
applied  
sciences

Article

Numerical Simulation of KBKZ Integral Constitutive Equations
in Hierarchical Grids

Juliana Bertoco 1,* , Manoel S. B. de Araújo 2 , Rosalía T. Leiva 1 , Hugo A. C. Sánchez 1

and Antonio Castelo 1

Citation: Bertoco, J.; de Araújo,

M.S.B.; Leiva, R.T.; Sánchez, H.A.C.;

Castelo, A. Numerical Simulation of

KBKZ Integral Constitutive

Equations in Hierarchical Grids. Appl.

Sci. 2021, 11, 4875. https://doi.org/

10.3390/app11114875

Academic Editor: Valentino Paolo

Berardi

Received: 1 April 2021

Accepted: 24 May 2021

Published: 26 May 2021

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2021 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

1 Instituto de Ciências Matemáticas e de Computação, Universidade de São Paulo-USP,

São Carlos 13566-590, SP, Brazil; rosalia.taboada@usp.br (R.T.L.); hugo_acs@icmc.usp.br (H.A.C.S.);

castelo@icmc.usp.br (A.C.)
2 Instituto de Ciências Exatas e Naturais, Universidade Federal do Pará-UFPA, Belém 66075-110, PA, Brazil;

silvino@ufpa.br

* Correspondence: jubertoco@alumni.usp.br

Abstract: In this work, we present the implementation and verification of HiGTree-HiGFlow solver

(see for numerical simulation of the KBKZ integral constitutive equation. The numerical method

proposed herein is a finite difference technique using tree-based grids. The advantage of using hier-

archical grids is that they allow us to achieve great accuracy in local mesh refinements. A moving

least squares (MLS) interpolation technique is used to adapt the discretization stencil near the inter-

faces between grid elements of different sizes. The momentum and mass conservation equations are

solved by an implicit method and the Chorin projection method is used for decoupling the velocity

and pressure. The Finger tensor is calculated using the deformation fields method and a three-node

quadrature formula is used to derive an expression for the integral tensor. The results of velocity

and stress fields in channel and contraction-flow problems obtained in our simulations show good

agreement with numerical and experimental results found in the literature.

Keywords: KBKZ integral constitutive equation; tree-based hierarchical grids; deformation fields

1. Introduction

Over the years, several software programs have been developed to solve problems in-

volving complex viscoelastic fluid flows. Due to a lack of generality, some challenges can

arise when trying to solve problems with specific characteristics. In most works that de-
velop numerical methods for simulating viscoelastic flows, the constitutive equations are

approximated by differential equations, such as the Oldroyd-B [1–3], Upper-Convected-
Maxwell (UCM) [4,5], Phan–Thien–Tanner [6,7], eXtended Pom-Pom [8,9] models, among

others. However, advances in computational resources have motivated researchers to

consider more sophisticated rheological models that are expressed in integral form in-
stead of differential equations. In this sense, integral models allow a better approximation

of the behavior of viscoelastic fluids. However, they require a greater computational ef-
fort and this is because, at each moment of the simulation, it is necessary to store and

access the history of the entire deformation of the fluid (since it previously started to

be deformed). Among the integral models that we found in the literature, the constitu-
tive equation KBKZ-PSM has been considered by many researchers who study numerical

methods for this kind of fluid. A detailed discussion of the importance of the KBKZ-PSM
integral constitutive model and the development of numerical techniques to approximate

integral models can be found in the works of Tanner [10] and Mitsoulis [11]. The vast

majority of problems using the KBKZ-PSM integral model involve confined flows, such
as channel-flows [12,13] and flows in abrupt contractions [3,14,15]. Flow problems pos-

sessing free surface(s) have also been considered by some researchers. More interesting
flow problems that involve transient free surface(s) and integral models are the filament

stretching [16] and a numerical study of the die swell phenomenon [17–21].
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On the other hand, a numerical solution of partial differential equations in general

grids has been questioned by many researchers in recent decades. Many schemes try to
combine efficiency and simplicity with the flexibility of unstructured mesh networks. A

major advantage of using such meshes is the ability to refine the mesh locally, improv-
ing accuracy in specific regions without dramatically increasing the number of unknowns.

