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Emergent dimerization and localization in disordered quantum chains
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We uncover a novel mechanism for inducing a gapful phase in interacting many-body quantum chains. The
mechanism is nonperturbative, being triggered only in the presence of both strong interactions and strong
aperiodic (disordered) modulation. In the context of the critical antiferromagnetic spin-1/2 XXZ chain, we
identify an emerging dimerization, which removes the system from criticality and stabilizes the novel phase.
This mechanism is shown to be quite general in strongly interacting quantum chains in the presence of strongly
modulated quasiperiodic disorder, which is, surprisingly, perturbatively irrelevant. Finally, we also characterize
the associated quantum phase transition via the corresponding critical exponents and thermodynamic properties.
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I. INTRODUCTION

The presence of quenched disorder in noninteracting quan-
tum systems may lead to localization phenomena both in the
case of random elements, as in the Anderson model [1], and
of deterministic quasiperiodic modulation, as in the Aubry-
André model [2]. Recently, in the context of many-body
localization [3–5], the interplay between interactions and
deterministic disorder has gained renewed interest both from
the theoretical point of view [6–9] and from its experimental
realization in ultracold atom systems [10–13].

These studies usually deal with translational-symmetry
breaking introduced by an incommensurate potential. In con-
trast, here we consider the effects of aperiodic modulation
introduced in the exchange couplings. We show that, for a
certain class of coupling arrangements, the ground state is de-
localized for weak interactions even in the strong-modulation
limit, but sufficiently strong interactions induce a novel zero-
temperature transition to an emergent aperiodic dimer phase
with localized low-energy excitations.

For concreteness, we focus on the spin-1/2 XXZ chain
defined by the Hamiltonian

H =
L−1∑
i=1

Ji

(
Sx

i Sx
i+1 + S

y

i S
y

i+1 + �Sz
i S

z
i+1

)
, (1)

in which S
x,y,z

i are spin-1/2 operators and we assume antifer-
romagnetic couplings Ji > 0 with an easy-plane anisotropy
−1/

√
2 < � � 1. Via a Jordan-Wigner transformation, it is

well-known that (1) also describes one-dimensional spinless
fermions with hopping amplitude ∝Ji and interaction strength
∝ Ji�. Thus we will also refer to the anisotropy parameter �

as the interaction strength.
In the thermodynamic limit, the ground state of the uni-

form (clean) system (Ji ≡ J ) is critical and low-energy ex-
citations are described as a spin (Luttinger) liquid with a
dynamical critical exponent zclean = 1. It is perturbatively
unstable against dimerization (i.e., alternating couplings Ji ≡
[1 + 1

2 (−1)iδ]J , with a dimerization strength δ), which pro-

duces an energy gap �E ∼ |δ| above the ground state and
a finite correlation length diverging as ξ ∼ |δ|−ν for δ → 0
with a critical exponent [14,15] ν = 2(π − arccos �)/(3π −
4 arccos �).

The clean critical system is also perturbatively unstable
against random disorder (i.e., couplings Ji independently
chosen from a probability distribution with a nonzero width
δJ ), as dictated by the Harris criterion [16,17]. However,
there is no energy gap and the Luttinger liquid is replaced
by a random-singlet spin liquid whose low-energy physics is
governed by a critical infinite-randomness fixed point with
an infinite dynamical critical exponent [18,19]. Introducing
correlations between the random couplings can either slightly
change the critical behavior of the infinite-randomness fixed
point [20] or stabilize a line of finite-disorder critical points
along which the dynamical exponent remains finite but larger
than one [21,22].

The effects of deterministic disorder are expected to be
similar. Indeed, for perturbatively relevant geometric fluctu-
ations, the ground state of the clean system is replaced by a
critical self-similar version of a random-singlet state with an
infinite dynamical exponent, just as for uncorrelated random
disorder [23,24]. For marginally relevant geometric fluctu-
ations, on the other hand, the dynamical exponent remains
finite but larger than one, just as for the line of finite-disorder
fixed points appearing in correlated random aperiodicity.

However, the case of perturbatively irrelevant deterministic
disorder has not been previously studied in detail. Evidently,
for weak modulation r of the aperiodic couplings the sys-
tem still corresponds to a critical Luttinger liquid. In this
paper we show that, surprisingly, increasing r beyond the
perturbative limit (r > rc) induces the opening of an energy
gap in the spectrum, as depicted in Fig. 1. To the best of
our knowledge, this is the first verification that an aperiodic
perturbation (random or deterministic) induces such an effect
in a critical system. Furthermore, this effect is only possible
in the presence of sufficiently strong interactions (anisotropy
parameter � > �∗). Finally, we show that this gap is related
to an emergent dimerization of effective couplings in the low-
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FIG. 1. Schematic phase diagram of the XXZ spin-1/2 chain
Eq. (1) in the presence of perturbatively irrelevant deterministic
aperiodicity. The anisotropy parameter � parameterizes the strength
of the interactions while the modulation r parameterizes the strength
of the aperiodicity. For the aperiodic sequence defined in Eq. (2),
rc ≈ 0.13 and �∗ ≈ 0.69.

energy limit, characterizing an aperiodic dimer phase, with
localized low-energy excitations.

This paper is organized as follows. In Sec. II, we introduce
the bond sequence at which we focus, representing the class
of aperiodic sequences defined in Appendix A, and discuss its
perturbative effects on the ground state of the quantum XXZ
chain. In Sec. III, we investigate the opposite limit of strong
modulation. The results of numerical calculations confirming
the predictions in both limits are reported in Sec. IV. Finally,
Sec. V presents a discussion of our results, while some tech-
nical details are relegated to Appendixes B and C.

