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Abstract

In this paper, we present and discuss new constraint qualifications to ensure the validity
of well-known second-order properties in nonlinear optimization. Here, we discuss
conditions related to the so-called basic second-order condition, where a new notion
of polar pairing is introduced in order to replace the polar operation, useful in the
first-order case. We then proceed to define our second-order constraint qualifications,
where we present an approach similar to the Guignard constraint qualification in the
first-order case.
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1 Introduction

Numerical optimization deals with the design of algorithms with the aim of finding
a point with the lowest possible value of a certain function over a constraint set.
Useful tools for the design of algorithms are the necessary optimality conditions, i.e.,
conditions satisfied by every local minimizer. Not all necessary optimality conditions
serve that purpose. Optimality conditions should be computable with the information
provided by the algorithm, where its fulfillment indicates that the considered point
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is an acceptable solution. For constrained optimization problems, the Karush/Kuhn—
Tucker (KKT) conditions are the basis for most optimality conditions. In fact, most
algorithms for constrained optimization are iterative and, in their implementation, the
KKT conditions serve as a theoretical guide for developing suitable stopping criteria.
For details, see [1, Framework 7.13, page 513], [2, Chapter 12] and [3].

Necessary optimality conditions are usually of first- or second-order depending on
whether the first- or second-order derivatives are used in the formulation. Second-order
necessary optimality conditions are much stronger than first-order ones and hence are
mostly desirable, since they allow ruling out possible non-minimizers accepted as
solution, when only first-order information is considered.

When seeking for weak constraint qualifications, which imply the validity of
second-order conditions at local minimizers, it is more than natural to consider
second-order constraint qualifications, that is, to take into account the second-order
information of the constraints in its formulation. We will pursue this goal in this paper,
and in this context, it is natural to start by seeking constraint qualifications ensuring
the validity of standard second-order optimality conditions in nonlinear optimization
theory (see Definition 2.1). In this paper, we consider only the so-called basic second-
order optimality condition, whose formulation depends on the maximum of a quadratic
form over all Lagrange multipliers, leaving the discussion about conditions that can
be checked with a single Lagrange multiplier to a later study.

The paper is organized as follows: In Sect. 2, we present the basic concepts and defi-
nitions. first-order constraint qualifications with second-order properties, highlighting
the central aspect of WSOC in second-order algorithms. In Sect. 3, we discuss second-
order constraint qualifications and, in Sect. 4, we define new weak conditions with
respect to the basic second-order optimality condition. Section 5 presents some con-
clusions and remarks.

2 Basic Definitions

A constraint qualification (CQ) is any property about the analytic description of the
feasible set around a local minimizer that ensures the existence of Lagrange multipliers
[see (2)]. We are particularly interested in CQs, which guarantee the existence of
special Lagrange multipliers, namely the ones that can be used to formulate second-
order necessary optimality conditions. For a very nice recent review of CQs in general,
see [4]. A CQ s called a first-order one, if it uses only the gradients of the constraints in
its formulation, while a second-order one is defined in terms of gradient and Hessian.
Both types of conditions can yield second-order optimality conditions.

We continue with some notation. We denote by R” the n-dimensional real Euclidean
space,n € N, while Rﬁ C R" is the set of vectors, whose components are nonnegative.
The set of symmetric matrices of order n is denoted by Sym(n). We use (-, -) to denote
the Euclidean inner product on R”, with || - || the associated norm. For a cone K € R?,
its polar is K° :={v € R® : (v, k) < Oforall k € K}.
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Consider the nonlinear constrained optimization problem

minimize f(x),
subjectto h;(x) =0 Vie& :={1,...,m}, )
gix) =0 Vjel:={l,...,p}

where f, h;, g; : R" — R are twice continuously differentiable functions. Denote by
2 the feasible set of (1). Given x € £2, we define A(x) :={j € Z: g;(x) = 0} as
the set of indices of active inequalities.

The Lagrangian function is L(x; A, ) := f(x)+ > i Aihi(x) + Zle wigj(x)
where (x, A, u) € R* x R" x Rﬁ. We use V, L(x; A, n) and foL(x; A, w) for the
gradient and the Hessian of L(x; X, i) with respect to x, respectively.