Among all possible ways of discretizing the spatial domain (simplified meshes, curvilin-

ear meshes, among others), hierarchical meshes based on Cartesian trees are a common
choice. They allow the development of finite difference methods, without the hassle of

mapping and transforming distorted elements or dealing with general and complicated
stencils, as in non-Cartesian grids. Since flows are generally computed on facets aligned

with the Cartesian axis, numerical schemes are generally simpler to derive. However,

these facets are generally shared by different numbers of elements on each side, which is
the main challenge in implementing numerical methods. Different techniques to deal with

this problem have been developed in the literature, most of them restricted to quadtree
meshes (in 2D) or octree (3D) meshes, which are special cases of hierarchical grids repre-

sented by data structures quadtree/octree. Despite this restriction, these tree-based data

structures are generally good enough and still an adequate choice for adaptive grids and
moving borders [22]. Thus, we intend to implement in the present work the transient

KBKZ-PSM model through a method of finite differences in hierarchical meshes that em-
ploy interpolations using the moving least squares (MLS) method [23]. The developed

numerical method is verified by using mesh refinement in channel flow and we show re-

sults from the simulation of the 4:1 contraction problem using a KBKZ fluid. Our results
are compared to the ones obtained using the OpenFOAM system [24], which uses finite

volumes in the discretization of Navier–Stokes equations. We used the OpenFOAM v2006

version to implement the equations with the finite volume method.

2. Governing Equations

The governing equations for transient, isothermal and incompressible flows are the
mass conservation and the equation of motion, which, in dimensionless form, can be writ-

ten as follows (for details, see Tomé et al. [21]):

∇ · v = 0 , (1)

∂v

∂t
+∇ · (vv) = −∇p + ǫ∇2v +∇ · S + F . (2)

Using the EVSS transformation [25], the extra-stress tensor τ is written as

τ = S + ǫ γ̇ , where γ̇ = ∇v + (∇v)t and ǫ =
c

Re
; c > 0,

where S is a non-Newtonian tensor, v is the velocity field, p is the kinematic pressure and

t is the time. In these equations, F represents the external forces, ǫ is a stability parameter

(as shown in Araújo et al. [26]), Re =
ρ0UL

η0
is the Reynolds number, η0 is the zero-

shear-rate viscosity, ρ0 is the fluid density and U and L are the velocity and length scales,

respectively.
In this work, the rheological model that defines the behavior of fluid flow is the

KBKZ-PSM [11] integral constitutive equation, which is shown below:

τ(t) =
∫ t

−∞
M(t − t′)H(I1, I2)Bt′(t)dt′ , (3)

where Bt′(t) is the Finger tensor and M is the memory function, which adopts the follow-

ing form:

M(t − t′) =
m1

∑
k=1

ak

λkDe
e
− t−t′

λkDe (4)
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and H is the Papanastasiou–Scriven–Macosko [25] damping function, which is calculated
using the following equation:

H(I1, I2) =
α

α − 3 + βI1 + (1 − β)I2
. (5)

The parameters λk, ak, k are relaxation times, relaxation moduli and the number of
relaxation modes, respectively. The quantities I1 = tr[Bt′(t)] and I2 = 1

2

(

(I1)
2 − tr[B2

t′ (t)]
)

are the first and second invariants of Bt′(t), respectively. The parameters ak, λk, α, β are

obtained from a curve fitting to the rheological properties of the fluid. De = λre f
U

L
is

the Deborah number, λre f = ∑
akλk

2

akλk
is the average relaxation time and the zero-shear-rate

viscosity is written as η0 = ∑ akλk.

3. Numerical Method

In this section, we present the methodology used in this work, the HiGTree/HiGFlow

and the OpenFoam systems.

