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Abstract

We investigate the quasi-integrability properties of various deformations of the Korteweg–de Vries (KdV) 
equation, depending on two parameters ε1 and ε2, which include among them the regularized long-wave 
(RLW) and modified regularized long-wave (mRLW) equations. We show, using analytical and numerical 
methods, that the charges, constructed from a deformation of the zero curvature equation for the KdV 
equation, are asymptotically conserved for various values of the deformation parameters. By this we mean 
that, despite the fact that the charges do vary in time during the scattering of solitons, they return after the 
scattering to the same values they had before it. This property was tested numerically for the scattering of 
two and three solitons, and analytically for the scattering of two solitons in the mRLW theory (ε2 = ε1 = 1). 
In addition we show that for any values of ε1 and ε2 the Hirota method leads to analytical one-soliton 
solutions of our deformed equation but for ε1 �= 1 such solutions have the dispersion relation which depends 
on the parameter ε1. We also discuss some properties of soliton-radiation interactions seen in some of our 
simulations.
© 2018 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY license 
(http://creativecommons.org/licenses/by/4.0/). Funded by SCOAP3.

1. Introduction

The objective of the present paper is to study the quasi-integrability properties of deformations 
of the Korteweg–de Vries (KdV) equation [9,23] that include as particular cases the so-called reg-
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ularized long-wave equation (RLW), proposed by Peregrine [36] and T.B. Benjamin, J.L. Bona 
and J.J. Mahoney [5], and also the modified regularized long-wave equation (mRLW) introduced 
and studied by J.D. Gibbon, J.C. Eilbeck and R.K. Dodd [19]. Concretely, the model we consider 
involves a scalar field u satisfying the equation

ut + ux +
[α

2
u2 + ε2

α

4
wx vt + uxx − ε1 (uxt + uxx)

]
x

= 0 . (1.1)

In which ε1, ε2, and α are real parameters, and where

u = wt = vx . (1.2)

Note that the integrable KdV equation [9,23], corresponds to the case where the deformation 
parameters vanish, i.e. ε1 = ε2 = 0, and it is given by1

ut + ux +
[α

2
u2 + uxx

]
x

= 0 . (1.3)

As is well known, this equation describes nonlinear waves in shallow water traveling in the 
positive direction of the x-axis only. If one considers the linearization of the KdV equation one 
finds that its traveling wave solutions satisfy a dispersion relation of the form ω = k − k3, and 
so the phase velocity ω/k = 1 − k2, and group velocity d ω

d k
= 1 − 3 k2, which become negative, 

and in fact unbounded, for large enough k.
Motivated by this fact, Peregine [36] and T.B. Benjamin, et al. [5] proposed the so-called 

regularized long wave equation (RLW)

ut + ux + (
α

2
u2 − uxt )x = 0 , (1.4)

which corresponds to (1.1) for the case ε1 = 1 and ε2 = 0. The advantage of the RLW equation 
over the KdV equation is that the RLW equation yields a dispersion relation of the form ω =
k/(1 + k2), and so a phase velocity that is bounded and tends to zero for short wavelengths. Its 
disadvantage is that the RLW equation is not integrable and that it possesses only one analytical 
solution, namely the one-soliton solution. The two and three-soliton solutions for RLW are only 
known numerically and were constructed by Eilbeck and McGuire [12,13].

The mRLW equation, introduced by Gibbon, Eilbeck and Dodd [19], can be written in terms 
of the u field as

ut + ux +
[α

2
u2 + α

4
wx vt − uxt

]
x

= 0 (1.5)

and so it corresponds to (1.1) for the case ε1 = ε2 = 1. The linearized version of such an equation 
has the same dispersion relation as the RLW equation, and the same exact analytical one-soliton 
solution as RLW. The remarkable property of the mRLW equation, however, is that it also pos-
sesses analytic two-soliton solutions, even though it is not integrable in the sense of possessing 
an infinite number of conserved quantities.

The analytical one-soliton solution for the RLW equation, and the analytical one- and two-
soliton solutions for the mRLW can be constructed using the Hirota direct method where the 
relation between the τ -function and the u-field is of the form u ∼ − (ln τ)xt . Therefore, by 

1 The KdV equation as presented here is not in its standard form, but one can perform a change of variables to get the 
standard form of the KdV equation (see, for instance, the notes by M. Dunajski for more information [11]). The same 
applies for the RLW and mRLW equations. In fact, to get the original notation used by the authors one should choose 
α = 12, in (1.4), and α = 8 in (1.5).
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changing the τ -function as τ → f (x) g (t) τ , does not change the solution for the u-field. So, 
integrating (1.2) one gets that w ∼ − (ln τ)x + h (x), and v ∼ − (ln τ)t + j (t). Consequently, as 
long as Hirota’s solutions are concerned the integration “constants” h (x) and j (t), can be reab-
sorbed in the redefinition of the τ -function. Therefore, when constructing the soliton solutions, 
either analytically or numerically, it is convenient to work with the field q defined as

u ≡ − 8

α
qxt . (1.6)

Dropping the integration “constants” as explained above one can then write wx = − 8
α

qxx and 
vt = − 8

α
qtt . Replacing the u-field by the q-field into (1.1) one gets an equation for q which can 

in fact be written as the x-derivative of the equation

qtt + qxt − 4q2
xt − 2 ε2 qxx qtt + qxxxt − ε1 (qxxtt + qxxxt ) = 0. (1.7)

Therefore, any solution of (1.7) leads to a solution of (1.1), in which the integration “constants” 
in w and v have been absorbed as explained above. So in this paper we base our discussion on 
the study of (1.7).

