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Context: Technical debt (TD) refers to non-optimal decisions made in software projects that may lead to short-
term benefits, but potentially harm the system’s maintenance in the long-term. Technical debt management
(TDM) refers to a set of activities that are performed to handle TD, e.g., identification or measurement of TD.
These activities typically entail tasks such as code and architectural analysis, which can be time-consuming
if done manually. Thus, substantial research work has focused on automating TDM tasks (e.g., automatic
identification of code smells). However, there is a lack of studies that summarize current approaches in TDM
automation. This can hinder practitioners in selecting optimal automation strategies to efficiently manage
TD. It can also prevent researchers from understanding the research landscape and addressing the research
problems that matter the most.
Objectives: The main objective of this study is to provide an overview of the state of the art in TDM
automation, analyzing the available tools, their use, and the challenges in automating TDM.
Methods: We conducted a systematic mapping study (SMS), following the guidelines proposed by Kitchenham
et al. From an initial set of 1086 primary studies, 178 were selected to answer three research questions covering
different facets of TDM automation.
Results: We found 121 automation artifacts that can be used to automate TDM activities. The artifacts were
classified in 4 different types (i.e., tools, plugins, scripts, and bots); the inputs/outputs and interfaces were
also collected and reported. Finally, a conceptual model is proposed that synthesizes the results and allows to
discuss the current state of TDM automation and related challenges.
Conclusion: The research community has investigated to a large extent how to perform various TDM activities
automatically, considering the number of studies and automation artifacts we identified. Nonetheless, more
research is needed towards fully automated TDM, specially concerning the integration of the automation
artifacts.
. Introduction

Technical debt (TD) is a metaphor coined by Ward Cunningham [1]
n 1992 and refers to poor decisions in software development that
re made for several reasons, such as impending deadlines, budget
onstraints, and lack of knowledge [2]. When TD is not properly
anaged, it can accumulate to the point of harming the maintenance

nd evolution of software systems, leading to extra costs [3].
According to Besker et al. [4], developers spend around 23% of

heir time dealing with TD. That amount of time usually corresponds
o actions that would not be necessary if TD was not present, such
s additional testing and refactoring. This subsequently can increase
evelopers’ workload and reduce their productivity, which can lead to
igher costs in software development [4]. It also becomes a vicious
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circle: developers incur TD mostly because of time and budget restric-
tions [2]; these are the same reasons that a development team cannot
afford expensive TDM activities to reduce their TD. In this context, the
automation of TDM activities arises as a solution to reduce the overall
effort of TDM, since it can decrease the load of developers in TDM
activities and it can enable continuous TDM during any phase of the
development [5].

Although some tools have been applied in the research and indus-
trial communities (e.g., for identification [6] and measurement [7] of
TD), we lack a clear overview of these tools within the set of TDM
activities, as well as practical guidance on how to combine them and
use them in contemporary software development [3]. Furthermore,
to the best of our knowledge, there are no studies discussing the
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950-5849/© 2023 The Author(s). Published by Elsevier B.V. This is an open access a

ttps://doi.org/10.1016/j.infsof.2023.107375
eceived 8 June 2023; Received in revised form 18 October 2023; Accepted 24 No
rticle under the CC BY license (http://creativecommons.org/licenses/by/4.0/).

vember 2023

https://www.elsevier.com/locate/infsof
https://www.elsevier.com/locate/infsof
mailto:j.p.biazotto@rug.nl
mailto:d.feitosa@rug.nl
mailto:p.avgeriou@rug.nl
mailto:elisa@icmc.usp.br
https://doi.org/10.1016/j.infsof.2023.107375
https://doi.org/10.1016/j.infsof.2023.107375
http://crossmark.crossref.org/dialog/?doi=10.1016/j.infsof.2023.107375&domain=pdf
http://creativecommons.org/licenses/by/4.0/


Information and Software Technology 167 (2024) 107375J.P. Biazotto et al.

T
e
w
p
b

v
w
c
r
a
T
i
S

2

t
L

o
t
o
i

R

A

D

C

T

B

D

I

a
t

i
o
t
a
T
w
s
w

advantages and limitations of TDM automation, taking into account the
different TDM activities and TD. We highlight that analyzing the tech-
nical aspects of such tools and their automation is crucial to improving
integration in software development processes and realizing one main
goal of applying them, i.e., to improve productivity by combining
velocity with quality.

To address these shortcomings, we argue that it is necessary to
report on existing approaches on TDM automation and derive potential
improvements on them, which can further help to achieve higher
levels of automation. To this end, we report on a systematic mapping
study (SMS) that identified 121 automation artifacts1 used to support

DM automation and the associated TD activities and types. We also
xplore the characteristics of the automation artifacts, such as how and
hen to use them, and potential integration between them. Finally, we
resent several directions and challenges in TDM automation that can
e explored in future work.

The rest of this paper is organized as follows. In Section 2, we pro-
ide the main TD-related terminology used in this study. In Section 3,
e discuss related work and the main differences and contributions

ompared to our study. The research protocol, including objectives and
esearch questions, are reported in Section 4. The results of this study
re described in Section 5 and the discussion about them in Section 6.
he threats to validity and the efforts to mitigate them are written

n Section 7. Finally, the conclusions of this study are described in
ection 8.

. Background

In this section we present a summary of the main concepts related
o TD and TD management. These concepts were mainly summarized
i et al. [8], in a previous study within the TD area.

The TD present in a system can be introduced in various moments
f the software development process, since debt is not strictly related
o the source code. Consequently, there are different TD types based
n their source, e.g., source code, architectural decisions, tests, and
nfrastructure [3,8,9]. Li et al. [8] summarized nine types of TD:

equirements TD: relates to requirements elicitation and can refer to
lack of requirements or misunderstanding of some of them, for
instance;

rchitectural TD: bad decisions related to architectural design that
could compromise ’internal’ quality attributes of the software,
such as evolvability or maintainability;

esign TD: poor decisions made during the design phase, e.g., the
division of responsibility among different classes;

ode TD: violations of code quality aspects, for instance, duplicate
code, spaghetti code, duplicated variables, among others;

est TD: non-optimal decisions taken in elaboration or execution of
tests, e.g., lack of tests;

uild TD: bad decisions that can harm the software building process,
e.g., bad dependencies management;

ocumentation TD: poor documentation in terms of correctness, co-
mpleteness, and up-to-date aspects;

nfrastructure TD: non-optimal decisions related to the selection of
technologies for the software development, e.g., to use old tech-
nologies; and

1 We use the term ‘‘automation artifact’’ to refer to any software used to
utomate TDM activities, i.e., tools, scripts, plugins, and bots. We highlight
hat, in our study, we do not consider datasets as automation artifacts.
2

Versioning TD: problems in source code versioning, such as the lack
of multi-version support.

To keep TD under control, various activities have been proposed to
help practitioners in managing TD [9–12]. Li et al. [8] summarized nine
main activities that present in the literature. During identification, TD
tems are detected using several techniques, such as manual inspection
r static code analysis. The identified items can be documented during
he representation and documentation activities and stakeholders
re informed about the TD items during the communication activity.
he TD items can be then monitored during the monitoring activity,
hich ensures that unsolved TD items are under control. The mea-
urement activity is used to quantify the amount of TD in a system,
hich in turn enables the prioritization activity, i.e., ranking TD

items that must be solved first. TD items can then be fixed during the
repayment activity, which also deals with the problems caused by TD
accumulation. It is also possible to avoid undesired TD through the
prevention activity.

In addition to the explanations of TD types and TD activities aimed
at facilitating a comprehensive grasp of this research, it is pertinent
to expound on the concept of self-admitted technical debt (SATD).
SATD pertains to TD elements that developers themselves formally
recognize as such [13]. For instance, this occurs when developers
annotate source code with comments indicating discrepancies or areas
in need of rectification. SATD frequently supplements other types of
TD, since it imparts insights that alternative modes of TD identification
might not unveil. To illustrate, opting for a suboptimal library is likely
to be elucidated within a source code comment, whereas which would
be challenging to identify only examining the source code (with static
analysis tools, for instance) [13].

Finally, it is also relevant to clarify what are ‘‘replication package’’
and ‘‘supplementary material’’, terms that were identified as relevant
for our search string (see Section 4). Those refers to material that
are made available by researchers to improve the replicability of a
scientific study. This packages can include figures, graphs, and data.
Moreover, some tools and scripts developed by researchers are usually
made available within a replication package, which is the reason to
consider this terms in the search string.

3. Related work

In this section, we discuss other secondary studies that investigate
tools that support TDM. To select this related work, we reviewed 29
secondary studies in the TD field, and analyzed them based on their
research questions (RQs) and results. Studies closely related to ours,
i.e., those that discuss TD tools and/or TDM automation, were selected,
and are reported in this section. We also compare the studies with our
own, and present a summary of this comparison in Table 1.

Li et al. [8] conducted an SMS to investigate the current state of
TDM, including what activities, tools, and management approaches
have been used. They summarize 10 TD types, 8 activities, and 29
tools for TD management found in 94 primary studies. Regarding tools,
the study points out some characteristics, such as their functionality,
vendor, and TD types. The main similarity between this and our study is
the analysis of the applicability of the tools. However, our study differs
in that we focus on analyzing the automation artifacts and considering
how they help in the automation of TDM as a whole. Moreover, we
analyze other aspects of the automation artifacts, e.g., triggers and
input/output.

In the study conducted by Khomyakov et al. [5], the authors discuss
seven techniques and 10 tools for the measurement of TD, which they
collected from 21 primary studies. They point out problems related to
the complexity of the tools configuration and the limitations related to
the support for different programming languages. We can summarize
three main differences between their study and ours: first, their study
just consider the measurement activity and does not cover the other
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Table 1
Comparison with related works.

Reference Method Last yeara # studies # automation artifacts TDT TDA TDMA TA INT

Li et al. [8] SLR 2013 94 29 ✓ ✓ ✗ ✗ ✗

Khomyakov et al. [5] SLR 2017 21 10 ✗ ✓ ✗ ✗ ✗

Mumtaz et al. [14] SMS 2019 85 12 ✗ ✗ ✗ ✗ ✗

Lenarduzzi et al. [15] SMS 2019 37 12 ✓ ✗ ✗ ✗ ✗

Avgeriou et al. [16] Mixed 2019 50 9 ✓ ✗ ✗ ✗ ✗

Silva et al. [17] SMS 2019 50 47 ✓ ✓ ✗ ✗ ✗

Our study SMS 2022 178 121 ✓ ✓ ✓ ✓ ✓

TDT: The study discusses all TD types presented in Section 2.
TDA: The study discusses all TDM activities presented in Section 2.
TDMA: The study discusses TDM automation.
TA: The study discusses technical aspects of automation artifacts (e.g., provided triggers and interfaces).
INT: The study discusses integrations between automation artifacts.
a Last year included in the study collection.
eight activities as ours; second, although they consider three types
of automation tools (tools, scripts, and plugins), they do not explore
the differences among them nor how those differences can drive their
usage; third, they do not explore the types of TD and the support for
them, as we do in our study. Nonetheless, it is important to highlight
the conclusion provided by the authors as an important motivation for
our study, since they argue about the importance of TDM automation.