Several second-order optimality conditions have been proposed in the literature,
from both a theoretical and practical point of view; see [1,2,5-17] and references
therein. In order to describe second-order conditions, we introduce some important
sets.

For a feasible point x, let us denote by A(x) the set of Lagrange multipliers, that
is, the set of vectors (1, 1) € R™ x RY with

ViL(xih, ) =0, and pjg;(R) =0, VjeT. @

The cone of critical directions (critical cone) is defined as follows:

3

C(x) := {d crr. (V). d) f<0: (Vhi(%),d) =0,i € &; } .

(Vgj(x),d) =0, € A(x)

Obviously, C(x) is a non-empty, closed and convex cone. From the algorithmic point
of view, an important set is the critical subspace, given by:

S@E) = [d e R": (Vhi(%),d) =0,i € & (Vg;j(¥),d) =0, j € AD)}. @

In the case when A(x) # ¥, a simple inspection shows that the critical subspace, S(x),
is the lineality space of the critical cone C(x).
Now, we are able to define the classical second-order conditions.

Definition 2.1 Let x be a feasible point with A(x) % . We say that

1. the strong! second-order optimality condition (SSOC) holds at X, if there exists
(A, n) € A(x) such that (V)%XL()Z; A, w)d,d) > 0 forevery d € C(x);

2. the weak second-order optimality condition (WSOC) holds at x, if there exists
(A, ) € A(x) such that (foL()E; A, p)d,d) = 0forevery d € S(x);

3. the basic second-order optimality condition (BSOC) holds at x, if Vd € C(x),
there exists (A, u) € A(x) such that (V)%XL(JE; A,pyd,d)y = 0.

1 Note that in the literature of sufficient second-order conditions, the term strong is usually associated with
a condition, where the critical cone is replaced by the smallest subspace containing it, which is not the use
we consider here.
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For a discussion about the different types of second-order conditions and their
relevance, we refer the reader to the extended version of [18]. In this paper, we focus
our attention on BSOC.

We end this section with the following technical lemma. For the proof, see [19,
Lemma 1.29].

Lemma 2.1 Let p : [0, 00[— [0, oo[ be a function having right-hand derivative
p(0), such that p(0) = p/, (0) = 0 and p(t) < a + Bt, ¥t > 0 for some a, p > 0.
Then, there is a continuously differentiable function ¢ such that ¢ (0) = qur 0) =0
and ¢(t) > p(t), Vt > 0.

3 Second-Order Constraint Qualifications

Let us recall that a second-order CQ may involve the second-order derivatives of the
constraints on the formulation of the condition.

It is well known that Guignard’s CQ (see [20]) is the weakest CQ, for differentiable
data, which implies the existence of Lagrange multipliers at a local minimizer. The
main goal of this section is to pursue a similar idea but taking into account Lagrange
multipliers connected to second-order optimality conditions.

In order to formulate our results, let us review Guignard’s CQ and its weakness
property. The first proof of this result, due to Gould and Tolle [21], was quite involving,
but one can more easily understand the result with tools of variational analysis, which
we define below. Given a set-valued mapping I" : R = R, the sequential Painlevé—
Kuratowski outer limit of I'(z) as z — z* is defined by

limsup I'(z) := {w* € R? : 3 (X, w*) > (z*, w*) with w* € I'(Z")},

7>z
and we say that I" is outer semicontinuous at z* whenever

limsup I'(z) € I'(z%).

=z

Fora given S € R” and z* € S, the tangent cone to S at z* is defined by Ts(z*) :=
{d € R": dist(z* + t,d, S) = o(t,) for some t, | 0}, and the regular normal cone to
Satz* € Sas

Ns(z*) :={weR": limsup |z — ¥ "(w,z—2%) <0¢}.
7€82,7—>7*F

The regular normal cone has the following remarkable properties. See [6].