II. DETERMINISTIC APERIODIC SEQUENCES
AND THEIR PERTURBATIVE RELEVANCE

Let us start by defining the main bond sequence {Ji}
investigated in this work. Consider the following substitution
rule for letter pairs:

aa → aa ba ab ab ba

ab → aa ba ab

ba → ab ba aa ab ba. (2)

Iterating this rule, starting from a single pair aa, we obtain
an aperiodic sequence of letters a and b which we associate,
respectively, with different bond values J (a) and J (b) of
our aperiodic XXZ chain. The modulation of the aperiodic
couplings is quantified by r ≡ 1 − J (a)/J (b). As detailed in
Appendix A, the sequence in Eq. (2) represents a large family
of sequences exhibiting the same qualitative behavior and was
selected on the basis of convenience for numerical calcula-
tions, since it gives rise to a relatively large energy gap to the
lowest excited states.

We emphasize the fact that there is no average dimerization
induced in the bonds Ji by the substitution rule (2), the
average couplings being the same at odd and even positions
along the chain. Therefore, no gap is expected for weak
modulation r .

We studied the weak-modulation effects of couplings cho-
sen from the sequence in Eq. (2) by adapting the perturbative
renormalization-group (RG) method of Vidal, Mouhanna, and

Giamarchi [25,26] (see also Ref. [27]) to the XXZ chain (1).
In this approach, as described in Appendix B, it is found that
the relevant effects of bond disorder on the corresponding
low-energy field theory describing the clean system are deter-
mined by the behavior of the Fourier transform J̃ (Q) of the
bond sequence in the neighborhood of Q = 2kf = π , where
kf = π/2 gives the location of the corresponding Fermi level.
When the integrated Fourier weight around Q = π grows
sufficiently slowly, the perturbative RG approach predicts
that weak modulation is irrelevant. For 0 � � � 1, this is
precisely the case of the whole family of aperiodic sequences
represented by the one in Eq. (2). This is consistent with
Luck’s generalization [28] of the Harris criterion [16] for the
perturbative relevance of aperiodicity on the critical behavior
of physical systems.

III. THE XXZ CHAIN WITH AN APERIODIC BOND
DISTRIBUTION: STRONG MODULATION

Having determined the perturbative irrelevance of our ape-
riodic system, we now study its low-energy properties in
the strong (nonperturbative) modulation regime r ≈ 1 where
an adaptation of the strong-disorder real-space RG (SDRG)
method [29,30] for aperiodic XXZ spin chains [23,24] can
be used. In this approach, one identifies clusters of strongly
coupled spins (the clusters connected by solid red lines in
Fig. 2). For r ≈ 1, it is a good approximation to keep only
the low-energy state of these “molecules,” which is either a
singlet (for m even) or a doublet (for m odd), where m is the
number of spins in the molecule. For a singlet, the molecule is
simply removed from the effective chain since its excitations
are costly. In the case of a doublet, the molecule is then
replaced by a new effective spin-1/2 degree of freedom (see
the transition from the upper to the middle lattice in Fig. 2).
The new renormalized (and weaker) bonds connecting the
remaining spins in the lattice are obtained via perturbation
theory. Repeating this process, the energy scale is reduced and
the spatial distribution of couplings may reach a self-similar
fixed point, making it possible to write recursion relations
for the effective couplings and to obtain an approximate low-
energy spectrum. (See Appendix A of Ref. [24] for details.)
We mention that this method was extended to higher spins
[31], to the quantum Ising chain [32], to the contact process
[33], and it can also be used to investigate entanglement
properties [34,35].

Let us now turn our attention back to the perturbatively
irrelevant sequence Eq. (2), to which we numerically apply
the SDRG method. Here no self-similar fixed-point exists.
In the noninteracting XX limit (� = 0), we find that, for
any modulation strength 0 < r < 1, the effective couplings
approach each other as the RG procedure is iterated. In other
words, the SDRG flows towards the clean fixed point r∗ = 0.
Therefore we conclude that our aperiodicity is irrelevant in
both the weak and the strong modulation regimes, as depicted
in Fig. 1.

In contrast, the SDRG flow completely changes its charac-
ter for � > �∗ ≈ 0.69. As illustrated in Fig. 2 for � = 1, the
effective low-energy chain exhibits an emergent dimerization
pattern alternating weak and strong effective couplings. Sur-
prisingly, all the strong couplings have the same magnitude,
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FIG. 2. The upper lattice shows the leftmost portion of the aperiodic sequence of bonds in Eq. (2). Dashed blue lines represent weak
(J (a)) couplings and solid red lines represent strong (J (b)) couplings. The middle lattice is obtained after the first two renormalization steps
(consisting in decimating the strong bonds J (b) and all remaining weak bonds J (a)). The lower lattice shows the effective chain produced in
the latest stages of the SDRG method in the Heisenberg limit � = 1. Notice the alternating pattern of strong (red/short/thick/solid) and weak
(green/long/thin/broken) effective couplings, revealing an emergent dimerization. Circles and polygons represent real spins and low-energy
effective spin-1/2 degrees of freedom (effective spins), respectively. In the latter case, the number of sides (3, 7, or 9) is the number of real
spins within. The numbers indicate the original position of the central real spin.

so that an energy gap in the spectrum must exist above the
ground state, and we find it to scale as

�E/J (b) ∼ (J (a)/J (b) )2 = (1 − r )2. (3)

On the other hand, the weak couplings follow a broad distri-
bution of lengths l and strengths Jweak, which are related by

Jweak ∼ exp(−μ ln2(l/ l0)), (4)

the constants μ and l0 depending only on the anisotropy �.
For more details, see Appendix C.

