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1 Introduction

Many Engineering problems involve the minimization of discontinuous func-
tions. For example, process models with discontinuous investment costs and fixed
charges [17], continuous review (s,q) inventory systems with constant demand and
batch arrivals [10], design of flow sheets for systems that satisfy fixed demands of
steam, electricity, and mechanical power [12], models for expansion of capacity of
telecommunications networks [16], capacity and flow assignment problems [11], and
optimal plastic design [15]. Different techniques have been considered for solving
these problems, like integer programming [11], decomposition [16], simulated anneal-
ing [12], among others.

The problem considered in this paper is

Minimize f (x) subject to x ∈ �, (1)

where f : Rn → R and ∅ �= � ⊆ R
n . (Note that f (x) < ∞ for all x ∈ R

n .) We will
consider problem (1) with no assumptions on the continuity of the objective function.
The idea is to replace the objective function with (possibly smooth) approximations
with which it is easier to deal numerically. We will derive conditions under which
optima of the approximating functions are suitable approximations for the original
problem.

Many times, practical methods related with this approach rely on smoothing ideas.
Smoothing methods for minimizing non-differentiable continuous function have been
extensively considered in the optimization literature (see [9] and the references therein)
whereas the case in which the objective function is discontinuous is rarely encountered
[13,20]. Direct search methods and methods for discontinuous bounded factorable
functions have been introduced recently in [18] and [19], respectively.

Uniform convergence of a sequence of continuous functions implies continuity
of the limit function f . So, in order to exploit the approximation of a discontinu-
ous function by continuous ones we must rely in pointwise approximation. In this
work we deal with the problem of minimizing a (possible discontinuous) function f
with constraints. The goal is to investigate the minimization properties of pointwise
approximations of f .

This paper is organized as follows. In Sect. 2, we assume that finding almost global
minimizers of the approximating functions is possible andwe investigate the properties
of an algorithm that proceeds by almost-minimization of such approximations with
respect to the global minimization of the objective function. In Sect. 3 we address
the most frequent situation in which smooth global minimization is not affordable.
Assuming smoothness of the constraints, an algorithm is defined that, at each itera-
tion, finds an Approximate KKT point of a smooth approximation of f . We prove
that the points so far obtained are interesting candidates to approximate a solution
of the original problem since they obey a theoretical property that is shared by local
minimizers. In Sect. 4 we provide some numerical examples of the approach described
in the previous sections. Some conclusions are drawn in the last section.

Notation N denotes the set of natural numbers {1, 2, . . . }. ‖ · ‖ denotes an arbitrary
norm on R

n .
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2 Global results

Let { fk} be a sequence of functions such that fk : Rn → R. Assumption A1 below
states that this sequence converges pointwise to f .

Assumption A1 For all k ∈ N, fk : Rn → R is such that

lim
k→∞ fk(x) = f (x) for all x ∈ �.

For an arbitrary nonempty set A ⊆ Rwe say that s ∈ R∪{−∞} is the infimum of A
if s is the biggest lower bound of A. In Theorem 2.1 we will prove that, under Assump-
tionA1, the infimumof fk is, asymptotically, not greater than the infimumof f onto�.

Theorem 2.1 If Assumption A1 holds, we have that

lim inf
k∈N

inf
x∈�

fk(x) ≤ inf
x∈�

f (x). (2)

Proof Let a ∈ R be such that

a > inf
x∈�

f (x).

Therefore, there exists z ∈ � such that f (z) < a. Then, by Assumption A1, for all k
large enough we have that fk(z) < a. Therefore, for all k large enough,

inf
x∈�

fk(x) < a.

This implies that

lim inf
k∈N

inf
x∈�

fk(x) ≤ a.

Thus, since a > inf x∈� f (x) was arbitrary,

lim inf
k∈N

inf
x∈�

fk(x) ≤ inf
x∈�

f (x),

as we wanted to prove. ��
The usefulness of the sequence of functions { fk} for solving (1) relies on the possi-

bility that minimizing fk could be much easier than minimizing f . For example, if the
functions fk have enough structure, one can use structure-oriented global optimization
methods for their minimization [5]. The following algorithm describes a simple way
to use the pointwise approximation sequence fk with the purpose of minimizing f .

