0.000007 20.60 8.84 0.000008 26.25 11.16 4719.00 
40 5 2.0 J.O 0.000009 76.85 28.34 0.000009 59.10 21.91 4282.20 
40 5 0.0 1.5 0.000009 49.55 20.8 1 0.000009 42.30 18.08 4807.37 
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Tobie 6: Item para.meter., used in the simulation studies : 4 alternatives 

llem b . Item b . Item b . Item b . 
I -4.00 . o.50 II -0.80 -0.60 21 --4.00 -0.60 31 ..(),80 -0.70 
1 -3.80 -0.20 11 -0.40 ..(),70 2 1 .J.60 -0.20 31 -0.40 -0.70 
I -3.40 0.10 11 -0.20 0.40 21 .3.40 0.10 31 -0.20 0.40 
1 -3.00 0 .60 11 0.16 0.90 21 0 2.50 0.70 31 0.16 1.00 
2 -3.20 -1.20 12 ..0.60 -1.70 22 -3.20 -1.10 32 ..(),60 •l .60 
2 -2.!JO ..(),40 12 -0.20 ..0.30 22 -2.80 -0.40 32 -0.20 -0.30 
2 .2.80 0.20 12 0.10 0.80 22 -2.40 0.20 32 0.10 0.80 
2 -2.68 1.40 12 0.47 1.20 22 -2.24 1.30 32 0.47 1.10 
3 -3.00 -0.60 13 -0.20 -0.50 23 .J.00 -0.70 33 -0.20 -0.60 
3 -2.80 . 0,10 13 0.10 -0.20 23 -2.80 -0.70 33 0.10 ..().20 
3 ·2,50 0.40 13 0.30 0.10 23 -2.50 0.40 33 0.30 0.10 
3 -2.37 0.90 13 0.79 0,60 23 -1.97 1.00 33 0.79 0.70 
4 -2.80 -1 .70 14 0.10 - 1,20 24 •2,80 -1.60 34 0.10 -1.10 
4 -2.60 ..(),30 14 0.40 -0.40 24 -2.60 ..0.30 34 0.40 -0.40 
4 -2.40 0.80 14 0.80 0.20 24 -2.40 0.80 34 0.80 0.20 
4 -2.05 1.20 14 1.11 1.40 24 .1.71 1.10 34 1.11 1.30 
5 -2.50 -0.50 IS 0.40 -0.60 2S -2.50 ..0.60 35 0.40 ..().70 
5 -2.20 -0.20 IS 0.80 -0.70 2S -2.20 ..0.20 35 0.80 -0,70 
5 -1.90 0.10 15 1.00 0.40 2S .).!JO 0.10 35 1.00 0.40 
5 -1.74 0.60 15 1.42 0.90 2S -1.44 0.70 35 1.42 1.00 
8 -2.00 -1.20 16 0.60 -1.70 26 -2.00 -1.10 38 0.60 -1.60 
6 -1.80 -0.40 16 1.00 -0.30 26 -1.80 -0.40 36 1.00 ..0.30 
6 -1.60 0.20 16 1.20 0.80 26 -1.60 0.20 36 1.20 0.80 
6 -1.42 1.40 16 1.74 1.20 28 -1.18 1.30 36 1,74 1.10 
7 -1.80 -0.60 17 1.00 -0.50 27 ·1.80 -0.70 37 1.00 ..0.60 
7 -1.60 -0.70 17 1.20 -0.20 27 -1.60 -0.70 37 1.20 -0.20 
7 - 1.40 0.40 17 1.60 0.10 27 -1.40 0.◄0 37 1.60 0.10 
7 -1.11 0.00 17 2.05 0.60 27 ..0.92 1.00 37 2.05 0.70 
8 -1.50 -1.70 18 1.20 -1.20 28 -1.50 -1.60 36 1.20 .1.10 
8 -1.30 -0.30 18 1.60 -0.40 28 -1.30 -0.30 38 1.60 -0.40 
8 -1.00 0.80 18 2.00 0.20 28 -1.00 0.80 38 2.00 0.20 
8 -0.W 1.20 18 2.37 1.40 28 ..(),60 1.10 38 2.37 1.30 
9 -1.20 -0.50 19 1.40 -0.60 29 -1.20 -0.60 39 1.40 -0.70 
9 -1.00 -0.20 19 2.00 -0.70 29 -LOO -0.20 39 2.C.V -0.70 
9 -0.80 0.10 19 2.20 0.40 29 ..(),80 0.10 39 2.20 0.40 
9 -0.47 0.60 19 2.68 0.00 29 ..().39 0.70 39 2.68 1.00 
10 -1.00 • 1.20 20 1.60 -1.70 30 -1.00 -1.10 40 1.60 -1.60 
10 -0.80 -0.40 20 2.00 -0.30 30 .0.80 -0.40 40 2.00 -0.30 
10 -0.40 0.20 20 2.60 0.80 30 ..0.40 0.20 40 2.60 0.80 
10 -0.16 1.40 20 3.00 1.20 30 .0.13 1.30 40 3.00 1.10 
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Table 7: Item parameters used in the simulation studies : 5 alternatives 