First, we show in this paper that (1.7) admits at least two types of analytical Hirota one-
solitons. The first one is obtained in section 4 by the Hirota’s method and it is given by

qtype 1 = 3

(2 + ε2)
(
1 + (1 − ε1) k2

) [
ln 2 + �

2
+ ln cosh

(
�

2

)]
, (1.8)

with

� = k x − ω1 t + δ ; ω1 = k + (1 − ε1) k3

1 − ε1 k2 . (1.9)

The second type is constructed in Appendix A by a direct method and it is given by

qtype 2 = 3
[
1 + (ε1 − 1) k2

]
(2 + ε2)

[
ln

(
cosh

(
ξ

2
√

1 + (ε1 − 1) k2

))
+ b ξ + c

]
(1.10)

with

ξ = k x − ω2 t + δ ; ω2 = k

1 − k2 (1.11)

where b and c are arbitrary parameters, and where we have to assume that 1 + (ε1 − 1) k2 > 0, 
for the solution to be real. In terms of the u-field these solutions take the form

utype 1 = 6

α

k2

(2 + ε2)
(
1 − ε1 k2

) sech2
[

1

2
(k x − ω1 t + δ)

]
(1.12)

and

utype 2 = 6

α

k2

(2 + ε2)
(
1 − k2

) sech2

[
k x − ω2 t + δ

2
√

1 + (ε1 − 1) k2

]
. (1.13)

Clearly they become the same for the case where ε1 = 1.
Note that (1.12) and (1.13) constitute two-parameter families of one-soliton solutions, labeled 

by the deformation parameters ε1 and ε2. They interpolate between the one-soliton solution of 
the RLW model (for ε1 = 1, ε2 = 0 and α = 12) constructed in [5,36], and the one-soliton so-
lution of the mRLW model (for ε1 = ε2 = 1 and α = 8) in [19]. Note also that, as pointed out 
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in [19], the expressions for the one-soliton solutions of the RLW and mRLW, indeed look the 
same for the u-field, when the rescaling parameter α is chosen as above, i.e. α = 12 for RLW 
and α = 8 for mRLW.

The analytical Hirota two-soliton solution, however, exists only for the case ε1 = ε2 = 1, and 
it is the solution constructed in [19] and given by

q = ln
(
1 + e�1 + e�2 + A12 e�1+�2

) ; ε1 = ε2 = 1, (1.14)

where

�i = kix − ωit + δi , ωi = ki

1 − k2
i

, i = 1,2 , (1.15)

and

A12 = − (ω1 − ω2)
2(k1 − k2)

2 + (ω1 − ω2)(k1 − k2) − (ω1 − ω2)
2

(ω1 + ω2)2(k1 + k2)2 + (ω1 + ω2)(k1 + k2) − (ω1 + ω2)2 . (1.16)

The previous paper by two of us (FtB and WJZ) [6], looked at the scattering properties of 
various soliton-like configurations of the modified regularized long-wave (mRLW) equation, 
originally introduced and studied by J.D. Gibbon, J.C. Eilbeck and R.K. Dodd [19], and given by 
equation (1.7) for ε1 = ε2 = 1. As stated in the aforementioned paper, the three soliton-solutions 
are not known and, in fact, they cannot be found using Hirota’s method.

The main results of the previous paper [6] involved the observation that the scattering of 
two initially well-separated solitons, which, in fact, is described by an exact solution of the 
equations of motion (see equation (1.14)), could be approximated very well by the numerical 
time-evolution of a linear superposition of two one-soliton solutions. In fact, the approximation 
was so good that it was virtually impossible to see any difference between them. Then [6] also 
extended this idea to the simulation of various three-soliton interactions by numerically evolving 
linear superpositions of three (initially well-separated) single-soliton solutions. Such scattering 
were also found to be very elastic (in the sense that the solitons preserved their shapes and ve-
locities and there was no visible loss of radiation). Moreover, the phase shifts in the scattering of 
three solitons were, again, very well approximated by the sums of the successive two two-soliton 
scattering. This property holds for integrable models and the fact that it holds also for the mRLW 
equation, which is not an Hirota integrable system, suggests that the mRWL equation may be 
‘close’ to being integrable.

To test this further we have decided to extend the investigations presented in the previous 
paper by considering this model as a perturbation of the integrable KdV equation since then we 
can look at the conserved quantities of the integrable model and see how they change when we 
perturb this model to become the mRLW model, or for that matter any other model ‘nearby’.

