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The present paper introduces Harpia, a hybrid artificial intelligent planning system for UAVs. Harpia aims to
execute tasks for agricultural applications with minimum human intervention. The mission’s execution is on-
board, running under the Robotic Operating System and executing re-planning for tasks and path planning
with obstacle avoidance. The re-planning can happen after mission changes in real-time or unpredictable UAV
behavior. It combines Planning Domain Definition Language for task planning, Bayesian Network to evaluate
mission execution, and K-Nearest Neighbors algorithm to select a path planner. Thus, Harpia’s novelty focuses
on robustness for autonomously planning and re-planning the sequence of tasks and trajectories to regions of
interest. The main contributions include an autonomous system architecture for planning missions with minimum
human intervention, no boundary by specific tasks, and computationally simple for operating within non-convex
scenarios. The computational tests report results for 21 simulated scenarios, where Harpia handled all situations
properly, e.g., making decisions about task re-planning with 97.57% accuracy based on battery health and
choosing the better path-planning for each case with at least 95% of accuracy.

1. Introduction

There are increasing demands for UAVs application in precision agri-
culture, but requirements about full autonomy are still challenging, see
[1] and [2]. The level of independence is enhanced for UAV systems
through decision-making capability embedded onboard to handle ex-
ternal (e.g., environment or mission changes) and internal (e.g., system
failure or low battery) situations. The embedded systems reduce the de-
pendence on ground control systems, with a human pilot in charge, to
fully autonomous flight [3].

The present research introduces Harpia, an autonomous planning
system for Unmanned Aerial Vehicles (UAVs). In the current develop-
ment, Harpia’s resources mainly operate in farms where there is a more
static environment; however, even on a farm, the UAV executes many
tasks and must avoid obstacles. Thus, we report Harpia’s robustness for
autonomously planning and re-planning the sequence of tasks and tra-
jectories to regions of interest.

The main contributions brought by Harpia are (i) an autonomous
system for planning and executing missions with minimum human in-
tervention; (ii) a general system architecture that is no boundary to
accomplish only a specific task within a farm, as usual in agricultural
applications as reported in [1] and [2]; (iii) the system architecture
presents a computational simplicity for practical proposes, but adds the
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convergence of methods such as Planning Domain Definition Language
for task planning, Bayesian Network to evaluate mission execution, and
K-Nearest Neighbors algorithm to select a path planner; (iv) the system
autonomously operates within non-convex scenarios, which happens
in farms and other real-world applications, making decisions about
mission planning and re-planning in real-time; (v) we propose some
adaptations over RRT and PFP path planning algorithms to deal with
obstacle avoidance using ray casting and chance-constraints for risk al-
location, respectively.

The paper is organized as follows: Section 2 describes the main
related work and Section 3 states the problem approached. Harpia’s
architecture is explained in Section 4 and we report the experimental
results in Section 5. The conclusion follows in Section 6.

2. Related works

The use of UAVs in precision agriculture has been advancing in re-
cent years. For example, the recent work in [4] reports a wheat ear
counting method employing UAV, where transfer learning from the
ground-based counting model to the UAV improves the overall wheat
ears counting. The works in [1] and [2] review researches about the
use of UAV in precision agriculture. However, the survey in [1] points
out the limitations of UAV systems for agriculture applications, where
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the mission and path planning must optimize battery and flight time to
accomplish more tasks in crop fields.

A total of 20 UAV applications is reported in [2] for aerial crop mon-
itoring processes or spraying tasks, where the authors evaluate UAV
system architectures among other features. The architectures are de-
signed for specific purposes in monitoring and spraying tasks, leading
the authors to suggest decision support systems as future work. There
is a lack of applications in [1] and [2] that describes systems handling
autonomous operation, decision-making, and risk mitigation for UAVs
in precision agriculture.

The authors in [5] reviewed Unmanned Aerial Systems (UAS) litera-
ture based on the autonomy, cognition, and control features. The work
highlights the need for UAS with safety measures and cognitive controls
dealing correctly with the environment in real-world applications. [6]
review literature works with algorithms for UAV safe landing, which
are helped by systems using on-board camera and LiDAR for safe area
detection employing vision and non-vision techniques. The authors in-
dicate as possible future direction to approach the safe landing taking
into account obstacle avoidance.