Mumtaz et al. [14] conducted an SMS to identify techniques and
tools for architectural smells detection; architectural smells are consid-
ered one of the main types of architectural TD. The authors reviewed
85 primary studies and identified nine categories of techniques and
12 tools to support the techniques. Moreover, they discuss the types
of smells identified by the tools, and also discuss some smells that do
not have support yet (e.g., leaky encapsulation). The main similarity
between the study of Mumtaz et al.’s and ours is the tools they identify,
which we also cover in our study (all 12 tools). However, our study
is much more inclusive in terms of TD types (they focused only on
architectural TD) and TDM activities, since we consider all activities
and they just focus on identification. Moreover, even though they
analyze the tools’ applicability, the scope of our work is different,
because we focus on the automation aspects.

Lenarduzzi et al. [15] analyze the current research on TD prioritiza-
tion through an SMS. They selected 37 primary studies from which they
collected the approaches and tools that are used, both by practitioners
and researchers, to proceed with TD prioritization. Their main finding
refers to the lack of consensus about the relevant factors to prioritize
TD and how to measure those factors. Considering the TD types, they
state that code and architectural debt are the most investigated types
when considering how to prioritize TD items. The two main differences
between their study and ours are: (i) the scope of their work is not
focused on TDM automation; (ii) we do not focus only in one activity
but cover all of them.

Avgeriou et al. [16] report a set of TD tools for TD measurement.
In their study, the authors focus on three TD types (code, design,
and architectural TD) and analyze the tools considering their features,
popularity, and validation. Our study differs from theirs because we
considered all TD types and TDM activities to collect the automation
artifacts. Moreover, they report only 9 tools (namely CAST, Sonargraph,
NDepend, SonarQube, DV8, Squore, CodeMRI, Code Inspector, and
SymfonyInsight), and we report 121 automation artifacts (which in-
clude the 9 presented in their study), expanding the body of knowledge
for more types of software that can be used for TDM automation.
Moreover, our study discusses several different aspects related to the
automation artifacts, such as their type of triggers, their input/output
information and formats, and the possibility of integration among
different automation artifacts.

Silva et al. [17] present an overview of 50 tools that can be used
to manage TD, which they collected from 47 studies. There is an
overlap between their work and ours since they also present results
about what TD types and TD activities the tools support. However,
3

our work differ in a number of ways. First, our scope considers not
only tools but also any form of automation artifact (e.g., scripts, bots,
plugins). Moreover, we have a different focus because we filter out
automation artifacts that are not available or that do not automate
a TD-related task. Combined with a longer study period (from 1992
to 2022, instead of from 2012 to 2019), we ultimately identified a
higher number of automation artifacts (121 automation artifacts from
178 primary studies). Second, our research objectives are broader since
we explore more characteristics of the automation artifacts, considering
their inputs/outputs and the possible integration among the automation
artifacts. We also provide an analysis of the usage of the automation
artifacts, considering their types, triggers, and standalone execution.
Finally, our discussion about the tools is not similar. Silva et al. focus on
how tools have been supporting the TDM in terms of features, while we
analyze the automation artifacts to understand how they can be used
to automate the TDM in a development environment.

To the best of our knowledge, no previous study has investigated
the artifacts considering the aspects that we highlighted in the previous
paragraphs (e.g., in terms of inputs/outputs and possible integrations).
Moreover, we could not find works that discuss not only artifacts’
features but also how they could be used and integrated within de-
velopment activities (e.g., coding) and the development environment
(e.g., integrated into a continuous integration manager). This lack of
information about artifacts’ usage can negatively impact practitioners
when they are choosing which artifacts to use to support TDM. Thus,
our study fills this gap and expands the state of the art by discussing
how to support TDM activities using automation artifacts and possible
workflows using those artifacts.

To facilitate the comparison of our study and the related works,
we use the set of criteria listed in Table 1. In summary, our work
provides the following unique contributions compared to the rest of
related work:

• Analysis and Discussion of TDM Automation: to the best of
our knowledge, our study is the first one that considers all TD
types and TDM activities to discuss the current TDM automation
approaches, including their strengths and limitations. Moreover,
we also provide a discussion about the challenges and the future
directions of this topic, which is not present in any other study;

• Discussion about the usage of the automation artifacts: our
study discusses the usage of the automation artifacts considering
their application in a development environment. In this context,
we provide an analysis of the integration between the automa-
tion artifacts and between automation artifacts and other tools
(e.g., IDE). Besides, we analyze how this integration improves the
level of automation of TDM; and

• Analysis of technical aspects of the automation artifacts:
related works only discuss the features of the automation artifacts,
whereas this study expands on other perspectives, such as the
triggers that initiate the automation and the inputs/outputs of the
automation artifacts.
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4. Study design

This section describes the design of our SMS, following the guide-
lines of Kitchenham et al. [18].

4.1. Research objective

To define the objective of our study, we adopted the structured
goal description as defined in the Goal-Question-Metric (GQM) ap-
proach [19]. Specifically, the objective of our study is to ‘‘analyze
rimary studies from the software engineering literature for the purpose
f understanding the state of the art in the automation of TDM with
espect to the automation artifacts, the related TDM activities and types,
nd their usage in the software development process from the point of view
f researchers and practitioners in the context of TD.’’

.2. Research questions

The research questions (RQ) are derived from the study’s objective
nd are the basis for creating the inclusion and exclusion criteria and
he extraction form (see Sections 4.4 and 4.5).
RQ1 - What automation artifacts are available for the automa-

ion of TD management?

Q1.1 - What is the type of software of the automation artifact
(e.g., script, tool, plugin)?

Q1.2 - What are the inputs and outputs of the automation artifact?

Q1.3 - Which is the evidence level of the software automation arti-
fact?

Different automation artifacts can automate TDM activities, such as
ools [16] and bots [20]. Hence, the objective of this RQ is to catalog the
vailable automation artifacts that can perform TDM-related activities.
e further refine this RQ into three sub-questions. In RQ1.1, we

ntend to understand the automation artifacts’ type (e.g., script, tools)
nd their characteristics (e.g., stand-alone execution). RQ 1.2 aims to
atalog the associated inputs and outputs of the automation artifacts.
inally, in RQ1.3, we aim to review the automation artifacts’ evidence
evel, considering the classification presented by Alves et al. [21],
hich takes into account the type of evidence provided by the primary

tudies (e.g., academic studies and industrial studies). Thus, RQ1.3
rovides an overview of the validation of the automation artifacts. The
nowledge provided by RQ1 can help practitioners become aware of
he current range of automation artifacts and choose those that fit their
wn needs.
RQ2 - What TDM activities and TD Types are supported by the

utomation artifacts?
Although related work has already cataloged the automation of

ome TDM activities, especially regarding tools [8,17], it is also rele-
ant to investigate the TDM automation considering all TDM activities
nd TD types, specially taking into account different types of automa-
ion artifacts (e.g., scripts and plugins). For both TDM activities and TD
ypes, we consider the lists presented by Li et al. [8] (see Section 2).

e note that although this classification was proposed in 2015, it is still
ontemporary and widely present in the TD literature [3]. Answering
his RQ can help practitioners and researchers to select the optimal
ools for the task at hand, or the problem to be solved. Moreover, this
Q reveals the current support for TD types and TDM activities, which
an also drive future research by exposing which types and activities
re not yet well supported.
RQ3 - How are automation artifacts used during software de-

elopment?
4

Q3.1 What triggers are used to initiate the automation process?
Q3.2 Can the automation artifacts be integrated?

This research question aims at understanding the use of the automa-
ion artifacts in the automation of TDM activities along two dimensions,
hat correspond to the two sub-questions. RQ3.1 aims at understanding
he events that are responsible for initiating the automation process,
lso looking into the level of human intervention that is necessary.
Q3.2 aims at understanding the possibility of integration between
ifferent TDM automation artifacts as, well as, integration between
utomation artifacts and other tools (e.g., as plugins in an IDE). This
Q can help practitioners on understanding how to incorporate the
utomation artifacts within their software development practices and
ools.

.3. Search strategy

To conduct this study, we choose a search strategy similar to the one
sed by Junior et al. [3]. First, we perform an automatic search using
he Scopus Database2, which indexes more than 7,000 publishers3, in-
luding the most relevant for the field of Software Engineering. Second,
o compensate the use of a single database (albeit a comprehensive
ne), we perform snowballing [22]. In particular, we consider both
orward snowballing (i.e., search citations to primary studies) and
ackward snowballing (i.e., search primary studies’ citations). We note
hat our decision is aligned with recent literature showing that using
hybrid strategy provides better results when compared to using only

utomated search [23–25].
To construct our search string, we take inspiration from the work of

i at.al [8]; they used ‘‘debt’’ as a search string since ‘‘technical debt’’ is
ot always captured in studies’ title, abstract, and keywords, especially
hen the primary study is related to a specific type of TD (and then
uthors use terms like ‘‘architectural debt’’) [8]. Moreover, using ‘‘debt’’
s a search string provides a very inclusive search, allowing us to
nalyze a higher number of studies. To filter the recovered studies
nd calibrate the search string to the scope of our study, we combined
he keyword ‘‘debt ’’ with several keywords related to ‘‘automation and
ooling ’’ (e.g., ‘‘tool’’, ‘‘automation’’, and ‘‘bot’’). To calibrate our search
tring, we performed several rounds of automatic search using the
copus database and tested different combinations of keywords. In each
ound, the first two authors manually checked the number of studies
nd their relevance to answering the RQs. The set of returned studies
tabilized on the fourth round when we proceeded to conduct a pilot
tudy to evaluate the data extraction and synthesis (see Section 4.6).

Regarding the range of years, we reused the set of studies reported
y Li et al. [8] (which searched from 1992 to 2013) and extended our
et with studies published between 2013 and 2022. Our rationale to
euse Li et al.’s set of studies is two-fold: (a) the search string provided
y them (i.e., ‘‘debt’’) is inclusive, covering possibly all studies related
o TD published until 2013; and (b) their work also covers tooling for
DM (specifically in RQ8); thus, the scope of our work is included
ithin the scope of their work.

Also, we restrict the results to the Computer Science field, since
‘debt’’ is a keyword commonly used in other fields (e.g., financial debt).
he final search string is defined as follows: title-abstract-keywords
‘‘debt’’) AND full-text(‘‘script*’’ OR ‘‘replication package’’ OR ‘‘supplemen-
ary material’’ OR ‘‘tool*’’ OR ‘‘artifact’’ OR ‘‘automat*’’ OR ‘‘artefact’’ OR
‘plugin’’).

.4. Study selection

In the selection phase, we apply a set of inclusion and exclusion cri-
eria throughout a series of selection rounds. The criteria and selection
ounds are described in the following.

2 https://www.scopus.com/
3 https://www.elsevier.com/solutions/scopus/how-scopus-works

https://www.scopus.com/
https://www.elsevier.com/solutions/scopus/how-scopus-works
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4.4.1. Inclusion and exclusion criteria
The following inclusion (IC) and exclusion (EC) criteria were used

in this study:

IC1 - The primary study proposes, uses, or points to an automation ar-
tifact that automates a task within at least one TD management
activity.