We discuss all of this in the context of quasi-integrability, a concept introduced in [14], 
and developed further, for other models, in [3,15–18]. As it is well known, in a theory in 
(1 + 1)-dimensions, a soliton [39] is a classical solution of its equations of motion that trav-
els with constant velocity and without dissipation of energy. But more importantly, when two or 
more solitons are scattered they do not destroy each other, and the only effect of their scatter-
ing is a shift in their positions relative to those they would have had, had the scattering not had 
occurred. A well accepted explanation for such a behaviour is that soliton theories possess an 
infinite number of exactly conserved charges that constrain the dynamics in such a way that the 
solitons have no option but to retain their shapes and velocities after the scattering. Such theo-
ries are, in fact, exactly integrable admitting a zero curvature representation of their equations of 
motion, i.e. a Lax–Zakharov–Shabat equation [25].
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A few years ago, having performed many numerical simulations, we noticed that some de-
formations of exactly integrable soliton theories, like the sine-Gordon model, possess solutions 
that approximately behave like solitons and this observation has lead us to propose the concept 
of quasi-integrability, which can be formulated in the following form: We call a theory quasi-
integrable if it admits a representation of their equations of motion in terms of an anomalous 
zero curvature condition, which in turn, leads to an infinite number of anomalous conservations 
laws. In addition, the theory has to possess one-soliton like solutions that travel with constant ve-
locity without the dissipation of energy. Therefore, the conservation of energy is not anomalous 
but exact. When two or more of these one-soliton like solutions scatter the anomalous charges 
(and there is an infinite number of them) are conserved asymptotically, i.e. they do vary in time 
during the scattering process, and sometimes quite a lot, but they all return, after the scattering, 
to the values they had before the scattering took place. The asymptotic conservation of such an 
infinite number of charges has the same effect, as in true soliton theories, of constraining the 
dynamics in such a way that the soliton like configurations leave the scattering process basically 
as they have entered it. We have tested these ideas, analytically and numerically, in several de-
formations of exact integrable soliton theories and, within the limitations of our methods, they 
seem to have worked [3,14–18].

The dynamical mechanism responsible for such a behaviour of these quasi-solitons is far from 
having been understood yet. We have observed, however, some patterns that might be relevant 
for the study of such a nonlinear phenomenon. First of all, the anomalies of the conservation 
laws vanish for the one-soliton like solutions, and so the one-soliton sectors of these theories 
do have an infinite number of exact conservation laws. Secondly, the anomalies also vanish for 
configurations in which one-soliton like solutions are well separated from each other. Moreover, 
the anomalies are non-zero only when the solitons are close together and interact with each 
other. Thirdly, the observed phenomenon seems to occur when the multi-soliton solutions of the 
equation of motion possess very specific symmetry properties under a space–time parity transfor-
mation which can be described as follows. In the situations when the phenomenon occurs the two 
or three-soliton configurations are eigenstates, either odd or even, of an inversion transformation 
of the space and time coordinates around a point in space–time that depends on the parameters of 
the solutions, like speed, width, localization, etc. The quasi-integrability seems to occur when the 
densities of the anomalies of the quasi-conserved charges are odd under this parity transforma-
tion. Thus, integrating these densities in a rectangle in space–time centered at the particular point 
around which the inversion is performed, one gets zero. In consequence, the charges possess a 
mirror-like symmetry in the sense that they have the same values at times equidistant from this 
particular point in the time axis, around which the parity transformation is performed. So, we 
have not only an asymptotic conservation of the charges but also a mirror symmetry. We do not 
know whether such a parity property is the cause of quasi-integrability, but it seems to be present 
whenever the theory is quasi-integrable.

The densities of the quasi-conserved charges are in general polynomials in the derivatives 
of the fields, and so such densities vanish away from the core of the solitons. Therefore, when 
the solitons are well separated, like in the “in states” of a scattering process, the value of any 
one of the infinite number of charges should be the sum of the charges associated with each 
individual soliton. After the scattering, when the solitons are well separated again, the values of 
these charges should become again the sum of the charges of each “out soliton”. Consequently, 
one is lead to believe that the asymptotic conservation of our infinite number of quasi-charges is 
quite reasonable. However, for that to be the case the solitons have to leave the scattering, more 
or less, in the same configurations that they have entered it, i.e. possessing the same speeds, 
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widths, shape, etc. The more reasonable thing to expect is that they could radiate some energy 
away, change their shapes and velocities, etc. This is the mystery still to be understood. What is 
the dynamical mechanism that drives the solitons to remain the same after the scattering?

The answer to this question is not known but there are many results in the literature that are 
related to it. First of all, there is the seminal paper of Zabusky and Kruskal [39], that has, in fact, 
introduced the word soliton, in which the authors described their discovery that if one takes a 
sinusoidal wave as an initial configuration and then evolves in a discretized version of the KdV 
equation, one finds that instead of the wave crest breaking, like sea waves, the effect of the non-
linearity modifies it to evolve into a train of KdV solitons that continue to propagate, overtaking 
one another and interacting, and not destroying each other. So, the solitons in the integrable KdV 
model seem to be the “fixed points” of the dynamics and describe the states ‘where the system 
prefers to be’, like natural normal modes of linear systems. Since Zabusky and Kruskal’s paper 
[39] a lot of other dispersive equations have been studied, including non-integrable ones, and it 
has been found that the above described behaviour seems to be quite common in nonlinear dis-
persive partial differential equations. This large number of studies is so robust that it has given 
rise to a conjecture, the so-called Soliton Resolution Conjecture. This conjecture basically says 
that with a generic data as initial condition the nonlinear systems, integrable or not, should evolve 
into a finite number of solitons plus some radiation. The conjecture, itself, has not been proved 
yet and it is not even easy to formulate it more rigorously. For a more concise discussion on this 
topic see [26,38].2

The other concept that might be important to what we observe in quasi-integrable theories 
is the notion of orbital asymptotic stability, or simply asymptotic stability [34,35], that has, in 
fact, evolved from orbital stability put forward by Benjamin [4]. Here one does not look at 
several solitons, but just at one solitary wave. One takes a given solitary wave solution usol. of the 
equation under consideration, and considers the orbit of solutions g usol. of the equation, under 
the group G of symmetries of this equation, with g ∈ G. The solitary wave is called orbitally 
asymptotic stable if a small deviation of g usol. from the initial data implies that there exists a 
g(t) ∈ G, such that g(t) → g∞, and the solution converges to g∞ usol., in some norm, as t → ∞
[34]. There is a vast literature about asymptotic stability, in particular, on the RLW equation (1.4). 
It is also worth mentioning the concept of asymptotic stability in the sense of the asymptotic 
expansion of the PDE up to the first nonlinear correction [8,22]. Such a concept might also be 
relevant to quasi-integrability.

