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The Capanema Mine, an iron ore deposit, is located in the central portion of the Quadrilátero
Ferrı́fero, State of Minas Gerais, southeastern Brazil. Mine development data from approxi-
mately 7000 drillholes were used for a comparative study between kriging variance and
interpolation variance as uncertainty measurements associated with ordinary kriging esti-
mates. As known, the traditional kriging variance does not depend on local data and, there-
fore, does not measure the actual dispersion of data. On the other hand, the interpolation
variance measures adequately the local dispersion of data used for an ordinary kriging
estimate. This paper presents an application of the concept of interpolation variance for
measuring uncertainties associated with ordinary kriging estimates of Fe and silica grades.
These data were selected for their distinct statistical characteristics with Fe presenting a
negatively skewed distribution and, consequently, a low dispersion, and silica a positively
skewed distribution and, therefore, a high variability. Comparative studies between the two
uncertainty measurements associated with ordinary kriging estimates of Fe and silica proved
the superiority of the interpolation variance as a reliable and precise alternative to the
kriging variance.
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INTRODUCTION

Uncertainty has been addressed as a key issue
in geostatistics, justifying the development of simula-
tion techniques. The interesting feature of stochastic
simulation is that from a set of realizations on a grid
node we can derive the mean and the associated
variance. Indeed, these statistics are derived from
a conditional cumulative distribution function built
from a set of stochastic simulation realizations. The
number of realizations should be large enough to
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guarantee that the resulting statistics will be signifi-
cant as stochastic simulation takes time, even consid-
ering available fast processors. Depending on the
stochastic simulation algorithm and also on the data
set, a typical run can take some hours. On the other
hand, there are estimation techniques provided by
geostatistics, in which the ordinary kriging has been
recognized as a standard one because of its simplicity
and easy operation. The great problem of ordinary
kriging estimation is that the variance associated with
the resulting estimate has no significance, because
it is only variogram dependent and not data-value
dependent. Journel and Rossi (1989) recognized that
the kriging variance does not measure uncertainty,
but just the spatial configuration of neighbor data
used to make the estimate. Recently Yamamoto
(2000) proposed an alternative to the kriging vari-
ance, named interpolation variance. As long as the
interpolation variance measures local data dispersion
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it is a reliable measure of uncertainty. In this sense,
Yamamoto (1999) proposed to use the interpolation
variance for ore-reserve classification. This paper
presents a comparative study between kriging and
interpolation variance using iron and silica values
taken from exploration and development data sets.
This study was carried out in the Capanema Iron
Mine situated in the Quadrilátero Ferrı́fero region,
a traditional iron ore-producing region in State of
Minas Gerais, southeastern Brazil.

LOCATION OF THE CAPANEMA MINE

The Capanema Mine is located in the central
portion of State of Minas Gerais. From Belo Hori-
zonte (state capital), it is about 100 km and is reached
by interstate BR-356 to Ouro Preto. Figure 1 shows
the location map of the Capanema Mine, which be-
longs to Minas da Serra Geral S.A., and is a joint
venture between Vale do Rio Doce and a Japanese
consortium headed by Kawazaki Steel.

GEOLOGY AND ORE TYPES

According to Massahud and Viveiros (1983), the
Capanema Mine is located in a synclinal structure
known as the Ouro Fino Syncline. The stratigraphic
section for this area is reproduced in Figure 2 (after
Massahud and Viveiros, 1983).

The iron ore of the Capanema Mine is contained
in the Cauê Formation located in the core of the
Ouro Fino Syncline. The Cauê Formation includes
(from bottom to top): basal siliceous itabirite, calcare-
ous itabirite, and siliceous and amphibolitic itabirite.
Some intrusive bodies (dikes and sills) of metamor-
phosed basic rocks cut the orebody. They are altered
completely to argillaceous material of varied colors
(white, yellow, and locally reddish).

The most accepted hypothesis for the ore genesis
of the Capanema Mine is that the relative enrichment
of iron resulted from leaching of carbonates by mete-
oric solutions flowing downward to the watertable.
The mineral paragenesis reflects a low-grade meta-
morphism.