Algorithm 2.1. Let τ ∈ (0, 1) and a sequence { fk} satisfying Assumption A1 be
given. Initialize k ← 1 and ε1 > 0.
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Step 1. Employing some global optimization method, suitable for functions with the
structure of fk , find xk ∈ � such that

fk(x
k) ≤ inf

x∈�
fk(x) + εk . (3)

Step 2. Set εk+1 = τεk , k ← k + 1, and go to Step 1.

Property (3) is usually guaranteed by global optimization solvers. Theorem 2.2
provides the elements to prove the main property of Algorithm 2.1, without using the
specific structures of the function f or the pointwise approximations fk .

Theorem 2.2 If Assumption A1 holds and the sequence {xk} is generated by Algo-
rithm 2.1, we have that

lim inf
k∈N

fk(x
k) ≤ inf

x∈�
f (x). (4)

Proof Let a ∈ R be such that a > infx∈� f (x). Therefore, there exists z ∈ � such
that f (z) < a. Define η = (a − f (z))/2 > 0. Since fk(z) → f (z), there exists
k0 ∈ N such that fk(z) ≤ f (z) + η for all k ≥ k0. Therefore, for all k ≥ k0,

inf
x∈�

fk(x) ≤ fk(z) ≤ f (z) + η.

Then, by (3),

fk(x
k) ≤ inf

x∈�
fk(x) + εk ≤ f (z) + η + εk

for all k ≥ k0. But, since η < a − f (z), this implies that

fk(x
k) ≤ a + εk for all k ≥ k0.

Since this inequality holds for all a > inf x∈� f (x), we have that

fk(x
k) ≤ inf

x∈�
f (x) + εk for all k ≥ k0.

Since εk tends to zero, this implies the desired result. ��
Observe that inequality (2) cannot be converted into an equality. In fact, assume

that f (x) = 0 for all x ∈ R
n , fk(x) = 0 for all x �= 1/k, and fk(1/k) = −1. The

sequence fk(x) converges to 0 for all x ∈ R
n and the right-hand side of (2) is 0.

However, the left-hand side is −1. In Theorem 2.3 the equality is obtained through
the assumption that fk(x) over-estimates f (x). This assumption is stated below.

Assumption A2 For all k ∈ N, fk : Rn → R is such that

fk(x) ≥ f (x) for all x ∈ �.

Theorem 2.3 If Assumptions A1 and A2 hold, we have that

lim inf
k∈N

inf
x∈�

fk(x) = inf
x∈�

f (x).
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Proof Since fk(x) ≥ f (x) we have that

lim inf
k∈N

inf
x∈�

fk(x) ≥ lim inf
k∈N

inf
x∈�

f (x) = inf
x∈�

f (x).

Therefore, the thesis follows from Theorem 2.1. ��
Theorem 2.4 If Assumptions A1 and A2 hold and the sequence {xk} is generated by
Algorithm 2.1, we have that

lim inf
k∈N

fk(x
k) = inf

x∈�
f (x).

Proof It follows from fk(xk) ≤ infx∈� fk(x)+εk and the fact that εk tends to zero. ��
Corollary 2.1 In addition to the hypotheses of Theorem 2.4, assume that x∗ is a global
minimizer of f (x) onto�. Then, there existsK, an infinite subsequence ofN, such that

lim
k∈K

fk(x
k) = f (x∗).

Proof Firstly, note that, by the hypothesis, f (x∗) = infx∈� f (x). The rest of the proof
comes from the manipulation of the concepts of infimum and limit. ��

Remarks The simple results presented here use neither continuity of f or its approx-
imations fk . Moreover, convergence of fk to f does not need to be uniform and � is
an arbitrary set. The main application of these results corresponds to the case in which
the functions fk are more smooth than f . For example, when f is not continuous
while the approximations fk have continuous derivatives, one can use smooth stan-
dard algorithms for minimizing fk in order to obtain approximations of the minimum
of f .