3.1. HiGTree/HiGFlow System

The HiGFlow system is a C language software, developed at ICMC-USP, which brings

together a series of methods for the numerical simulation of flow of single-phase and mul-
tiphase fluids, using the finite difference technique. This system is being developed in a

modular way, allowing new techniques and methods to be easily tested and added to the

system. One feature is that the user chooses the dimension and the modules to be used
in the program (such as single-phase, Newtonian, generalized Newtonian, viscoelastic) at

compile time. In the same way, the user specifies the numerical techniques to be used in

the input files: projection method, numerical scheme for the convective term, model of
the constitutive equation for viscoelastic flows, in addition to the various parameters for

simulation. In this work, all tests were performed in two dimensions (2D), and the follow-
ing numerical techniques were chosen: an implicit Euler method to compute the velocity,

the CUBISTA scheme to discretize the convective terms and an explicit Euler method for

the convection of the Finger tensor.
On the other hand, the HiGTree system is responsible for creating the data struc-

ture, domains, linear and non-linear system solvers, as well as carrying out the interpola-
tions schemes. Parallelization strategies are also implemented through the PETSc library

(Portable, Extensible Toolkit for Scientific Computation), which contains a set of functions

implementing the best-known methods for representing matrices, vectors and data in par-
allel, solution of linear systems with pre-conditioning, solution of linear and non-linear

systems, ordinary differential equations, etc.

3.1.1. Hierarchical Grids

Equations (1) and (2) are approximated using finite differences in hierarchical Carte-

sian meshes. An illustrative representation of the mesh is given in Figure 1a and its struc-
ture of dependencies is illustrated in Figure 1b. In this data structure, each cell can be

partitioned into distinct geometric shapes. Such generalization imposes difficulties in the

numerical approximation in finite differences.
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(a) (b)

2 3

4

Figure 1. HiGTree data structure: (a) computational cell representation, (b) tree-based data structures.

For example, considering Figure 2, suppose that we are interested in approximating
the second derivative in y direction centered on Uc. Using second-order finite differences,

we have:

∂2Uc

∂y2
≈

1

δy
(Ut − 2Uc + Ub); (6)

We can notice that, for this case, Ub does not match known values in the mesh (re-

calling that the components of the velocity field are computed in the facet centers), but
it can be calculated by interpolation using values of neighboring cells as shown in the

following equation:

Ub =
Vb

∑
k=1

wb
kUk; (7)

The number of neighbors Vb is defined according to the imposed precision. The

weights wb
k = wk(x) are calculated using the moving least squares (MLS) method [23].

Figure 2. Finite difference 2nd-order stencil discretization.

3.1.2. Calculation of v(x, tn+1) and p(x, tn+1)

Upon discretizing Equation (2) in time using, for instance, a first-order explicit dis-

cretization, the idea of the incremental projection method is to use the newest previous
pressure field, which yields an explicitly computed velocity field v∗ that is not divergence-

free, through the solution of the following equation:

v∗ − vn

δt
+ vn · ∇vn = −∇pn + ǫ∇2vn +∇ · Sn + Fn (8)
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The corrected velocity field can be computed from the decomposition itself:

v∗ = vn+1 +∇ϕ, (9)

where ϕ = −δt(pn+1 − pn), which is obtained by solving the Poisson equation:

∇2 ϕ = ∇.v∗, (10)

with n.∇ϕ = 0 on the boundaries ∂Ω. Equation (10) can be easily derived by obtaining

the divergence of Equation (9) (for more details, see [23,27]).

3.1.3. Calculation of the Extra-Stress Tensor τ(x, tn+1)

We follow the methodologies described in Tomé et al. [21] and Araújo et al. [26] to

calculate the extra-stress tensor τ(x, tn+1). The constitutive Equation (3) can be written
as follows:

τ(tn+1) =
∫ t−tc

−∞
M(tn+1 − t′)H(I1, I2)Bt′(tn+1)dt′

+
∫ t

t−tc

M(tn+1 − t′)H(I1, I2)Bt′(tn+1)dt′ ,

(11)

where tc = t if t < sc or tc = sc if t ≥ sc. The parameter sc (sc is a time interval) depends

on the relaxation parameter λre f . This methodology is called s-approach and is described
in more detail in Hulsen et al. [28].

Now, let t′j, j = 0, 1, · · · , N, be (N + 1)-points in the interval [tn+1 − tc, tn+1], where

N is a fixed number. Then, the integral equation can be written as:

τ(tn+1) =
∫ t−tc

−∞
M(tn+1 − t′)H(I1, I2)Bt′(tn+1)dt′

+

N−2
2

∑
j=0

∫ t′2j+2

t′2j

M(tn+1 − t′)H(I1, I2)Bt′(tn+1)dt′ ,

(12)

where t′0 = 0 or t′0 = tn+1 − tc.