EC1 - The primary study is not related to software engineering;

EC2 - The study shows only the design of an automation artifact;

EC3 - The study does not provide a URL to the automation artifact;

EC4 - The full text of the primary study is not available;

EC5 - The primary study is a table of contents, short course description,
or summary of a conference/workshop;

EC6 - The primary study is written in a language other than English;
and

EC7 - The study is a previous version of a more complete one that also
mentions the same automation artifact.

These ICs and ECs are based on the research objective and RQs.
Since our main goal is to map the available automation artifacts for
TDM, IC1 includes all studies pointing to an automation artifact. In the
same direction, EC1 removes studies not related to software engineer-
ing since the term ‘‘debt’’ can be used in other fields (e.g., financial
debt).

As our focus is the automation artifacts that could be used in
practice, EC2 removes studies that present just a design of an artifact,
since it would not be possible to analyze some technical aspects of
such artifacts (e.g., inputs/outputs and triggers). Regarding EC3, we
needed the URL pointer to the actual automation artifact to be able
to analyze it. Alternatively, we could search for the artifact online
using its name, but this is not feasible given the number of studies
we are filtering and the risk of finding the wrong artifact. Moreover,
it is not unreasonable to expect that an artifact deemed relevant by
the authors would be properly referenced (i.e., through a URL to a
replication package, homepage, repository or similar). The remaining
criteria (EC4-EC7) are general and are based on guidelines and previous
works within software engineering and TD field [3,9,18,24].

4.4.2. Selection process
The study selection comprises the following rounds: in the first

round, the authors filtered papers by reading title, abstract, key-
words, and venues, and applied the criteria IC1, EC1, EC5 and EC6.
EC2, EC3, EC4, and EC7 cannot be applied in this round since they
cannot be checked based on the metadata. In the second round, the
authors downloaded all available studies and filtered them based on
the Introduction and Conclusion sections and applied EC4-EC6. In
this round, the authors also applied EC2 and EC3, to check if the
study shows an implemented automation artifact (i.e., that can be
downloaded and executed). We note that if an automation artifact is
referenced via another paper, we followed that paper (and recursive
references if needed) in search of a URL.

Finally, in the third round, the authors filtered the studies based
on the full text, applying EC7. The first search in the Scopus Database
was on June 30th 2022. Fig. 1 summarizes the process we followed
and the results that were obtained after each step. For the dataset of Li
et al. [8], we followed the second and third round of selection, since
the first round of selection (i.e., title, abstract, keywords, and venues)
was already done in the original study.
5
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4.5. Data extraction, analysis, and synthesis

The main goal of this study is to characterize the current research
on TDM automation by analyzing information about the automation
artifacts that are used during the automation process. To achieve this
goal, we built two datasets: one with information related to the studies
(from where we collected the automation artifacts) and a second with
details on the automation artifacts. The first is described in Table 2
and presents the data extracted from each study, which were used
for demographic purposes (see Section 5.1). The second is presented
in Table 3 and shows the data extracted regarding each automation
artifact. It is important to highlight that some data were retrieved
from the automation artifact’s documentation, such as the input/output
formats. The RQs that were answered using that information are also
presented.

The data analysis and synthesis of our study is based on the con-
stant comparison method [26,27] for qualitative data and frequency
analysis for quantitative data. To answer RQ1 (automation artifacts
available), we used the information related to characteristics of the
automation artifacts, i.e., the data items type, run_standalone, input_info,
input_fmt, output_info, output_fmt, and evidence, as described in Table 2.
For RQ2, we focused on understanding which TD Types and Activities
are supported by the automation artifacts. In this context the items
td_type and tdma were used, providing an overview of the current state
to the automation of TDM. For RQ3, we aimed at understanding the
usage of the automation artifacts, considering their triggers, and the
integration among the automation artifacts. To answer this question,
we used, trigger, interface, is_integrated, and can_integrated.

.6. Pilot study

We conducted a pilot study to validate and further improve our
tudy design. For that, we applied the search string (‘‘debt’’) on Scopus
nd recovered around 2,100 results, from which we randomly selected
0 studies. We conducted the three rounds of selection and the data
xtraction on these studies (see Sections 4.4 and 4.5). Out of the 50
nitial studies in the sample, 13 proposed or pointed to a automation
rtifact that automatically performs a TDM task.

Based on the pilot, we validated and calibrated our search string,
he inclusion and exclusion criteria, and the extraction form. One
xample of the search string calibration is the addition of the terms
‘replication package’’ and ‘‘supplementary material’’. During the pilot
tudy, we realized that sometimes the authors make their automation
rtifacts available through replication packages (e.g., when a script was
eveloped). Thus, after the pilot, we added those new terms to the
earch string. Finally, the pilot also provided directions for conducting
his study, allowed to validate which type of information can be used
o answer the RQs and ensuring that this study is relevant to the TD
ommunity.

Considering both the pilot study and the related work, we were
onfident that conducting this SMS could provide directions to the
D community, cataloging existing tools and uncovering promising
esearch directions.

. Results

In this section, we present the results of our SMS. Specifically,
ection 5.1 explores demographics regarding the distribution of studies
ver the years, the main venues and author affiliations. The answers
o our three RQs are presented in Sections 5.2 to 5.4, where we
espectively discuss the available automation artifacts, their scope and

ow they are used within TDM activities.
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Fig. 1. Selection process.
Table 2
Data extracted from each study.

Variable name Description

article_title The title of the study
author Name of the authors
author_type Type of affiliation of the authors (Academia, Industry, or Both)
year The publication year of the study
venue The venue were the study was published
venue_type Type of venue where the study was published (Journal, Conference, Book Chapter)
doi DOI of the study
reference Bibtex entry of the study
objective A short summary of the study’s objective
automation artifacts The list of automation artifacts pointed out in the paper
Table 3
Data extracted from each automation artifact.

Variable name Description Results

studies_citing_artifact ID of the studies that mention the artifact; this variable relates artifacts to studies Demographic info.
name The name of the automation artifacts Demographic info.
link The link to the automation artifact Demographic info.
type The software type of each automation artifact (e.g., plugin) RQ1.1
run_standalone Whether it is possible to run the automation artifacts as standalone RQ1.1
input_info The information used by each automation artifact to automate the task (e.g., source code) RQ1.2
input_fmt The format of the information used by the automation artifact (e.g., XML) RQ1.2, RQ3.2
output_info The information provided by the automation artifact after the automation process RQ1.2
output_fmt The format of the information provided by the automation artifact (e.g., XML) RQ1.2, RQ3.2
evidence The type of evidence we found in the literature (e.g., industrial studies) RQ1.3
td_type The types of TD that are supported by the automation artifact RQ2
tdma The TDM activities that are supported by the automation artifact RQ2
trigger The type of trigger that starts the execution of the automation artifacts (e.g., human trigger) RQ3.1
interface-type The type of interface provided by the automation artifact (e.g., api) RQ3.2
is_integrated Whether we found evidence of integration among the automation artifacts and other automation artifacts RQ3.2
can_integrated Whether the automation artifact could be integrated with other automation artifacts, considering the

input/output format and information,
RQ3.2
5.1. Demographic information

After the selection steps, we extracted data from 178 studies. The
selection process covered the time span between 1992 and June/2022.
However, the first study we found that pointed to an automation
artifact was published in 2002, as shown in Fig. 2(a), which illustrates
the studies we identified, organized by year. Moreover, Fig. 2(a) also
presents how many unique automation artifacts were cited for the first
time in a certain year. We note that we collected studies published
until June/2022, when the first search was performed. Thus, studies
published after this month are not covered. Considering the data we
had available, it is evident that the number of studies and automation
artifacts is growing over the years. Of all the selected studies, at
least 67% (121/178)4 of them were published in the last five years,

4 This percentage might be higher considering we did not collect data from
he second half of 2022.
6

which shows that the investigation of the use of automation artifacts
to support TDM is a ‘‘hot’’ topic.

Fig. 2(b) shows the distribution of studies based on whether the ar-
tifact is proposed, compared, used, or just cited in the study. Around 45%
(80/178) of the studies propose an artifact, i.e., introduce the artifact
for the first time and present its main characteristics and functionality.
While this may indicate that the community is interested in finding
new solutions for automation in TDM, it may also indicate that some
artifacts are still immature and demand evaluation in industry and
open-source contexts. Next, around 8% (15/178) of the studies compare
two or more tools, e.g., presenting the best tool at performing a certain
task such as identifying TD [28]. We also see that 37% (66/178) use an
artifact either in a TDM approach (e.g., in the industry) or in empirical
studies that investigate TD. Finally, the remaining 10% (17/178) of the
studies only cite an artifact as an example of a possible solution for TDM
but do not present deeper information about its functionality or usage.

Regarding the venues where we found the studies, according to
Fig. 2(c), 69% (123/178) of the studies were published in events
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Fig. 2. Demographic information of the studies and automation artifacts.
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(conferences, symposiums, and workshops) and 31% (55/178) were
published in journals. The International Conference on Technical Debt
(TechDebt) was the most common venue in our dataset with 22/178
studies. Regarding journals, the Journal of Systems and Software (JSS)
was the most common (8/178).

To measure the level of industrial involvement in the development
and use of automation artifacts for TDM automation, we extracted
data about the authors’ affiliation, presented in Fig. 2(d). We found
that 148/178 studies were conducted only by academic authors, while
15/178 involved authors only from the industry. Finally, in 15/178
studies an academia/industry collaboration was shown. This indicates
that, although industry has substantial interest in TD [2,4,6], there
is not much research on TDM automation published from industry,
since only 17% (30/178) of the studies have an author affiliated with
companies.

Finding 1: Around 45% of the studies propose an artifact, which
may suggest that the community is actively finding new so-
lutions for TDM automation. Also, most of the studies were
published in the last five years (124/178), indicating that this
topic is of increasing interest to the TD community. Moreover,
academia is responsible for around 83% of the published re-
search work on TDM automation, while the participation from
industry is rather limited.

5.2. Automation artifacts for TDM automation

In RQ1, we analyzed the existing automation artifacts for the TDM
automation. In total, we identified 121 automation artifacts that can
be used in the automation of TDM activities and are available online,
i.e., they can be installed by practitioners and researchers. Due to space
constraints, the list of all automation artifacts is omitted here but can
be found in our replication package5.