The stability of the RLW solitary waves has been considered, for example, in [29,30]. In ad-
dition the concept of asymptotic stability has been extended to two-soliton-like solutions and in 
the case of RLW some particular two-soliton configurations have been discussed and shown to 
describe inelastic or quasi-elastic scattering in [27,28]. Such results certainly fit together with 
what we describe in the present paper for the RLW equation (1.4), and in some sense also for 
the more general deformations of the KdV equations given by equation (1.1). If solitary waves 
can be shown to be asymptotically stable then one could intuitively (and naively) think that if the 
deformations induced by the scattering of two of them are not too large then, when these waves 
separate after the scattering and propagate without influencing each other, they would asymptot-
ically converge to solitary waves again. Of course, this is only a picture of the phenomenon but 

2 We are very grateful to the referee for drawing our attention to this Soliton Resolution Conjecture and to the notion 
of Asymptotic Stability that we discuss next.
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certainly such possible connections between asymptotic stability and quasi-integrability deserve 
further studies.

The paper is organized as follows: In the next section we introduce our Lax–Zakharov–Shabat 
equation which we then use to study the quasi-integrability of the model described by equa-
tion (1.1) for various values of ε1 and ε2. We perform the usual gauge transformations and finally 
define the charges which are truly conserved when ε1 = ε2 = 0 (i.e., for the KdV model). In sec-
tion 3 we introduce the parity argument for the travelling wave solutions of (1.1) and show that 
if the multi-soliton field configurations of the model possess this symmetry, then the charges are 
quasi-conserved. The next section discusses the Hirota method of finding solutions of some non-
linear equations and applying it to our equation (1.1). In it we show that this method gives a one 
soliton solution for any ε2 with ε1 = 1 being constant. This is the case for the usual dispersion 
relation (ω = k

1−k2 ), and for ε1 �= 1 the dispersion relation has to be modified. However, if we 
insist on the usual dispersion relation the Hirota method does not work but a one-soliton solution 
can still be found.3 We discuss a construction of such a solution in the appendix A.

The next two sections discuss the analytical quasi-integrability of the mRLW model and 
present arguments for the integrability based on the evenness parity properties of the multi-
soliton functions. Section 7 discusses the soliton solutions of the KdV equation, obtained via 
the Hirota method, and the parity properties of two- and three-soliton solutions of this model. 
The lengthy section 8 presents some results of our numerical simulations. These simulations 
were performed using a specially constructed numerical program based on implicit and explicit 
methods of solving (1.7). The calculations involved studying the time evolution of various field 
configurations initially corresponding to two- or three-soliton systems and then checking whether 
the observed results supported quasi-integrability of the model for various values of ε1 and ε2. 
We finish the paper with our conclusions and a few short appendices presenting more informa-
tion about our numerical techniques and providing some details on the construction of conserved 
or quasi-conserved quantities discussed in section 2 of the paper.

2. The anomalous Lax–Zakharov–Shabat equation

Our motivation is to study equation (1.1) in the context of quasi-integrability as a deformation 
of the integrable KdV equation expressed by equation (1.3). Of course, there is a vast litera-
ture on deformations of integrable theories (see for instance [2,21]), using different techniques. 
Here we work with the concept of anomalous zero curvature equations. To this end, we start by 
constructing the quasi-zero curvature equation, and subsequently produce the quasi-conserved 
charges from it. To do this we introduce the Lax potentials Ax and At , as

Ax = −
[
b1 − α

12
u (b−1 − F−1)

]
, (2.1)

At = −
[
−4b3 − b1 + α

6
uxF0 − α

3
uF1 + G

2
(b−1 − F−1)

]
, (2.2)

where the generators b2n+1 and Fn, are defined in the appendix C, and where

G ≡α2

18
u2 + α2

24
ε2wxvt − α

6
ε1uxt + α

6
(1 − ε1)uxx + α

6
u . (2.3)

The curvature of the Lax connection is given by

3 We thank the referee for drawing our attention to this possibility.
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Ftx = ∂tAx − ∂xAt + [At,Ax] = −X F0 + α

12
Y (b−1 − F−1) , (2.4)

where Y = 0 corresponds to the equation of motion of our deformed model (1.1)

Y ≡ ut + ux +
[α

2
u2 + ε2

α

4
wxvt + uxx − ε1 (uxt + uxx)

]
x

, (2.5)

and where

X ≡ α

6

[α

4
ε2wxvt − ε1 (uxt + uxx)

]
. (2.6)

Thus, if we now assume that u is a solution of the equations of motion (i.e., Y = 0), then X

represents the anomaly of the zero curvature equation. In the case of the KdV equation (i.e., ε2 =
ε1 = 0), the anomaly vanishes resulting in the well-known infinite number of truly conserved 
charges.