We consider Bt′(tn+1) = Bt−tc(tn+1) for t′ < tn+1 − tc and, therefore, the first inte-
gral becomes:

∫ t−tc

−∞
M(tn+1)H(I1(Bt−tc(tn+1)), I2(Bt−tc(tn+1))) Bt−tc(tn+1)dt′ (13)

which can be solved without any further issues.

Regarding the integrals within the summation operator in Equation (12), we use the
method of undetermined coefficients (with a second-order quadrate formula) for their

calculation (for details, see Tomé et al. [21]). In the following sections, we describe the
method used to compute the tensor Bt′(tn+1)

(tn+1) and how the points t′j(tn+1) are calcu-

lated.

• Discretization of the time interval [t − tc, tn+1]
One of the key issues of the deformation fields method is how the integration nodes

t − tc = t′0 < t′1 < · · · < t′N = tn+1 are distributed over the interval [t − tc, tn+1], be-
cause such distribution can affect the accuracy of the results when solving complex

flows. In Araújo et al. [26], the authors presented one discretization using a func-
tion that allowed them to determine the distribution of the time-integration points,

which showed excellent results in some of the specific flow cases studied (such as ex-

tensional flows). However, care must be taken if we plan to generalize these results
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to more complex flows. In this work, we decide to use the more generic method-
ology presented in Tomé et al. [21]. We consider time-dependent flows so that the

integration nodes are calculated using a geometric progression at time tn+1 as follows:

1. Set t′0 = t − tc and t′N = tn+1;

2. Using tc, where tc = tn+1 if t < sc or tc = sc if t ≥ sc make t′N−j = t′N − δt qj,

j = 1, 2, · · · , N − 1, where q = (tc/δt)1/N, δt is the time-step.

• Computation of the Finger tensor Bt′(tn+1)
(x, tn+1)

One of the difficulties in the numerical simulation of viscoelastic flows using inte-

gral constitutive models is how to calculate accurately the strain history. In finite

elements, this can be accomplished by a particle-tracking method based on the veloc-
ity field (see [12]), but, here, a different approach is taken. We follow the ideas of the

deformation fields method [28] in which the Finger tensor is obtained by solving an
appropriate evolution equation, where Bt′(t)(x, t) is given by:

∂

∂t
Bt′(t)(x, t) + v(x, t) · ∇Bt′(t)(x, t) = [∇v(x, t)]T · Bt′(t)(x, t) + Bt′(t)(x, t) · ∇v(x, t) , (14)

with the condition Bt′=tn+1
(x, tn+1) = I.

The Finger tensor Bt′(t)(x, tn+1) is calculated using the Euler method and the high-

order upwind scheme CUBISTA [29] is used to discretize the convective terms. We
point out that the Finger tensor Bt′(t)(x, tn+1) is calculated at the past times t′(t). The

updated Finger tensor Bt′(tn+1)
(x, tn+1) is evaluated using a second-order interpola-

tion method that is discussed in detail by Tomé et al. [3].

3.2. OpenFOAM System

All numerical experiments carried out in the present work will be compared with the

results obtained using the OpenFOAM solver for integral models implemented by Araujo
et al. [26]. The meshes were adapted in order to have simulations with similar conditions

(and as close as possible) to the HiGFlow meshes. For the simulation of the contraction
problem, for instance, the mesh shown in Figure 3 was used, where five regions with

different refinements in the x direction can be observed. Notice that the upstream and

downstream regions of the contraction geometry have volumes with exactly the same
dimensions used in the HiGFlow simulations. On the other hand, a regular mesh was used

for the channel-flow case. It is worth noting that the simulations were performed using
the PISO method and half of the computational domain, considering the flow symmetry

and the lower computational cost.

The coupling between stress and velocity was performed using the Improved Both
Sides Diffusion (iBSD) [30] method, which adds a diffusive term on both sides of the mo-

mentum equation. For the solution of the linear systems resulting from the discretiza-
tion of the velocity, the Bi-CGSTAB (BiConjugate Gradient Stabilized) method [31] was

used with DILU (Simplified Diagonal-based Incomplete LU preconditioner) precondi-

tioner, and, for the pressure, the conjugated preconditioned gradients (PCG) method was
used with DIC (Simplified Diagonal-based Incomplete Cholesky) preconditioner.