[7] present a hardware and software architecture for a legged-aerial
autonomous system applied to missions in underground areas. In the
autonomous aerial system, an artificial potential field formulation and
the so-called deepest-point heading regulation technique, employing a
3D LIDAR for clustering points, allows an efficient reactive behavior
for obstacle avoidance. UAV is transported by the legged ground robot,
which uses a SLAM system to be aware of its localization. It is a complex
system framework whose reported results show its capability to execute
missions autonomously within underground areas.

A low-cost UAV system is introduced by [8] for crop data acquisi-
tion, handling issues such as wind and battery consumption. A path
planning system optimizes the coverage paths, comparing the algo-
rithms wavefront, Dijkstra, and spiral. A task planning system for UAV
in [9] executes plant protection tasks, e.g., sowing or pesticide spraying.
Dragonfly algorithm is applied to achieve near-optimal schedules for a
set of 20 instances generated from real-world data. The work in [10] ap-
proaches the task assignment for UAVs by introducing a multi-objective
mathematical model, where system design aspects such as the location
of base stations, number of UAVs in each station, and UAV schedules
for mission execution are also defined. The proposed solution must work
under a disaster management situation. Therefore, a two-phase method
is applied to deal with the computational complexity and improve ac-
curacy when solving the proposed multi-objective model. Harpia will
generate mission planning aiming autonomous execution such as [8,9].
However, we advance from these previous works by including Bayesian
Networks (BN) and K-nearest neighbors (KNN) classifiers to improve
mission and path planning decisions. Different from [10], we are not
using mathematical formulation aiming to reduce the computational
complexity of the overall embedded system.

Task planning and scheduling with risk mitigation deal with failure
using Bayesian Network in [11].

The authors evaluated the system through Matlab simulations with
satisfactory results when mitigating collisions within short periods. The
so-called In-Flight Awareness Augmentation System (IFA2S) in [12]
improves flight safety by applying Systems-Theoretic Process Analysis
(STPA) and proposing a state machine for onboard operation. STPA is a
hazard analysis technique that defines the requirements for risk mitiga-
tion, while the state machines define how the UAV should react based
on those requirements.

Harpia approaches risk mitigation as [11] by applying BN to de-
cide autonomously about re-planning based on battery health. The path
planning system in Harpia will also deal with obstacle avoidance, ex-
ecuting online path re-planning. However, we are not assuming a dy-
namic scenario like the one described in [13]. We are dealing with
non-fly zones similar to [12], but without defining all those risk re-
quirements or using a state machine for autonomous behavior.

Smart Agricultural Technology 4 (2023) 100191

Table 1

Contributions with related work based on some specific features.
Reference Mission Risk Path Non-Convex Onboard
[4] No No Yes No Yes
[10] Yes No No No No
[71 Yes No Yes Yes Yes
[17] No Yes Yes Yes No
[12] No Yes Yes Yes Yes
[16] No Yes Yes Yes Yes
[8] No No Yes No No
[9] Yes No Yes No Yes
[15] No Yes Yes Yes No
[11] Yes Yes No No Yes
[21] Yes No Yes No Yes
[14] No Yes Yes Yes Yes
[19] No Yes Yes Yes No
[20] Yes No No No No
[18] Yes No Yes No No

We are avoiding obstacles or non-fly areas by solving a non-convex
path planning problem and using chance constraints for risk allocation,
similar to [14] and [15]. The authors in [15] introduce a Mixed-Integer
Linear Programming (MILP) formulation that finds optimal solutions for
complex maps within a reduced computational time. Harpia will apply
metaheuristics approaches once the systems must find solutions within
a short time. The authors in [14] apply a hybrid method combining ge-
netic algorithms with Voronoi diagrams to solve the non-convex path
planning with risk allocation. The technique finds satisfactory solutions
within a few seconds. Another hybrid evolutionary algorithm with sat-
isfactory performance is described in [16], however, without handling
the chance-constraint with risk allocation. The method combines the
evolutionary approach with ray casting technique for obstacle avoid-
ance. The authors in [17] approach the uncertain within multi-obstacle
and dynamic environments by applying a deep reinforcement learning
method for autonomous path planning. The twin delayed deep deter-
ministic policy gradients algorithm is improved to deal with UAV path
planning with satisfactory results from environment simulations using
Unity 3D.

