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1.lntroduction. 

In this paper, we study the law of R.. which is the first time a stochastic stationary 
source repeats its first n symbols of output. We show that this time suitably renormalized 
converges in law to a lognormal distribution. The re.<Jult holds for a large class of q'>-mixing 
sources, namely the class of stationary processes induced by one-dimensional Gibbs states. 

The original motivation for studying R.. came from the Zempel-Liv and related com­
pression algorithms. A first result on the asymptotics of R,. was obtained by Wyner and 
Ziv (1989) who proved that for stochastic ergodic sources 

lim !_ log Rn= h 
n-oon 

in probability, where h denotes the entropy of the process. Later on, Ornstein and Weiss 
{1993) improved the result by showing almost sure convergence. 

In the present paper we study the fluct11&tions of log R,, around its limiting behavior 
for Gibbsian sources. We prove that the random variables {log R,, - nh )/ y'n converges in 
law to a Gaussian random variable when n tends to infinity. 

As will be clear from the proof, the log-normal a.symptotics comes out from the fact 
that the law of R.. is a mixture of asymptotically exponential laws with fluctuating rates. 
The main tools of the proof are a theorem about exponential approximati0Il8 for entrance 
times in cylinder sets in ~ mixing sywtems proven in Ga.lveri and Schmitt (1097) and a 
central limit theorem for the fluctuations in the Sbannou-McMillan-Breiman theorem. For 
a recent review on exponential and Poissonian approximations we refer to Aldous (1989). 
Lognorm&l a.symptotics has a long history starting with Galton {1879) and passing through 
Kolmogorov {1941). For a survey of this field we refer to Crow and Shimizu {1988). 

This paper is organized as follows. In section 2 we give the definitions and state the 
main theorem. The proof is given in section 3. 

2.Deflnitions and main result. 

We consider a stationary ergodic discrete time stochastic process (X,.)nez defined on a 
probability space (O,.r, P) with values in a finite set A. 

For any sequence_ (a.1:).1:ez with elements in A, we will denote the partial sequence 
(a;,tli+i,·" ,a;) by <I;, for i < j. In particular, a;00 denotes the sequence {a;);>i• The 
same notation will be used for the sequence of random variables. Coherently we shall use 
the notation {Xf = ar} to denote the cylinder set 

{X;(w) =a;, j = 1,···,n}. 

For a finite sequence ai the entrance time -r., is defined by 

We recall that the ergodic theorem implies that ,-.~ is almost surely finite, provided that 
P({Xf = ai }) > 0. 
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We •now define the sequenced return timeB (.R,,) by 

(2.1) 

A stationary source is Gibbsi&n if there is a Holder continuous function r.p : AN ➔ R 
and two constauts P and K > 1 such that for any integer n > O, for any finite sequence 
af EA", we have 

K-1 < F({Xf = af }) < K 
- -nP+ °""- 1 y,(a+00 J - ' e L....J•O J 

(2.2) 

where (aj"") is defined by completing the finite sequence a'J in an a,bitrary way. We 
refer the reader to Bowen (1975) for more details and properties of Gibbsian sources. We 
observe that this condition holds for Markov cha.ins of any finite order, 11.lld more generally 
for chains with complete connections with exponential decay of correlations (see Lalley 
(1986)). 

For the convenience of the reader we recall some important facts about Gibbsian 
sources which are used below. 

Gibbsian processes are exponentially ¢>-mixing, namely there is a sequence (</>(l)) of 
positive numbers, decreasing exponentially fast to zero such that for all integers n and l 
larger than or equal to one we have 

IP(An B)- lP(A)lP(B)I < ~(l) 
P(A)P(B) - ' 

(2.3) 

where :F: denotes the <1-algebra generated by x:. 
We observe Chat .in formula (2.2) we can add a constant to rp and subtract it from P 

without clianging the law of the process. In particul&r we can always 88SU1Ile without 1088 
of generality that 

(2.4) .... 
From now on we shall assume that (2.4) holds. In this case the constant Pin formula 2.2 
is equal to the entropy h, and is strictly positive. 

In ~hat foilows we will have to deal with the sequence of mean zero random variables 
S,., n ~ 1 defined by 

fl-1 

Sn = L 'P(Xf"°) • (2.5) 
j=O 

The exponential ¢>-mixing property of Gibbsian SOUl'CeS implies that the variance d S.,/ {fi 
converges to 

00 

r? = E(ip(Xt"")2 ) + 2 LE(r.p(Xcf)ip(Xt00)), {2.6) 
j=l 

when n tends to infinity. 
We now state our ma.in result. 
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Theorem. Assume that the stationary process (Xn} taking values in the &ite ~ A ui 
Gibbsum and ergodic. If fJ'2 > 0, the random variable 

as n ~ io in&ity. 