In OpenFOAM, it is possible to choose the methods of discretization for some terms
of an equation—for instance, diffusive or convective terms. Regarding this work, the

numerical schemes used are described in Table 1.
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Figure 3. Computational domain used in OpenFOAM for the contraction problem.

Table 1. Numerical schemes in OpenFOAM.

Term Scheme

∇ · vv Minmod
∇ · vB Minmod
∇ · τ Gauss linear
∇p Gauss linear
∇v Gauss linear
∇2v Gauss linear corrected

Computation of the Finger Tensors

In OpenFOAM implementation, the Finger tensors, B(x, t, t − s), are labeled by the
elapsed time, s. The integration points, sk, are distributed in the interval [t − smax, t], ac-

cording to the following expression:

sk = tc ×
eξk − 1

eξN − 1
(15)

where tc = min{t, smax}, N is the number of integration points and ξ is a parameter that

depends on the value of s1 (for more details, see [26]). All the simulations were performed

using s1 = ∆t and N = 51.
The Finger tensors B(tn, tn − sk) are convected according to Equation (14). We use a

Euler explict scheme to obtain the fields B(tn+1, tn − sk). These fields are then interpolated,
allowing us to calculate the fields B(tn+1, tn+1 − sk).

4. Results

In this section, we present a verification of the methodology described in Section 3.1.
Initially, the methodology is applied to the channel-flow problem. Using several meshes

(uniform and non-uniform), the HiGFlow system showed good agreement with the so-

lution obtained with the OpenFOAM system. Results of meshes’ orders and errors are
also shown. Lastly, the numerical simulation of contraction flows is presented. The re-

sults are compared with solutions of the OpenFOAM system [26], Freeflow system [3],
Mitsoulis [14] and Quinzani [15].
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4.1. Mesh Independence in Channel-Flow

The numerical method described in Section 3 was applied to simulate the flow of

a KBKZ fluid in a 2D planar channel (see Figure 4) of length 10L and height L, where

L = 0.006 m. At the channel entrance, a dimensionless parabolic velocity profile given
by u(y) = 4y(1 − y) was used. The scaling parameters were the centerline velocity,

U = 0.1 ms−1, and the fluid simulated was FLUID S1, whose parameters are described
in Table 2. In this flow, we had Re = 0.34, De = 1, ǫ = 0.1, sc = 0.1s and the number of

deformation fields was N = 100.

10

1

x

y u

Figure 4. Dimensionless representation of the channel domain.

Table 2. Fluid parameters used in this work. Adapted from [15].

FLUID S1

ρ0 = 801.5 kg/m3, α = 10, β = 0.7,
λre f = 0.06 s η0 = 1.424 Pa·s

k λk (s) ak (Pa) ηk (Pa·s)

1 0.6855 0.058352 0.0400
2 0.1396 1.664756 0.2324
3 0.0389 14.560411 0.5664
4 0.0059 99.152542 0.5850

In order to verify the mesh convergence of the results, the flow was simulated using
several meshes (see Tables 3 and 4 and Figure 5).

Table 3. Uniform meshes.

Meshes dx = dy

MI (8 × 80) 0.125
MII (16 × 160) 0.0625
MIII (32 × 320) 0.03125
MIV (64 × 640) 0.015625

MV (128 × 1280) 0.0078125

Table 4. Non-uniform meshes used in the 2D planar channel.

Refined Meshes—Two Levels

Meshes Larger dx Smaller dx

MRI 0.125 0.0625
MRII 0.0625 0.03125
MRIII 0.03125 0.015625

Refined Meshes—Three Levels

Meshes Larger dx Middle dx Smaller dx

MRVI 0.125 0.0625 0.03125
MRV 0.0625 0.03125 0.015625
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Figure 5 shows the non-uniform meshes, where we can see the structure of the mesh.
In Figure 5a, the mesh MRI (with two levels of refinement) is depicted, and in Figure 5b,

we can see the mesh MRVI (with three levels of refinement).

(a) Mesh MRI (b) Mesh MRVI

Figure 5. Refined meshes: (a) two levels and (b) three levels.