Theorem 3.1 Given S € R" and z* € S. Then w € Ng(z*), if and only if there is a
continuously differentiable function f, which achieves its global minimum relative to
S at 7*, such that —V f(z*) = w. Furthermore, Ng(z*) = Ts(z*)°.
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When the set S under consideration is the feasible set §2 of (1), for x € 2, we use
the notation N (x) := Ng(x) and T} (x) := T (x). In that case, we also define the
first-order linearized cone to 2 at x € §2 as

Li(X) = [d € R" : (Vh;(¥),d) = 0,i € & (Vgi(X),d) <0, i € ARK)}.

Clearly, T1(x) € Lj(x) always holds, while the reciprocal inclusion may not hold.
It is easy to see that the KKT conditions hold at x, for the objective function f with
respect to £2, if and only if —V f(x) € L1(x)°, where the polar cone of L1 (x) is given
by

L@ = yweR tw=) aVh@+ ) 1;Vegj(®. h €Ropj =0
ie€ JEA(X)

Therefore, from Theorem 3.1, the assumption Nj(x) = L;(x)°, which is known
as the Guignard CQ, is equivalent to the property that x is a KKT point for every
continuously differentiable objective function f, such that x is a local minimizer of
f over £2. Thus, the Guignard CQ is the weakest condition, independently of the
objective function, ensuring the validity of KKT at a local minimizer. Due to Theorem
3.1, the Guignard CQ is usually stated as 77(x)° = L(x)°, which gives rise to the
more well-known (and stronger) Abadie’s CQ, namely 77(x) = L (x).

We will define the second-order analogues of these objects, in order to propose a
similar minimal CQ, with second-order properties. The second-order tangent point-
to-set mapping, T>(x,-) : R" == R", of §£2 at x € £2 is defined by the function
d € R" +— T,(x,d), given by:

1
Tr(x,d) = {Z c R": dist (x + t,d + Et,%z, .(2) =0 (t,%) for some ¢, | 0} .

Note that T>(x,d) = @ if d ¢ T1(x). The set T»(x, d) is known as the outer second-
order tangent to §2 at x in the direction d; see, for instance, [12,22].

Now, we consider the second-order geometric optimality condition, given in [10]
(see also [23]), which is relevant only when 7> (x, d) # @.

Theorem 3.2 Let X be a local minimizer of (1). Then, for everyd € Ti(X)N{V f (%)},
we have (V f(x), z) + (sz()f)d, d) >0, forall z € Th(x, d).

Now, let us define the linearization of the second-order tangent set
(Vhi(x),z) + (V2hi(x)d,d) =0, i €&,

P n .

Latrd) = {Z SR Ve o) + (V2ei)d.d) <0, i€ AGx.d) |

where A(x,d) :={i € A(x) : (Vgi(x),d) =0}.

Clearly, for every d € Ti(x), we have Th(x,d) C La(x,d). If for every d €
Cx) =Li(x)N{d : (Vf(x),d) = 0} we impose that T>(x,d) = Ly(x,d) (what
is called the second-order Abadie CQ, see [24,25]), we have that BSOC holds when
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x is a local minimizer. This assumption can be replaced by the equality of the polars,
Tr(x,d)° = La(x,d)°, for every d € C(x), which was called the second-order
Guignard CQ [24]. In [26], the following CQ, which can be seen as a second-order
version of MFCQ, is introduced: {Vh; (x)};"= | 18 linearly independent and there exist
d € C(x) and z € R”, such that (Vh;(x),z) + (V2h;j(x)d,d) = 0,i € £ and
(Vgi(x), z)+(V2gi(x)d,d) < 0,i € A(x, d). We note that the second-order versions
of Abadie and Guignard are in fact stronger than their first-order counterparts, while
the second-order MFCQ is weaker than MFCQ and still implies BSOC.

Since the second-order tangent set 7> (x, d) can be an empty set for certain directions
d € Ti(x), following [10], we consider the projective second-order tangent set of §2
at x, defined by:

; Q2 —td—x*
T (%,d) = limsup ————
(t,r,1/r) 40 £

Thus, (z,7) € szmj (x, d) iff there is a sequence (2%, ry, 1) € R* x Ry x Ry, such
that (z%, e, 1) — (z, r, 0), t/rk 4 0,rr > 0and x + 1xd + %Zk € £2.