Harpia is a system architecture that can be embedded in UAVs. The
authors in [18] present a related architecture with two main modules.
The first module runs embedded on the UAV and controls its dynamics.
The second module executes from the ground station, and it plans and
updates the trajectory. Another similar system architecture, described in
[19], focused on control the UAV trajectory. There are three algorithms
for trajectory prediction, collision estimation, and obstacle avoidance
based on laser sensing.

The authors in [20] introduce a hardware and software architecture
for navigation and automatic spraying on crop fields for an unnamed
helicopter. The ground station executes the path planning, but the flight
and spraying control systems are on-board. The work of [21] presents a
more robust system for spraying on crop fields, pest detection, among
other tasks. The mission’s target point can change online, leading to
a path re-planing autonomously built during the flight. If the system
detects weed locations, it sprays those areas locally. Robotic Operating
System (ROS) packages are used to develop some functionalities.

The systems in [18-21,4,17,7] accomplish a specific type of task,
where considerations about planning several tasks are not addressed.
Harpia proposes a robust planning system where different tasks can be
autonomously executed within a farm.

Table 1 summarizes the main features covered by Harpia against
those reviewed in this section. Mission means those papers whose UAV
systems deal with Mission Planning autonomously, and the same idea
applies to Path for works reporting systems with Path Planning. It is
also listed papers in Risk for those impending system failure or envi-
ronment hazards, Onbording for systems wholly embedded in the UAV,
Non-Convex for result in environments with obstacles or non-fly zones.
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(a) Map 1

(b) Map 2

Fig. 1. Farm scenarios for planning tasks: regions of interest, no-fly zones and support bases.

3. Problem definition and proposed solution

Let’s suppose that the actions performed on a farm by a drone in-
clude plantation imaging and spraying biological agents as shown in
Fig. 1a. The regions R[1...5] represent spraying areas and the colors in-
dicate the type of biological agent to be applied. The monitoring and
spraying actions may require multiple flights, which also demand some
stop by support base areas B[1...3] to recharge battery, fill tank with
biological agents or process images.

The re-planning of actions can happen online for an unforeseen sit-
uation such as the addition or exclusion of some actions by the user
or fault detection. The path planning occurs within a static and non-
convex scenario. It means we know in advance the map, its areas of
interest, and no-fly zones. This is a pretty realistic scenario when han-
dling drones on farms. Thus, besides the mission planning problem, we
are also solving a non-convex path planning problem with stay-in and
stay-out areas similar to [15].

In the presence of a reliable communication link between the ground
station and the embedded system of the UAYV, it is possible to update the
information about the map and mission in real-time. Our system cov-
ers these aspects when planning tasks and paths, reaching a reasonable
level of self-awareness for the UAV regarding its surroundings and inter-
nal functioning. We clarify that the present research focuses on a system
designed for autonomy in dealing with external and internal events. We
illustrate that aspect in our current architecture’s implementation for
a scenario where the battery needs a recharge (internal event) within
an environment where obstacle avoidance must be handled (external
event) when replanning the trajectories. On the other hand, the details
about how a specific sensor should be implemented or integrated into
our architecture are not the main point of this work. Next, we define
the problems approached more formally.

Definition 1. The planning problem in a farm scenario, as previously
described, aims to find a solution $* = (x*,u*) from (x,u,Z, M,P,J)
such as:

* X = [x(,X},..,xp_]: variables of the UAV states through the time
steps t =0,...,T — 1.

* u = [uy,uy,...,ur_1]: variables of controls (u,) applied in UAV
through the time steps.

cI= <XO,ZXO> initial conditions with x; ~ N (%o, Zy)-
* M= <A, szw,> stochastic plant model: x,,; = Ax, + Bu, + w,,
where o, is an additive noise with @, ~ N'(0,%,, ).

* P: State Plan (see Def. 2).
« J: objective function to be optimized.

Definition 2. The state plan is given by the tuple P = (&, C, A), where:

« £=/{eg,e;....}: set of discrete events ¢; € £.