The u-profiles are illustrated in Figure 6, where the mesh convergence can be seen.

We adopted mesh MV as a reference mesh (black line) and the solutions of the refined
meshes (full symbols) and uniform meshes (empty symbols) are shown. In this figure,

we also show the OpenFoam system profile using the mesh MV. We saw good agreement
between the solutions obtained in both systems.

Our results for the tensor components τxx and τyy are presented in Figure 7, where

we can also see good agreement between the numerical solutions of the HiGFlow and the
OpenFOAM systems.

y [m]

u
(y
)
[m

/
s]

HF-MV

HF-MI

HF-MII

HF-MIII

HF-MIV

HF-RMI

HF-RMII

HF-RMIII

HF-RMIV

HF-RMV

OF-MV

−0.003 −0.002 −0.001

0

0 0.001 0.002 0.003 0.004 0.005 0.006 0.007

0.02

0.04

0.06

0.08

0.1

Figure 6. The u-profiles used by simulation of channel problem.
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(a) (b)

y [m]

τ x
x
[P

a]

HF-MV

HF-MI

HF-MII

HF-MIII

HF-MIV

HF-RMI

HF-RMII

HF-RMIII

HF-RMIV

HF-RMV

OF-MV

−0.001 0 0.001 0.002 0.003 0.004 0.005 0.006 0.007

105

110

115

y [m]

τ y
y
[P

a]

HF-MV

HF-MI

HF-MII

HF-MIII

HF-MIV

HF-RMI

HF-RMII

HF-RMIII

HF-RMIV

HF-RMV

OF-MV

−0.001 0 0.001 0.002 0.003 0.004 0.005 0.006 0.007
100

150

200

Figure 7. Comparison between the sumerical solutions of the tensor components obtained using HiGFlow (with different

meshes) and OpenFOAM (mesh MV). (a) τxx and (b) τyy tensor components.

To verify the convergence, we show the errors (L1 , L2 , L∞) and the orders in Table 5.

The errors are calculated using the following equations:

L1 =
∑

n
0 |u(i)

MV − u(i)∗|

∑
n
0 |u(i)

∗|
, L2 =

√

∑
n
0 (u(i)

MV − u(i)∗)2

∑
n
0 u(i)∗2

and L∞ =
max|u(i)MV − u(i)∗|

max|u(i)∗|

where u(i)MV is the solution in mesh MV and u(i)∗ is the solution in meshes MI − MIV

and MRI − MRV, u(i) is the ux profile in points i = (x(i), y(i)) in which x(i) = 5 and

y(i) = i ∗ 0.125, i = 0, 1, · · · , 8. The orders Q for uniform meshes Q =
log

(

EM2\EM1

)

log
(

h2\h1

) show

values close to 2 (Q ≈ 2), which is the correct value that we expected to observe, since
the velocity is calculated using an implicit Euler method. The values EM2 and EM1 are the

errors (in the norms L1, L2 or L∞) for two consecutive meshes (the dx value in M2 is lower

than in M1) and h2 and h1 are the dx values in their respective meshes.

Table 5. Errors and orders for u-velocity. The mesh MV was assumed as a reference solution.

ux Errors

Mesh L1 L2 L∞

MI 1.046 × 10−3 1.012 × 10−3 1.022 × 10−3

MII 1.718 × 10−4 1.815 × 10−4 2.327 × 10−4

MIII 3.602 × 10−5 3.657 × 10−5 4.493 × 10−5

MIV 5.619 × 10−6 5.897 × 10−6 7.583 × 10−6

RMI 4.809 × 10−4 5.598 × 10−4 7.115 × 10−4

RMII 1.007 × 10−4 1.018 × 10−4 1.110 × 10−4

RMIII 2.253 × 10−5 2.238 × 10−5 2.382 × 10−5

RMVI 5.306 × 10−4 5.452 × 10−4 5.918 × 10−4

RMV 1.077 × 10−4 1.129 × 10−4 1.250 × 10−4

ux Orders

Mesh L1 L2 L∞

MI-MII 2.606 2.479 2.134
MII-MIII 2.254 2.311 2.373
MIII-MIV 2.680 2.633 2.567
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4.2. Numerical Simulation of 4:1 Abrupt Planar Contraction Problem

In this section, we show the simulations for the 4:1 abrupt planar contraction flow.