In the statement of the theorem, C denotes the law of the random va.riab~, and => 
means weak convergence. 

3, Proof of the theorem. 
The proof has three steps. In the first one we show that the law of the return time can 
be approxim&ted by a mixture of laws of entrance times into fixed cylinder sets. In the 
second step we give a.u exponential approximation for each of the laws of entrance times in 
the cylinder sets. These exponential appl'Oltimations have the probability of the cylinder 
as respective parameters. The third step uses a central limit theorem to deal with the 
lognormal ftuctuations of the measures of the cylinders a.round a typical value expffllSed 
in terms of the entropy according to the Sha.nnon-McMillan-Breiman theorem. 

Observe that in the first two steps we only use the hypothesis that the process is 
exponentially ef>-mbdng (i.e. satisfies condition (2.3)). The stronger Gibbs condition (2.2) 
is only used in the third step. 

The first step is handled in the following two lemmas. 

Lemma 1. There exists a constant -y > 0 such that for all n ~ 1 t.be followingmeqwility 
bolds 

Proof. This follows almost immediately from the eJ90nential ef,-mixing condition. We 
refer the reader to Lemma 1 in Ga.Ives and S~tt {1997) for the details. 

" Lemma 2. Assume the source {Xn) ia a stationary stochastic process exponentially¢,-
mixing. Then for any sequence {t,.) such that 

we have 

Jim 
t,. 
-=+oo 

n-oo n 

.. ~
00 

P{.R,. > t,.} - L P{Xi = ai}P{ra~ > t,.}I = 0. 
•~EA" 

Proof. By defimtion for any integer t > 0 we have 

P{Rn > t} = L JP{Xi = af,r•~ > t}. 
•iEA• 

(3.1) 
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W~ Dtlw observe that for any r with n < r < t we have 

IP{Xj = aj' 1'a~ > t} - P{Xj = aj}P{ "•r > t}I ~ 

IP{Xj = aj,r.~ > H- P{Xf = aj,x;+n-J 'F uj' r <" ~ t}I + 
IP{Xf = aj ,x:+•H 'F aj , r < s $ t} - P{Xj .;= aj }P{x;+n-1 -:/: aj , r < a$ t}I +' 

P{Xj = a1} jP{x;+n-J -:/:a~, r <a$ t} - P{-r.,~ > t}I . (3.2) 
T)ie third term in the right hand side of (3.2) is trivially bounded abovt by 

P{Xj = aj} l>{x:+n-J = aj, 1 $ 11 :5 r} :5 r P{.X: = aj}~. (3.3) 

By the qi-mixing property we obtain that the seeond term in the right ha.nd side of (3.2) 
is'bounded a.hove by • ef,(r - n + l)l'{Xj = aj}. (3.4) 
To handle the first term in the right hand side of (3.2) we first observe that it is bounded 
above by · 

r 

LP{Xi = aj,x:+ll-l = aj}, (3.5) 
•=2 

Let us decompose the sum in (3.5) in three parts, 2 :5 u :5 n/3, n/3 < u :5 n a.nd n < u :5 r 
where n/3 is a shorthand notation for its integer pa.rt. An upper bound for the third piece ii pro-yide4, by the exponenti-1 t,6-mi.xing property together with lemma 1, namely 

r I: P{Xj = aj ,x;+•H = aj} $ C1P{Xj = aj}e-'Y", (3.6) 
11=n+l • 

where 
+oo 

Ci= 1 + L4'(l). 
1=1 

The second piece is bounded above by 

(3.7) 

By the qi-mixing property and lemma 1, (3.7) is bounded above by 
• 

• (3.8) 

To obtain a.n upper bound for the first piece we need to look in more detail to the set 
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.for small k. This set is non empty only when af has a particular structure, namely when 
it is obtained by repeating several times a smaller string of length k. Therefore, for any k, 
with 2 ~ % :::; n/3 

~ P{X1: - X:u. -x"'• - b1:} ~ 1 - l:+l ~ •• ' - (1n-l)l:+l - 1 , (3.9) 
6~EA" 

where mis the integer part of (n + 1: -1)/1:. The ip-mixing property implies the following 
upper bound for (3.9) 

{1 + ,p(l))JP{Xf = ~}IP{Xl!1 ~ .... = x;t_1)1:+1 = bn. (3.10) 
By Lemma 1, for any n large enough (3.10) can be bounded by 

(1 + 4>(1))P{Xt = bne-'Tl:(m-l) ::, (1 + 4>(1))1P{Xt = bne--,,./2 . 

where in the last inequality we use k(m - 1) > n/2 which follows at once fro:! k ::; n/3. 
We now choose t = tn, r = min{n2 , ~ for n large enough. Summing up all the 

upper bounds the result follows. 