« C={ry.r,..}: constraints related to the plant state through the
time steps. [C'?, C**], for events.

« A={aj,a,,...}: set of actions with each action a € A happening
between two events.

Fig. 2 illustrates events, constraints and episodes for our planning
problem, where we have a directed acyclic graph with events drawn
as vertices and episodes as rectangles. The episode is a constraint with
a=(e5,eE 1, R,), where e’ and ef are the initial and final event for
the episode a. The set I1, has the time steps when episode « is activated,
and R, summarizes the set of constraints to be satisfied. The authors in
[22] report three episodes of interest:

1. Start-in (a € A®): x, € R, holds in the episode beginning.
2. End-in (a € AF): x, € R, holds at the episode ending
3. Remain-in (a € AR): x, € R, while the episode is activated.

Definition 3. The non-convex path planning problem with chance-
constraints is stated as:

Minimize ©0 = Y ||u,| )}
t

where:

Xt = xgmzl (2)

X,y = AX, + Bu, + o, v(1) 3)

o, ~ N, Zw,) V() @
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Fig. 2. Example of state plan for the planning problem in a farm scenario.
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The objective function (1) can minimize some metrics related to
the control, while constraints (2) defines the goal as the last state of
the UAV, when planning a trajectory. Constraints (5) and (6) describe
hyperplanes defining convex regions for stay-out (obstacles or non-fly
zones) and stay-in (landing spots) regions. Stay-out is a disjunction of
linear constraints, while stay-in is established as the conjunction of lin-
ear constraints. The plan obtained from the State Plan in Def. 2 will
demand the resolution of several path planning problems, as stated in
Def. 3, during its execution.

4. Material and methods

In this section, we describe the proposed autonomous system,
Harpia, which can run from a ground station or be embedded in the
UAV platform. The UAV with Harpia embedded in it can operate with-
out a link of communication with the ground station. In this case, our
system can replace the pilot for designed decision-making and assume
some behaviors for critical situations, e.g., performing an emergency
landing or returning to base. The current decision-making features of
Harpia improve flight safety, facilitate handling UAV operations, and
increase the efficiency of carrying out missions. Flight safety improves
since Harpia defines the mission plan and the related trajectories taking
into account obstacle avoidance as an external factor and battery health
as an internal one. The operation of the UAV under Harpia becomes
easy once the pilot only needs to set the necessary inputs and start the
UAV, with Harpia autonomously carrying out the mission plan and ex-
ecution. Finally, the efficiency of carrying out missions arises from the
system’s ability to generate optimized plans using PDDL to describe the
scenario of a current mission.

4.1. Harpia overview

In the current commercial solutions, the pilot usually is in charge
of the UAV flight. For example, the scenarios described in Fig. 1 would
generate one mission for each region, with the user defining the mis-
sions’ execution sequence and the pilot controlling each flight. There is
a need for commercial systems that execute repetitive missions without
the pilot guidance as reported in [23].

In the case of in-flight diagnostic of the UAV systems, there are
tailor-made commercial solutions, but the authors in [24] report the
demand for systems with autonomous and adaptive diagnostics. Such
systems can improve robustness, reduce costs and increase autonomy.
Our system advances by adding more autonomy to plan and re-plan
missions and trajectories.

Harpia system is developed on ROS following Fig. 3 architecture.
The requirement to embed Harpia onboard is a companion computer,

such as a Raspberry Pi model B or a similar one, with at least 4 GB
SDRAM. In the presence of a reliable link between the ground station
and the UAV, we do not need to embed the proposed system. In this
case, Harpia can run using, e.g., a regular laptop at the ground station.
On the other hand, if the communication link is unreliable, Harpian can
be embedded in single-board computers as mentioned.

The systems in ROS nodes are:

+ ROSPlan: We add here the Kings College’s system ROSPlan, de-
scribe in [25], to use the available PDDL structure and solvers.
+ Decision Support & Making: Manage the mission plan and execu-
tion.
— Mission Planning: Calls ROSPlan features for mission planning.
— Fault Detection: A Bayesian Network (BN) was developed to
decide about keeping the plan execution, re-planning actions, or
abort the current plan.
— Mission Goal Manager: Updates goals since the user may add
or remove them.
» Path Planners: This module interfaces with different path plan-
ners. The K-nearest neighbor (KNN) algorithm was employed as a
machine learning approach to select a planner for each scenario.