5 https://github.com/biazottoj/rp-sms-technical-debt-automation
7

5.2.1. Types of automation artifacts
Considering the automation artifacts type (RQ1.1), we identify

our different types according to their characteristics of deployment
nd execution (among others, if they run standalone, if there is the
ossibility of configuration, and how much human intervention is
equired to execute them).
Tools are the most common type of automation artifacts, with

pprox. 47% (57/121) of them classified into this type. This term has
een used to refer to automation artifacts by many primary studies
7,16,29,30]. Automation artifacts introduced as tools have three main
haracteristics. First, tools do not depend on other automation arti-
acts to be executed. Second, they provide usage interfaces, i.e., their
unctionalities are well-organized, and easy to configure and execute.
hose interfaces can be Graphical User Interface (GUI), command

ine, or APIs, which can be used by other automation artifacts or
ith customized scripts. Third, tools are highly configurable i.e., they

mplement several types of metrics, rules, and analyses that can be used
or not) by the practitioners, considering their context. SonarQube6 is
n example of a tool. The calculation of code metrics and amount of
D, for example, can be accessed through a GUI or collected by APIs
o be used in diverse types of analysis. Arcan7 is another example of a

tool, which can identify architectural smells (e.g., cyclic dependency),
a type of architectural TD, and provide the results through several
formats (e.g., csv). A third example is Designite8, a tool that can deal
with design TD, focusing on identifying design smells; it also provides
dashboards to analyze the analysis results. The main advantages of
using tools are the flexibility of configuration and the wide range
of different information provided. However, some effort is needed to
configure the tools in the development life cycle, e.g., integrating and
configuring them in the continuous integration (CI) pipeline; this can

6 https://www.sonarqube.org/
7 https://essere.disco.unimib.it/wiki/arcan/
8
 https://www.designite-tools.com/

https://github.com/biazottoj/rp-sms-technical-debt-automation
https://www.sonarqube.org/
https://essere.disco.unimib.it/wiki/arcan/
https://www.designite-tools.com/
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be a disadvantage of using tools when compared with other types of
automation artifacts that are executed more easily (e.g., scripts).

Plugins represent around 32% (38/121) of the automation artifacts.
Several studies have presented this term to refer for automation arti-
facts, such as Masmali et al. [31], which presents jDeodorant as plugin
for Eclipse IDE. The main characteristic of plugins is that they do not
run standalone but are installed within an IDE or in other automation
artifacts (e.g., tools). They are responsible for adding a new capability
to an existing automation artifact; they are installed on top of other
automation artifacts, so it is not necessary run their source code directly
(as is the case for scripts). For instance, jDeodorant9, a plugin developed
for Eclipse IDE10, makes it possible to identify code smells, in real-
time, during the coding process. Regarding this plugin, Paiva et al. [32]
presented an empirical study that compared it with PMD and JSpirt.
Their results show that the precision of JDeodorant is higher than the
other ones, i.e., it is able to identify more and correct smells. However,
it presents a high number of false positives.

It is also important to highlight that several tools are also available
as plugins, with fewer configuration options and specific functions.
Specifically, 22/38 plugins are simpler versions of tools. For instance,
Checkstyle11 is available both as a tool (that can be run standalone) and
as a plugin for several IDEs (such as Eclipse IDE and IntelliJ12). We
bserved two main differences between plugins and tools: (i) plugins
rovide real-time feedback directly in the IDE, which can aid develop-
rs with suggestions to directly modify the source code; and (ii) tools
rovide a deeper understanding of the quality of the code base, giving
ore decision-making information about the TD items; for instance, the
lugin provided by DesigniteJava can not generate dashboards directly,
ut only through the tool version of DesigniteJava.

Around 18% (22/121) of the automation artifacts are classified as
cripts, which refer to pieces of code executed to automate some task.
sually, scripts use results from other automation artifacts (especially

ools) to perform new tasks with that information. An example of
tudy that uses this term to refers to an automation artifact is Sas
t al. [33], which presents a script (piece of source code) to collect
esults from Arcan and track them in source code. Scripts are de-
igned and implemented in a specific context, it is complex to reuse
hem in another context (e.g., a script that collects data generated
y SonarQube can only be used in this context). Two examples are
ebtfree13 and piranha14. The first is a script that implements machine
earning algorithms to identify SATD. It can execute a single task
label comments), considering a specific input of pre-processed code
omments. The second, piranha, is used to automate the repayment of
specific type of code debt in Java programs, i.e., flag features. These

lags encapsulate parts of the code that are still under development,
nd are not ready to be used yet. Nonetheless, developers can forget to
emove the flags, leading to maintenance issues. Considering the name
nd types of the flags, piranha can refactor the source code, sending
he results as pull requests in GitHub. The main advantage of scripts is
elated to their easiness of configuration and execution. However, since
hey are developed for a specific context, they are not configurable,
hich harms their flexibility. This may be an explanation for the lack
f studies that compare two or more scripts in terms of functionalities
nd usage in a TDM approach.

Another type of automation artifact we identified is bots, which
correspond to nearly 3%(4/121) of the automation artifacts. They are
similar to scripts; however, they run in the background, i.e., they
are triggered automatically when some actions happen. Phaithoon

9 https://github.com/tsantalis/JDeodorant
10 https://eclipseide.org/
11 https://checkstyle.sourceforge.io/
12 https://www.jetbrains.com/idea/
13 https://github.com/HuyTu7/DebtFree
14
8

https://github.com/uber/piranha
et al. [20], for instance, used the term bot to introduce FixMe15. Fixme
can identify SATD in code comments and runs on top of the Probot
Framework, which enables its integration with GitHub, a git platform
for code management. Every time source code is committed to GitHub,
FixMe analyses it and generates several issues, each corresponding
to an instance of detected SATD. Finally, FixMe keeps a database
about TD items, monitoring them. Although we just identified a few
examples of bots, they present an interesting characteristic that can
help practitioners in the automation of TDM: they are automatically
triggered. With bots, for example, it could be possible to automate the
documentation of TD, reducing the necessity of human intervention.
However, we did not identify studies that analyze this characteristic
in a TDM approach. Besides, no study compares the usage of different
bots, which poses the necessity of more studies to understand which
bot would be more effective in a certain scenario.

From all examined automation artifacts, tools seem to be the most
preferred by practitioners/researchers to deal with TDM activities and
tasks. Presumably, the characteristics of standalone deployment and
flexibility are perceived as a way to improve the efficiency of automa-
tion. For example, Sharma et al. [34] discuss their choice of using
tools with different types of rules, in which they can define what rules
will be used. Moreover, some tools support the installation of plugins,
which provide new functionalities to the tool, thus supporting higher
levels of automation. From another perspective, bots can also be used
in future automation approaches, considering their integration in the
development workflow. Since they do not need human intervention
when being executed, they seem to be an alternative to introducing
TDM automation in the development life-cycle, relieving developers
from tedious tasks. However, we found only little evidence about bots,
so we argue that a deeper investigation into their use is still needed. It is
also necessary to compare the four types of artifacts to understand both
developers’ preferences and also the performance of different artifacts
when performing a specific TD activity.

Finding 2: Four different types of automation artifacts could be
used for TDMA automation. Among them, tools are the most
preferred type, especially for their standalone deployment and
the range of different configurations. In addition, bots arise as
an alternative for the automation of some tasks without human
intervention, although currently there is little evidence on their
use.

5.2.2. Automation artifacts’ inputs and outputs
To answer RQ1.2, we extracted two pieces of information regarding

he input used in the 121 automation artifacts we identified. First,
e analyzed the information that is used as input by the automation
rtifact to be executed, for instance, source code or code comments.
econd, we examined the input format, which refers to how the
utomation artifacts collect the data (e.g., as CSV or JSON files).

These two elements are important to understand how the automation
artifacts work in practice and also to support practitioners/researchers
in choosing the appropriate tools (e.g., if one wants a dashboard with
information about TD, it does not make sense to choose a tool that
outputs a CSV). Moreover, these elements have not been previously
studied in related work (see Section 3). Finally, they are important
for further discussion about how the automation artifacts could be
integrated (which will be presented in Section 5.4).

Regarding the information, we found six different types that are
used by the automation artifacts, namely: source code, code comments,
dependency graph, SQL statements, issue messages, and metamodels, as
presented in Fig. 3a.

The majority of the automation artifacts (105/121) use source
code as information to proceed with the automation. Specifically,
automation artifacts that use this information focus on capturing data

15 https://www.fixmebot.app/

https://github.com/tsantalis/JDeodorant
https://eclipseide.org/
https://checkstyle.sourceforge.io/
https://www.jetbrains.com/idea/
https://github.com/HuyTu7/DebtFree
https://github.com/uber/piranha
https://www.fixmebot.app/
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Fig. 3. Inputs and formats that are used by the automation artifacts.

related to the quality of the code base, such as metrics and smells.
This information is similar to findings of recent studies that present the
stakeholders’ focus on identifying TD considering the source code [35]
(we will further discuss the TD types and activities in Section 5.3).
Source code can be used to support the management of all TD types
(except for infrastructure and versioning, which are not supported by
any tool). Specifically, 82/105 artifacts that use source code as input
can support code TD. Similarly, 52/105 support design TD and 27/105
support architectural TD. The remaining types are supported in a much
lower level.

Secondly, code comments are used by around 10% (13/121) of
he automation artifacts. Code comments are used to deal with SATD,
hich are commonly documented through this type of data. Moreover,
ATD is also detected using issues and commit messages by 1 au-
omation artifact out of 121. In addition, 1 automation artifact out of
21 uses dependencies graph as input information to, support the
anagement of architectural TD. To analyze database design TD, 1

utomation artifact out of 121 also uses SQL statements. Finally, 2
utomation artifacts out of 121 that employ model-driven development
echniques, use metamodels to identify design TD in the models.

Regarding the format used by the automation artifacts, we found
ight different types, as presented in Fig. 3b. Source code files are
irectly accessed by 112/121 automation artifacts. Specifically, 92/105
se the source code as information, and 13 extract the code comments
rom the source code. This usage can be done through accessing the
rojects locally (66/92) or remotely (8/92), integrated with platforms
9

uch as GitHub. Moreover, the source code can also be accessed directly
hrough IDEs, by plugins (33/92). Two automation artifacts use pre-
rocessed CSV files, three use JSON to perform the automation, related

to the identification of SATD, while one uses GitHub issues (also
for SATD). Finally, XML and UML files are used by two automation
artifacts to perform the analysis of metamodels.

There are 2516 types of output information, which are provided
by the automation artifacts after its execution. Around 30% (43/121)
of the automation artifacts can calculate code metrics (e.g., cyclo-
matic complexity), which represent the most cited output information.
Code smells (28/121) are also well supported. Besides, around 10%
(14/121) of the automation artifacts provide a list of SATD items, both
considering the code comments and the issue messages.

Regarding the output formats, we found that most automation
artifacts provide their results into textual format. The most common
output format is text (e.g., txt), supported by 37/121 automation
artifacts. Structured formats, such as xml (28/121), csv (26/121), and
json (25/121), are also supported by the automation artifacts. HTML
is supported by 22/121 automation artifacts, which usually provide
reports that can be accessed through browsers.

Finding 3: Source code is the most common input used by the
automation artifacts. It is followed by code comments, although
with a much lower level of attention and restricted to identifying
SATD. Other types of input, such as metamodels, are also used.
Regarding the outputs, code metrics is prevalent among output
types, followed by code smells. SATD items are also the output
of several automation artifacts.

