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Effect of the parallel electron current on Geodesic Acoustic Modes (GAM) in a tokamak is analyzed by
kinetic theory taking into the account the ion Landau damping and diamagnetic drifts. It is shown that
the electron current modeled by shifted Maxwell distribution may overcome the phase velocity threshold
and ion Landau damping thus resulting in the GAM instability when the parallel electron current velocity
is larger than the effective parallel GAM phase velocity Rqω. The instability occurs due to its cross term
of the current with the ion diamagnetic drift. Possible applications to tokamak experiments are discussed.
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1. Introduction

Geodesic Acoustic Modes (GAM) driven by geodesic plasma
compressibility in toroidal geometry [1] have actively been stud-
ied theoretically in recent years [1–8]. Oscillations in the geodesic
frequency range have been experimentally detected under wide
range of condition in various tokamaks, during ohmic, neutral
beam (NB), or ion cyclotron resonance heating (ICR) [7–16]. It
is expected that these modes will interact and affect station-
ary plasma rotation [18,19] as well as drift-wave turbulence and
plasma transport as has been observed in experiments [16] and
simulations [19]. In general, GAM eigen-modes are subdivided into
relatively high frequency geodesic mode (GAM) with frequency
ω2

GAM ≈ (7Ti/2 + 2Te)/R2
0mi and ion-sound mode ω2

s ≈ Te/q2 R2
0mi

[3–8,20] where R0 is major radius, q is safety parameter, Te,i elec-
tron and ion temperatures. The high frequency modes are often
observed as mixed with Alfvén eigenmodes (AE) (known as Alfvén
cascades or reversed shear modes, chirping AE, and beta induced
modes [7–11]). In T-10 tokamak experiments [14], the oscillations
exhibiting GAM features are observed across a substantial part of
the minor plasma radius, thus the local frequency of the GAM
ωGAM and the ion sound mode ωs may be close to each other at
some radial locations.
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It is well known that ion sound instability [21] may be driven
by an electric current along magnetic field. Typically, the instabil-
ity occurs only when the electron beam velocity is higher than
the ion sound velocity (v0 > cs) and the electron temperature is
much larger than the ion temperature (Te � 6Ti ). Typically, a high
electron current velocity may appear during current rump-up state
or/and during a counter NB injection in tokamaks [10,15,22].

Here, we investigate whether the parallel electron current can
drive the GAM modes via coupling with the drift dynamics. We
present the kinetic treatment of the GAM type modes by fully tak-
ing into account parallel electron and ion dynamics and the ion
diamagnetic drifts. Drift effect on GAM type modes was studied
before [2,3,7,8], but the electron current was not included. A gen-
eral kinetic treatment of geodesic eigenmodes is rather difficult,
but the procedure is simplified for the geodesic continuum (GC).
We do not consider here the eigen-mode structure, we consider
only the continuum modes, similarly to other papers [3,4,6,7,17].

2. Dispersion equation

We employ the quasi-toroidal set of coordinates (r, ϑ, ζ ) in
the large aspect ratio tokamak approximation [9] R0 � r, where
the circular surfaces (R = R0 + r cos ϑ , z = r sin ϑ ) are formed by
the magnetic field with toroidal and poloidal components, Bζ =
B0 R0/R , Bϑ = rBζ /qR0, and Bϑ � Bζ . The cylindrical coordinate
system is used in the velocity space, where {v⊥ , σ , v‖} are, respec-
tively, the perpendicular, angular, and parallel components with re-
spect of the magnetic field. The standard approach of small Larmor
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radius is assumed to obtain a drift kinetic equation [21,23] in the
form

∂ f

∂ϑ
− iΩ f

w
= eF

mw

[
(w − v0)E3

k0 v2
T

+ 2 + η(w2 + u2 − 3)

2k0 v T ωcdr
E2

− (2w2 + u2)

2v T ωck0 R
E1 sinϑ

]
. (1)