2.1. Quasi-conserved charges

In order to construct the quasi-conserved charges we follow the procedure discussed in [14], 
which is an adaptation to quasi-integrable theories, of the so-called abelianization procedure 
for exactly integrable theories [1,10,32]. The key ingredient is that the generator b1 appearing 
in Ax in (2.1), is a semi-simple element of the loop algebra and so splits this algebra into its 
kernel and image under its adjoint action as explained in the appendix C. Then, we perform a 
gauge transformation to rotate the Lax potentials into an infinite abelian subalgebra of the sl(2)

algebra, generated by b2n+1. The gauge transformation transforms the potentials as

Ax → ax = gAxg
−1 − (∂xg)g−1 , (2.7)

At → at = gAtg
−1 − (∂tg) g−1 , (2.8)

where the group element g is chosen to be

g = exp

( ∞∑
n=1

ζnF−n

)
≡ exp

( ∞∑
n=1

F−n

)
, (2.9)

where ζn are parameters to be determined (see below and appendix D), and F−n are generators 
of the sl(2) loop algebra (see appendix C).

Performing the expansion we find that ax can be expressed as

ax =Ax +
[ ∞∑

n=1

F−n,Ax

]
+ 1

2!

[ ∞∑
n=1

F−n,

[ ∞∑
m=1

F−m,Ax

]]
+ . . .

−
∞∑

m=1

∂xF−m − 1

2!

[ ∞∑
n=1

F−n,

∞∑
m=1

∂xF−m

]

− 1

3!

[ ∞∑
k=1

F−k,

[ ∞∑
n=1

F−n,

∞∑
m=1

∂xF−m

]]
+ . . .

(2.10)

Using the algebra defined by eqs. (C.5) to (C.10), we can write ax as



F. ter Braak et al. / Nuclear Physics B 939 (2019) 49–94 57
ax = − b1

+ ζ1 [b1,F−1]
+ ζ2 [b1,F−2] + α

12
u (b−1 − F−1) − 1

2
ζ 2

1

[
F−1,

[
F−1, b1

]] − ∂xζ1 F−1

+ . . . ,

(2.11)

where we have written down all the terms of the same grade on the same line and the grading 
is defined by the grading operator d given in (C.11). Note that the parameter ζk , in the expan-
sion (2.11), multiplying the commutator [b1, F−k], and so first appears among the terms of grade 
−k + 1. Thus, one can choose the parameters ζk , recursively, to cancel the image part of ax at 
the grade −k + 1, i.e. its component in the direction of F−k+1. The expressions for the param-
eters ζk , obtained this way, are given in the appendix D, and they are polynomials in u and its 
x-derivatives. Having chosen the parameters ζk this way, the expression for ax becomes

ax = −b1 +
∞∑

n=0

a(−2n−1)
x b−2n−1 , (2.12)

where the first values of a(−2n−1)
x are given by

a(−1)
x = α

22 3
u, (2.13)

a(−3)
x = α2

25 32
u2, (2.14)

a(−5)
x = α3

27 33 u3 + α2

27 32 uuxx, (2.15)

a(−7)
x = 5α4

211 34 u4 + α3

27 33 u2uxx + 1

29 32

(
α3 uu2

x + α2uuxxxx

)
. (2.16)

Note that in our gauge transformation we have not used the equations of motion Y = 0, with Y
given in (2.5). In the transformation (2.8) of the At component of the Lax connection, the group 
element g is already fixed, but we still can use the equations of motion Y = 0 to simplify it, i.e.
we are performing an on-shell gauge transformation. The on-shell result is then given by

at = 4b3 + b1 +
∞∑

n=0

a
(−2n−1)
t b−2n−1 +

∞∑
n=−2

c
(−n)
t F−n. (2.17)

In the appendix D we give explicit expressions for the first few quantities a(−2n−1)
t and c(−n)

t . 
Note that, due to the anomaly X, the quantities c(−n)

t do not vanish, and so the potential at is not 
really rotated to the abelian subalgebra generated by b2n+1. That is a difference with respect to 
the case of exactly integrable theories, but it will not be a concern for us as we explain below.

The on-shell gauge-transformed curvature then becomes

Ftx → ftx = ∂tax − ∂xat + [at , ax] = gFtxg
−1 = −XgF0g

−1 (2.18)

and so it takes the form

ftx = −X

( ∞∑
n=0

γ (−2n−1)b−2n−1 +
∞∑

n=0

β(−n)F−n

)
, (2.19)

where we have assumed that the equations of motion are satisfied (i.e., Y = 0), and where
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γ (−1) = 0,

γ (−3) = −∂x

[ α

23 3
u
]
, (2.20)

γ (−5) = −∂x

[
α2

26 3
u2 + α

25 3
uxx

]
,

γ (−7) = −∂x

[
5α3

28 33 u3 + 5α2

28 32 u2
x + 5α2

27 32 uxx + α

27 3
uxxxx

]
.

In addition we have that β(0) = 1, and β(−m) = 0 for m = 1, 2, 3, 4. The first nonvanishing β(i)

is β(−5), and it is given by

β(−5) = ∂x

[
α2

27 32 u2
]

. (2.21)

From the commutation relations eqs. (C.5) to (C.10) one can deduce that the commutators of 
a given element b2n+1 with any element of the algebra never produce an element of the abelian 
subalgebra generated by b2n+1. Therefore, the commutator [ax, at ] does not contain any terms 
in the direction of the b−2n−1 generators, since ax lies in this abelian subalgebra. Thus, if we 
now consider only the terms in the direction of the b−2n−1 generators of the gauge transformed 
curvature, we find that

∂ta
(−2n−1)
x − ∂xa

(−2n−1)
t = −Xγ (−2n−1) , ∀n ∈ Z

+
0 , (2.22)

which can be rewritten as

dQ(−2n−1)

dt
= a

(−2n−1)
t

∣∣∣∞
x=−∞ + α(−2n−1) , (2.23)

where

Q(−2n−1) ≡
∞∫

−∞
dx a(−2n−1)

x and α(−2n−1) ≡ −
∞∫

−∞
dx Xγ (−2n−1) . (2.24)