3 Affordable algorithm and stopping criterion

In this section we will assume that a sequence { fk} that satisfies Assumption A1 is
available and that the set � has the form given in Assumption A3 below.

Assumption A3 The domain � is the set of x ∈ R
n such that

h(x) = 0 and g(x) ≤ 0, (5)

where h : Rn → R
m and g : Rn → R

p admit continuous first derivatives for all
x ∈ R

n.

Moreover, we will use the following assumption.

Assumption A4 The functions fk admit continuous first derivatives for all x ∈ R
n.
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Whereas Algorithm 2.1 assumes that we are able to find (almost) global minimizers
of fk(x) subject to x ∈ �, the algorithm defined in this section is less ambitious. We
will only assume that it is possible to find almost stationary points of fk(x) onto
�. Well established algorithms that are successful for that purpose will be called
Standard Algorithms here. The main convergence property of Standard Algorithms is
given below.

Property P1 Assume that {z�} is a sequence generated by a Standard Algorithm
applied to the minimization of fk(z) subject to h(z) = 0 and g(z) ≤ 0, where fk
satisfies Assumption A4 and h and g are as in Assumption A3. Assume, moreover,
that {z�} admits a limit point zlim. Then, at least one of the following two possibilities
hold:

1. For all ε > 0, there exists an iterate z� such that

‖∇ fk(z�) + ∇h(z�)λ� + ∇g(z�)μ�‖ ≤ ε,

‖h(z�)‖ ≤ ε,

‖g(z�)+‖ ≤ ε,

min{μ�
i ,−gi (z�)} ≤ ε for all i = 1, . . . , p,

(6)

for some λ� ∈ R
m and μ� ∈ R

p
+, and the distance between z� and zlim is smaller

than ε.
2. The limit point zlim is infeasible and stationary for the infeasibility measure. This

means that

‖h(zlim)‖ + ‖g(zlim)+‖ > 0 and ∇
[
‖h(zlim)‖22 + ‖g(zlim)+‖22

]
= 0. (7)

Property P1 is satisfied by many well established smooth optimization algorithms,
for example the Augmented Lagrangian method Algencan, described in [2,7]. Essen-
tially, Property P1 means that Standard Algorithms applied to the minimization of
fk(z) subject to h(z) = 0 and g(z) ≤ 0, under Assumptions A3 and A4, converge
to AKKT (Approximate KKT) points [3,7,14]. Note that, for the fulfillment of Prop-
erty P1, no constraint qualifications are necessary at all. The fulfillment of Property P1
by existent methods when applied to the problems that consists on minimizing fk(z)
onto � allows us to define the following algorithm.

Algorithm 3.1. Let x0 ∈ R
n , τ ∈ (0, 1), a sequence { fk} satisfying Assumptions A1

and A4, ε > 0, and kbig ∈ N be given. Initialize k ← 1 and ε1 ≥ ε.

Step 1. Employing some Standard Algorithm for minimizing fk(z) subject to x ∈ �

(possibly starting from xk−1), find xk that satisfies (6) with ε substituted by εk .

Step 2. If k ≥ kbig and εk ≤ ε, stop.

Step 3. Set εk+1 = max{ε, τεk}, k ← k + 1, and go to Step 1.

Due to the definitions given, the proof of the following theorem is straightforward.

Theorem 3.1 Let Assumptions A1, A3, and A4 hold. Assume that the sequence {xk}
is generated by Algorithm 3.1. Assume, further, that, for all k ∈ N, the sequence
potentially generated by the Standard Algorithm for minimizing fk(z) subject to z ∈ �
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is bounded and that any limit point of such sequence belongs to�. Then, Algorithm 3.1
is well-defined and stops satisfying k ≥ kbig and (6).