The iron ore exploited in the Capanema Mine
is classified into three types, following chemical and
grain-size criteria. This classification is based on Fe,
SiO2 , Al2O3, and P grades as well as visual characteris-
tics such as color, texture, and compaction of the rock:

● hematite A (HA): laminated, banded, friable

to pulverulent, soft with rare bands of sili-
ceous beds;

● hematite B (HB): laminated and banded as the
previous type but with hard siliceous beds;

● soft itabirite (SI): composed by alternate beds
of unconsolidated silica and hematite, probably
resulting from a relative enrichment of silica.

Following the same criteria for ore types, the
waste is classified into five types:

● weathered hematite (WH): hard, banded and
laminated, with some argillaceous and limoni-
tic parts;

● soft itabirite–Pulverulent (SIP): such as SI
presents alternate beds of unconsolidated sil-
ica and hematite, but more pulverulent;

● soft itabirite–amphibolitic (SIA): composed of
alternate beds of silica and hematite with
patches of altered amphibole;

● intrusive (IN): intrusive rocks in the form of
dikes and sills;

● phyllite (PHI): metamorphic rock occurring
below the iron formation.

Apparent density of Capanema’s iron ore (Table
1) is relatively low if compared to other iron ores.

Table 2 presents average compositions of ore
and waste types as obtained from diamond drill cores
during the exploration program.

Figure 3 is a three-dimensional model as viewed
from NW for the Capanema Mine according to the ore
and waste types. The orebody is elongated in a
SE–NW direction as result of a first, brittle-ductile,
deformational event, which generate the syncline and
the Fundão fault system. The Ouro Fino Syncline then
was refolded in its upper portion (NW) by a second
deformation event. A third event occurred but it is not
represented in the three–dimensional model because
it is related only to minor structures. The three-dimen-
sional model shows clearly the iron ore (the brownish
unit) in the core of Ouro Fino Syncline.

SAMPLING

When the iron body of the Capanema Iron Mine
was discovered in the mid 1960s, development drifts
and cross cuts were used to explore it. Then, near
the end of 1980s the first diamond drillhole campaign
was carried out which resulted in 11 holes. In a reeval-
uation 59 additional holes were drilled, for a total of
70. Figure 4 shows the location of all the exploration
diamond drillholes.
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Figure 1. Location map of Capanema Mine.

In this mine, the ore-grade control is made using
the dust of rock drillholes that has been collected
systematically and then analyzed. For each block of
a bench, a rock drillhole is made in its center. As the
blasting block is equal to 28.8 � 28.8 � 13 m, rock
drillholes are arranged in a regular grid spaced 28.8
m. Figure 4 also presents the location of all rockdrill
holes, totaling 6988 holes.

As seen in Figure 4, the diamond drillholes sam-
pled the eastern part of the Capanema orebody. On
the other hand, the rock drillholes have sampled the
entire orebody because they were drilled as the mine
developed. Thus, rock drillholes reproduce better the

orebody in relation to its characteristics such as com-
position, grain size, etc. Moreover, the high sampling
density provides precise statistics of the orebody,
which authorizes a comparative study between uncer-
tainty measurements associated with ordinary krig-
ing estimates.

STATISTICAL AND
GEOSTATISTICAL ANALYSES

Using the two available databases, a statistical
analysis has been done in order to characterize statis-
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Figure 2. Stratigraphic section for Capanema Mine region (after Massahud and Viveiros, 1983).

tical properties of variables. For this study, just two
variables were selected from databases, that is Fe
and SiO2 . Because this paper compares uncertainty
measurements derived from ordinary kriging esti-
mates, we selected these two variables for reasons to
be explained later.

Figure 5 presents histograms and their statistics
for Fe and SiO2 . Fe and silica illustrate two different
behaviors, with the former presenting a negative
asymmetry and the silica a positive one. Conse-
quently, the coefficient of variation is low for Fe
(0.086) and higher for silica (1.013). Fe presents a
negative asymmetrical distribution because it has an
upper limit equal to 69.9%, which is the stoichiomet-
ric limit of Fe in Fe2O3 (hematite).

Variogram models fitted to experimental data
revealed the models presented in Figure 6.