This problem is interesting because, for instance, the flow near the contraction is a com-

plex mixture of shear and elongation, and secondary fluid motions might exist, even in
the Newtonian limit (see [15]). For this reason, contraction flows have been extensively

studied previously in the literature (see [3,14,15,26]).
Figure 8 shows the domain representation, where we adopted a dimensionless parabolic

inlet velocity profile u(y) = 3
8

1
4 (2 − y)(2 + y). The scaling parameter L = 0.0064 m is the

height of the small channel, and we used N = 50 deformation fields, ǫ = 0.1 and the time
interval sc = 0.1 s. In Table 6, we report the scaling parameters of average velocity ū used

in all simulations and the dimensionless parameters Re =
ρLU
η0

, De = λU
L , De(γ̇) (see [15])

and the characteristic shear rate γ̇.

4

20 25

1x

y

u

Figure 8. Domain representation.

Table 6. Flow parameter values used in the contraction problem.

Planar Contraction Flows

ū
[

m
s

]

γ̇
[

1
s

]

De(γ̇) Re De

0.044 13.9 0.38 0.16 0.41
0.100 31.3 0.55 0.36 0.94
0.150 48.4 0.66 0.56 1.45
0.221 69.1 0.77 0.80 2.07

The mesh M1 used in these simulations is shown in Figure 9. We used three levels

of refinement, with the most refined part near the contraction region. We also used one

uniform mesh M2 for De = 0.94 in order to check the convergence solutions in two meshes.
In M2, dx = dy = 0.03125 m, and in M1, we use small values of dx = dy = 0.03125 m as

well as larger values, dx = dy = 0.125 m.

Figure 9. Graphical representation of the mesh M1 used in the contraction simulation.
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In Figure 10, we illustrate the centerline axial profile velocity ux(y) solutions for dif-
ferent values of the Deborah number De = 0.41, 0.94, 1.45 and 2.07 for the HiGFlow (green

lines) and OpenFOAM (black lines) systems using mesh M1. The experimental results

of Quinzani et al. [15] and numerical results of Mitsoulis [14] and Tomé et al. [3] (for
De = 1.45) are also shown for comparison purposes. For the case with De = 0.94, we

show two solutions using our methodology in mesh M1 (non-uniform mesh) and mesh
M2, where we can see good agreement between the solutions. For this reason, we adopted

the M1 mesh to simulate the other cases with different values of number De. For the

profile ux(y), the HiGFlow system showed good agreement with the OpenFOAM solu-
tions in the regions before and after the contraction. Near to contraction (see Figure 10),

we have a region of instability and the methodology behaves differently, but our results
showed similar behavior to the instabilities presented in the works of Quinzani et al.

(orange triangles) [15], Mitsoulis [14] (blue bullet) and Tomé et al. (violet square) [3].

x [m]

u
(y
)
[m

/
s]

Quinzani [15]

Mitsoulis [14]

OF-M1

Tomé [3]

HF-M1

HF-M2

−0.05 −0.04 −0.03 −0.02 −0.01

0

0 0.01 0.02 0.03

0.05

0.1

0.15

0.2

0.25

0.3

Figure 10. Centerline axial velocity profiles obtained using HiGFlow (green lines) and OpenFOAM

(black lines). Experimental [15] and numerical results [3,14] found in the literature are also shown

for comparison purposes.

In Figure 11, we show the numerical solution using HiGFlow (green lines) and Open-

FOAM (black lines) systems for the tensor components τxx and τyy with the same flow
parameter values reported in Table 6 using M1 and M2 for the case with De = 0.94. The

methodologies presented in this work are different. OpenFOAM uses the finite volume

method while HiGFlow approximates the equations using finite differences. Therefore,
the solutions obtained will not be equal but should be comparable. Outside the contrac-

tion region, the OpenFOAM and HiGFlow solutions are very similar for all values of De.
However, in the region close to the contraction, the solutions obtained using OpenFOAM

showed a higher peak (x ≈ 0) but this is mostly seen in the cases with the highest values

of De.
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(a) (b)

x [m]

τ x
x
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Figure 11. Numerical results for (a) τxx and (b) τyy using HiGFlow system (HF-M1 e HF-M2) and OpenFOAM system

(OF-M1).