This concept has been used in the context of composite optimization [27] and
vector optimization [28,29]. The set 7, "% (%, d) is a non-empty closed cone by [10,
Proposition 2.1.]. It is not difficult to see that if (z, ) € szmj (%, d) for some r > 0,
thenz € T>(X, d), andif z € T»(x, d), then (z, 1) € szmj (%, d). Using the projective
second-order tangent set, we have the following necessary optimality condition, for
twice continuously differentiable data. See [10].

Theorem 3.3 Let x be a local minimizer of (1). Then, for every d € Ii(x)N Vf()E)J',
we have that (V f (x), z) + r(sz()E)d, d) >0, forall (z,7) € szm] (x,d).

Since 7 "% (%, d) can be a difficult object to deal with, we define the projective
linearized second-order tangent set of §2 at x as

. (Vhi(%), 2) +r(V?hj(¥)d,d) = 0,i € &;
LY, d) = (z,r) e R" x Ry : (Vgi(¥),z) +r(V3g(¥)d,d) <0,
i€ A, d).
. , (5
Clearly, for every d € Ti(x), we see that Ty " (¥,d) < LY (x,d). As
LY (x,d) is defined by linear equalities and inequalities, its polar can be calcu-
lated, in fact: (w, n) € Lgm" (x,d)° if, and only if, there exist multipliers A; € R,
ie&u;=>0,je A, d),and B > 0, such that

w\ _x, [ VE@ (V@ (0
<n>_§/\’ ((Vzhi(i)d,d>>+ 2 <<V2gj(]i)d,d>> <ﬂ> ©

JeA(xX,d)
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Since our goal is to formulate a weak condition to ensure BSOC, we define the
second-order normal cone N>(x) C R” x Sym(n) to §2 at x € §2 as follows:

(w,x — %) + (1/2)W(x — x)> ~ol. o

No(x) := § (w, W) : limsup -

i XEN, x—>X ”x - x”Z
In some sense, an element of the second-order normal cone stands for a vector-matrix
pair, which plays the role of a gradient—Hessian pair in a vanishing, in £2, Taylor-like
expansion. The following result makes this formulation precise and is a second-order
version of Theorem 3.1:

Theorem3.4 Letx € 2, w € R", and W € Sym(n). Then, (w, W) € Ny (X) iff there
exists a twice continuously differentiable function f, which attains its global minimum
relative to §2 at x, such that —V f(x) = w and —sz(i) =W.

Proof First, we will prove the “if”” implication. Let (w, W) € N,(x) be an arbitrary
element. Define the function 7g : [0, oco[— R as

no(t) := sup{u)T(x —X)+12(Wx —x),x—Xx): |lx —x|| <t, x € 2}.

Clearly, no(#) is non-decreasing and 0 = no(0) < no(¢). As (w, W) € Na(x), we see
that lim;_, ¢ 770(t)t_2 < 0, and thus, there exist M, T > 0, such that no(z) < M2, for
all + < T. Modify no(¢t) outside [0, T'[ in such a way that no(¢) < M2 over [0, ocol.

For a moment, let us suppose that there is a C 2 function ¢ : [0, oo[— [0, oo[ such
that ¢(0) = ¢/, (0) = ¢//(0) = 0 and ¢(r) > no() for all + > 0. Thus, we can use
¢ to define a C? function, with the desired properties. Set F(x) := (w,x — x) +
1/2(W(x — x), (x —x)) — ¢(||lx — x||). Observe that F(x) is a C? function, due to
the smoothness of ¢. Moreover, VF (x) = w and V2F(xX) = W. We observe that, as
a consequence of the inequality ¢ (||x — X]||) > no(|lx — x||) forevery x # x € §2, we
getthat F'(x) < F(x)forallx # x € §2, and thus, F (x) achieves its global maximum
over §2 uniquely at X.

Here, we will show that there exists such ¢ : [0, co[— [0, oo[. Define ¢g as
¢o(t) = no(t)/t (if t > 0) and ¢o(0) = 0. Since no(0) = 176(0) = 0, we have
lim; 0 no(t)t =2 < 0 and no(t) < Mr%, t > 0. The function ¢o(¢) satisfies the
hypotheses of Lemma 2.1. Thus, there is a C! function ¢1 : [0, oo[— [0, oof, such
that ¢1(0) = ¢>i+(0) = 0, and 1¢1(¢) > no(¢) for all + > 0. Finally, set ¢(¢) =

% [2t sp1(s)ds, (for r > 0) and ¢ (0) = 0. Since ¢ (¢) is non-decreasing, ¢ () meets
all the required properties.