ORDINARY KRIGING ESTIMATION AND
ASSOCIATED ERRORS

Ordinary kriging (OK) has been used exten-
sively as an estimation technique because of its sim-

Table 1. Apparent Density for Ore and Waste
Types of Capanema Mine

Ore and waste types Apparent density (t/m3)

HA 2.89
HB 2.57
SI 2.29
WH 2.76

plicity and for its reliable estimates. This technique
allows estimation of an unsampled location based on
neighbor data values:

Z*(xo) � �n

i�1
�iZ(xi) (1)

where ��i , i � 1, n� are the ordinary kriging weights
and �Z(xi), i � 1, n� are the n neighbor data close
to the unsampled location (xo).

The kriging variance associated to an OK esti-
mate is:

� 2
OK � �n

i�1
�i�(xi � xo) � � (2)

where �(xi � xo) is the variogram value for a distance
between the ith sample and the location xo to be
estimated and � is the Lagrange multiplier resulting
from solution of the ordinary kriging system. Details
for deriving ordinary kriging system are given in text-
books such as Journel and Huijbregts (1978), Isaacks
and Srivastava (1989), Wackernagel (1995), Goo-
vaerts (1997), and, more recently, Olea (1999).

Table 2. Average Composition of Ore and Waste Types of
Capanema Mine

Type Fe (%) Al2O3 (%) SiO2 (%) P (%) LOIa (%)

WH 61.61 2.85 1.20 0.091 7.39
SIP 54.01 0.59 20.3 0.025 1.68
SIA 62.68 0.90 3.03 0.082 6.02
SI 57.49 0.38 15.12 0.042 1.97

HA 64.40 1.45 2.25 0.060 3.88
HB 61.57 0.87 7.47 0.072 3.12

a LOI, loss on ignition.
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Figure 3. Three-dimensional model as viewed from NW to SE for Capanema Mine according to ore and waste types.

Figure 4. Location map of diamond drillholes and rock drillholes.

Ordinary kriging was the first estimation tech-
nique that provided computation of an estimation
error by the kriging or estimation variance. The krig-
ing variance was used extensively as an uncertainty
measure associated with OK estimate until the end
of the 1980s. In fact, Journel and Rossi (1989) stated
that the kriging variance does not measure uncer-
tainty, but just the spatial configuration of neighbor
data used to make the OK estimate. Yamamoto
(2000) proposed an alternative measurement of un-
certainty to compute an estimation variance from
ordinary kriging weights. This proposal is based on
the interpolation variance that is simply the weighted
average of the squared differences between data val-
ues and the OK estimate.

S 2
o � �n

i�1
�i [Z(xi) � Z*(xo)]2 (3)

where S 2
o is the interpolation variance and �i are the

ordinary kriging weights.
Positiveness of the interpolation variance de-

pends on all ordinary kriging weights being positive.
If some negative weights occur, then the interpolation
variance can be negative, which is unacceptable, as
well as a negative grade, which is also unacceptable.
Users of ordinary kriging estimation techniques are
used to seeing negative grades, especially if they are
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Figure 5. Histogram and statistics for Fe(A) and for silica (B).

working with a data set with some clustered points
and a highly skewed distribution. Thus, in order to
avoid negative estimates some algorithms for correct-
ing negative weights have been proposed. Examples
of correction algorithms for negative weights are
given in Froidevaux (1993), Journel and Rao (1996),
and Deutsch (1996). We have adopted the procedure
proposed by Journel and Rao (1996) that consists on
adding a value to all weights equal to the modulus
of the largest negative weight and rescaling them to
sum up to one.

The ordinary kriging allows estimation of an un-
sampled point where the true value is not known.
On the other hand, the cross-validation procedure
makes use of an estimation technique (e.g., ordinary
kriging) for a sampling point, but without considering
its value as neighboring data points. Thus, cross vali-
dation provides, for each point, the true and esti-
mated values, from which actual errors can be de-
rived. For this reason, we adopted the cross-
validation procedure to make ordinary kriging esti-
mates and to compare uncertainty measurements as-
sociated with them.