In the strong-modulation limit of the Heisenberg chain, the
effective Hamiltonian of a system with � effective spins (�
even for convenience) can be written as

H̃ = J̃strong

�/2∑
j=1

	S2j−1 · 	S2j +
�/2−1∑
j=1

J̃j
	S2j · 	S2j+1, (5)

in which all strong effective couplings J̃strong have the same
intensity, much larger than the intensities of the weak effective
couplings J̃j , all of which can be calculated from a numerical
implementation of the SDRG scheme.

If all J̃j were zero, the ground state could be written as

|�0〉 = |s〉1,2 ⊗ |s〉3,4 ⊗ |s〉5,6 ⊗ · · · ⊗ |s〉�−1,�, (6)

where |s〉i,j is a spin-1/2 singlet between the effective spins i

and j . The perturbative effect of the weak effective couplings
on the ground state is to provide a second-order correction to
the ground-state energy.

Again if all J̃j were zero, the 3
2� degenerate lowest-energy

excitations would correspond to states

|jSz〉 =
⎛
⎝⊗

i �=j

|s〉2i−1,2i

⎞
⎠ ⊗ |tSz〉2j−1,2j , (7)

with |tSz〉i,j denoting the triplet state between the effective
spins i and j , and Sz = −1, 0, 1. The degeneracy is then
lifted when the weak couplings are turned on. The first-
order perturbative effective Hamiltonian for the lowest-energy

many-body band is a simple tight-binding chain with zero
onsite potential describing the hoppings of the “triplons” over
the dimers,

H̃low = −1

2

�/2−1∑
j=1

J̃j (|jSz〉〈j + 1Sz | + |j + 1Sz〉〈jSz |), (8)

where an unimportant constant (the average gap to the ground
state) was neglected.

We now ask whether the triplons are localized or not.
From the set {J̃j } provided by the SDRG approach, and
following the analysis in Ref. [36], we study, as a function of
the effective system size �, the zero-temperature conductance
when the chemical potential corresponds to the center of the
first excited band,

g(�) = 4t2
�(

1 − t2
�

)2 , (9)

where

t� = −1

2

J̃1J̃3J̃5 · · · J̃ 1
2 �−1

J̃2J̃4J̃6 · · · J̃ 1
2 �−2

(10)

is the system transmission coefficient (for convenience, we are
assuming that 1

2� is even). We choose this particular chemical
potential because it is expected to probe the least localized
state in the band [37]. As shown in Fig. 3, g(�) is compatible
with the stretched-exponential scaling form

ln g(�) ∼ −�ψ, (11)

with a tunneling exponent [36] ψ = 1/2. (The superim-
posed logarithm-periodic oscillations are a common feature
of aperiodicity generated by substitution rules.) As shown in
Refs. [23,24], in the present context the tunneling exponent ψ

is related to the pair wandering exponent ωweak of the effec-
tive weak couplings {J̃i} via ψ = ωweak. We have explicitly
verified that ωweak = 1/2. This is somewhat surprising. The
effective aperiodic sequence of the effective weak couplings
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FIG. 3. Main plot: Logarithm of the conductance as a function
of the number of effective spins � of the effective tight-binding
Hamiltonian (8) describing the lowest-energy many-body excitation
band of the Heisenberg chain with couplings following the sequence
in Eq. (2) in the strong-modulation limit. The blue dashed curve
is a fit given by −9.20�ψ , with ψ = 1/2. The chemical potential
corresponds to the band center. (Inset) Average inverse participation
as a function of the effective system size. The green dotted line is
proportional to 1/�.

emulate the effects of random aperiodicity, characterized by
ωrandom = 1/2.

In addition, via exact diagonalization of the Hamiltonian
(8), we also computed the participation ratio

pk =
∑

j

|φk,j |4, (12)

where φk,j is the corresponding wave-function amplitude of
the kth eigenstate at “site” j . For an extended state, we expect
pk ∼ 1/�, while for a localized state, we should have a pk

of order unity. It is then convenient to calculate the average
inverse participation ratio,

IPR = 1

�2

∑
k

p−1
k . (13)

If this quantity scales as 1/� for large �, the fraction of
extended states in the band is zero in the thermodynamic
limit. As shown in the inset of Fig. 3, this is precisely what
we obtain for the one-triplon band. We then conclude that
in the strong-modulation limit the lowest-energy sector of the
dimerized phase is localized.

The SDRG results (3) and (4), being perturbative in
J (a)/J (b), are not expected to hold in the weak-modulation
limit r � 1. As shown in Eq. (3), the SDRG scheme predicts a
monotonically decreasing energy gap �E as a function of the
modulation strength r . However, a nonmonotonic behavior is
expected since the system is critical for r � 1. In the simplest
scenario of a single critical point, increasing the modulation
starting from the clean system (r = 0) and � > �∗ we expect
a gap opening at r = rc > 0, then reaching a maximum, and
finally vanishing as in Eq. (3).