Algorithms 1-3 summarize the iterations among ROS nodes in
Harpia. The Mission Goal Manager (Algorithm 1) feeds the knowl-
edge base to create the PDDL domain by sending the input data: UAV
Info, Map, and Goals. UAV Info has the hardware attributes of the air-
craft, e.g., avionics system and sensors features, which depend on the
UAV platform employed and the mission executed. Map describes the
current environment (map area, no-fly zones, support bases), and Goals
have the regions of interest to be reached and the actions to be executed.
We integrate all these Harpia Interface inputs using ROS tools. Mission
Goal Manager will update inputs and ROSPlan knowledge base, while
Mission Planning returns true. In Algorithm 2, the Mission Planning
node calls ROSPlan to generate the problem and a plan to solve it.

If the problem or plan generation do not succeed, we have a problem
and the Mission Goal Manager will receive False reporting it to the
system. For instance, the users can receive a message telling that it was
not possible to execute the mission with the current data. If everything
works, Mission Planning will execute ROSPlan to dispatch an action
to Mission Manager. In Algorithm 3, the Fault Detection system is
called to verify if the action can be executed.

At this point, BN will evaluate the feasibility of the current sequence
of actions. If there is a problem, the system will try re-plan the mission
by calling ROSPlan again with the current UAV state. If it is not pos-
sible to generate a new plan, Mission Planning will receive false and
report that plan generation does not succeed to Mission Goal Manager.
Otherwise, we have re-planned the mission and Mission Manager will
execute the plan actions. Next, we describe how PDDL, BN and path
planning algorithms work in Harpia.
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Fig. 3. Description of the ROS nodes and communication.

Algorithm 1: Mission Goal Manager.

Input : UAV, Map, Goals
ROSPLAN.knowledge base(UAV, Map, Goals)
while Mission_Planning() do
UAV,MAP,Goals < updateInput()
ROSPLAN.knowledge_base(UAV, Map, Goals)
end

Algorithm 2: Mission Planning.

stop « False;
if problem < ROSPLAN.generateProblem() then
if plan — ROSPLAN.generatePlan(problem) then
repeat
action < ROSPLAN.actionDispatch(plan);
if action= =NULL then
| stop < True;
else
| stop < Mission_Manager(action,plan);
until stop;
return stop;

Algorithm 3: Mission Manager.

Input : action,plan
fault < Fault_Detection(action,plan) ;
if fault then
re-plan < ROSPLAN.generatePlan(problem,action,plan);
if not re-plan then
| return False;
Do_Action(action,plan);
return False

4.2. PDDL

The task planning problem is solved by using the PDDL2.1 lan-
guage, which is expressive enough for domain and problem definition.
PDDL2.1 will also facilitate to describe temporal constraints [26]. Fig. 4
gives an overview of the domain, where we assume high-level planning
to schedule actions. For instance, the UAV must load the right input
for spraying. The battery must execute the trajectory, and the on-board

(define (domain harpia)

{:requn‘rements B

:types region - object
base - region)

(:functions
(battery-amount)
{distance ?from-re%ion - region to-region -region)
discharge-rate-battery)

(:predicates

(at ?region - region)

1taken-image ’region - region)

) picture-goal ?region - region)

{:durative-action go_to_picture ...
:durative-action go_to_pulverize ...
:durative-action go_to_base ...
:durative-action recharge_input ...
:durative-action pulverize_region ...
{:durative-action take_imate ...
:durative-action recharge_battery ...

Fig. 4. PDDL Domain overview.

camera must usually be clean after a spraying action. PDDL2.1 allows
us to properly define domain and actions for a temporal constrained
plan, where the UAV can verify preconditions before performing ac-
tions. This will prevent the aircraft going from a region to another
without enough battery, leading it to recharge the battery in a sup-
port base (go_to_base). UAV autonomously goes to the base to load
the battery as often as necessary to carry out a mission.