Figure 7 presents histograms and statistics of OK
estimates for Fe and silica. Distributions of estimated
values are more smoothed than their respective data
sets, that is:

VarZ*(xo) � Var[Z(x)] (4)

As long as Z*(xo) is a linear combination of n
nearest neighbor data points �Z(xi), i � 1, n�, Var
Z*(xo) will be less than Var[Z(x)]. Any other esti-
mation method based on a linear combination of data
points (weighted average) will result in smoothing
for resulting estimates.

Figure 8 presents cross-validation scattergrams
for Fe and silica. In Figure 8A note that iron values
are limited to the stoichiometric limit of 69.9%. Cor-
relation coefficients for Fe and silica are good (0.715
and 0.801, respectively) considering a total of 6884
points. Observed dispersions around minimum
square regression lines are indeed the result of both
the smoothing effect and the natural variability of
the orebody.

Figures 9 and 10 present histograms and statistics
for estimation errors associated with OK estimates,
respectively, for iron and silica.

Histograms for the interpolation standard devia-
tion present more classes than those for the kriging
standard deviation. Actually, the kriging standard de-
viation values are distributed through three–five
classes, which reflect configurations of neighboring
points used to make estimates. Moreover, observe
that the kriging standard deviation values are limited
to the square root of the sill of fitted variogram mod-
els (Fig. 6). On the other hand, the interpolation
standard deviation values do not present this limita-
tion because they depend on retained estimate and
n neighbor data values.

ANALYZING THE PROPORTIONAL EFFECT

The proportional effect is a heteroscedastic con-
dition in which the variance of the error is propor-
tional to some function of the local mean of the data
values (Olea, 1991). In this sense, as long as the inter-
polation variance depends on the local data (n neigh-
bor data values) it recognizes the proportional effect.
Yamamoto (2000) analyzed a highly skewed distribu-
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Figure 7. Histogram and statistics for OK estimates for Fe (A) and for silica (B).

tion (positive asymmetry) and concluded that the
interpolation variance is proportional to the OK esti-
mate. In this paper two distinct distribution are ana-
lyzed, both asymmetric, but with iron presenting a
negative asymmetry and silica a positive one.

Thus, for analyzing the proportional effect scat-
tergrams of the estimation errors were plotted against
OK estimates as presented in Figures 11 and 12, re-
spectively, for Fe and silica.

Figures 11 and 12 illustrate that the kriging
variance does not present any correlation with the
OK estimates for Fe and silica. Interpolation vari-
ance presents a good correlation with the OK

Figure 8. Cross-validation scattergrams for Fe (A) and for silica (B).

estimates for both variables, but the correlation
coefficient is negative for Fe and positive for silica.
This is an interesting feature and shows why the
interpolation variance is a reliable measurement of
uncertainty. As iron presents a negatively skewed
distribution, in which the upper limit is given by
the stoichiometric limit, samples close to this limit,
that is iron ores, will present similar iron contents
indicating that estimation error should be small.
On the other hand, toward the low-grade ores, the
estimation error presents more dispersion because
iron contents after with more freedom. It explains
why the correlation coefficient for the interpolation
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Figure 9. Estimation errors calculated for iron OK estimates: interpolation standard deviation (A) and kriging standard deviation (B).

standard deviation plotted against iron OK esti-
mates is negative.

Contrary to the behavior of iron, the interpola-
tion standard deviation for silica presents positive
correlation coefficients as long as its histogram is
positively skewed. This is the behavior expected for
variables presenting the proportional effect. The
kriging standard deviations do not present any sig-
nificant correlation with the silica OK estimates.

COMPUTING CONFIDENCE INTERVALS
FROM UNCERTAINTY MEASURES

Confidence intervals around estimates can be
derived from estimation errors using the well-known
Central Limit Theorem:

Figure 10. Estimation errors calculated for silica OK estimates: interpolation standard deviation (A) and kriging standard deviation (B).

CICL(%) �
S · t

�n
(5)

where S is the standard deviation, n is the number
of samples, t is the score of t distribution for a given
confidence level (CL), and degrees of freedom
(n � 1).

By replacing the standard deviation by interpo-
lation standard deviation or kriging standard devia-
tion, two-sided confidence intervals are derived that
can be used to predict if the actual values fall in a
given confidence level. For this study, the test was
performed using the following confidence levels: 90,
95, and 99%. Table 3 presents proportion of matches
of actual iron grades within two-sided confidence in-
tervals; Table 4 provides the same for silica.