hem b . Item b . Itom b . Item t- • I -4.20 -0.40 11 -1.00 -0.90 21 -4.00 -0.50 31 -1.00 -0.90 
I -3.90 -0.20 11 .0.70 -0.20 21 -3.80 -0.20 31 -0.80 -0.70 
I -3.60 -0.10 II -0.40 -0.20 21 -3.60 -0.10 31 -0.50 0.20 
I -3.40 0.10 II -0.20 0.40 21 -3.40 0.10 31 -0.20 0.40 
l -3.00 0.60 11 0.16 0.90 21 -2.50 0.70 31 0.16 1.00 
2 -3.40 .0.80 12 -0.60 -1.20 22 -3.20 -1.00 32 -0.60 -1.00 
2 -3.00 -0.50 12 .0.20 -0.60 22 -3.00 -0.60 32 -0.20 -0.60 
2 -2.70 -0.30 12 o.oo -0.20 22 -2.70 -0.30 32 0.00 -0.30 
2 -2.40 0.20 12 0.10 0.80 22 -2.40 0.60 32 0.10 0.80 
2 -2.68 1.40 12 0.47 1.20 22 -2.24 1.30 32 0.47 1.10 
3 -3.20 -0.90 13 -0.40 -0.40 23 -3.20 -0.90 33 -0.40 -0.50 
3 -3.00 -0.20 13 -0.20 -0.20 23 -3.00 -0.70 33 -0.20 .0.20 
3 -2.80 .().20 13 0.00 .0.10 23 -2.80 0.20 33 0 .00 -0.10 
3 -2.50 0 _40 13 0.30 0.10 23 -2.50 0.40 33 0.30 0.10 
3 -2.37 0.90 13 0.79 0.60 23 .1.117 1.00 33 0.70 0.70 
4 -3.00 -1.20 14 0.00 -0.80 24 -3.00 -1.00 34 0.10 -1.00 
4 -2.77 -0.60 14 0.10 -0.50 24 -2.80 -0.60 34 0.40 -0.60 
4 -2.50 -0.20 14 0.40 .0.30 24 -2.60 -0.30 34 0.60 -0.30 
4 -2.40 0.80 14 0.80 0.20 24 -2.40 0.80 34 0.80 0.60 
4 -2.05 1.20 14 1.11 1.40 24 -1.71 1.10 34 I. II 1.30 
5 -2.60 -0.40 15 0.40 -0.90 25 -2.80 -0.50 35 0.10 -0.90 
5 -2.20 -0.20 15 0.60 -0.20 25 -2.30 -0.20 35 0.30 -0.70 
6 -2.00 -0.10 15 0.80 -0.20 25 -2.10 -0.10 35 0.60 0 .20 
5 -1.90 0.)0 15 1.00 0.40 25 -1.00 0.10 35 1.00 0.40 
5 -1.74 0.60 15 J.42 0.90 25 -1.44 0.70 35 1.42 1.00 
6 -2.20 -0.80 16 0.40 -1.20 26 -2.30 -1.00 36 0.40 -1.00 
6 -1.90 -0.50 16 0.70 -0.GO 26 -2.00 -0.60 36 0.90 -0.60 
6 -1.80 -0.30 16 1.00 -0.20 20 -1.80 -0.30 36 1.00 -0.30 
6 -1.60 0.20 16 1.20 0.80 26 -I .GO 0.60 36 1.20 0.80 
6 -1.42 1.40 16 1.74 1.20 26 -1.18 J.30 36 1.74 1.10 
7 -2.00 -0.90 17 0.00 -0.40 27 -2.20 .0.90 37 0.90 -0.50 
7 -1.80 -0.20 17 1.10 -0.20 27 -2.00 -0.70 37 1.10 -0.20 
7 -1.60 -0.20 17 1.40 -0.10 27 -1.80 0.20 37 1.30 -0.10 
7 -1.40 0.40 17 1.60 0.10 27 -1.40 0.40 37 1.60 0.10 
7 -I.II 0.90 17 2.05 0.60 27 -0.02 1.00 37 2.05 0.70 
8 -1.50 -1.20 18 1.20 -0.80 28 -1.80 -1.00 38 1.00 -1.00 
8 -1.30 .0.60 18 1.60 -0.50 28 .1.r,o -0.60 38 1.20 -0.60 
8 -1.10 -0.20 18 1.80 -0.30 28 -J.30 -0.30 38 1.40 -0.30 
8 -1.00 0.80 18 2.00 0.20 28 -J .00 0.80 38 2.00 0.60 
8 -0.70 1.20 18 2.37 1.40 28 -0.66 1.10 38 2.37 1.30 
g -1.50 -0.40 19 1.40 -0.00 29 -1.40 -0.50 39 1.40 -0.00 
9 -1.30 -0.20 19 1.80 -0.20 29 -1.10 -0.20 39 1.60 -0.70 
9 •I.JO -0.10 Jg 2.00 -0.20 29 -1.00 -0.10 30 2.00 0.20 
9 -0.80 0.10 ID 2.20 0.40 29 -0.80 0.10 39 2.20 0.40 
9 -0.47 0.60 19 2.68 0.90 29 -0.30 0.70 39 2.68 1.00 
10 • l .00 -0.80 20 1.60 -1.20 30 -1.00 -1.00 40 1.60 -1.00 
10 -0.80 -0.50 20 2.00 -0.60 30 -1.20 -0.60 40 2.00 -0.60 
10 -0.60 -0.30 20 2.30 -0.20 30 -0.00 -0.30 40 2.20 -0.30 
10 -0.40 0.20 20 2.60 0.80 30 -0.40 0.60 40 2.63 0.80 
10 -0.)6 1.40 20 3.00 1.20 30 -0.13 1.30 40 3.00 1.10 
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4 Concluding remarks 

The MCMC+MH procedure that was proposed recoveries properly both latent traits and population pa,­
rameters. Its computational implementation is straightforward and it can be extended to other situations 

such as, when the item parameters are unknown and for a different latent trait distributions. It is clear that 
estimating the population parameters provides a better latent traits estimates. Furthermore, we notice that 

the number of items accounts for the highest percentage in the variability of the accuracy of the latent traits 

estimation. The other factors, number of categories and the values of the item paramel<)rs, account for a small 
percentage of these variability. 
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