Proof By the hypothesis, for all k ∈ N, the sequence generated by the Standard
Algorithm for minimizing fk(z) subject to z ∈ � is bounded and, so, it admits a limit
point. Also by the hypothesis, such limit point is feasible. Therefore it does not satisfy
(7). This means that, by Property P1, there exists � ∈ N such that (6) holds. Therefore,
Algorithm 3.1 is well defined for all k ∈ N. Taking k ≥ kbig we obtain the desired
result. ��

Algorithm 3.1 is well defined under the assumptions that the sequences generated
by the Standard Algorithm are bounded and that limit points of those sequences are
feasible. Boundedness is generally guaranteed by assumptions on the constraints, for
example, when some of these constraints define a box � ≤ x ≤ u. The non-existence
of infeasible limit points is implied by the non-existence of infeasible stationary points
of the constraints. This property depends only on the smooth constraints h(x) = 0
and g(x) ≤ 0 and it is not possible to guarantee that such points do not exist, except
in particular cases. For this reason, in practice, we must include a stopping criterion
that detects that, possibly, the Standard Algorithm iteration is close to a limit point
that fulfills (7).

In the case that the assumptions of Theorem 3.1 hold, even if the sequence {xk}
converges to a point at which f is not differentiable, the gradient ∇ fk(xk) tends to be
a linear combination of the gradients of the constraints, as stated in (6). In particular,
if there are no constraints at all, the gradient ∇ fk(xk) tends to zero.

We have presented an algorithm that, under reasonable conditions, stops at a point
that satisfies k ≥ kbig and (6). The question that naturally arises is: Is the stopping
criterion based on k ≥ kbig and (6) reasonable? In other words, do these properties
tell us something about the optimality of the solution found by Algorithm 3.1?

Let us give an example: Imagine, for a moment that we deal with smooth uncon-
strained minimization. Why we believe that the approximate annihilation of the
gradient of the objective function is a suitable stopping criterion for related algorithms?
The answer, of course, is that at local minimizers that gradient is null. Therefore,
although we cannot be sure that we stop at local minimizers, at least we stop at points
that verify a property that is satisfied by local minimizers.

In the same sense, we will prove now that, roughly speaking, if x̄ is a local min-
imizer of f (x) subject to x ∈ �, the stopping conditions k ≥ kbig and (6) hold at
x̄ . Note that the formulation of the stopping conditions k ≥ kbig and (6) is based on
a sequence of approximating functions that satisfy Assumptions A1 and A4, but not
necessarily A2. In order to guarantee that those conditions hold at a local minimizer
we need to assume A2. The condition A2 plays, with respect to the stopping criterion
based on k ≥ kbig and (6), the same role that constraint qualifications (for example,
linear independence of active constraints) play with respect to KKT conditions in non-
linear programming: Constraint qualifications guarantee that local minimizers satisfy
KKT conditions, but one considers that the fulfillment of KKT is a good symptom
of optimality, independently of the satisfaction of the constraint qualification. (This
observation should not be confused with the notion of AKKT conditions for smooth
constrained optimization, which do not employ constraint qualifications at all.)
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Theorem 3.2 Assume that x̄ is a local minimizer of f (x) subject to x ∈ � and that
� and { fk} fulfill Assumptions A1, A2, and A4. Then, there exists a sequence {xk}
that converges to x̄ and such that, for all kbig ∈ N and ε > 0, there exists k ≥ kbig,
λk ∈ R

m, and μk ∈ R
p
+ satisfying (6).

Proof Define

f̄ (x) = f (x) + ‖x − x̄‖22
and

f̄k(x) = fk(x) + ‖x − x̄‖22
for all x ∈ � and k ∈ N. By Assumption A1,

lim
k→∞ f̄k(x) = f̄ (x) for all x ∈ �. (8)

Moreover, as x̄ is a local minimizer of f onto �, there exists δ > 0 such that, for all
x ∈ � with 0 < ‖x − x̄‖2 ≤ δ, one has that f̄ (x) > f̄ (x̄) = f (x̄). Thus, x̄ is a strict
local minimizer of f̄ (x) onto �.