5.2.3. Evidence level of the automation artifacts
In RQ1.3, we aimed at understanding the evidence level of the

utomation artifacts. For this classification, we adopted the six levels of
vidence proposed by Alves et al. [21]: (I) no evidence; (II) examples;
III) expert opinions; (IV) academic studies; (V) industrial studies;
nd (VI) industrial applications. To categorize the automation artifacts
e took into account the evidence we found in the primary studies.
onsequently, some automation artifacts that may be currently used in
he industry, but have no published evidence, were not classified as
‘Industrial Applications’’. BetterCodeHub17 (now known as Sigrid18), a
tatic code analyzer, is one such example. Although there is information
bout industrial applications in the tool’s website, we only found it as
n example in the studies, so it was classified in Level II. While this
trategy of classification could underestimate the level of maturity of a
ool (as presented in the previous example), it ensures that our analysis
onsiders the evidence we found in peer-reviewed studies, improving
he reliability of this work. Fig. 4 depicts the number of automation
rtifacts classified in each category.

From the information presented in Fig. 4, automation artifacts with
vidence Level II (examples) represent around 60% (70/121) of the
otal. In this category, we considered automation artifacts that were
sed or just proposed in a study, but not evaluated. Level IV (academic
tudies) includes 11% (14/121) of the automation artifacts and repre-
ents automation artifacts that were evaluated during academic studies
.e., besides their application in an academic study, their correctness
nd efficiency were analyzed. Furthermore, 20% (26/121 automation
rtifacts) were used in industrial studies, referring to Level V of
vidence. At this level, the automation artifacts are evaluated in an
ndustrial context. Finally, we found evidence that 8% (11/121) of the
utomation artifacts reached industrial application (i.e., Level VI of
vidence). This level refers to automation artifacts that are used by
he companies during software development. Finally, it is important to

16 The list with all types can be found in out replication package: https:
//github.com/biazottoj/rp-sms-technical-debt-automation

17 https://bettercodehub.com/
18
 https://www.softwareimprovementgroup.com/

https://github.com/biazottoj/rp-sms-technical-debt-automation
https://github.com/biazottoj/rp-sms-technical-debt-automation
https://bettercodehub.com/
https://www.softwareimprovementgroup.com/
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Fig. 4. Evidence Level.
highlight that we only classified automation artifacts in the mentioned
four different levels of evidence; none of the studied automation arti-
facts was classified into levels I (no evidence) or III (expert opinions).
Every automation artifact was applied by the authors in at least one
study. For Level III, we did not find any automation artifacts being
evaluated by experts.

In Fig. 4, we also presented the level of evidence of the automation
artifacts, considering their types. To a great degree, the usage of tools
is related to higher levels of evidence i.e., Levels IV and V. Since
those levels are directly related to industry, these results can indicate
that configuration and flexibility capabilities seem to be prioritized in
industrial contexts. In the same direction, several plugins also reached
higher levels of evidence (IV and V). Their main characteristic is the
easy integration in the work environment (since they can be installed
in IDEs, for example), which may imply that a smoother integration
between the automation artifact and the development environment is
prioritized in an industrial context. In the same vein, we found two
scripts that reached higher levels of evidence (cbr insight and piranha).
Those scripts were developed inside the companies and applied to
a specific context; presumably, they are easy to use in this context,
without requiring much configuration.

Finally, Fig. 4 also provides information about the input used by
the automation artifacts (i.e., Source Code, Code Comments, Issue
Messages, Dependency Graph, Metamodels, SQL). Those that take
source code as input reach higher levels of evidence (approx. 30% of
the artifacts, incl. levels V and VI). Some automation artifacts (18/121)
in Level II use information other than source code (e.g., code comments
and issue messages).

In RQ1, we review the main characteristics of automation artifacts
that can support TDM. Specifically, we classify the artifacts into four
categories (i.e., tools, scripts, plugins, and bots) and highlight their
main characteristics, which is a contribution that was not identified
in previous studies. Moreover, we investigate technical aspects, such
as inputs and outputs, which was also not performed before and can
support the analysis and selection of artifacts by practitioners. Finally,
similarly to previous studies [16,17], we classify the artifacts consid-
ering their level of evidence, helping in understanding how artifacts
were used and/or evaluated (e.g. evaluated in academic studies) and
in which context (e.g., used for industrial applications.

Finding 4: The most common level of evidence (approx. 60%,
70/121) is Level II (i.e., examples). Nonetheless, many automa-
tion artifacts are used or evaluated in an industrial context (ap-
prox. 30%, 37/121). Finally, automation artifacts with higher
levels of evidence tend to use source code as input.

5.3. Automation of TDM activities and TD types

In RQ2, we aimed at understanding how the identified automation
artifacts have been applied to automate TDM. Specifically, we explored
10
Fig. 5. Number of automation artifacts that support each TDM activity for each one
of the TD types.

the TD types and TDM activities for which we found support. We
emphasize that some automation artifacts can handle more than one
type of TD. For example, SonarQube can deal with four types of TD
(architectural, design, code, and test), so it is counted five times in
the discussion of automation artifacts for TD types (one for each type).
Similarly, some automation artifacts are able to deal with more than
one activity. For instance, Codacy19 can both identify and monitor TD
items related to code TD. In this case, during the discussion of TDMA,
it is counted twice (once for identification and once for monitoring).

Fig. 5 summarizes the number of automation artifacts available for
each TD Type and TDM Activity. Several studies [3,8,9] discuss the
relation between the type of TD and the tasks to manage it, which
highlights the need for aligning the automation process with the TD
type. Thus, we will discuss how the automation artifacts can deal with
the TDM activities, for each TD type. Code TD is the most supported
type by automation artifacts, with 63% (82/121) being able to handle
at least one TDM activity for this type. The Identification activity is
the most automated, since 75/82 automation artifacts deal with the
identification of Code TD. Measurement is the second one, with 20/82.
Other activities also received some attention but at a much lower level,
such as Repayment (5/82) and Monitoring (8/82). We did not find any
evidence related to the automation of Prevention in our results, which

19 https://www.codacy.com/

https://www.codacy.com/
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may suggest a focus on dealing with the existing TD, and not necessarily
avoiding new TD items. However, we identified several plugins that
can be used alongside IDEs, providing real-time feedback, which could
reduce the insertion of new TD items. However, these automation
artifacts do not explicitly support prevention but we think they have
potential in doing so if properly extended.

Considering Design TD, 45% (58/121) of the automation artifacts
were used in the automation of activities related to this type of TD.
49/58 were used to identify design problems. Besides, 20/48 automa-
tion artifacts can measure the amount of Design TD present in a software
system. The Prioritization activity is supported by 7/58 automation arti-
facts, which is the highest number of prioritization-related automation
artifacts among all TD types. A potential reason may be related to the
potential ripple effect of poor design decisions (i.e., they can cause
several other problems in the software), which drives stakeholders to
prioritize and repay design TD items [36]. Besides, design TD is the
only type where Prevention activity is automated (2/58). Regarding
repayment, it is considered more challenging to automatically repay
design TD (and architectural TD) when compared with other types
(e.g., code TD), due to the complexity and extent of the repayment.
Nonetheless, we found 5/58 automation artifacts that can automatically
repay design TD: 4/5 refer to removing code smells from the source
code and 1/5 to removing design smells from metamodels. This last
one, specifically, can act as an alternative to handling design TD in the
early stages of software development.

An example of an automation artifact for automated repayment
of architectural TD is derec-gea20, which relies on the identification
of modularity issues (a specific type of architectural TD [35]); it can
suggest refactoring actions, but is still up to the stakeholders to accept
it. In contrast to source code, we did not identify any tool capable of
refactoring architectural TD without human supervision; presumably
because architectural changes are complex and bear risks.

Test TD is supported by 7/121. Identification is still the most con-
sidered activity, with 6/7 automation artifacts for Test TD. The iden-
tification of the TD items related to Test TD is made by checking the
test coverage of the software. Moreover, the automated Measurement of
Test TD is provided by 6/7 automation artifacts.

Requirements TD, Documentation TD, and Build TD are sup-
ported by one automation artifact each. This may suggest that stake-
holders tend to pay less attention to those types of debt, compared
to the rest. Regarding Requirements TD and Documentation TD, an-
other explanation could be that those types of TD cannot be identified
using source code, which is widely used as input to deal with TD.

Although we do not classify SATD as a TD type like the others,
several automation artifacts are proposed and used specifically to deal
with this kind of TD. Specifically, 14/121 automation artifacts can
detect the presence of SATD in code comments and issue messages.
Among those automation artifacts, 13/14 can identify SATD items, 2/13
can represent them, and 1/13 can communicate them.

Since many automation artifacts can perform the same activity, it is
worth reporting that some empirical studies compared the artifacts in
terms of accuracy. Specifically, 25/178 artifacts were compared in 15
studies. Most of these artifacts (20/25) are used for identification of code
debt. Overall, SonarQube is the one that presents more functionalities
and the highest number of rules [37], while its accuracy is not that
high [38]. In terms of accuracy, Lefever et al. [37] present a study that
compares three artifacts (Structure 101, SonarQube, and DV8) for code
smells detection. Their results show that the anti-patterns detected by
DV8, especially Modularity Violation and Unstable interface, provide
support to the identification of debt-ridden files, which points to a
high accuracy of this artifact in this context. 11/25 artifacts were
compared for measuring TD. Specifically, Avgeriou et al. [16] conducted
a study that compared nine tools for TD measurement and reported

20 https://github.com/teomaik/DeRec-GEA
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Fig. 6. Types of automation artifacts per TD type.

that NDepend, CAST, DV8, and CodeMRI can calculate TD interest,
and would be recommended if the main priority is estimating extra
effort for repaying TD. On the other hand, other tools are better when
the priorities lie elsewhere, such as security (CAST and SonarQube),
maintainability at multiple levels (CAST, NDepend, and SQuORE), and
architectural analysis (CAST, NDepend, and SonarGraph).

5.3.1. Artifacts types per TD type and TDMA
We also analyzed the relation between the type of artifacts and the

TD types that are supported by them. Fig. 6 shows how many artifacts
of each type support each TD type. We note that one same artifact can
support multiple TD types, thus the sum of the numbers in each row
does not match the total of automation artifacts.

Differently from other types of automation artifacts, scripts are
mostly used for identifying SATD (10/22). This is possibly because
these scripts are used to execute machine-learning models that analyzes
natural language. Besides, scripts are also used for supporting the
management of other types of TD, i.e., code (8/22), design (6/22), and
architectural (4/22). For these types, the scripts usually query results
from other artifacts to proceed analysis.

Also, bots are the only type of artifact that supports build TD.
Specifically, Breaking-bot [39] supports the management of libraries,
and notifies the maintainers of OSS if some change in a certain library
could break the system that uses this library as dependency.

Regarding TDM activities, Fig. 7 shows a similar distribution among
the types of artifacts. Most notably, identification is the most com-
monly supported activity, while tools are also prominently used to
measurement.