In Figure 12a, we show the comparison between the first normal stress difference val-
ues N1 = τxx − τyy for two different cases of Deborah number, De = 0.41 and De = 1.45.

For better visualization, the other two values of De (see Table 6) are illustrated in Figure 12b,

where we can see that the values of HiGFlow (green lines) have good agreement with ex-
perimental data (orange triangles) reported by Quinzani [15], while the solution using

OpenFOAM was similar to the solution presented by Mitsoulis [14].

(a) (b)

x [m]

τ x
x
−

τ y
y
[P

a]

Quinzani [15]

Mitsoulis [14]

Tomé [3]

HF-M1

OF-M1

−0.03 −0.02 −0.01

0

0 0.01 0.02 0.03 0.04
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x [m]

τ x
x
−
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y
[P

a]
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0
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25
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125
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Figure 12. The first normal stress differences N1: (a) for De = 0.41 and De = 1.45; and (b) for De = 0.94 and De = 2.07.

In Figure 13, we compare the streamlines obtained using OpenFOAM (a) and HiGFlow

(b) with a fixed value of De = 2.07. We can see that there is vortex formation in both cases
and that the solutions are relatively comparable.



Appl. Sci. 2021, 11, 4875 14 of 16

Figure 13. Streamlines of the contraction flow problem with De = 2.07. (a) OpenFOAM and

(b) HiGFlow.

5. Discussion

The work aims to present the numerical simulation of the KBKZ integral constitu-

tive equations for incompressible and transient complex flows. We used a new solver

HiGTree/HiGFlow lately developed by Souza et al. [23]. In this solver, we have imple-
mented the methodology described in Section 3.1 to simulate viscoelastic flows modeled

by integral constitutive equations. Initially, the numerical technique was verified by re-

fined mesh in channel flows. Using the FLUID S1 (see Table 2), we performed nine sim-
ulations using non-refined and refined meshes. For comparison purposes, a mesh was

chosen and the simulation using the OpenFOAM solver [26] was performed. In these sim-
ulations, we can see that, although the methodologies used in HiGFlow and OpenFOAM

are quite different (the first uses finite differences and the second uses finite volume), we

obtained very similar results in both systems. We also verified that the errors decrease
with the mesh refinement and that the order of convergence of the velocity was around

two, as expected.
A classic problem in the simulation of integral viscoelastic flows is known as 4:1

abrupt contraction and, thus, the literature for this problem is extensive. We chose to

check our methodology for the four values of De presented in Mitsoulis [14]. In addition
to the comparison with the results of this author, we performed the simulations using the

OpenFOAM solver [26] and also compared our results with the experimental ones from
Quinzani [15] and with the numerical results from FreeFlow [3]. We know that, in the

contraction region, there are singularities and numerical techniques that might exhibit dif-

ferent behaviors. Although the values obtained by us in this work differ somewhat from
the values obtained by Mitsoulis [14] or OpenFOAM [26], they were quite comparable to

the experimental values of Quinzani [15]. Thus, we verified that the methodology pre-
sented here is capable of simulating complex flows in transient fluid regimes governed by

integral constitutive models using the rapid technique of finite differences in hierarchical

meshes with local refinement.
The computational efficiency of the models has been previously studied [3,21,26].

However, it is worth mentioning that the methods used in the present work used fewer

integration points (deformation fields) compared to the points used in the early work of
Hulsen et al. [28] and are similar to those used more recently by Hulsen and Anderson [32].

This improvement is due mainly to the distinct methodologies adopted to obtain the inte-
gration points, which allow efficient distribution of the elapsed time. Although the results
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presented here are two-dimensional, our methodology is still able to simulate flows in
higher dimensions (the user just has to specify the dimension (2, 3 or higher) in the input

data file). Our future work will be to present simulations in three dimensions for classic

problems. In three dimensions, for example, integral models are still computationally ex-
pensive, as there is a need to store and connect a fixed N number of fields to each cell.

Therefore, we will also work on ways to improve or modify the integral calculation—for
instance, as was done in the recent work of Hulsen [32].
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