For all k ∈ N, let Bk be the closed Euclidean ball with center x̄ and radius δ/k, and
let Sk be the boundary of this ball. Since � is closed, �∩ Bk and �∩ Sk are compact.
Therefore, by continuity, f̄k(x) admits a global minimizer onto � ∩ Bk for all k ∈ N.

Since x̄ is a local minimizer on Bk we have that, for all x ∈ Sk ,

f (x̄) ≤ f (x).

Therefore,

f (x̄) < f (x) + ‖x − x̄‖2
2

.

This implies that

f (x̄) < f (x) + ‖x − x̄‖2 − ‖x − x̄‖2
2

.

So, by the definition of f̄ ,

f (x̄) < f̄ (x) − ‖x − x̄‖2
2

= f̄ (x) − (δ/k)2/2. (9)

By Assumption A1 there exists jk ∈ N such that jk > jk−1 if k > 1 and

f jk (x̄) < f (x̄) + (δ/k)2/4.
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Then, by (9),

f̄ jk (x̄) < f̄ (x) − (δ/k)2/4.

Then, by Assumption A2,

f̄ jk (x̄) < f̄ jk (x) − (δ/k)2/4.

Since this inequality holds for all x ∈ Sk it turns out that the global minimizer of
f̄ jk (x) subject to x ∈ Bk ∩ � does not belong to Sk .
Let zk be the global minimizer of f̄ jk (x) subject to x ∈ Bk ∩ �. We proved

above that ‖zk − x̄‖ < δ/k. Therefore zk is a local minimizer of f jk (x) subject to
h(x) = 0 and g(x) ≤ 0. Then, by the AKKT property of local minimizers of smooth
functions [3,7], we have that there exist xk ∈ R

n , λk ∈ R
m and μk ∈ R

p
+ such that

‖xk − zk‖ < δ/(2k), and, in addition, (6) holds. Moreover, since jk > jk−1 for k > 1
it turns out that, eventually, jk ≥ kbig. This completes the proof. ��

4 Numerical examples

In this section we present illustrative examples on the application of Algorithm 3.1.

4.1 Avoiding the greediness phenomenon in penalty methods for nonlinear
programming

In this section, we present an application of a smoothing process to the solution of
optimization problems of the form

Min ϕ(x) subject to g(x) ≤ 0, (10)

where ϕ : Rn → R and g : Rm → R are continuously differentiable. Let � = {x ∈
R
n | g(x) ≤ 0} be the feasible region and let ϕub ∈ R be such that ϕ(x) ≤ ϕub for all

x ∈ �, assumed to be known. It is easy to see that solving problem (10) is equivalent
to solving the discontinuous unconstrained optimization problem given by

Min f (x),

where

f (x) =
{

ϕ(x), if x ∈ �,

ϕub + 
(x), otherwise,

and


(x) =
m∑
i=1

max{0, gi (x)}2.
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Let {ωk}∞k=1 such that ωk → 0 when k → ∞ and {κk}∞k=1 such that κk → ∞ when
k → ∞ be given sequences of positive numbers. We define

�k = {x ∈ R
n | g(x) ≤ −ωk} ⊆ � and �̄k = �\�k,

and we also define ϕk(x) : � → R as

ϕk(x) =
{

ϕ(x), if x ∈ �k,

ϕ(x) [1 − Hk(x)] + (
ϕub + 
(x)

)
[Hk(x)] , if x ∈ �̄k,

(11)

where

Hk(x) = κk
k(x)

1 + κk
k(x)

and


k(x) =
m∑
i=1

max{0, gi (x) + ωk}2.

Note that (11) is equivalent to:

ϕk(x) = ϕ(x) [1 − Hk(x)] +
(
ϕub + 
(x)

)
[Hk(x)] for all x ∈ �.

We now define the sequence of continuously differentiable functions fk : Rn → R

given by

fk(x) =
{

ϕk(x), if x ∈ �,

ϕub + 
(x), otherwise.