We now turn to the second step of the proof. It is based on the following result which 
is proven in Galves and Sch.mitt {1997). 

Theorem 3. Assume tne source (Xn) is a stationar;r stochastic process exponentially ef,­
mixing. There are four positive numbers A1 , A2 , C and c such that for any finite sequence 
af EA" there is a number-y.,f satisfying 

A < 1'•~ ·<A 
i - P{Xf = af} - 2 

BUdithat 

sup IP{ Ta" > tf-y., .. } _ e-•1 ~ ce-cn . 
12:0 l 1 

To proceed with the proof of the Theorem, we first observe that it can be restated as 

fun P {Rn> e""e•"✓ii} = - 1-1• e-z"/2dz, _. (3.11) ,._00 \l'21r -oo • 

for any real u. We now apply Lemma 2 with 

t,. = e""e•6✓ii , 
and Theorem 3 in the left hand side of (3.11) to obtain 

P {Rn> e",.e6•✓ii} = L P{Xf = ar} e ->..flP{Xl'=•~J •"•••✓,. + '7n(u) . (3.12) 

•iEA"' 
where 

A "= 1'•" 4
L P{Xf = ar} ' 

and 77,.(u) goes to zero when n goes to infinity. 

We now come to the third and final step of the proof. It is baaed on the following 
central limit theorem. 
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Theorem 4, Assume that the stationary process (X.) taking values in the finite set A is 
Gibbsian and ergoclic. Let r.p, S,. and fJ2 be delined as in (2.2), (2.5) and (2.6) respectively. 
If u2 > 0 and &suming (2.4), the random variable 

CC~) ~N(O,l)' 

when n goes to infinity. 

For a proof of this theorem and related bibliography, we refer to Coelho and Parry 
(1990). 

Let Y,. denote the random variable 

We observe that the leading term in the left hand side of (3.12) is equal to JE{Y,.}. To 
complete the proof of the Theorem we will show that 

We first derive a lower bound on the liminf. For any fixed fl > 0, Markov's inequality 
implies 

JE{Y,.}? e-•-~r- P{logY,.? -e-"..fn}. 
We recall that (2.4) implies that the constant Pin (2.2) is equal to the entropy h. Therefore, 
using (2.2), we see that 

logY. > -Ax .. Ke5•+•./n. n - i (3.14) 

Since A.1 :$ Aa~ :$ A2, we use (3.14) for n large enough to get 

P{ log Y,. ? - e-"v'n} ? P { ~ < -u - 277} . 

We now use Theorem 4 to conclude that 

liminfIE{Y,.}? - e-.,•t2<1x. 1 1-•-211 
n-00 ../2i, -oo 

(3.15) 

Since this is true for any .,, > 0 we have the following lower bound. 

We now derive a similar upper bound for the lim sup. We have obviously 
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a.nd using Theorem 4 a., above we conclude that 

(3.16) 

Since (3.16) is true for any T/ > 0 we have 

This concludes the proof of the Theorem. 

References. 

Aldous, D. (1989). Probability approximations via the Poisson dumping heuristic. Applied 
Mathematical Sciences, 77. Springer-Verlag, New York-Berlin. 

Bowen, R. (1975). Equilibrium states and ergodic theory of Anosov systems. Lecture 
Notes in Mathematics 470. Springer Verlag, Berlin Heidelberg New York. 

Coelho, Z. and Parry, W. (1990). Central limit asymptoUcs for shifts of finite type. Israel 
J. Math. 69, 235-249. 

Crow, E. and Shimizu, K. editors (1988). Logn.ormal distributions. Theory and applica,­
tions. Marcel Dekker, Statistics Textbooks a.nd Monographs 88, New York Basel. 

Galton, F. (1879). The geometric mean in vital and social statistics. Proc. Roy. Soc. 29, 
865-367. 

Galves, A. and Schmitt, B. (1997). Inequalities for hitting times in mixing dynamical 
systems. Random Comput. Dyn. to appear. 

Kolmogorov, ~- (1941). ·uber das logarithmisch Normale verteilu.ngesgestz der Dimensione 
der Teilchen bei Zerstiicklu.ng. Doklady URSS 31, 99-101. 

Lalley, S. (1986). Regenerative representation for one-dimensional Gibbs states. Ann. of 
Probab. 14, 1262-1271. 

Ornstein, D. and Weiss, B. (1993). Entropy and data compression schemes. IEEE '.frans . 
. Inform. Theory 39, 78-83. 