IV. UNBIASED NUMERICAL RESULTS

In order to check the predictions for weak versus strong
modulation, we resort to unbiased numerical methods, fo-
cusing on the aperiodic sequence in Eq. (2). We measure
energies in units of J (b) for various modulation strengths
r = 1 − J (a)/J (b), and taking 0 < J (a) < J (b).

Using the Jordan-Wigner fermionization method [38], we
studied the XX chain (� = 0) through exact numerical diag-
onalization of very large system sizes (L ∼ 106) and fully
confirmed the predictions of both the perturbative and the
SDRG methods that the clean critical system is robust against
aperiodicity for any modulation strength. This indicates that
there is no single-particle localization at low energies.

In order to investigate the Heisenberg chain (� = 1), we
performed numerical calculations using the quantum Monte
Carlo (QMC) and the density-matrix renormalization group
(DMRG) algorithms from the ALPS project [39,40]. We
employed the DMRG method for calculating the energy gap
�E defined as the energy difference between the ground state
(with total spin ST = 0) and the first excited state (ST = 1),
using even lattice sizes ranging from L = 42 to 6 574. Except
for the largest chain size, we used up to 50 warm-up states
to grow the DMRG blocks, keeping a maximum of up to 500
SU(2) states during the (up to 20) sweeps. For N = 6 574, we
used up to 100 warm-up sates and 1 000 SU(2) states during
30 sweeps. The modulation strength was varied starting from
r = 0 to 0.85 and we increased the above simulational pa-
rameters from their default values until the energies for each
state converged within a relative error below 10−8. For r >

0.85, convergence could not be obtained with the maximum
values of the above parameters. For the largest system size
studied (N = 6 574), despite the higher number of states kept,
convergence of the gaps was still poorer than for smaller
sizes, and we estimate a higher relative error around 10−4.
Figure 4 shows the results of these calculations for various
chain lengths. For r ≈ 0 the finite-size gaps scale as L−z

with a (clean) dynamical exponent z = zclean = 1, whereas for
larger r , they converge to a finite value exhibiting a maximum
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r = 1 − J(a)/J(b)

10
-3

10
-2

10
-1

10
0

ΔE
/J

(b
)

L = 42
L = 86
L = 178
L = 366
L = 754
L = 1552
L = 3194
L = 6574

0 2×10
-4

4×10
-4

6×10
-4

8×10
-4

1/L

0.1

0.15

0.2

0.25

r m
in

FIG. 4. Linear-logarithmic plot the energy gap as a function of
the coupling modulation r for the Heisenberg chain with couplings
following the sequence in Eq. (2) for various chain lengths L. The
inset shows the position of the relative minimum in the curves for
large L, using also the intermediate values L = 2226 and 4582 (not
shown for the sake of clarity).
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FIG. 5. Susceptibility χ as a function of temperature T for the
Heisenberg chain with couplings following the sequence in Eq. (2),
for a coupling ratio J (a)/J (b) = 1/10. The results were obtained
by using the SSE QMC algorithm, with open chains containing
N ∈ {86, 178, 366, 754} spins. The inset shows that the product
χT follows exp (−�E/T ), with a size-dependent energy gap �E,
which approaches ≈ 5 × 10−4Jb as N → ∞. Temperature is mea-
sured in units of J (b)/kB . The oscillations in dχ/dT for temperatures
between T � 10 and � 10−3 reflect the energy scales associated with
the formation of “spin molecules,” as predicted by the SDRG scheme
(see main text).

≈3 × 10−3J (b) at r ≈ 0.6. For large L, local minima are
visible near r ≈ 0.2. Their precise positions are obtained from
quadratic fits and plotted as a function of 1/L in the inset.
From a linear extrapolation, we conclude that the minimum
occurs at rc ≈ 0.135 for L → ∞, therefore supporting the
existence of a finite range 0 � r � rc for which the system is
gapless in the thermodynamic limit. This is in agreement with
the simplest scenario of a single critical point and with our
perturbative RG predictions. The appearance of a gap only for
sufficiently strong modulation is consistent with the emergent
dimerization scenario predicted by the SDRG method. A
sketch of a generic phase diagram is given in Fig. 1.

The existence of a gap for strong modulation in the Heisen-
berg limit is also confirmed by QMC calculations based on the
stochastic series expansion (SSE) algorithm [39,41] with up to
2 × 105 thermalization steps and 106 sweeps. Figure 5 shows
the results of QMC calculations of the magnetic susceptibility
χ for a coupling ratio J (a)/J (b) = 1/10, with open chains
containing from 86 to 754 spins. At low temperatures, the
results conform to the expected behavior

χ (T ) ∼ e−�E/T

T
(14)

in the presence of an energy gap �E. As shown in the inset,
the estimated value of the gap (≈5 × 10−4J (b)) is compatible
with those provided by the DMRG calculations. We also
performed QMC calculations for J (a)/J (b) = 4/10 and 9/10
(not shown), again obtaining energy gaps compatible with
those provided by DMRG.