Fig. 5 illustrate the model for a problem. Our system establishes the
communication between the user and ROSPlan. As mentioned, the user
only needs to provide information about the map, mission goals, and
UAV hardware. The system updates the knowledge base for each mis-
sion request, calls for a plan, and the planned dispatch. In this example,
the mission goals are to capture the images of regions three to six. We
only add the distances between the goals regions and the bases to avoid
unnecessary complexity during the plan schedule search.

4.3. Bayesian Network

The Bayesian Network (BN) is a semantic way to represent prob-
abilistic models, structured as a directed graph [27]. The nodes and
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Fig. 5. PDDL Problem overview.
Table 2
Probability distribution.
Battery Probability Battery Probability
0<Y<15 0.20 15<=Y<30 0.50
30<=Y<60 0.75 60<=Y<80 0.85
- - 80<=Y< =100 0.95

edges represent variables and conditional dependency between nodes,
respectively. Harpia calls a BN within the Fault Detection system every
time ROSPlan activates an action. The idea is to verify the feasibility
of the plan based on the level of the battery. Fig. 6 shows the incre-
mental build process of the BN, which is related to the next action to
be performed, e.g., BN is initiated before the drone takes a picture in
region 2.

Table 2 has the probability distribution employed, based on the Li-
ion discharge voltage curve, where Y is the percentage of available
battery to execute the plan’s selected action, and P(Y) is the chance
of executing such action without a re-planning. For example, we can
have Y =85%, meaning a battery with 85% of the full capacity, where
P(Y)=0.95 is the chance of executing the selected action following the
current plan. Thus, if the probability of executing an action is greater or
equal to keeping the plan, BN evaluates the plan. BN adds a new child
node as the next action and adjusts the previous action as evidence.
The process will continue for the whole plan, or if a node evaluation
demands a re-plan. Fig. 6 shows when the probability of success for an
action is smaller than the drone’s probability of not accomplishing an
action in the future. At this point, the system stops the BN process and
triggers a re-plan.

In Fig. 7, we have a scenario where the system decides to re-plan in
two different points after it calls the BN. In Fig. 7a, the black arrows
represent the original plan, but the BN identifies the need to recharge
before the end. This happens since the percentage of battery consump-
tion becomes greater than expected until this point, which means a
low available battery as the UAV reaches region R2, leading to the re-
plan of the current sequence of actions. The new plan is shown in blue,
where the UAV will go to the base after the action in R4 to recharge
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the battery, mitigating a future hazard. We assume that the battery is
not working as expected, which means the discharge rate is not follow-
ing the desired behavior, e.g., due to wind resistance, an increase in the
previous path to avoid obstacles or even a battery failure. Thus, when
the aircraft arrives at R3 in Fig. 7b, another action is dispatched by
ROSPlan and the BN identifies that it is impossible even to reach R4.
Next, a second re-plan is called and it decides to advance in the battery
recharge.

4.4. Path Planning

The Path Planning system will receive origin, destination, and obsta-
cle positions to calculate a feasible route. It is called by Do_Action() in
Algorithm 3 with trajectories being requested through go_to actions. The
trajectory can be generated by one of the three available algorithms:

Hybrid Genetic Algorithm (HGA) - [16], Rapidly-exploring Random
Trees (RRT) and Potential Field Planning (PFP) - [28].

We made changes in RRT and PFP algorithms to address obstacle
avoidance. RRT applies Ray Casting (RC) algorithm to check collisions
following the approach introduced in [16]. The Ray Casting (RC) algo-
rithm is used in computer graphic applications since it traces rays from
a source and finds the nearest point blocking the beam. Polygons repre-
sent non-fly zones or obstacles in our scenarios, and RRT will avoid such
polygons by using RC to validate the waypoints sampled when building
branches. In this context, RC traces horizontal rays from each waypoint
and calculates the number of intersections with the polygon.

In RRT, we first define the Ray Cast Point (RCp) to verify a way-
point inside the obstacle. If the ray intercepted the polygon an odd
number, the waypoint is inside the area; if it blocked an even num-
ber, the waypoint is outside the area, as summarized by expression (7).
Next, Ray Cast Segment (RCy) checks if there are intersections between
the segment of two consecutive waypoints and the polygons, as stated
by expression (8):

RCp(x..0)) 1 ’ifoE@j @
x.,0,)=
PR 0 , otherwise
0]
RCg(xg,x5,1,0)= leystrl ﬂ@jl ®
j=0

where x; and x| are two consecutive waypoints defining the segment
X, X341, and O is the set of obstacle with O; € O.