Since all the terms of the parameters ζn depend on u and its x-derivatives, and u → 0 when x →
±∞, we see that g → 1 as x → ±∞. This implies that

lim
x→±∞at = lim

x→±∞At (2.25)

and so from (2.2), we get that

a
(−2n−1)
t

∣∣∣∞
x=−∞ = 0. (2.26)

Hence, equation (2.23) becomes

dQ(−2n−1)

dt
= α(−2n−1) , (2.27)

and so the quantities Q(−2n−1) are candidates for our quasi-conserved charges.
It is important to point out that the Lax potential Ax , given in (2.1), does not depend upon the 

deformation parameters ε1 and ε2, and so it is the same as the Lax potential for the integrable 
KdV equation. Therefore, the charge densities a(−2n−1)

x and, consequently, the charges Q(−2n−1), 
are the same as those for the KdV theory. The dependence upon the deformation parameters in 
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(2.27), comes only from the anomaly X. Furthermore, we note that the lowest of these charges 
is exactly conserved, i.e.

Q(−1) = α

12

∞∫
−∞

dx u ,
d Q(−1)

d t
= 0. (2.28)

Indeed, from (2.20) one sees that γ (−1) = 0, and this implies that Q(−1) is conserved and so u is 
a density of a conserved quantity for any value of ε1, ε2, and α.

The remaining charges are not properly conserved. However, as we show below, for some 
special soliton solutions such charges are quasi-conserved. By that we mean that in the process 
of a soliton scattering these charges do vary in time but, after the scattering, they all return to the 
same values they had prior to this scattering (i.e. the values before and after the scattering are 
the same). This property is not well understood yet, but we have found that it is accompanied 
by a space–time parity symmetry of the soliton solutions, and this is useful in trying to gain 
an understanding why the anomalies of the charges vanish when integrated over time during the 
whole scattering process. In section 3 we explain how this works for the case under consideration 
here.

3. The parity argument

Here we explain in detail how the quasi-integrability concept is related to the existence of 
some parity symmetries of the soliton solutions. Before we show how it works for some specific 
soliton solutions, let us present here a general argument for the deformations of the KdV theory 
given by the equation (1.1).

3.1. Parity argument for the traveling wave solutions

Consider a class of traveling wave solutions u ≡ ū
(
x − ω

k
t + δ

)
of the equation (1.1) which, 

of course, includes in it the one-soliton solutions as its particular cases. For a fixed value of the 
time t , we define the shifted space coordinate as

x̄ = x − ω

k
t + δ (3.1)

and introduce the space parity transformation

Px̄ : x̄ → −x̄. (3.2)

The only hypothesis that we are making here is that the traveling wave solution is invariant under 
parity, i.e. that

Px̄ (ū) = ū. (3.3)

Since ū = w̄t = v̄x , it turns out that (∂x = ∂x̄ )

Px̄ (w̄) = w̄, Px̄ (v̄) = −v̄ and so Px̄ (w̄x) = −w̄x, Px̄ (v̄t ) = −v̄t . (3.4)

In consequence, we see that ūxt = −ω ūx̄x̄ and so Px̄ (ūxt ) = ūxt . Thus, the anomaly X given in 
(2.6) and evaluated on such type of solutions, satisfies

Px̄ (X) = X. (3.5)
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Note that the anomalies coefficients, γ ’s given in (2.20), always involve an odd number of 
x-derivatives of the field u, and so

Px̄

(
γ (−2n−1)

)
= −γ (−2n−1). (3.6)

Thus we see that
∞∫

−∞
dx X γ (−2n−1) =

∞∫
−∞

dx̄ X γ (−2n−1) = 0 (3.7)

and so the charges (2.24) are exactly conserved for all traveling wave solutions, and so also for 
the one-soliton solutions.

3.2. Parity argument for multi-soliton fields

Now we consider the space–time parity transformation around a given point (x
 , t
), of 
space–time

P : (
x̃ , t̃

) → (−x̃ , −t̃
) ; x̃ = x − x
 t̃ = t − t
. (3.8)

Again we make the hypothesis that the u-field evaluated on the soliton solution we are consider-
ing, that now we denote us , is even under such a parity transformation, i.e.

P (us) = us, (3.9)

where us in (3.9) is evaluated on that particular soliton solution. In addition, since ws ≡ ∫
dt us , 

and vs ≡ ∫
dx us (see (1.2)), we see that

P (ws) = −ws, and P (vs) = −vs, (3.10)

where ws and vs are respectively the fields w and v evaluated on that soliton solution. From 
(2.3), (2.5) and (2.6) we have that

P (G) = G, P (Y ) = −Y, P (X) = X. (3.11)

Next we consider the following order 2 automorphism (i.e. σ 2 = 1) of the sl(2) loop algebra

σ (T ) = ei π d T e−i π d , (3.12)

where d is the grading operator defined in (C.11). Then,

σ (b2n+1) = −b2n+1, σ (F2n+1) = −F2n+1, σ (F2n) = F2n. (3.13)

We also consider the combination of these two operations, the parity and the automorphism:

� ≡ P σ. (3.14)

One can check that the Lax operators (2.1) and (2.2), when evaluated on soliton solutions satis-
fying (3.9) and (3.10), satisfy