Rescaling the finite-size gaps by the asymptotic
dependence ∼(1 − r )2 in Eq. (3), a monotonic behavior
of the rescaled gaps with L and r > rc becomes manifest,

0 0.2 0.4 0.6 0.8
r = 1 − J(a)/J(b)
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) (1

−r
)2
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) (1
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FIG. 6. Same data as in Fig. 4 with the energy gap rescaled by
(1 − r )2. The inset shows the data collapse obtained by the finite-
size scaling hypothesis in Eq. (15) using r > rc = 0.135, z = 1, and
ν = 2.

as shown in Fig. 6. It then suggests that a data collapse with
a finite-size scaling hypothesis may be possible. For r > rc,
we expect that in the thermodynamic limit the gap scales
as �E∞ ∼ ξ−z ∼ (r − rc )zν , in which ξ is the correlation
length, while z and ν are critical exponents. This gives rise to
a finite-size scaling hypothesis

�EN = ξ−zF (ξ/L) = L−zF (L(r − rc )ν ), (15)

with scaling functions F (x) and F (x) = xzF (1/x).
The plots in the inset of Fig. 6, obtained with rc = 0.135,

z = zclean = 1, and ν = 2, show that our DMRG data are
compatible with Eq. (15). [Close to the critical point the
rescaling of the data by (1 − r )2 becomes irrelevant.] This
strongly suggests that a true phase transition takes place and
that the system is indeed gapless for r < rc, in agreement with
the perturbative RG prediction.

V. CONCLUSIONS

We showed that the interplay between strong modulation
and interactions induces a transition to a gapped phase in
a broad class of deterministic disordered (aperiodic) spin-
1/2 chains. In this phase, we identify a surprisingly emer-
gent dimerization of the effective low-energy chain, which is
quite distinct from any other known gap-inducing mechanism,
such as the explicit introduction of dimerization or the spin-
Peierls (Majumdar-Ghosh) mechanism related to a sponta-
neous breaking of translational symmetry via spin-phonon
(sufficiently strong frustrating next-nearest-neighbor or, for
S > 1/2, biquadratic) interactions.

Deep inside the aperiodic dimer phase, we showed that the
first excited many-body band (corresponding to one-triplon
excitations) is entirely localized. Whether these lowest-energy
quasiparticle excitations remain localized throughout the en-
tire dimerized phase is a topic left for future research. Another
question we leave for future investigation is whether the
higher-energy bands also harbor localized states.

Having characterized our zero-temperature phase transi-
tion, and in view of the recent evidence that localized ground
states correspond to many-body localized excited eigenstates
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of related Hamiltonians [42], we hope our model may be use-
ful to shed light on the nature of the many-body localization
transition, which remains largely unclear [4,5].

Our results also apply to interacting fermionic models
which are equivalent to the quantum spin chains explicitly
discussed here, and in principle could be put to experimental
test in the context of cold-atom systems. Along the lines
discussed in Ref. [43], that would involve trapping fermionic
atoms in optical lattices. The antiferromagnetic interactions
between effective spin degrees of freedom would be related
to the atomic tunneling rates between neighboring extrema of
the light patterns, and these rates could be made aperiodic by
employing several laser sources [44], possibly in combination
with a cut-and-project construction [45]. The local intensities
at the potential extrema must also be controlled, which could
be arranged by employing a digital mirror device [46].

Finally, we point out that, in the fermion context, the
transition we identified is a metal-insulator transition very
distinct from the conventional cases of the Mott and the
Anderson transitions. It is driven by both strong interactions
and disorder modulation, yielding a fundamentally different
insulating phase which has no charge order and exhibits a
spectral gap, the first excited band being localized.
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APPENDIX A: THE HARRIS–LUCK CRITERION,
APERIODIC SEQUENCES AND GEOMETRIC

FLUCTUATIONS

In order to determine the stability of a clean critical system
against the perturbative effects of aperiodicity (|r| � 1), Luck
[28] generalized the Harris criterion [16] for the case of deter-
ministic disorder. In the present context, one then quantifies
the geometric fluctuations of nonoverlapping letter pairs via
the wandering exponent ω < 1 defined by

G(N ) ≡ |N (aa) − paaN | ∼ Nω, (A1)

in which N (aa) denotes the number of aa pairs in the sequence
built from cutting the infinite sequence at the N th pair, and paa

is the expected fraction of aa pairs in the N → ∞ limit. Once
ω is determined, the Harris–Luck criterion states that, neces-
sarily, for a clean critical point to be stable against aperiodic
weak modulation, the wandering exponent must fulfill

ω < ωc = max{0, 1 − (dν)−1}, (A2)

where d is the number of spatial dimensions in which the
system is disordered and ν is the correlation length critical
exponent of the clean theory. As a self-consistent criterion
for the stability of the clean fixed point, upon its violation the
Harris–Luck criterion does not tells us what is the low-energy
physics replacing that of the clean system. We mention that
all cases previously studied indicate that the system remains
critical but with a larger dynamical exponent [23,24].

When fulfilled (ω < ωc), the Harris–Luck criterion
suggests that the corresponding aperiodic sequence is an
irrelevant perturbation. Finally, for ω = ωc, the perturbation
is marginal and thus nonuniversal effects may be expected. In
this case, a less general approach (as discussed later) is thus
required for determining the precise fate of the clean critical
point.