The “only if” part is a simple consequence of the Taylor expansion. O

Now, we will rewrite the geometric second-order optimality condition using new
geometric objects. Given a set A € R” and a point-to-set mapping B(:) : R" =
R" xRy, d +— B(d), we define the polar pairing of A and B(-), denoted by [A, B(-)],
as

(w,d) <0, foralld € A
[A, B()]:= 3 (w, W) € R" x Sym(n) : (w,z)+r(Wd,d) <0, forall ;, (8)
(d, (z,r)) € Ka(w) x B(d)
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where K4 (v) := AN vl forv e R™.
Remark 3.1 If A := L(x), then K7 )(V f(x)) is the critical cone C(x).

Using the second-order normal cone, the polar pairing, and Theorem 3.4 and Theorem
3.3 can be rewritten as:

M@ < [T, T @) ©)

This can been seen as a second-order version of the inclusion Nj(x) C T;(x)°. In the
next section, we will use N, (x) to associate a weak CQ with BSOC.

Note that the polar pairing operator generalizes the polar operator in the sense that
given A C R", [{0}, A()] = [A, ¥] = A° x Sym(n), where A(-) = (A, 0). Note also
that [A, B(-)] is a closed and convex cone regardless of A and B(-).

The polar pairing operator unifies the geometric optimality condition, when it is
applied to the tangent objects (71 (X), T, (%, -)), while when applied to the lin-
earized objects (Lj(x), Lgmj (x,+)), the polar pairing operator gives rise to BSOC,
as we discuss in the next subsection. In the first-order case, this role is played by the
polar operator, as —V f(x) € T1(x)° gives the geometric optimality condition, while
the KKT conditions are given by —V f(x) € Li(x)°. In this case, the (first-order)
normal cone coincides with the polar of the tangent cone, which gives a nice geomet-
ric interpretation for the Guignard CQ. The situation is slightly less favorable in the
second-order case, as a characterization of the second-order normal cone N;(x) is not
known.

4 Weak Constraint Qualification for BSOC

Let us define several weak CQs that ensure the validity of BSOC. We start by showing
the following inclusion:

Proposition 4.1 It always holds that [L1(x), LY (%, )] € [T1(%), TS (%, ).

Proof Take (w, W) € [L(x), Lgmj (x, -)]. By the definition of the polar pairing (8), w
belongsto L1(x)°, and since L1(x)° € T7(x)°, we getthat w € T7(x)°. We see that the
expression: (w, z) +r(Wd, d) <0, forevery (d, (z,7)) € K, (w) x Lg’“’f(x, d),
is equivalent to saying that (w,r) € Lgmj(i,d)o for every d € Kp, & (w).
This equivalence implies that (w,r) € sz roj (x,d)° for every d € Kri)(w),
since 7" (x,d) < LY (x,d) and K7, (w) < K, (w). This shows that
(w, W) € [T1(®), TS (%, 1. o

We will use [L1(x), Lgmj (x, )] to characterize BSOC in the following sense:

Proposition 4.2 BSOC holds at the feasible point X for the C 2 objective function f if,
and only if (=V f (%), =V* (X)) € [L1(X), LY (%, 1.
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Proof First, we wil see that if BSOC holds at ¥ € £2, for some C? function f, then
(=V (), =V2f(F)) € [L1(X), Lg”’f' (X, -)]. Indeed, from BSOC, we get for every
d € C(X) = L1(X) N Vf(X)L, there exists (A, ) € A(x*) (which may depend on
d), such that (V)%XL()E, A, w)d,d) = 0. Thus, A(x) # . Now, using (6), we get that
(=VfE), —(V2f(¥)d,d)) € LY (x,d)°, Vd € Li(x) NV £(%)*, which implies
that (—V f (¥), =V2 £ (¥)) € [L1 (), L§"” (%, )],