Clearly, fk(x) ≥ f (x) for all k and all x ∈ R
n , since, by definition, ϕk(x) ≥ ϕ(x) for

all k and all x ∈ �. Moreover, it is also easy to see that limk→∞ fk(x) = f (x) for all
x ∈ R

n . Thus, Assumptions A1, A2, and A4 are fulfilled by the sequence { fk}.
Summing up, in the application being described, the original nonlinear pro-

gramming problem (10) is modeled as an equivalent discontinuous unconstrained
minimization problem, which is tackled by solving a sequence of smooth uncon-
strained problems of the form

Min fk(x)

for k = 1, 2, . . . . The smooth functions fk(x) were constructed in such a way that
the original objective function ϕ(x) in (10) plays no role whenever x /∈ �. This was
done with the purpose of avoiding an inconvenience of penalty methods known as
greediness, which is the tendency of being attracted by spurious infeasible points at
which the objective function goes to minus infinity (see [4,8] for details).
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Table 1 Results of applying Algorithm 3.1 to Example 4.1.1.

k εk ωk κk # it ‖xk‖2
∏10

i=1 x
k
i

1 10−4 10−4 10 0 5.6250000D−01 7.3735355D−08

2 10−5 10−5 102 0 5.6250000D−01 7.3735355D−08

3 10−6 10−6 103 215 9.9999903D−01 −9.9999512D−06

4 10−7 10−7 104 5 9.9999990D−01 −9.9999950D−06

5 10−8 10−8 105 5 9.9999999D−01 −9.9999994D−06

Example 4.1.1

Min
10∏
i=1

xi subject to 0.25 ≤ ‖x‖22 ≤ 1.

We consider a random initial guess x0 = 0.75 x̄0/‖x̄0‖2, where x̄0 is such that its
components x̄0i are random values with uniform distribution in the interval [−1, 1].
It is worth noting that when a classical optimization method based on penalization
is applied to this problem, the sequence of iterates xk diverges very quickly and∏10

i=1 x
k
i → −∞ when k → ∞. This is what happens when, for example, the Aug-

mented Lagrangian method Algencan [2,7] is applied to this problem.
Wenowdescribe the application ofAlgorithm3.1. Since, for each k, the subproblem

of minimizing fk at Step 1 of Algorithm 3.1 is an unconstrained smooth problem,
the method proposed in [6], named Gencan, was used as the “Standard Algorithm”
required to tackle the subproblems. We considered ε1 = 10−4. In the definition of fk ,
we set ω1 = 10−4 and κ1 = 10 and, for k > 1, ωk = ωk−1/10 and κk = 10κk−1.
Table 1 shows the results. For each k ∈ {1, . . . , 5} the table displays the values of ωk

and κk that define fk , the tolerance εk used to stop the process of minimizing fk at a
point xk such that ‖∇ fk(xk)‖∞ ≤ εk , the number of iterations ‘#it’ required to achieve
this stopping criterion, the values of ‖xk‖2 (from which feasibility can be observed),
and the objective functional value

∏10
i=1 x

k
i . In the five calls, Gencan successfully

solved the subproblems. In the first two subproblems, the initial guess satisfies the
stopping criterion, meaning that x2 = x1 = x0. The main work is done minimizing
f3 to obtain x3 that already is a reasonable approximation to the solution. The last two
optimizations (of f4 and f5) are very quick and simple increase the number of correct
digits in the solution. At the end, we have, as expected, x5i ≈ 1/

√
10 for i = 1, . . . , 10.

4.2 Additional illustrative problems

In this section we show the performance of the introduced method when applied to
the four problems considered in [18], where direct search methods for minimizing
discontinuous functions were introduced. The four problems are two-dimensional
bound-constrained problems of the form
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Minimize f (x) subject to x ∈ � ≡ [−1, 1]2,

where function f is discontinuous and is given by one of the four functions defined
below:
Example 4.2.1

f (x) =
{
f1(x) ≡ x21 + x22 , if x ∈ �1 ≡ {x ∈ R

2 | x1/2 ≤ x2 ≤ 2x1},
f2(x) ≡ x21 + x22 + 10, if x ∈ �2 ≡ �\�1.