5.3.2. Relation among TD activities and TD types
Although most automation artifacts (90/121) deal with a specific

TDM activity, we found 31 automation artifacts that can perform two
or more activities, as presented in Fig. 8. Among those automation
artifacts, we identify just 1/31 that do not perform the identification
activity. This result indicates that the identification of TD is present
in almost all automation strategies, since it is necessary to list TD
items before proceeding with the other TD activities. Moreover, the
measurement of TD is the most common activity that is combined with
the identification activity (14/31). Considering the TD types, 41/121
automation artifacts can support more than one type of TD, as shown in
Fig. 9. Specifically, 16/41 automation artifacts can deal with code and
design TD. Code, design, and architecture TD can also be managed by
14/41 automation artifacts, which also represents a strong relationship
between these three types of TD.

In RQ2, we review the scope in which the automation artifacts can
be used, specifically investigating the types of TD that are supported

https://github.com/teomaik/DeRec-GEA
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and the TDM activities that are automated. Previous studies [5,8,17]
have already investigated this aspect. However, our study expands this
classification by relating different TDM activities and TD types that
are automated by a single artifact. This analysis sheds lights on the
relations between TD types and TDM activities and can support the
definition of TDM approaches.

Finding 5: The Identification activity is the most supported
activity of the TDM, while Measurement also received signifi-
cant attention. Moreover, the combination of those activities is
present in 14/121 automation artifacts. Code, design, and archi-
tectural TD are the three types that received the most attention,
while 14/121 automation artifacts can deal with all three of
them. Finally, existing evidence regarding the performance and
accuracy of artifacts is related to those artifacts that support
Identification and Measurement.

5.4. Usage of the automation artifacts

In RQ3, we analyze the evidence we found related to the usage of
the automation artifacts regarding two main perspectives. The first one
concerns the trigger (i.e., how the artifacts are executed), while the
second regards the existing and possible integration between artifacts.

5.4.1. Automation artifacts’ triggers
We classified the automation artifacts considering three different

types of trigger: (i) human-based triggers, i.e., requiring human in-
tervention to be executed; (ii) automated triggers, i.e., running au-
tomatically based on events that happen in the environment; and (iii)
both, i.e., automation artifacts that can be configured to run both with
human-based and automated triggers. It is essential to analyze this
aspect of automation artifacts to understand how they can be executed
in the development process, which enable as smoother integration
of them in the existing development workflows that are present in
industry.

The classification was performed based on the interface(s) offered
by the automation artifacts, which are presented in Fig. 10. Specifi-
cally, this figure presents the number of artifacts that provide each
type of interface. Automation artifacts that provide only a graphical
user interface (GUI) were categorized as human-triggered artifacts. We
note that several plugins also contain human triggers since they are
activated through a GUI element (e.g., a button added to an IDE via the
plugin). The artifacts that can be executed only through an API were
classified as automated triggers, as they require software integration.
Automation artifacts classified under the category ‘‘Both’’ either: (a)
offer a Command-Line Interface (CLI), i.e., can be executed manually
12
via a terminal (e.g., Windows Powershell) or can be automated through
Operating Systems process pipelines; or (b) present more than one type
of interface (e.g., Kiuwan21 provides an API and a GUI).

Fig. 11 reports the triggers for the automation artifacts, classified
by the type of artifacts (e.g., tool, plugin, etc.) that were reported on
RQ1. The figure also highlights the number of artifacts that present
at least one interface that enables integrations (which will be further
explored in RQ3.2). It shows that automation artifacts with support for
both automated and human triggers are more common than the other
types: approx. 53% (63/121), compared to 35% (43/121) for human
triggers, and 12% (15/121) for automated triggers.

To provide more insights on the usage of the automation artifact in
the software development, we also analyzed how the types of triggers
are related to the following set of activities: (a) requirements engi-
neering; (b) architecture and design; (c) coding; (d) testing; and (e)
deployment.

Regarding requirements engineering and deployment, we did
ot identify any artifacts. Regarding architecture and design, we

identified 58/121 automation artifacts support the management of
architecture and design TD. For this activity, about half of the arti-
facts (27/58) present both human and automated triggers, and 25/58
provide only human-based triggers. Besides, 6/58 artifacts present only
automated triggers.

Coding is the activity for which most of the automation artifacts
can be used (99/121). This observation is not surprising since most
artifacts take source code as input (see RQ1.2). For this set of artifacts,
54/99 provide both types of triggers, 31/99 provide only human-based
triggers, and 14/99 provide only automated triggers.

Test TD, and by consequence testing, is supported by 7 artifacts.
Three artifacts provide only human-based triggers, two provide only
automated triggers, and two provide both.

5.4.2. Integration between automation artifacts
The second perspective is related to the possibility of integrating

different automation artifacts to improve the support for different
activities and TD types (RQ3.2). For this purpose, we analyzed: a)
the existing integrations between automation artifacts as suggested or
performed in the primary studies; and (b) possible integrations, which
we inferred from the interface(s) provided by the automation artifacts.
Fig. 12 presents the number of artifacts per type of interface. We note
that automation artifacts may contain multiple interfaces from which
only one was used in the corresponding primary study to integrate the
artifact. In such cases, the used interfaces are accounted for in Fig. 12(a)
and the remaining ones in Fig. 12(b).

Looking at the existing integrations, we found evidence of inte-
grations for 24/121 automation artifacts, as presented in Fig. 12(a),
from which 15/24 were made using API interfaces and 9/24 using
CLI interfaces. The integrations were either with other automation
artifacts (15/24) or other software (e.g., code hosting platforms such
as GitHub (11/24) (which also includes bots, such as FixMe [20]),
and IDEs or CI/CD Managers (8/24)). We note that some automation
artifacts were integrated with more than one type of software: 8/24
artifacts were integrated with IDEs and other automation artifacts; 3/24
were integrated with automation artifacts and code hosting platforms;
finally, 1/24 was integrated with code hosting platforms and CI/CD
Managers.

Among these existing integrations, we found that some of them
support more than one TDM activity (13/14) or more than one TD
Type (9/14). One notorious example is between VisminerTD22 and
heckstyle [40], which enables the identification and measurement of
D (performed by Checkstyle), and visualization of the TD (through
isminerTD). In this case, the integration is done via API, in which

21 https://www.kiuwan.com/
22 https://visminer.github.io/

https://www.kiuwan.com/
https://visminer.github.io/
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Fig. 8. Number of automation artifacts that support one or more TDM activities.
Fig. 9. Number of automation artifacts that support one or more TD types.
isminerTD uses Checkstyle’s API to query the detected TD items.
uch examples mean that researchers already started to look at the
ossibility of improving the automation process by connecting two or
ore automation artifacts. However, we note that several integration

cripts had to be developed to connect the automation artifacts, which
an be time-consuming and a trade-off that should be considered.

Some of the existing integrations concern integrating automation
rtifacts with other types of software (e.g., CI/CD Managers), thus
nabling the execution of TDM activities in parallel with software de-
elopment tasks. The integration between Jenkins23 (CI/CD manager)
nd CodeSonar24, for instance, enables the identification of TD while
he software is deployed.

23 https://www.jenkins.io/
24 https://www.grammatech.com/codesonar-cc
13
Similarly to RQ3.1, we also analyzed which development activities
are supported by integrated automation artifacts. Specifically, 18/24
artifacts were integrated to support coding activity and 6/24 to support
architecture/design activity. As we mentioned before, the integrations
are usually employed to perform more than one TDM activity or to
handle more than a TD type. For instance, Sas et al. [33] report that
Arcan was integrated with Astracker to support the identification and
monitoring of architecture TD.

As for the possible integrations, i.e., those that we inferred from
the interfaces (Fig. 12(b)), we analyzed whether automation artifacts
facilitate integration by providing a CLI or API. We found that 60/121
artifacts could be integrated, e.g., with IDEs, other automation artifacts,
code hosting platforms, or CI Managers. Among these artifacts , 46/60
present a CLI interface and 22/60 present an API interface. Besides,
15/60 artifacts present both an interface that enables integration and

https://www.jenkins.io/
https://www.grammatech.com/codesonar-cc
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Fig. 10. Type of interfaces used to execute the automation artifacts.

Fig. 11. Type of the automation artifact 𝑥 trigger.

lso a GUI interface. We also note in Fig. 12(b) that 5/78 automation
rtifacts present both API and CLI interfaces that were not used in
ntegrations in primary studies yet.

In RQ3 we explored technical aspects of automation artifacts, such
s their triggers and possible integration. The main contribution of
his RQ is to provide information on how those artifacts work and
ow they could be integrated in the software development process
e.g., integrated with code host platforms). Moreover, we highlight the
igh level of human interaction that is needed to execute the artifacts,
hich points out to the preference of tool support for TDM instead of
igher levels automation.

Finding 6: The execution of the majority of automation arti-
facts, can be triggered by both human intervention or automatic
strategies (e.g., using scripts) (approx. 53%, 64/121). Be-
sides, around 20% (24/121) of the automation artifacts have
been used in integrations, while 78/121 could be potentially
integrated considering the interfaces they provide.
14

T

6. Discussion

Our results show that researchers have been actively and intensively
reporting the usage of automation artifacts to support TDM. We further
perform a synthesis of our results, comprised of a conceptual model for
TDM automation, two examples of the model’s usage, and a set of four
challenges that should be addressed to improve TDM automation.

To define the conceptual model, initially we summarized the main
results of each RQ. The results were then analyzed and the concepts
and relations were defined based on constant comparison [26,27]. For
instance, RQ3 explores the usage of automation artifacts and shows
that, usually, they are executed under certain rules (e.g., TODO Bot [41]
is executed after each commit). This lead us to define the concept TDM
Automation Rule.

Finally, it is relevant to highlight that the model encompasses both
the current state of TDM automation, but also our proposals on how
to improve it, based on the limitations we identified in the current
solutions for TDM automation. One example is the proposal of a central
management for multiple automation artifacts with an Orchestrator.

6.1. A conceptual model for TDM automation

Similar to other conceptual models in the software engineering field
(such as the one presented in Junior et al. [3] for TD and TDM), a
conceptual model for TDM automation can help to abstract and explain
this domain. This model can aid practitioners’ decision-making in spec-
ifying the TDM activities they would like to automate into a strategy
and integrate those activities into an existing development workflow. In
addition, since TDM cross-cuts different areas of a company (e.g., soft-
ware development, project management, finance), the development of
a strategy based on the model can improve communication among
stakeholders. Fig. 13 depicts the TDM automation conceptual model
and

Table 4 shows a summary of all concepts, including how they were
identified and from which RQ.

The model is centered around the concept of a TDM Automation
Strategy, which expresses how an organization or software develop-
ment team addresses TDM automation. Such a strategy is composed
of four principal concepts. The first concept is the TDM Automation
Artifact, which refers to software that can automate one or more TDM
Activities, and support one or more TD Types. More than one TDM
Automation Artifacts can be used in a strategy, i.e., two or more of these
artifacts can be integrated to provide more features for the strategy;
this is expressed with the relation ‘‘integrates with.’’ TDM Automation
Artifacts can also be integrated with one or more Development Tool,
such as IDEs, CI/CD Managers, and code hosting platforms (such as
Github). Every automation artifact is initiated by an event (TDM Au-
tomation Trigger). A trigger can be manual (i.e., executed by human)
or automated (e.g., software invocation), as presented in Section 5.4.
We note that an automated trigger can also refer to the execution of one
automation artifact by another, when two or more automation artifacts
are integrated.