Equations (10) and (12) calculate the repulsive field in PFP algo-
rithm, whose novelty is the inclusion of chance-constrains.

PF(x,)= RP(x,) + AP(x,) (C)]
_d(x;,D)
AP(x,) = 70.D) (10)
10|
RP(x)= Y (Pr(x, € Zo)) an
Jj=1
Pr(x,€ Zg)=1-F(x,) 12)

Equation (9) adds up attractive and repulsive potentials in Equa-
tions (10) and (12), respectively. Euclidean distance d(A, B) measures
the UAV’s position (x,) from the destination D, where O is the origin.
The repulsive field applies chance constraints as reported in [15], thus,
the probability of collision with an obstacle Z: , is given by Pr, and @ is
the set of obstacles. Equation (9) indicates how to find Pr from the cu-
mulative distribution function F(x,) as illustrated by Fig. 8 for a normal
distribution.

Each algorithm produces feasible routes at different run times and
generates a path with distinct advantages. Moreover, the path planning
system chooses the path planner based on the situation, where the vari-
ables analyzed to make a choice are: battery health, obstacle quantity
between the regions, and the distance (in a straight line) between the
origin and destination points.
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Fig. 6. BN result example where replan is needed. The images show the addition of new nodes on the BN, setting the actions that happened and calculating the

probability of re-plan for added nodes.

The planner choice is made using K-nearest neighbors (KNN) clas-
sifier with K =3 that evaluated: battery health (), time to run the
algorithm (¢), ratio (r, see Equation (15)), route length (/), quantity
of waypoints (¢q). These variables were normalized following Equation
(16). The variables are calculated for each possible origin and destina-
tion on Map 1 and Map 2, by executing each path planner. Next, the
values of the trajectories are given by Equation (13) and used as input
for training the KNN classifier.

fitness=a+t+r+l+gq (13)
a=bxr 14
mod(xX;, X))
= Zl—l +1 (15)
d(0, D)
6= 270 yoe o) 16)

max(c) — min(c)’
In Fig. 9, we can observe some tendencies in the choice of each

algorithm. For example, HGA is usually chosen when there are fewer
obstacles, while RRT is usually chosen for longer distances.

5. Experimental results

We report simulation results for a real-world quad-copter with the
following configuration: 9 kg of maximum take-off weight (MTOW), 72
km/h of top cruising speed, 22 min of MTOW autonomy, and 7.0 g/w
of MTOW Efficiency. Simulations will not replace the potential findings

in real-world scenarios, and we tried to reduce such impact by using the
real-world model provided by the Gazebo simulator.

Also, since our system operates autonomously, there is no need for
some usual concerns on farms, like loss of communication or minimum
bandwidth between the base station and the UAV. The reason is that
Harpia operates without the need to exchange data with a ground sta-
tion. Thus, under a possible lack of communication or minimum band-
width scenario, Harpia will keep re-planning missions and trajectories
only based on the UAV’s sensors data.

The simulations evaluate Harpia on twenty-one scenarios. Gazebo
PX4 Firmware is employed for drone simulation, and the POPF solver
is executed to plan actions in the PDDL 4.1. We simulate a quad-copter
UAV with 3.5m/s efficient velocity, input capacity for three pulveriza-
tions, on-board camera, and forty minutes of battery autonomy. The
scenarios are defined from the two maps shown in Fig. 1, where Mapl
has one non-fly zone (NFZ) (obstacle), and Map2 has 14 NFZs. We as-
sume three support bases for both maps and missions with two, four,
and six regions of interest (goals).

A total of four levels of battery health is considered for testing the
ROSPlan (Mission Planning), BN (Fault and Diagnosis) and KNN (Path
Planning) response to detect a problem and re-plan actions and trajec-
tories. For instance, if the drone should fly forty minutes but the battery
health is 50% and the discharge rate is two times greater, it will fly only
20 minutes. Table 3 shows the results for each scenario, reporting the
number of re-plannings, the KNN decision made for each path planer,
and average CPU time spent by the POPF solver.
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Fig. 7. Re-planning sequence of actions. The black arrows show the previous sequence of actions, and blue arrows indicate the re-planning one.