Example 4.2.2

f (x) =
{
f1(x) ≡ 10x21 + x22 , if x ∈ �1 ≡ {x ∈ R

2 | x1 ≥ 0},
f2(x) ≡ 10x21 + 10x22 , if x ∈ �2 ≡ �\�1.

Example 4.2.3

f (x) =
{
f1(x) ≡ x21 + x22 , if x ∈ �1 ≡ {x ∈ R

2 | x2 = 2x1},
f2(x) ≡ x21 + x22 + 10, if x ∈ �2 ≡ �\�1.

Example 4.2.4

f (x) =

⎧
⎪⎪⎨
⎪⎪⎩

f1(x) ≡ x21 + x22 , if x ∈ �1 ≡ {x ∈ R
2 | x1/2 ≤ x2 ≤ 2x1},

f2(x) ≡ x21 + x22 + 5, if x ∈ �2 ≡ {x ∈ R
2 | x1 ≤ 0 and x2 ≤ 0}\�1,

f3(x) ≡ x21 + x22 + 10, if x ∈ �3 ≡ {x ∈ R
2 | x2 ≤ x1/2 and x1 ≥ 0}\ (�1 ∪ �2) ,

f4(x) ≡ x21 + x22 + 15, if x ∈ �4 ≡ �\ (�1 ∪ �2 ∪ �3) .

These problems were tackled by solving a sequence of bound-constrained smooth
problems given by

Minimize fk(x) subject to x ∈ � ≡ [−1, 1]2, (12)

for k = 1, 2, . . . . Note that, by definition, the feasible set � satisfies Assumption A3.
In Examples 4.2.1–4.2.3, we have that

fk(x) =
(
1 − H1

k (x)
)
f1(x) + H1

k (x) f2(x),

H1
k (x) = κkω1(x)

1 + κkω1(x)
,

and ω1(x) is the squared infeasibility measure associated with �1. This means that if
we assume that �1 is defined as �1 ≡ {x ∈ R

n | h(x) = 0 and g(x) ≤ 0}, where
h : Rn → R

m and g : Rn → R
p are smooth functions (as it is in fact the case in

the considered examples) then ω1(x) is given by ‖h(x)‖22 + ‖g(x)+‖22. The sequence{κk} is a sequence of positive numbers that goes to infinity when k goes to infinity. In
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the numerical experiments, we considered κk = 10k . In Example 4.2.4, we define the
squared infeasibility measures ωi associated with the sets �i and the corresponding
Hi
k functions for i = 1, 2, 3. In this case, fk is given by

fk(x) =
(
1 − H1

k (x)
)
f1(x) + H1

k (x)

×
{(

1 − H2
k (x)

)
f2(x) + H2

k (x)

[(
1 − H3

k (x)
)
f3(x) + H3

k (x) f4(x)

]}
.

In the four cases, the sequence { fk} satisfies Assumptions A1 and A4 although, in
general, does not satisfy Assumption A2.

We now describe the application of Algorithm 3.1. This time, for each k, the sub-
problem that is solved at Step 1 of Algorithm 3.1 is the bound-constrained smooth
problem (12). Once again, the subproblems were solved using the bound-constrained

Table 2 Results of applying Algorithm 3.1 to Examples 4.2.1–4.2.4.

k εk κk #it #fcnt #gcnt fk (x
k ) xk

Example 4.1.1

1 10−4 10 5 28 14 4.3e−24 (1.7e−12, 8.8e−13)

2 10−5 102 0 1 2 8.1e−24 (1.7e−12, 8.8e−13)

3 10−6 103 1 2 4 3.9e−24 (1.7e−12, 8.8e−13)

4 10−7 104 0 1 2 3.9e−24 (1.7e−12, 8.8e−13)

5 10−8 105 0 1 2 3.9e−24 (1.7e−12, 8.8e−13)

Example 4.1.2

1 10−4 10 1 2 6 1.7e−16 (4.2e−9, 7.5e−10)