To prove the other implication, take a C? objective function f, such that
(=Vf(x), =V2f(x)) € [L(%), Lg”’j (X, -)]. From the definition of the polar pairing
[Li(x), Lgmj (%, )], we see that
(i) —Vf(x) € L1(x)°, and thus, A(X) is non-empty and;

(ii) for every directiond € C(x) = Li(x) N {V (%)}, we obtain that (—V £ (%),

—(V2f(xX)d,d)) € Lg””f' (x,d)°. Hence, by (6), there exist multipliers (A, u) €
A(X), such that

14
(V2. d) + Y 2i(Vhi(D)d, d) + Y 1j (Vg (¥)d, d) > 0,
= j=l1

that is, BSOC holds at x. O

Thus, in view of Theorem 3.4 and Proposition 4.2, we have the following result:

Theorem 4.1 BSOC holds at % for every C? objective function f having X as a local
minimizer constrained to §2 if, and only if,

M) € [ L1, L8 ). (10)

Using the polar pairing and the inclusion N»>(¥) € [T (%), T) "%/ (%, )], given by
Theorem 3.3, a weak CQ that ensures BSOC at local minimizers is

[n @), 77 (. ~)] - [Ll(@, LYz, .)] , an

which we call weak second-order Guignard CQ for BSOC. This gives rise to two new
weak CQs to ensure BSOC. The first, we call second-order Guignard CQ for BSOC,

Ty (%) = L(¥) and sz"'j (x,d)° = Lg”’f(x, d)° foralld e R", (12)
and the second, we call second-order Abadie CQ for BSOC
T\(X) = L1(X) and T/ (%, d) = LY (%, d) foreveryd e R".  (13)

We see that (12) and (13) are indeed CQs for BSOC, because they imply (11), which
in turn implies (10), the characterization of BSOC.
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Table 1 New constraint qualifications for BSOC

Characterization of BSOC Na(®) € L1 (R, L™ (&, ]

Weak Guignard CQ for BSOC (T (), T (&, 9] = [L1 (), LY (&, )]

Guignard CQ for BSOC T1(®) = Ly (D) and T/ (%, d)° = LY (%, d)°, Vd € R"
Abadie CQ for BSOC Ti(¥) = L () and szmj x.d) = Lg’”f (x,d),Vd € R"

A well-known CQ for BSOC is the second-order Abadie condition introduced by
Kawasaki [24], which states the equality 7T>(x, d) = Lo (x, d), for every d € T1(x).
This assumes that 72 (x, d) # ¢ for every direction, which is not true in general. Under
this assumption, we have that 7> (x, d) = La(x, d) implies equality between the sets

[Ti (%), T Proj (g and [Ly (%), Ly "% (%, )], as the next proposition will show:

Proposition 4.3 Assume that To(x,d) # ¥ and Th(x,d) = La(x,d), for all d €
Ty (x). Then, [T1(X), Tpm’(' )] =[L1(x), me](' )]

Proof Take (w, W) € [T} (%), szm] (%, -)]. First, we will show that w is in L;(x)°.
Indeed, since the equality 7>(x,d) = L2(x, d) holds for d = 0, we have Tj(x) =
L1(x). Thus, w € T1(x)° = L1(x)°.

Now, take d € K7, (x)(w). By the definition of the polar pairing, using the equality
T»(x,d) = La(%,d), and since (z, 1) € T, (x, d) implies that z € T»(X, d), we
get that (w, z) + (Wd, d) <0, for all z € L>(x, d). Thus, consider the maximization
problem below, whose optimal value is not positive:

Maximize {(w, z) + (Wd,d)}, subjecttoz € Lo(x, d).