The second concept is the TDM Automation Rule, which defines
when automation should take place (e.g., after a commit, or based
on a threshold such as time or amount of TD items) and which TDM
Automation Artifact should be executed.

The third main concept is the TDM Automation Orchestrator, a
oftware that manages the strategy. Note that the orchestrator does
ot automate any TDM Activity; this is exclusively done by the TDM
utomation Artifacts. Instead, it implements several TDM Automation
ules for the automation and uses the TDM Automation Triggers of the
rtifacts to execute those artifacts.

The fourth concept is the TDM Automation Gateway, which serves
s an interface to collect data to be used by the automation artifacts
resent in the strategy (e.g., collecting source code from repositories).
he gateway can be used by a TDM Automation Artifact to query Data
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Fig. 12. Number of automation artifacts per interface type, in (a) existing and (b) possible integrations.
Fig. 13. Conceptual Model of TDM Automation.
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Sources, such as repositories, issue trackers, and IDEs (e.g., through
plugins). The gateway can also be used by an External Software Ap-
plication, which can query the gateway to retrieve data related to the
automation results (e.g., a script that retrieves data or reports provided
by the strategy). Also, during its execution, a TDM Automation Artifact
may use the gateway to push results outside the strategy (e.g., creating
pull requests).

Finally, a strategy can be implemented in two ways depending on
how the orchestrator is used. In a reactive strategy, the orchestrator will
trigger the strategy based on a change in one or more data sources. In
a proactive strategy, the orchestrator triggers a strategy independently
of the changes that occur to the data sources (e.g., the rules for
automation are based on time or set manually by a developer).

6.2. Example of usage

To exemplify the usage of the conceptual model, we define an au-
tomation strategy, encompassing four of the discussed TDM activities. A
15
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conceptualization of the strategy is presented in Fig. 14. As we showed
in Section 5.3, the type of TD drives the tasks that are performed to
manage TD items. In this example we illustrate the management of
Code TD.

In this example, we consider the TDM activities of identification,
monitoring, measurement, and repayment. In Fig. 14, we provide ex-
amples of software that could be used per activity. SonarQube is used
for the Identification of TD, and this information is fed into Vismin-
nerTD [40] for Monitoring TD through a dashboard. Subsequently,
onarQube is applied for Measurement, i.e., to estimate the cost of
aying back the TD. Finally, RefactoringBot is used in the strategy to pay
ack the TD Items identified by SonarQube. It is important to highlight
hat the data and interfaces provided by the automation artifacts would
ake possible their integration, mainly through accessing their inter-

aces (API and/or CLI), e.g., by using scripts that query data. However,
his integration was not evaluated in practice.
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Table 4
Concepts related to TDM Automation.

Concept Description Explanation rq

TDM Automation Strategy Refers to how TDM automation
should be addressed in software
development.

Overall, the results of this SMS suggest that automation artifacts
have been applied individually, focusing on automating a specific
TDM activity for a TD Type. However, the automation of TDM
involves other aspects, such as the choice of automation artifacts,
their integration, and the management of the automated solution.
Thus, a complete strategy must be planned for TDM automation.

RQ1
RQ2
RQ3

TDM Automation Orchestrator A software responsible for
managing the TDM Automation
Artifacts in the strategy.

Section 5.4 discusses the integration between software. An example
of this integration is VisminnerTD [40] and SDK4ED [42]. Although
several automation artifacts are connected inside those platforms,
they lack some kind of automated orchestration that implements
rules without requiring developer intervention.

RQ3

TDM Automation Rule Defines when the automation
happens and which TDM
Automation Software is used.

Section 5.4 summarizes how the automation artifacts are used in
software development. It shows that some artifacts are executed
manually. Since the main advantage of an automated strategy is to
reduce the developers’ workload, the definition of rules is crucial to
specify how the automation artifacts should behave in a certain
strategy; defining when an automation artifact must be executed
(e.g., once a week, after each commit, etc.) is an example of a rule.

RQ2,
RQ3

TDM Automation Artifact Software application that
automates one or more TDM
Activities.

To automate the TDM, one or more pieces of software must be
used. Section 5.2 summarizes the list of identified automation
artifacts and Section 5.4 discuses potential integrations between
them.

RQ1
RQ3

TDM Automation Gateway Responsible for pulling and
pushing data in and out of the
strategy.

As presented in Section 5.2, all automation artifacts need to interact
with a data source to perform a TDM Activity. A gateway is then an
adequate abstraction to isolate the strategy from the data sources.

RQ1

Data Source Refers to sources from which data
is collected to be used within the
strategy.

Each automation artifact needs data to automate a TDM activity, as
presented in Fig. 3. Analyzing the data (and their format) is
relevant in the strategy, for instance to evaluate possible data
conversions that could be necessary (e.g., some artifacts can deal
with code comments, which need to be extracted from source code
collected from repositories).

RQ1

External Software Application Refers to software applications
that are not within the strategy
but can interact with it.

External software applications (e.g., scripts) can interact with the
gateway to collect data from the strategy. For instance, scripts can
be used to request reports about the automation process.

RQ1

TDM Automation Trigger It consists of the event and/or
action that executes an
automation artifact.

In Section 5.4, we describe two types of triggers (manual and
automated). It is important to analyze automation artifacts triggers
to understand how they can be used to execute the artifacts in the
strategy.

RQ3

Development Tool Consist in tools that are used
during software development, but
are not used to automate TDM
activities (e.g., IDE).

Section 5.4 explores the integrations in which automation artifacts
are involved. As reported, the artifacts can be integrated with
development tools, such as IDEs, CI/CD managers and code hosting
platforms. Thus, analyzing such integrations during a strategy’s
design is relevant to facilitate the strategy‘s integration into the
software development (e.g., automation artifacts that can be
integrated with IDEs could collect data directly from it).

RQ3

TDM Activities The activities that are automated
in the strategy.

As presented in Section 5.3, the automation artifacts automate one
or more TDM activities.

RQ2

TD Types The types of TD that are
supported by the strategy.

Similarly to TDM Activities, Section 5.3 shows that automation
artifacts also support one or more types of TD.

RQ2
Fig. 14. Example of TDM Automation Strategy.
In our conceptualization, Travis CI25 is the orchestrator and manages
the automation process considering several rules. Moreover, Grimoire
Lab26 acts as the gateway in this example, and collects data from

25 https://www.travis-ci.com/
26 https://chaoss.github.io/grimoirelab/
16
repositories (e.g., Github), for use with automation artifacts that use
source code as input (e.g., performing static code analysis).

There are two possible configurations for this strategy. In the first
one, Travis CI manages the data collection, and upon some change
in the data sources, triggers Grimoire Lab considering the rules that
were defined in the strategy. This configuration enables a reactive
implementation of the strategy, since the orchestrator can continuously
check for changes in the data sources.

https://www.travis-ci.com/
https://chaoss.github.io/grimoirelab/
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In a second configuration, a proactive strategy is possible if data col-
lection and orchestration are detached from each other. This means that
the Grimoire Lab collects data continuously, making the data available
through an API that could be consumed by the automation artifacts.
The rules implemented in Travis CI , in this setting, do not depend on
hanges on the data sources; instead they could be periodically changed
r manually by a user.

Looking into the implementation of the strategy, different vendors
ould provide parts of the solution. For instance, a vendor could offer
complete solution, including the data collection, orchestration, and

DM automation artifacts. Each part could also be developed indepen-
ently and subsequently integrated (as the example in Fig. 14 shows).
oreover, this flexibility can improve the reuse of tools, reducing the

ffort in developing the automation strategy.
Although the data provided by the selected automation artifacts,

heir interfaces and features theoretically enable the development of
his strategy, this integration still presents some limitations, such as the
upport for just one specific type of TD. The limitations allude to four
ain challenges, which are discussed in the next section.

.3. Main open challenges

The conceptual model also highlights four main challenges that
hould be addressed in order to improve the level of TDM automation.
hallenge #1 is ‘‘How to automate various TDM Activities on the same
trategy?’’, and mainly refers to the relation between TDM activities.
s we showed in Section 5.3, some automation artifacts can deal with
ore than one activity, which could provide an initial understand-

ng on those relations. However, we still lack details on what the
nterdependence between the TDM Activities entails, when they are
upported by one or more automation artifacts within a strategy. For
nstance, in software systems without documented TD, it would be
mpossible to automatically measure TD without identifying it before.
urthermore, depending on the approach to manage the TD items, after
eing identified they could be measured (e.g., if the primary goal of the
pproach is to obtain an overview on the TD accumulation) or repaid
e.g., simple code debt, such as lack of variable nomenclature names
ould be corrected without measurement) . This challenge directly
ffects the strategy’s implementation since the order of activities must
e mapped into the data exchanged between automation artifacts.
oreover, the decision of which activities should be automated in the

trategy also drives the selection of automation artifacts.
In the same direction, challenge #2 is ‘‘How to automate various

TD Types on the same strategy?’’, and regards the handling of different
types of TD within the same strategy. Defining which kind of TD
will be managed is essential to determine the automation artifacts
used. However, development teams often need to deal with multiple
TD types since they can co-occur in software systems [43]. Some
automation artifacts can deal with more than one type of TD, but the
different types of TD are often investigated separately (as presented
in Section 5.3). In this sense, there is still a demand for approaches
that exploit the best configuration for a strategy in order to combine
more than one TD types. For instance, it could be possible to define
several parallel strategies with different automation artifacts (to deal
with different types of TD). However, this could increase the time and
effort necessary to implement the strategy (see challenge #4), which is
a trade-off that should be considered and investigated. Alternatively,
automation artifacts able to deal with various types of TD could be
chosen for a strategy. Besides, automation artifact orchestration could
help in integrating artifacts and supporting more TD types. Thus, more
attention in this direction is needed.

Currently, practitioners make several decisions related to managing
different TD items, including which TD items should be repaid, which
can stay in the system, and the trade-offs they consider to refactor the
system. Thus, the role of the Orchestrator is played by a human in
17

current TDM practices. However, in a automated TDM strategy (which
aims at reducing human intervention) the Rules should be defined
in advance and implemented within the Orchestrator. In this context,
challenge #3 is ‘‘What are the rules to automate TDM?.’’ Despite some
research concerning prioritization strategies [15], we could not find
application to an automated environment. Thus, it is necessary to
understand to what extent the current techniques are applicable and,
if necessary, propose new (reusable) rules based on specific metrics
(e.g., coupling of the system) to specify how to proceed with certain
TD activities and when (e.g., decide which TD items should be repaid).
Moreover, the set of rules to perform a TDM activity should be clear
and quantifiable since the orchestrator should be able to apply them
without human intervention.