2 10−5 102 0 1 2 1.7e−16 (4.2e−9, 7.5e−10)

3 10−6 103 0 1 2 1.7e−16 (4.2e−9, 7.5e−10)

4 10−7 104 0 1 2 1.7e−16 (4.2e−9, 7.5e−10)

5 10−8 105 1 2 4 4.6e−19 (−1.2e−12, 6.8e−10)

Example 4.1.3

1 10−4 10 3 25 10 1.3e−17 (1.6e−9, 3.2e−9)

2 10−5 102 0 1 2 1.3e−17 (1.6e−9, 3.2e−9)

3 10−6 103 1 2 4 1.3e−17 (1.6e−9, 3.2e−9)

4 10−7 104 0 1 2 1.3e−17 (1.6e−9, 3.2e−9)

5 10−8 105 0 1 2 1.3e−17 (1.6e−9, 3.2e−9)

Example 4.1.4

1 10−4 10 3 25 11 5.7e−14 (2.1e−7, 1.0e−7)

2 10−5 102 0 1 2 5.7e−14 (2.1e−7, 1.0e−7)

3 10−6 103 0 1 2 5.7e−14 (2.1e−7, 1.0e−7)

4 10−7 104 1 2 4 3.3e−33 (5.9e−17, 2.5e−17)

5 10−8 105 0 1 2 3.3e−33 (5.9e−17, 2.5e−17)
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solver Gencan. We considered ε1 = 10−4 and κ1 = 10 and, for k > 1, εk = εk−1/10
and κk = 10κk−1. Table 2 shows the results. For each k ∈ {1, . . . , 5}, the table dis-
plays the value of κk that defines fk , the tolerance εk used to stop the process of
minimizing fk at a point xk such that ‖P�(xk − ∇ fk(xk)) − xk‖∞ ≤ εk (that, for
convex-constrained minimization is a stopping criterion equivalent to (6)), the number
of iterations, functional evaluations, and gradient evaluations (#it, #fcnt, and #gcnt,
respectively) required to achieve this stopping criterion for the kth subproblem, the
value of fk(xk), and the point xk itself. The initial point was always a random initial
point x0 ∈ [−1, 1]2.

As it can be seen in Table 2, whenAlgorithm 3.1 is applied to Example 4.1.1, almost
all the work is done when k = 1. The point x1 is also a solution for the subproblem
corresponding to k = 2 and this is the reason why nothing is done at the second
iteration of the algorithm. Then, a single iteration of the bound-constrained solver
Gencan is done when minimizing f3 starting from x2 = x1 to obtain x3 that is almost
identical to the previously obtained points. The process continues with x3 = x4 = x5.
The performance is analogous in the other three examples and themethod found a good
approximation to the known solution x∗ = (0, 0)T in all cases using a reduced number
of functional evaluations. On the one hand, if these results are compared to the ones
reported in [18], it can be concluded that Algorithm 3.1 is very effective and efficient
(themethod proposed in [18] fails, as supported by the underlying theory,when applied
to Example 4.1.3 because �1 has an empty interior). The method proposed in the
present work also performs a very reduced number of functional evaluations when
compared to the one introduced in [18]; although in the present context a single
evaluation of fk means evaluating all parts of the piecewise defined functions f and
∇ fk(·) is also evaluated. On the other hand, building fk requires to have access to
the piecewise definition of f ; while the method proposed in [18] may be applied to
black-box discontinuous functions.

5 Conclusions

The theoretical results presented in this paper showed that, under verymild conditions,
assuming global minimization of subproblems, global minimizers of the original dis-
continuous problem are obtained. Moreover, if we only assume that the subproblems
solver finds asymptotically stationary points, the sequence generated by the algorithm
converges to points that satisfy a sequential optimality condition. Obviously, it is not
possible to claim universal robustness or efficiency of smoothing methods that obey
the assumptions given here. However, illustrative numerical experiments showed that
this approach can be useful to solve interesting problems. For example, applications
to smoothed quantile regression [1] seems to be attractive and will deserve to be
considered in the near future.
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