Apparently the kriging standard deviation seems
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Figure 11. Estimation errors plotted against iron OK estimates according to interpolation standard deviation expression (A) and to kriging
standard deviation expression (B).

superior to the interpolation standard deviation.
However, this is not necessarily true because the krig-
ing standard deviation is always greater than the in-
terpolation standard deviation as can be seen on his-
tograms of ratios of kriging standard deviation to
interpolation standard deviation (Fig. 13).

Figure 12. Estimation errors plotted against silica OK estimates according to interpolation standard deviation expression (A) and to
kriging standard deviation expression (B).

It is clear that the standard kriging deviation is
greater than the interpolation standard deviation. For
iron, we observe that 82.6% of kriging standard devia-
tion values are greater than the interpolation stan-
dard deviation ones, and for silica this proportion
is equal to 77.4%. Thus, we can conclude that the
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Table 3. Proportion of Matches of Actual Iron Grades within
Two-Sided Confidence Intervals around Estimated Value

Confidence So based two-sided �OK based two-sided
level (%) confidence interval confidence interval

90 50.5 73.9
95 61.3 81.8
99 79.5 91.9

confidence intervals based on interpolation standard
deviation can predict reasonably well (65% for a con-
fidence level equal to 95%) the true values. Obvi-
ously, this proportion of matches will depend on vari-
ability of data under study and, consequently, on
sampling density. Because we have used the cross-
validation procedure, it is available for each sampling
point of the estimated and true values from which
we can derive the absolute true error:

ABS(true error) � �z*(xo) � z(xo)� (6)

The absolute true error should be comparable
to the confidence interval for a given confidence level.
In other words, the confidence interval based on in-
terpolation standard deviation or kriging standard
deviation should present a linear relationship with
the true absolute error. Figures 14 and 15 show scatter
diagrams of the confidence intervals (confidence level
of 95%) against true errors for iron and silica, respec-
tively.

Figure 13. Distribution of ratios of kriging standard deviation to interpolation standard deviation for Fe (A) and for silica (B). Black
bars represent ratios greater than 1.

Table 4. Proportion of Matches of Actual Silica Grades within
Two-Sided Confidence Intervals Around Estimated Value

Confidence So based two-sided �OK based two-sided
level (%) confidence interval confidence interval

90 53.1 74.2
95 65.0 81.7
99 82.1 91.1

Once more, it is possible to verify that the confi-
dence intervals, based on kriging standard deviation,
do not present any correlation with the absolute true
errors. However, those based on interpolation stan-
dard deviation do present a reasonable correlation
with the absolute true errors illustrating that the in-
terpolation standard deviation provides a reliable
measurement of uncertainty associated to ordinary
kriging estimate.

CONCLUSION

Thispaper illustratedtheusefulness inanapplica-
tion of the interpolation variance as an uncertainty
measureusing arealdatabasefrom developmentwork
atCapanemaIron Mine.Feandsilica wereselectedfor
their distinct statistical characteristics with the former
presenting a negative skewed distribution and the sec-
ond variable presenting a positively skewed distribu-
tion. Although the kriging standard deviation does not
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Figure 14. Scatter diagrams of confidence intervals against absolute true errors for iron. Confidence interval based on interpolation
standard deviation (A) and on kriging standard deviation (B).

recognize the proportional effect existing in both dis-
tributions, the interpolation standard deviation
showed clearly that there is a proportional effect for
silica, that is, in a scatter diagram of the interpolation
error against estimated value, there is a positive corre-
lation. On the other hand, because Fe presents a nega-
tivelyskeweddistributionthe linearrelationship in the

Figure 15. Scatter diagrams of confidence intervals against absolute true errors for silica. Confidence interval based on interpolation
standard deviation (A) and kriging standard deviation (B).

scatter diagram for analyzing the proportional effect
also is negative. Confidence intervals based on inter-
polation standard deviation always are less than those
based on kriging standard deviation and they can pre-
dict the true values reasonably well. Finally, all results
confirm the usefulness of the interpolation variance as
a precise and reliable measure of uncertainty.
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