Wyner, A. and Ziv, J. (1989). Some asymptotic properties of the entropy of a stationary 
ergodic da.ta source with applications to data compression. IEEE '.frans. Inform. Theory 
35, 1250-1258. 



ULTIMOB RZLAT6RIOB T!CBICOS PtJBLICADOS 

9701 - BOl'llIBB, B.; ARELLAIIO-VALB, R.B. Weak nondifferential 
measurement error models. IME-USP, 199 7. 12p. 
(RT-MAE-9701) 

9702 - l'ERllllI, S.L.P.; CORDIIRO, G. M.; CRIBARI-OTO, F. 
Higher Order Asymptotic Refinements for Score Tests 
in Proper Dispersion Models. IME-USP, 1997. 14p. 
(RT-MAE-9702) 

9703 - DORBA, c.; GALVES, A.; 
Markovian modeling of 
Brazilian and European 
llp. (RT-MAE-9703) 

KIRA, B.; ALD1CAR, A. P. 
the stress contours of 

Portuguese. IME-USP, 1997. 

9704 - FOHTES, L.R.G.; ISOPI, K.; KOHAYUAWA, Y.; PICCO, P. 
The Spectral Gap of the REM under Metropolis 
Dynamics. IME-USP, 1997. 24p. (RT-MAE-9704) 

9705 - GDIDES, P.; BOLl'ARIJIB, B.; COLOSIXO, B.A. Estimation 
in weibull regression model with measurement 
error.IME-USP, 1997. 17p. (RT-MAE-9705) 

9706 - GALVBB, A.; GUIOL, B. Relaxation time of the one-
dimensional symmetric zero range process with 
constant rate. IME-USP, 1997. l0p. (RT-MAE-9706) 

9707 - GUIOL, R. A note about a burton keane' s theorem. 
IME-USP, 1997. 7p. (RT-MAE-9707) 

9708 - llBLLUO-VALLB,Jl.B.; l'BRRARI,S.L.P.; CRIBARI-IIBTO,J'. 
Bartlett and barblett-type corrections for testing 
linear restrictions. IKE-USP, 1997, 5p. (RT-MAE-9708) 

9709 - PAULA, G.A. One-Sided Tests in Dose-Response Models. 
IME-USP, 1997, 29p. (RT-MAE-9709) 

9710 - BUSSAUD, X. Subshift on an infinite alphabet. IME­
USP, 1997. 34p. (RT-MAE-9710) 

9711 - YOSHIDA, o.s.; LBITB, J.G.; BOLFARIIIB, R. Stochastic 
Monotonicity properties of bayes estimation of the 
population size for capture-recapture data. IKE-USP. 
1997. 12p. (RT-MAE-9711) 

• 



9712 - GUIMBNBZ,P.;COLOSIHO,E.A.; BOLFARINll,H. Asymptotic 

relative efficiency of wald tests in measurement 

error models, IME-USP, 1997, 14p. (RT-MAE-9712) 

9713 - SCHO!IMAHlf, R.H.; TAHAD, ».I. · · Lack of monotonicity 

in ferromagnetic ising model phase diagrams. IME-UPS. 

1997. l2p. (RT-MAE-9713) 

9714 - LBITB,J.G.; TORRES, v.a.a.; TIWARI, R.c.; ZALKiltAR, J. 

Bayes estimation of dirichlet process parameter. 

IME-USP. 1997, 21p, (RT-MAE-9714) 

9715 - GIMENEZ, P.; BOLFARINE, B,; COLOSIMO, B. Hypotheses 

testing based on a corrected score function for 

errors-in-variables models. 1997. 16p. (RT-MAE-9715) 

P711 - PAULA, G.A.; BOLPARINll,H, Some results on the slope of 

the linear regression model for the analysis of 
pretest-posttest data. 1997. oep. (RT-MAE-9716) 

9717 - AUBIW, B.C,Q.; CORDEIRO, G.M, Some adjusted 

likelihood ratio tests for heteroscedastic regression 

models. 1997. 19p. (RT-MAE-9717) 

9718 - ANDR!, c.D,S,; HARULA, s.c. Statistical inference 

for the parameters of a one-stage dose-response model 

using the minimum sum absolute errors estimators. 

1997. 09p. (RT-MAE-9718) 

9719 - ABDR!, C.D.s.; MllULA, a.c. Statistical inference for 

the parameters of a two-stage dose-response model 

using the minimum sum of absolute errors estimators. 

1997. 15p. (RT-MAE-9719) 

Tb• complete list of "R•lat6rioa do Departamento de 

Eatatiatica••, IKB-USP, will be sent upon request. 

Departaaento de Eatatiatica 
IKB-USP 

Caixa Postal 66,281 
05315-970 - a&o P•ulo, Brasil 