Fig. 8. Risk incurred by the uncertainty related to the state x,.
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[
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N
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Fig. 9. KNN and path planner selection based on some features.

The minimum distance in Map 1 for the launch site, region and
base is approximately 3 km, which becomes infeasible for the drone
to fly with 30% of battery health to reach a base. Moreover, we test
the 30% battery health only for Map 2. As it should be expected, the

Table 3
Results for each scenario.

Battery Obstacles  Total
Health Qty Goals

Re-plan  Chosen Path Planners
Needed AG RRT PFP

Average CPU
Plan Time (s)
0.02
0.12
0.76
0.01
0.06
0.2
0.01
0.12
0.84
0.02
0.06
0.2
0.2
0.08
0.23
0.01
0.03
0.24
0.01
0.1
0.13

100%

14

70%

14

50%

14

30% 14

QBN B|NA[B|N(D] BN R|N|D| RN DD
RN =INNOIN W w(o|o|o|o|o|N|o|o|o|o|o|—
QOO H|OB|(O|O(R|N|O|W|O|H|U|N|F| K]
O(WIN(FIHINOR|NN=HINOOO|H] =W AN
WIN| =W RN NNN PPN =N~ W] N -

results in Table 3 indicate the increase in the number of re-planning
calls when the battery health decreases (see Fig. 10). However, the calls
from Mission Planning to POFP solver (ROSPlan) do not increase the
average time spent re-planning actions.

In the decisions about planning and re-planning of missions, sup-
ported by the BN, only 2.3% of them lead the UAV to land with less
than 5% of battery at the end. UAV is supposed to conclude the mis-
sion with at least 5% of battery in our simulations. KNN is also making
decisions as expected since it chooses different planners for different
scenarios. HGA, RRT and PFP were chosen with 100%, 95% and 96%
of accuracy, respectively, based on KNN learning phase. It means that
HGA was properly chosen, based on the learning phase of KNN, while
RRT and PFP were exchanged sometimes by KNN for few scenarios over
the 21 evaluated in Table 3.
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Fig. 10. Re-plan Calls per Battery Health.
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Fig. 11. Execution performance: (a) re-plan calls per goals; (b) CPU time per goals.

Fig. 11a shows the number of re-planning actions based on the num-
ber of goals, while Fig. 11b has the time spent re-planning on Map 1 and
Map 2. Map 2 has more obstacles, which demand re-plannings when the
number of goals increases. However, the overall time is less than 0.84
seconds, which is fast enough for the problem at hand.

There is no re-plan in Map 2 for 70% of battery health once the
max distance between regions of interest is 1 km, and the UAV can fly
for 28 minutes. Otherwise, in the case of 50% and 30% battery health,
we can observe the re-plan increase based on less battery healthy and
more goals to be accomplished in Fig. 11a. The re-plan is a safety mea-
sure for the mission; thus, it is mandatory to find a new plan quickly.
This requirement is satisfied in our model, as shown in Fig. 11b with a
maximum CPU time of around 0.76 seconds.

6. Conclusion

This work introduced Harpia as an autonomous system that com-
bines PDDL for task planning, BN to evaluate mission execution, and
KNN algorithm to select a path planner. The task planning is a Tem-
porally Flexible State Plan, while the path planning must solve a non-
convex problem. Harpia was able to manage battery failure with the

BN, executing the necessary amount of re-planning to accomplish the
mission. BN supported the mission system to make decisions, leading
the UVA to land with the expected battery health in 97.5% times for all
re-plannings executed. KNN selected the path planner to avoid obsta-
cles and reach the region of interest in all scenarios. In this case, KNN
decisions have 100% of accuracy when deciding about HGA execution
as well as 96% and 95% about PFP and RRT, respectively. As future
work, we will validate the current version on a farm. Data from other
sensors can be integrated into the BN as the GPS, improving the system
security and fault detection capabilities. The path planning module will
add other algorithms, such as decision trees or even neural networks to
select the path planners. Finally, to add more security features when a
failure occurs, an emergency system is under development to execute
emergency landing in safe regions.
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