From strong duality for linear programming, (since L, (x, d) is defined by affine
constraints and it is non-empty), there exist multipliers (A, i) € R™ x Ri, with

wj =0for j ¢ A(x, d), such that — w—i—Z:" | )A»-Vh~()f)+2p l,tlegj()E) = 0and
—(Wd, d) + Y1 A (V2hi(R)d, d) )+ (V2g;(¥)d,d) > 0. Then, by using
(6), we see that (w, (Wd,d)) e L§’”’(x,d)°, that is, (w, z) + r(Wd, d) < 0, for
every (z,r) € LY (x,d). Thus, (w, W) € [L1(X), L} (x, )]

The other inclusion is a consequence of Proposition 4.1. O

Now, instead of considering conditions that jointly take into account all directions
d in the critical cone, we will fix one direction in the tangent cone (Table 1). Under
MFCQ, condition BSOC is well known to hold [9,26]. In fact, for each direction in
the critical cone d € C(x), the Lagrange multipliers (A, n) constructed are such that,
nj =0forall j ¢ A(x,d) := Ax)N{j: (Vg;(x),d) = 0}. This specification turns
out to be relevant in our analysis, so we single out the following definition:

Definition 4.1 Given x € £ and d € C(x), we say that the basic second-order
optimality condition in the direction d (BSOC(d)) holds at x, if there exists (A, ) €
A(x) such that (foL()E, Awyd,d) > 0,withu; =0,Vj ¢ A(x, d).
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Table2 New constraint qualifications for BSOC(d)

Characterization of BSOC(d) NoE,d) € LY (7, d)°
Guignard CQ for BSOC(d) T/ &, d)° = LY (%, d)°
Abadie CQ for BSOC(d) T/ &, d) = LY (%, d)

Now, we proceed to develop weak conditions to ensure the validity of BSOC(d) at
local minimizers. The main reason for doing this is that collecting all these conditions
gives a new condition for the validity of BSOC, that is based only on the usual polar
cone, rather than the polar pairing. Note however that the analysis of second-order
optimality conditions along a specific direction d is not new, and it has been developed,
for instance, in [30] and references therein.

Thus, consider the second-order regular normal cone of 2 in the direction d at x,
defined as:

Ny(k,d) = {(w, (Wd,d)) e R" xR : (w, W) € Np(¥) and w L d}. (14)

Loosely speaking, in the light of Theorem 3.4, N> (X, d) represents the set of all C?
functions such that x is a local minimizer relative to §2, that have the direction d as
a critical direction. It is not difficult to see that N> (X, d) is a non-empty and convex
cone in R” x R (Table 2).

Using the directional second-order normal cone and Theorem 3.4, the second impli-
cation in the geometric optimality condition, given by Theorem 3.3, can be rewritten
as the inclusion

Na(x,d) C T;’”’f(az, d)°, foreachd e T (X). (15)

By the polar cone of Lgmj(i, d) [see (6)], (=V f(x), —(V2f(xX)d,d)) belongs
to Lgmj (%, d)°, if and only if there exists (A, u) € R™ x RY, with ju; = 0 for j ¢
A(x,d),suchthat V., L(x; A, u) = Oand (V)%XL()E; A, w)d, d) > 0. Asaconsequence,
(=V (&), —(V2f(X)d,d)) € L§’”f (%, d)°, if and only if BSOC(d) holds at x. Thus,
we get the following result:

Theorem 4.2 Let d be a vector in R" and X € 2. BSOC(d) holds at X for every C?
Junction, which has x as a local minimizer relative to §2 and has d as critical direction,
iff Na(x.d) € L (x,d)°.

Using (15), we see that weak CQs that guarantee that BSOC(d) is an optimality
condition when d is a critical direction are T’ "l (%,d)° = Lgmj (%, d)° (which we
call second-order Guignard CQ for BSOC(d)) and T/ (, d) = L™ (%, d) (which
we refer as second-order Abadie CQ for BSOC(d)).
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5 Conclusions

In this paper, we investigated weak CQs ensuring the validity of the so-called basic
second-order necessary optimality condition (BSOC). These are based on a charac-
terization of a second-order normal cone at X € §2 in terms of a gradient—Hessian pair
of an objective function attaining a global minimizer in §2 at x. By defining an exten-
sion of the polar operation considering first- and second-order objects (polar pairing),
we were able to characterize the second-order geometric optimality condition as the
polar pairing of the first- and second-order tangent sets, while BSOC is given by the
polar pairing of their linearizations. This allowed us to define new Abadie-type and
Guignard-type CQs ensuring BSOC at a local minimizer. We also considered weak
CQs that ensure BSOC at a given direction d, and in this cases, one relies on the usual
polar operation.
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