�
(
Aμ

) = −Aμ, μ = x , t, (3.15)

and so the curvature (2.4) satisfies

�(Ftx) = Ftx. (3.16)
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Let us rewrite (2.12) as

ax =
∞∑

n=−1

â(−2n−1)
x ; where â(1)

x = −b1 ; and

â(−2n−1)
x = a(−2n−1)

x b−2n−1. (3.17)

Since � (b1) = −b1, it follows that

�
([

b1 , F−n

]) = − [
b1 , � (F−n)

]
, (3.18)

where F−n is defined in (2.9), and so

(1 + �)
([

b1 , F−n

]) = [
b1 , (1 − �)(F−n)

]
. (3.19)

From (2.11) we see that â(0)
x = [

b1 , F−1
]
, and so

(1 + �) â(0)
x = [

b1 , (1 − �)(F−1)
]
. (3.20)

Since â(0)
x lies in the kernel (of the adjoint action of b1) and � maps the kernel into the kernel, it 

follows that the l.h.s. of (3.20) also lies in the kernel. But the r.h.s. of the same equation clearly 
lies in the image. Therefore, we conclude that both sides vanish. Since (1 − �)(F−1) cannot be 
a non zero element of the kernel we conclude that

(1 − �)(F−1) = 0 ; or �(F−1) =F−1 (3.21)

Using (3.21), we get from the third line of (2.11) that

(1 + �) â(−1)
x = [

b1 , (1 − �)(F−2)
]
. (3.22)

Since â(−1)
x lies in the kernel, we get that the l.h.s. of (3.22) lies in the kernel, and its r.h.s. lies in 

the image. Therefore both side have to vanish and so similarly to the previous case we conclude 
that

�(F−2) =F−2. (3.23)

Continuing this process we conclude that � (F−n) = F−n, for any positive integer n, and so the 
group element g defined in (2.9) satisfies

�(g) = g. (3.24)

Indeed from (D.1) we observed that

P (ζn) = (−1)n ζn and so �(ζn F−n) = ζn F−n. (3.25)

Thus we see that

�
(
g F0 g−1

)
= g F0 g−1 (3.26)

and so from (2.18) and (2.19) we get that

P
(
γ (−2n−1)

)
= −γ (−2n−1). (3.27)

Thus we see that all the anomalies appearing in (2.27) satisfy (see (3.11))

P
(
X γ (−2n−1)

)
= −X γ (−2n−1). (3.28)
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In consequence, integrating the r.h.s. of this expression over a rectangle with centre at the origin 
of the (x̃ , t̃ ) coordinates (see (3.8)) we get

t̃∫
−t̃

dt

x̃∫
−

dx X γ (−2n−1) = 0 (3.29)

Sending x̃ to infinity we find that the charges (2.24) satisfy the mirror type symmetry (see (2.27))

Q(−2n−1)
(
t̃
) = Q(−2n−1)

(−t̃
)
. (3.30)

Thus, for any soliton solution satisfying the property (3.9), all the charges Q(−2n−1) are quasi-
conserved, and the sector defined by such soliton solutions constitutes a quasi-integrable sector 
of the theory.

4. The analytical Hirota soliton solutions

Next we investigate the existence of analytical soliton solutions for the deformed KdV equa-
tion (1.7), or equivalently (1.1). To do this we introduce the Hirota τ -function as

q = β ln τ (4.1)

for some parameter β to be appropriately chosen later. Hirota’s bilinear equations for KdV-type 
equations as well for the RLW and mRLW equations have been discussed in the literature [20,
31,33]. Here we follow an approach that does not make use of the Hirota’s operators Dx and Dt . 
Putting (4.1) into (1.7) one gets the following Hirota’s equation

− τ 2
[
2βε2τtt τxx + (4β − 2ε1)τ

2
xt + τt (−2ε1τxxt − (ε1 − 1)τxxx + τx)

− 2 ε1τxτxtt − ε1τtt τxx − 3(ε1 − 1)τxt τxx − 3ε1τxτxxt + τ 2
t + 3τxτxxt

]
+ 2τ

[
(βε2 − ε1)τxxτ

2
t + (βε2 − ε1)τtt τ

2
x

+ τxτt (4(β − ε1)τxt − 3(ε1 − 1)τxx) − 3(ε1 − 1)τ 2
x τxt

]
− 2τt τ

2
x [(β(ε2 + 2) − 3ε1)τt − 3(ε1 − 1)τx]

+ τ 3 (−ε1τxxtt − ε1τxxxt + τtt + τxt + τxxxt ) = 0. (4.2)

Next we take the one-soliton ansatz

τ = 1 + η ek x−ω t+δ (4.3)

and insert it into (4.2). We consider the expansion of the equation in powers of η. In the lowest 
order (η0) the equation is automatically satisfied. In the next order (η1) we find that the equation 
is satisfied if either ω = 0 or

ω = k + (1 − ε1) k3

1 − ε1 k2 . (4.4)

The order η2 terms show that the equation is satisfied if

2k4
[
(ε1 − 1)k2 − 1

] [
β(ε2 + 2)

(
(ε1 − 1)k2 − 1

) + 3
](

ε k2 − 1
)2 = 0. (4.5)
1
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If we do not want k to depend on ε’s, but do allow β to depend upon k, then we can take

β = 3

(2 + ε2)
(
1 + (1 − ε1) k2

) . (4.6)

With this choice one can check that all the higher order terms, in powers of η, vanish automat-
ically, showing that the truncation of the series leads to an exact solution. Thus, we see that we 
have found a family of one-soliton solutions, parameterized by ε1 and ε2, and given by

u = 6

α

k2

(2 + ε2)
(
1 − ε1 k2

) 1[
cosh

(
�
2

)]2 (4.7)

with

� = k x − ω t + δ ; ω = k + (1 − ε1) k3

1 − ε1 k2 , (4.8)

where we have absorbed the η parameter into δ, by writing η = eδ̃ and shifting δ + δ̃ → δ. This 
is the solution given in (1.12). Note that this solution, written in terms of the q field, takes the 
form:

qtype 1 = 3

(2 + ε2)
(
1 + (1 − ε1) k2

) ln
(
1 + e�

)
(4.9)

= 3

(2 + ε2)
(
1 + (1 − ε1) k2

) [
ln 2 + �

2
+ ln cosh

(
�

2

)]
.