We would like to stress the distinction between the strength
of the geometric fluctuations, gauged by the wandering ex-
ponent ω, and the strength of the aperiodic modulation r =
1 − J (a)/J (b): for a given ω (i.e., a given substitution rule)
we can tune the system from the clean limit (r = 0) to the
strong-modulation regime (r → 1 or r → −∞). Consider,
for concreteness, the pair substitution rule giving rise to the
Rudin–Shapiro sequence,

aa → aa ab

ab → aa ba

ba → bb ab

bb → bb ba. (A3)

The geometric fluctuations of nonoverlapping letter pairs after
n iterations of the substitution rule are quantified by

Gn ≡ ∣∣N (aa)
n − paaNn

∣∣ ∼ Nωnat
n , (A4)

in which Nn (called the natural length of the sequence) is the
total number of letter pairs obtained after n iterations of the
substitution rule, N

(αβ )
n is the corresponding number of αβ

pairs, pαβ is the expected fraction of αβ pairs in the n → ∞
limit, and

ωnat = ln |λ2|
ln λ1

(A5)

is the natural wandering exponent [47], λ1 and λ2 being,
respectively, the two largest eigenvalues (in absolute value)
of the substitution matrix

M =

⎛
⎜⎜⎜⎝

#aa (waa ) #aa (wab ) #aa (wba ) #aa (wbb )

#ab(waa ) #ab(wab ) #ab(wba ) #ab(wbb )

#ba (waa ) #ba (wab ) #ba (wba ) #ba (wbb )

#bb(waa ) #bb(wab ) #bb(wba ) #bb(wbb )

⎞
⎟⎟⎟⎠,

(A6)

for which #αβ (wγδ ) denotes the number of αβ pairs in the
word associated with the γ δ pair in the substitution rule.
(Notice that Gn could equally have been defined in terms of a
different αβ pair, which would not affect the value of ωnat.)

It is important to notice the difference between the geo-
metrical fluctuations defined in Eqs. (A1) and (A4). Evidently,
G(Nn) = Gn. Moreover,

ω � ωnat. (A7)

In order to illustrate the difference, we will compare G(N )
and Gn for different sequences.

Let us start with the Rudin-Shapiro sequence (A3), for
which ωnat = 1/2. As plotted in Fig. 7, both geometric fluc-
tuations G(N ) and Gn scale as Nω with ω = ωnat = 1/2.
This equality between ωnat and ω can be verified for all
the aperiodic sequences generated by substitution rules with
ωnat > 0 investigated in Refs. [23,24].
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FIG. 7. Comparison between geometric fluctuations induced by
the Rudin-Shapiro sequence (A3) as calculated for all lengths (solid
line) and only for the natural lengths of the sequence (circles). The
red dashed line is proportional to N1/2. Notice the existence of both
stronger and weaker fluctuations in the neighborhood of the natural
lengths.

We now turn our attention to the more involved case in
which ωnat � 0. One paradigmatic example for ωnat = 0 is the
so-called Fibonacci sequence defined (for letter pairs) by the
substitution rule

aa → ab aa ba ba ab

ab → ab aa ba ba

ba → ab aa ba ab. (A8)

In this case, as shown in Fig. 8, the strong fluctuations of
G(N ) are unbounded but only grow logarithmically. In this
case, it is desirable to distinguish a logarithmic growth, as for

FIG. 8. Comparison between geometric fluctuations induced by
the Fibonacci sequence (A8) as calculated for all lengths (solid
line) and only for the natural lengths of the sequence (circles). The
red dashed red line is proportional to N0. Notice that the stronger
fluctuations scale at most logarithmically with N (blue dot-dashed
line, with c1 and c2 constants of order 1).

FIG. 9. Comparison between geometric fluctuations induced by
the sequence in Eq. (2) as calculated for all lengths (solid line) and
only for the natural lengths of the sequence (circles). The red dashed
curve is proportional to N−1. Notice that the stronger fluctuations
scale as N 0 for large N .

G(N ), from a constant, as for Gn. Here, we will simply define
the wandering exponent as ω = 0+, which is still compatible
with Eq. (A7).

The sequences for which ωnat < 0 (and finite), as those
of interest in this work, are said to exhibit the Pisot prop-
erty [48], giving rise to bounded fluctuations as N → ∞. Let
us illustrate this case with the sequence defined by the sub-
stitution rule in Eq. (2). The corresponding natural wandering
exponent ωnat = −1 obtained from Eq. (A5) is in agreement
with the observed one shown in Fig. 9. In addition, notice that
the strongest fluctuations (corresponding to lengths other
than the natural ones) are also bounded. For this reason, we
define the wandering exponent as ω = 0−.

We would like to point out that, for our numerical analysis
of the sequence in Eq. (2) of the main text, we used chains
with lengths not restricted to the natural ones. In other words,
the striking features we observed (as the gap behavior in Fig. 3
of the main text) are not an artifact of choosing special chain
lengths.

Finally, we mention the existence of many other sequences
sharing the same features of the sequence (2), also yielding
the same emergent dimerization phenomena in the nonpertur-
bative regime, as reported in the main text. The sequences are
such that ω = 0− > ωnat > −∞, and do not induce an aver-
age dimerization. A simple way to construct such a sequence
is via small tweaks of the sequence in (2), as, for example,

aa → aa ab ba

ab → aa ba ab aa

ba → aa ab ba, (A9)

which also yields ωnat = −1. Other examples are the sequence

aa → aa ab aa ba

ab → ba ab

ba → aa ba aa ab, (A10)
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for which ωnat = ln (2−√
2)

ln (2+√
2)

≈ −0.44, and the sequence gener-
ated by the substitution rule

aa → aa ba ab ab ba

ab → aa ab ba

ba → aa ab aa ba ba ab, (A11)

for which ωnat = ln |2−√
7|

ln (2+√
7)

≈ −0.28. Somewhat simpler se-
quences are given by the substitution rules

aa → aa ab ba

ab → aa aa

ba → ba ab aa, (A12)

for which ωnat = ln |1−√
3|

ln (1+√
3)

≈ −0.310, and

aa → aa ab ba

ab → aa

ba → ba ab aa, (A13)

for which ωnat = −1.
In order to obtain other similar sequences, one can start

from a trial substitution matrix for three letter pairs (aa,
ab, and ba), and calculate its largest eigenvalue, the corre-
sponding (right) eigenvector, and ωnat. The desired sequences
are those with −∞ < ωnat < 0, yielding ω = 0−, and having
equal second and third components of the eigenvector asso-
ciated with the largest eigenvalue, which ensures that there is
no average dimerization. (The components of this eigenvector
are proportional to the fraction of the corresponding pairs in
the infinite sequence.)