Here Ω = ω/k0 v T i and ωc = eB/mc are the normalized wave
and cyclotron frequencies, Ei are components of wave field where
the parallel field E3 is potential part of electromagnetic field,
E3 = hθ E2, hϑ = Bϑ/B0 is magnetic field inclination, k0 = hϑ/r
is the parallel wave vector, v T e,i = √

Te,i/me,i are thermal veloc-
ities, ∂n0/∂r = −n0/dr is density gradient, ηe,i = ∂ ln Te,i/∂ ln n0,
w = v‖/v T and u = v⊥/v T are normalized space velocities. For
the N = 0 toroidal mode number k0 = 1/qR . Maxwell distribu-
tion function F is assumed for ions and the electron distribution
is Maxwell distribution shifted by the parallel current velocity
V 0, Fe = F (1 + v‖V 0/v2

T e). We use the potential approximation for
the electric fields neglecting the magnetic perturbation. Integrating
Eq. (1) for electrons in the limit ω � v T e/qR (Ω � v T e/v T i in our
notation) and V 0/v T e = μv0 � 1, we obtain the equations for the
electron density perturbations ñe

ns = ein0 R0q

Te

×
[√

π

2
μ

(
v0 + teρ(1 − ηe/2)

)
Es −

(
1 + i

√
π

2
μΩ

)
Ec

]
,

nc = ein0 R0q

Te

×
[√

π

2
μ

(
v0 + teρ(1 − ηe/2)

)
Ec +

(
1 + i

√
π

2
μΩ

)
Es

]

(2)

where μ = v T i/v T e, E3 = Es sinϑ + Ec cosϑ , ñe = ns sin ϑ +nc cosϑ

and the contribution of small electron diamagnetic drift velocity
was combined with the contribution from the parallel current:
w0 = v0 + teρ(1 − ηe/2), where ρ = v T i/drωcihp is the normal-
ized drift parameter. Then, using the radial magnetic drift velocity,
we get the radial component of the electron current

j̃e
r = e

v3
T e

2

∞∫
0

u du

∮
dϑ

∞∫
−∞

Vre fe dw

= e2
i qn0

mωci

×
[

i

√
π

2

μ

2

(
w0 + te

ρ

2
(2 + ηe)

)
Es −

(
1 + iμ

√
π

2

Ω

2

)
Ec

]

(3)

where Vre,i = −(2w2 + u2)v2
T e,i sin ϑ/2Rωce,i , and te = Te/Ti . Us-

ing v0 = 0 in Eq. (1) for ions, we get the equations for the sin θ -
and cos θ -components of the perturbed distribution function

f s = ieiΩqR F Es

Ti(Ω
2 − w2)

(
w + ρ + ηρ

(w2 + u2 − 3)

2

)

− eiqR F Ec

Ti(Ω
2 − w2)

(
w2 + wρ + wρη

(w2 + u2 − 3)

2

)

− ieiΩq(2w2 + u2)F E1

2ωcimi v T i(Ω
2 − w2)

, (4a)

fc = eiqR w F Es
2 2

(
w + ρ + ρη

(w2 + u2 − 3)
)

Ti(Ω − w ) 2
+ ieiΩqR F Ec

Ti(Ω
2 − w2)

(
w + ρ + ηρ

(w2 + u2 − 3)

2

)

− eiqw(2w2 + u2)F E1

2ωcimi v T i(Ω
2 − w2)

. (4b)

These expressions define the ion density perturbations as fol-
lows:

nic = −ein0 R0q

2mi v2
T i

×
[
(2 + √

2Ω Z)Es + i

(√
2

2

(
2 + Ω2η − η

)
Z + Ωη

)
ρEc

]
,

(5a)

nis = ein0 R0q

2mi0 v2
T i

{
iv T i

R0ωci

(√
2
(
Ω2 + 1

)
Z/2 + Ω
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E1
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(2 + √

2Ω Z)Ec

− i
(√

2
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2 + Ω2η − η

)
Z/2 + Ωη
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ρEs

]}
. (5b)

Using the quasi-neutrality condition with the electron density
from Eq. (2), one finds the electric field components in the form