Finally, challenge #4 is ‘‘How can we integrate TDM Automation
Artifacts?’’, and is related to several technical issues when trying to
integrate different automation artifacts in a strategy. The main tech-
nical problem is interoperability27 between automation artifacts. As
we presented in Sections 5.2 and 5.4, available automation artifacts
use different forms of input and output. When we look at the output
provided by the automation artifacts, most of them offer common
machine-readable formats (e.g., CSV), which theoretically makes the
integration easy. However, the main issues are related to the input
of the automation artifacts. In general, the automation artifacts use
source code files as input, and cannot read files generated by other
automation artifacts. In our example, Refactoring-Bot is used based on
results generated by SonarQube. However, integration may not be pos-
sible if practitioners opted for another combination of artifacts instead
of Refactoring-bot and SonarQube. To tackle this type of integration
issue in the automation strategies, we need to: (i) develop new tools
which can read data from several formats (e.g., JSON); or (ii) develop
integration scripts that can translate results.

Challenge #4 also covers some execution problems of the automa-
tion artifacts. As we stated in Section 5.4, while most of the automation
artifacts could be executed using both automated and human triggers,
just few examples presented artifacts being executed by automated
triggers. Thus, human intervention is still required in most cases,
which hinders automation strategies that would aim at reducing human
interaction as much as possible. Hence, more investigation is needed on
how to improve the autonomy of the automation artifacts.

6.4. Futures perspectives of TDM automation

In this section we try to shed light on future research directions re-
garding the automation of TDM, based on the four challenges described
in the previous section.

To address challenge #1, we argue that it is necessary to establish
the relations between TDM activities. To this end, we suggest two
starting points. First, the results we presented in Section 5.3.2 show that
some automation artifacts can perform more than one TDM activity,
indicating that some TDM activities are more prone to be automated
together. For instance, we found that all artifacts that document TD
items, also identify them. While the opposite is not true, we can infer
a certain dependency of the documentation activity on the identifi-
ation one. Second, the concept of TD lifecycle [44,45] refers to the
teps that are followed to deal with TD items, and encompasses some
DM activities, such as identification and repayment. It establishes the
rder that some TDM activities are executed, which can be understood
s a type of relation among them, providing initial evidence on their
nter-dependencies.

Regarding challenge #2, different TD types should be supported
o increase the level of automation of TDM strategies. A deeper ex-
loration of the co-occurrence of TD types could provide an overview
f what TD combinations should be supported, and could drive the

27 By interoperability, we mean the capacity of exchanging data between two
or more automation artifacts.
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choice of automation artifacts in a strategy. For example, if design and
code TD usually co-occur, it would be pertinent to develop a single
strategy that deals with both types. In an initial exploration of this
topic, Tan et al. [43] studied how five different types of TD evolve
in open-source Python projects. However, more evidence is required
considering more TD types, other programming languages (e.g., C++),
and in industrial settings. Finally, it is necessary to explore the different
strategies’ configurations to deal with more than one TD type, through:
(a) exploring the usage of artifacts that support more than one TD type
and (b) exploring the integration of artifacts that support different types
of TD.

To deal with challenge #3, more research is needed to understand
he decision-making process behind the automation of TDM activities
currently performed manually), i.e., the rules that software practition-
rs use to perform automated TDM activities. Specifically, we need to
nderstand better the rationale of practitioners when they make those
ecisions, as well as the required automation triggers. For example,
e need a better understanding of when a refactoring should happen

based on the accumulation of TD, the impact of the TD item, etc.).
oreover, we know very little about the practitioners’ take on the

egative aspects of automation. Understanding this, would help us to
etermine when or which decisions or tasks should not be automated.

Finally, the technical issues related to challenge #4 should also be
nvestigated. More effort in updating tools to follow standards could
e an excellent first step in this direction. For instance, SARIF-based28

ools started to be used in the context of TDM, but this standard’s
sage is relatively low [46]. Besides, the Object Management Group
manager of UML) proposed a standard to automatically identify code
ebt [47], which should also be investigated as a way to make it
ossible to integrate different tools. Moreover, we reported that some
utomation artifacts could be integrated into the CI/CD pipelines to
elp TD management (e.g., SonarQube). However, we did not find
ny evidence of this usage in practice. Thus, it is also important to
nvestigate why practitioners are not taking advantage of integration
ith CI/CD and what they would require to do so.

.5. Implications for researchers

First, a deeper understanding of the automation process from
he point of view of practitioners must be provided. The conceptual
odel we proposed is based on information collected from automation

rtifacts identified through our SMS. However, most studies present re-
earchers’ viewpoints on the automation process. Therefore, to improve
he body of knowledge and usability of the automation artifacts, it is
rucial also to survey practitioners and understand their aims for the
utomation of TDM.

Furthermore, we found some evidence related to the integration
f automation artifacts, which enable supporting multiple TD types
nd TDM activities. However, not all automation artifacts that could
otentially be integrated have actually been integrated in research
pproaches. Therefore, we argue that it is essential to investigate
ew integrations between automation artifacts in order to exploit
ll meaningful integration options and assess their feasibility within a
DM automation strategy.

Moreover, evidence regarding the comparison between the evo-
ution of TD in automated and non-automated settings is still
ecessary. It is important to investigate those scenarios to better under-
tand in which of them the automation is more usefull. For instance,
ould be important to investigate if the time to repay TD items is

hortened when automation artifacts are used.
From another perspective, we see the usage of SATD as a potential

river to improve TDM automation. This is because SATD items are

28 https://sarifweb.azurewebsites.net/
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already documented, and can help locating real problems in the soft-
ware system. However, two directions need to be investigated to make
the usage of SATD even more helpful. First, the identification of SATD
can be time-consuming and the accuracy of current classifiers is not
particularly high (e.g., 61% reported by Li et al. [48]). Thus, more
research in improving the accuracy and efficiency of classifiers
is needed. Second, when considering the orchestration of different
automation artifacts as proposed in the conceptual model, it remains
unclear how various sources of SATD can be combined (such as
issues and code comments) to facilitate a more complete identification
of TD in an automation strategy. Third, there is still a need to
investigate how the identified SATD items can be utilized in such
strategy. For instance, they could be used in combination with items
identified by static analysis (to support the calculation of TD amount),
or as a driving force for running static analysis on specific files (to
increase the efficiency of the identification process).

Finally, we provided a conceptual model that describes the cur-
rent state of TDM Automation as reported in the literature. This model
can drive future research and act as a baseline for the development of
new approaches (e.g., new toolboxes or automation artifacts).

6.6. Implications for practitioners

In RQ1, we provide a catalog of automation artifacts that are
available online and ready to be used. We discuss several technical
characteristics of the automation artifacts, such as their triggers, in-
put/output and interfaces. Hence, practitioners can use these results to
understand the features of the automation artifacts, and subsequently
select which artifacts to apply and how. In addition, as stated by Silva
et al. [17], there is still a lack of tools/technologies that can handle
multiple TD types and TDM Activities at the same time. We take a
first step in addressing this by discussing how integrating different
automation artifacts can be a good direction to increase the automation
of TDM; practitioners can follow our recommendations and try, in
practice, the integrations that may help them the most in managing
TD.

The conceptual model we propose provides several aspects that
must be taken into account during the implementation of automation
strategies in an industrial setting. Moreover, the model also highlights
the limitations of current approaches for TDM automation, which can
also help practitioners when adopting current automation solutions
(e.g., single automation artifacts or integration between artifacts).

From a vendors’ perspective, our study highlights some limita-
ions in the execution of the automation artifacts, which can help
ool developers to improve their automation artifacts. For instance,
e found in Section 5.4 that most automation artifacts still demand
uman intervention to be executed. In this context, we highly recom-
end vendors to start looking into automating some functionality with
evelopment bots; bots are good examples of automation artifacts can
un in the background without human intervention, thus improving the
evel of TDM automation.

. Threats to validity

In this section, we discuss the threats to the validity of our SMS. We
lso discuss the measures we took to mitigate those threats, considering
he guidelines provided by Ampatzoglou et al. [49]. Threats in the
ontext of this study can be classified as Study Selection Validity, Data
alidity and Research Validity [49].
Study Selection. There is a possibility that some relevant studies

ere omitted or some irrelevant ones were included, which could
arm the completeness and correctness of our results. Ineffective search
trings and a non-optimal selection of digital libraries are threats
elated to study selection. Specifically for our study, we decided to
se a single database (Scopus) to perform the initial search, which
an be a threat to the validity of our study. To mitigate these threats

https://sarifweb.azurewebsites.net/
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we followed the guidelines proposed by Wohlin et al. [24], which
include the search using the Scopus Database followed by forward and
backward snowballing. Another threat related to study selection is the
possible bias in the selection of the studies. In order to mitigate this one,
we conducted a pilot study to calibrate several aspects of our search,
such as the search string, the time spam which would be considered,
and the inclusion/exclusion criteria. Finally, another possible threat is
the decision not to assess the quality of the included primary studies.
This decision followed the guidelines proposed by Petersen et al. [50],
which argue against the need of conducting quality assessments in SMS
to include ongoing research or non-empirical studies that can provide
valuable information (in our case, artifacts). Having said that, since
automation artifacts are the main units of analysis of this SMS, we did
assess the level of evidence of each artifact, as reported in Section 5.2.

Data Validity. Unverified data extraction and author bias are among
he most critical threats to the validity of the data, as these could lead to
nreliable results and conclusions. To mitigate these threats, the first
nd second authors discussed all data items that should be extracted
ntil they reached a consensus about their meaning and content. More-
ver, we validated the extraction form by filling it with data from 13
tudies during the pilot study. Any disagreement regarding the data
tems was discussed by the first and second authors, leading to refining
nd finalizing the extraction form. Finally, during the extraction phase,
he data that the first author extracted were revised by the other
uthors independently.
Research validity. The replicability is one of the main concerns

egarding our study, since qualitative and quantitative data analysis
nd synthesis were required to answer the proposed research questions.
o address this, we defined a detailed protocol (see Section 4) based on
ell-established guidelines [18,24,51] for systematic literature reviews.
oreover, we prepared a replication package29, which contains all the

ntermediate outcomes of the process, such as search string calibration,
tudy selection process, and datasets.

. Conclusion

The TDM process encompasses several activities that help practi-
ioners to keep TD under control during the development of software
ystems. In this study, we reviewed 121 automation artifacts (obtained
rom 178 studies) that can be applied to automate some of those activ-
ties, improving the efficiency of TDM. From the results, a conceptual
odel was proposed to help practitioners and researchers understand

he challenges related to TDM automation that require further investi-
ation. Considering the overall results we found, we argue that more
DM automation should be feasible in the near future. But for that,
esearch is needed to properly and efficiently integrate automation
rtifacts in software development workflows.

As part of our future work, we intend to validate the proposed
onceptual model. In particular, conducting a formal evaluation of the
odel (such as through expert surveys) could provide insights into its

ompleteness, comprehensibility, and usability. Furthermore, instan-
iating the model and assessing it within controlled and real-world
nvironments is essential to identify potential areas for improvement.
oreover, we plan to conduct a more in-depth analysis on the usage

f automation artifacts in the industry. Specifically, the analysis of
ow automation artifacts have been evaluated and the challenges in
sing them from the developers’ perspective is still necessary. Addi-
ionally, we plan to conduct surveys with developers to gain a deeper
nderstanding of the requirements related to the automation of TDM.
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Data availability

The data is available online in a replication package.

Appendix A. Supplementary data

Supplementary material related to this article can be found online
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