APPENDIX B: PERTURBATIVE RENORMALIZATION
GROUP FOR THE ANTIFERROMAGNETIC XXZ CHAIN

The renormalization-group (RG) equations obtained from
the perturbative approach of Vidal, Mouhanna and Giamarchi
[25,26] are

dK

dl
= −K2�(l), (B1)

dyQ

dl
= (2 − K )yQ, (B2)

with

�(l) = 1

2

∑
Q

y2
Q[R(Q+a(l)) + R(Q−a(l))], (B3)

where Q± = Q ± π , the yQ = λa|J̃ (Q)|/u are initially the
dimensionless Fourier components of the bonds Ji , λ mea-
sures the modulation strength and l is a scaling factor defined
by a(l) = a0e

l , the constant a0 being proportional to the
original lattice spacing. (Without loss of generality, we take
a0 = 1.) R(x) is a cutoff function used to eliminate short-
length degrees of freedom. We used for R(x) the precise form

R(x) = 1

1 + x4
, (B4)

but other functions having appreciable values only for |x| < 1
yield similar results. The Luttinger parameter K has an initial
value which varies with the anisotropy � of the XXZ chain
according to [14,15]

K =
[

2 − 2

π
arccos (�)

]−1

, (B5)

therefore ranging from K = 2 (for � = − 1√
2
), to K = 3

2 (for
� = −1/2), to K = 1 (for � = 0, corresponding to the XX
chain), and finally to K = 1/2 (for � = 1, corresponding to
the Heisenberg chain). The correlation-length critical expo-
nent of the underlying dimerization transition is related to K

by

ν = 1

2 − K
. (B6)

Finally, the remaining Luttinger parameter, u, which appears
in the definition of yQ, has the initial value

u = 2K

2K − 1
sin

[
π

(
1 − 1

2K

)]
, (B7)

corresponding to the velocity of the excitations, and its renor-
malization is neglected since it only gives rise to higher-order
corrections [26].

For a dimerized chain, in which the bonds alternate be-
tween J2i = J + λ/2 and J2i+1 = J − λ/2, we have Ĵ (Q) ∝
δ(Q − π ), so we only have to worry about the renormalization
of yπ , whose bare value for a large chain with N sites is
proportional to N . Starting from K < 2, since R(Q−α(l)) =
R(0) = 1 for all l, it is clear that K flows toward 0, the strong-
coupling regime where the perturbative RG method is no
longer valid. This is consistent with the fact that dimerization
opens an excitation gap in the anisotropy regime −1/

√
2 <

� � 1, which contains both the XX and the Heisenberg
chains. Notice that in general a nonzero yπ , even if other
Fourier weights are also nonzero, trivially leads to a runaway
flow to the strong-coupling limit, with the opening of a
gap; such cases are associated with the presence of average
dimerization. In this paper we only deal with the cases for
which yπ = 0.

Consider the case in which spins interact through nearest-
neighbor bonds {Ji} taking values J (a) and J (b) according
to the sequence of letters a and b obtained by iterating
the substitution rule in Eq. (2). As it leads to ω = 0−, we
expect from the Harris–Luck criterion that weak aperiodicity
is irrelevant.

Indeed, it turns out that the numerical solution of the
perturbative RG equations for any finite approximant to the
infinite sequence leads to a flow in which the asymptotic value
of K remains close to the initial value for all 1

2 < K < 2,
pointing to the irrelevance of weak aperiodic modulation for
the easy-plane antiferromagnetic XXZ chain. This is related
to the fact that J̃ (Q), which exhibits the self-similar structure
characteristic of aperiodic sequences, has no peaks at nor in a
finite neighborhood of Q = π , as further discussed below.

In contrast, the same approach applied to the Rudin-
Shapiro sequence (A3) (for which ω = 1/2), points to its
relevance in the same anisotropy regime. The same behavior
is observed for the fivefold-symmetry sequence (ω ≈ 0.285)
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FIG. 10. Fourier spectrum of the Rudin-Shapiro sequence. The
inset shows Y (Q) = ∑Q

q=π y2(q ), which behaves as |Q − π |2α+1 if
y(Q) ∼ |Q − π |α .

and the 6-3 sequence (ω ≈ 0.431) investigated in Ref. [24].
In all three cases, although yπ = 0, indicating that there is no
average dimerization, the Fourier spectra are self-similar, with
peaks behaving in the neighborhood of Q = π as |Q − π |α ,
the constant α depending on the sequence, as illustrated in
Figs. 10 and 11.