Es = i
{√2π iμw0 − 
√2(Ω2η + 2 − η)Z/2 + ηΩ�teρ}

2[1 + te(1 + √
2Ω Z/2) + √

2π iμΩ/2] Ec, (6a)

Ec = −i
te v T i[Ω + √

2(1 + Ω2)Z/2]
R0ωci D

×
[

1 + te

(
1 + √

2Ω
Z

2

)
+

√
2π

2
iμΩ

]
E1 (6b)

where

D = [
(
√

2Z/2 + 1)te + √
2π iμΩ/2 + 1

]2

− 1

4

{[√
2
((

Ω2 − 1
)
η/2 + 1

)
Z + Ωη

]
teρ − i

√
2πμw0

}2
.

(7)

The ion radial geodesic current is found from the ion distribu-
tion function in Eqs. (4a), (4b)

jri = e2
i n0q

4miωc

{
iρ

[√
2
(
ηΩ4 + 2Ω2 + 2 + η

)
Z/2

+ ηΩ3 + Ω(2 + η)
]

Es

− [√
2Ω

(
Ω2 + 1

)
Z + 2Ω2 + 4

]
Ec

− iv T i

R0ωc

[(
Ω4 + 2Ω2 + 2

)
Z + 2Ω

(
Ω2 + 3

)]
E1

}
. (8)

The final equation for the geodesic continuum, which is ob-
tained from the quasi-neutrality condition j̃e

r + j̃i
r + jp = 0, where

jp is the ion radial polarization current jp = −iωc2 E1/4πc2
A , c A =

B/
√

4πnimi has the form

Ω2/q2 = Ψ/D (9)

where Ψ is given by the expression

Ψ = −D
[√

2
(
Ω4/2 + Ω2 + 1

)
Z + Ω

(
Ω2 + 3

)]
Ω/2

+ te
Ω

2
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2
(
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]

×
〈
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1 + (

√
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2π iμ/2
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Fig. 1. Plot of the threshold velocity and the geodesic continuum frequency as a
function of ρ for η = 3, q = 2, te = 1.0,1.5,2 and 2.8.
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(10)

Here Z = ∫ ∞
−∞ dt exp(−t2)

(t−x) is the dispersion function, where x =
Ω/

√
2.

3. Discussion

The standard dispersion relation for the high frequency GAM
may be found from Eq. (9) in the limit Ω → ∞ and assuming
small imaginary part (γ � ΩG ), which gives

Ω2
G

q2
=

(
ω2

G R2
0

v2
T i

)

≈
[

7

2
+ 2te + 23 + 4te(4 + te)

q2(7 + 4te)
+ 4ρ2t2

e (1 + ηi + 2te)

q2(7 + 4te)

]
.

(11)

The root corresponds to the GAM dispersion with the drift cor-
rection term similar to the expression from Eq. (5) of Ref. [8].
Assuming ρ � w0, we find the imaginary part of the frequency γ
Fig. 2. Plot of the threshold velocity and the geodesic continuum frequencies as a
function of q for te = 1.5, ρ = 0.32, and for different values of η = 1,2,3.

γ ≈
√

π

2

νT iq

2R0

[√
te

me

mi

(
ρ

Ω2
G

(2 + 2ηi + 3te)w0 − 1 − (8 + 4te)
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2
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)
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−Ω2

G

2
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. (12)

For standard GAM at the continuum, the ion Landau damp-
ing [4] is exponentially small and the finite orbit effect (FOW) [23,
24] on the mode dissipation is ignored due to continuum approach
(krρiq)2 � 1. In this case, the electron current may drive the GAM
instability due to the cross-term of the current velocity and plasma

density gradient, V 0(1+ηi+3te/2)
ωcidr

>
ω2

G R2
0

2v2
T i

q2.

Asymptotic equations (11) and (12) are valid in the limit of
large q. To accurately obtain the geodesic continuum mode and
the threshold velocity for moderate values of q and ρ , we calcu-
late the Ψ and D functions in Eq. (9) numerically. The results of
calculation of the GAM frequency and the instability threshold are
shown below as a function of the dimensionless parameters (te –
electron/ion temperature ratio, q – safety factor, ρ = v T i/drωcihp

normalized diamagnetic drift frequency, and η = ηi = ηe the rel-
ative temperature gradient parameter). We note that threshold is
defined by the formal condition γ = 0.