This last observation allows us to attempt an approximate
solution of the perturbative RG equations. The reasoning is as
follows [26]. Let us assume that K varies much less than yQ

with l, so that we can write

yQ(l) � yQ(0)e(2−K )l , (B8)

in which yQ(0) corresponds to the Fourier spectrum of the
original bonds. In this case, the scaling behavior of �(l) is

FIG. 11. Fourier spectrum of the 6-3 sequence. The inset shows
Y (Q) = ∑Q

q=π y2(q ), which behaves as |Q − π |2α+1 if y(Q) ∼
|Q − π |α .

given by

�(l) � e−(4−2K )l
∑

Q∈S(l)

y2
Q(0), (B9)

where S (l) is the set of wave vectors, defined by S (l) =
{Q||Q − π | � e−l}, for which the cutoff function R(Q−el )
is non-negligible. Using y2

Q(0) ∼ |Q − π |2α , we thus obtain

∑
Q∈S(l)

y2
Q(0) ∼

∫ e−l

0
x2αdx ∼ e−(2α+1)l , (B10)

so that

�(l) ∼ e−(3−2K−2α)l . (B11)

From Eq. (B1), we see that the flow of the Luttinger parameter
K crucially depends on the scaling behavior of �(l). If
�(l) > 1, then K flows to the strong-coupling limit where
the perturbative treatment breaks down, and aperiodicity is
predicted to be relevant. On the other hand, if �(l) < 1, the
flow stops at some λ-dependent finite value, and aperiodicity
is predicted to be irrelevant. For a given sequence (i.e., a given
α), there is a critical value of K separating these two regimes:

Kc = 3
2 − α. (B12)

For K < Kc, we expect weak aperiodic modulation to be
relevant.

However, Eq. (B6), along with the critical condition νc =
(1 − ω)−1 derived from the Harris–Luck criterion, also im-
plies the existence of a critical value Kc of the Luttinger
parameter K , but in terms of the wandering exponent,

Kc = 1 + ω. (B13)

Using this last equation, derived from the Harris–Luck crite-
rion for the aperiodic XXZ chain, we can relate the Fourier-
spectrum exponent α and the pair wandering exponent ω

through

ω = 1
2 − α. (B14)

The values of α obtained by fitting the integrated Fourier
spectra of the Rudin-Shapiro, fivefold-symmetry and 6-3 se-
quences shown in Figs. 10 and 11 are fully consistent with
Eq. (B14). The relation in Eq. (B14) is also consistent with
a result indicating that aperiodic fluctuations in tight-binding
Hamiltonians (equivalent to XX chains) are relevant if, in our
notation, α < 1/2, which corresponds to ω > 0; see Ref. [49].

For the Fibonacci sequence, whose wandering exponent is
ω = 0+, the relevance of weak modulation was predicted via
the perturbative renormalization-group approach in Refs. [25–
27]. It is possible to check that the Fourier spectrum of the
Fibonacci sequence yields α = 1/2, again in agreement with
Eq. (B14).

However, the situation is different for sequences with ω =
0−, as those in Eq. (2) and Eqs. (A9)–(A13). In this case, the
Fourier spectrum has a very small and essentially constant
weight in a neighborhood of Q = π of width �Q∗ (see
Fig. 12). A finite-size analysis indicates that the weight in
this region scales with the system size N as 1/N , and thus
vanishes in the thermodynamic limit N → ∞. This means
that the perturbative RG flow stops at a length scale l∗ for
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FIG. 12. Fourier spectrum of the sequence in Eq. (A11). The
inset shows the finite-size scaling behavior of the average value of the
Fourier weights in a region of width �Q∗ = 10−3π around Q = π .

which e−l∗ ∼ �Q∗. In the weak modulation limit of λ → 0,
this length scale is always reached before any relevant flow
happens, preserving the initial values of the Luttinger param-
eters. Therefore weak aperiodic bond modulation following
Eqs. (2) or Eqs. (A9)–(A13) is irrelevant for the easy-plane
antiferromagnetic XXZ chain, as predicted by the Harris-
Luck criterion. Moreover, Eq. (B14) is no longer verified, as
the behavior of the Fourier spectrum around Q = π is not
compatible with the implied value α = 1/2.

APPENDIX C: THE STRONG-DISORDER
RENORMALIZATION GROUP (SDRG)

We consider the results of a numerical implementation of
the SDRG approach when couplings are chosen according
to the sequence in Eq. (2). As mentioned in the main text,
close to the Heisenberg limit this leads to a low-energy
effective chain with emergent dimerization, corresponding to
an alternating pattern of strong and weak effective couplings.
Within the SDRG approach, the strong effective couplings are,

FIG. 13. Relation between the strengths J and the lengths l of
the weak effective bonds corresponding to the low-energy effective
chain when couplings follow the aperiodic sequence in Eq. (2). The
continuous line is a fit using Eq. (C1). The coupling ratio corresponds
to r = Ja/Jb = 1/10, and the strengths are given in units of Jb. For
this coupling ratio, the strength of the strong effective bonds, as
predicted by the SDRG approach, is ≈1.5 × 10−3, with a length of
ten lattice parameters.

surprisingly, all equal and predicted to scale as (J (a) )2
/J (b).

We now investigate the relation between the magnititude J

and length l of the weak effective couplings, as plotted in
Fig. 13 for the Heisenberg case (� = 1) and r = 0.9. The
relation can be well fitted by

J ∼ e−μ ln2 (l/ l0 ), (C1)

in which μ and l0 are constants. (Notice only four different
lengths were generated for this sequence. Other sequences
may have a different number of distinct weak effective cou-
plings.) This form is the same obtained for the Heisen-
berg chain with couplings following the Fibonacci sequence
[23,24], for which the pair wandering exponent is ω = 0+
but no alternating-coupling pattern is observed. Similar results
are also obtained from the SDRG approach for the sequences
(A9)–(A13).
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