The threshold velocity decreases fast as an inverse function
of the drift parameter as demonstrated in Fig. 1. The GAM fre-
quency follows the GAM dispersion (12) and the proportional to
the ρ-parameter. The ρ-parameter increases slowly with the elec-
tron temperature in the range (1 � te � 2.8).
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Next, the dependence of the GAM frequency and the threshold
as a function of q is shown in Fig. 2, for different values of the
temperature gradient parameter.

Numerical calculations of the GAM continuum frequency shown
in Fig. 2 mainly follow the analytical results in Eq. (7). The real
frequency is weakly dependent of the η-parameter. The threshold
velocity grows roughly linear with q-parameter and the depen-
dence on η is more pronounced.

To clarify a physics reason of the instability, we appoint stand-
ing wave property (M = 0,±1) of geodesic modes, when the in-
verse Landau drive for k‖ = 1/qR is exactly compensated by the
Landau damping for k‖ = −1/qR and instability of the modes will
be absent. For same reasons, only square of the drift frequency ap-
pears in the N = 0 GAM dispersion [3,7,8]. In our case of interplay
(synergy effect) between the electron current and drift effect, the
cross-terms like k‖V 0 · Mωdrift ∼ ρw0 may appear in the imagi-
nary and real parts of the GAM dispersion, due to that we have
the same sign for M = ±1 in these terms that is the origin the
instability.

The presented results concerned with the GAM continuum. The
eigenmode solutions are possible near the maximum or minimum
of the continuum [6,11,25,26]. This condition may be realized in
the case of reversed shear configurations observed in series exper-
iments in tokamaks (e.g. in [9,10,15,22]). Finite Larmor radius ef-
fects [26] due to polarization current modification may determine
the mode radial structure by the factor (1 − (3/4)k2

r ρ
2
Li). Thus, the

unstable geodesic eigenmode may have radial structure above con-
tinuum minimum k2

r ρ
2
Li ≈ (1 − ω2

G min/ω2). We note that similar
dispersion may appear due to finite banana width effect [24].

Recently, during plasma current ramp up in JT-60 [22], the
GAMs have been observed together with NB counter injection that
forms reversed shear configuration. The modes are reported as
energetic-particle geodesic modes (EGAMs) with the frequency ap-
proximately half of the core GAM frequency, but the modes do
not appear during co-NB injection. That is something disagreement
with existing EGAM theory [27] that also assumes the high ener-
getic particle pressure of the order of the bulk pressure. A time-
delay is necessary for the EGAM excitation to obtain the high
pressure that does not observed in JT-60. Here, we present some
alternative model of this effect. We suggest that this geodesic
mode is the above-discussed unstable standard GAM with respec-
tive frequency driven by the electric current and localized at the
q-minimum of the continuum that formed due to reversed shear
configuration. The estimated velocity of the current at the q = 4
minimum V 0 = 2rc2

A/Rqωci ≈ 4 · 108 cm/s � ωRq is much higher
then the GAM phase velocity that is necessary for instability and
the time delay may be about few electron–ion collision time,
which is necessary to transfer the ctr-NB energy and momentum
to inverse the electron distribution. We also note that the FOW
damping threshold [23] is very small for radial mode kr � ωci/v T iq
in comparison with electron one in Eq. (12).

Finally, we conclude that our analytical and numerical calcu-
lations show that the standard geodesic mode may be unstable
when the current electron velocity of the Ohm’s current is above
the phase velocity V 0 > ωRq. The instability may be observed in
the ramp up current phase in tokamaks with counter-NB injection
at the position, where the inversed shear profile is formed. The in-
stability is rather weak (γ ∝ ωGAM v T i/v T e), but it may serve as
some indicator for diagnostics of plasma parameters [10,11].
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