Note also that, as we have stated in the introduction, for ε1 = 1 and ε2 = 0 we get the RLW 
one-soliton solution, and for ε1 = ε2 = 1, we get the mRLW one-soliton. In between we get a 
whole new family of one-soliton solutions. Note also that our dispersion relation (the relation 
between ω and k) is somewhat unusual, as it depends on ε1. However, if we insist on keeping the 
usual relation, i.e. ω = k

1−k2 we can find a one-soliton solution, even for ε1 �= 1, by solving the 
equation (1.7) directly. This calculation is presented in the Appendix A and the obtained solution 
then takes the form

qtype 2 = 3
[
1 + (ε1 − 1) k2

]
(2 + ε2)

[
ln

(
cosh

(
ξ

2
√

1 + (ε1 − 1) k2

))
+ b ξ + c

]
, (4.10)

where ξ = k x − ω t + δ, b and c are arbitrary parameters, and ω = k
1−k2 . We have to assume 

1 + (ε1 − 1) k2 > 0, in order for the solution to be real. Note that in the limit ε1 → 1, both 
solutions, (4.9) and (4.10), become the same and are of the form

q = 3

(2 + ε2)

[
ln

(
cosh

(
ξ

2

))
+ b ξ + c

]
. (4.11)

We have also checked that applying the above Hirota-type procedure for a two-soliton type 
ansatz, i.e. by expanding τ up to a second order in η, leads to a solution only for the case ε2 =
ε1 = 1 and β = 1. In such a case, the Hirota’s equation (4.2) becomes

τ 2
t + τxτt − 2τxxt τt + 2τ 2

xt − 2τxτxtt + τtt τxx − τ (τtt + τxt − τxxtt ) = 0. (4.12)

Its two-soliton solution is given by

τ = 1 + e�1 + e�2 + A12 e�1+�2 ; for ε2 = ε1 = β = 1 (4.13)
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with

�i = ki x − ωi t + δi ωi = ki

1 − k2
i

i = 1,2 (4.14)

and

A12 = − (k1 − k2)
2
[
k3

1k2 − k2
1

(
k2

2 − 1
) + k1k2

(
k2

2 − 4
) + k2

2 − 3
]

(k1 + k2)2
[
k3

1k2 + k2
1

(
k2

2 − 1
) + k1k2

(
k2

2 − 4
) − k2

2 + 3
] . (4.15)

This is precisely the two-soliton solution given in (1.14)–(1.16), and first found in [19]. One can 
check that by replacing ωi given in (1.15) and inserting them into (1.16), one finds that A12 given 
in (4.15) is the same as the one in (1.16).

5. The analytical quasi-integrability of the mRLW theory

In subsection 3.1 we have shown that if the field u evaluated on a one-soliton is even under 
the space parity (3.2) (see (3.3)), then the anomalies vanish (see (3.7)), and so all the charges 
Q(−2n−1), introduced in (2.24), are exactly conserved. Note that the family of one-soliton solu-
tions (4.7) are even under the parity (3.2), and so this infinity of charges are exactly conserved 
for such one-soliton solutions.

Let us now analyse the two-soliton solution (4.13)–(4.15). Denoting

A12 = e
 (5.1)

we can write the two-soliton tau-function (4.13) as

τ = 1 + e�1 + e�2 + e�1+�2+
 = 2 ez+
[
cosh z+ + e−
/2 cosh z−

]
, (5.2)

where we have defined

z+ = 1

2
(�1 + �2 + 
) and z− = 1

2
(�1 − �2) . (5.3)

Note that if k1 = k2 we see that A12 = 0 and so the two-soliton solution reduces to a one-soliton 
solution. Therefore, for truly two-soliton solutions, i.e. when k1 �= k2, z+ and z− can be con-
sidered independent space–time variables, i.e. they are linearly independent combinations of x
and t . Then we have that

∂xz± = 1

2
(k1 ± k2) ≡ k± and ∂t z± = −1

2
(ω1 ± ω2) ≡ −ω±. (5.4)

From (1.6) and (4.1), for β = 1, we find that the two-soliton solution (4.13)–(4.15) for the 
u-field can be rewritten as (see (5.2))

u = − 8

α

(τ τxt − τx τt )

τ 2

= 8

α

e−
/2[
cosh z+ + e−
/2 cosh z−

]2

[
e
/2k+ω+ + e−
/2k−ω−

+ (k+ω+ + k−ω−) cosh z+ cosh z− − (k−ω+ + k+ω−) sinh z+ sinh z−
]
. (5.5)

To find the point of space–time around which we perform our parity transformation, we con-
sider the linear relation among z± and x and t , i.e.
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(
z+
z−

)
=

(
k+ −ω+
k− −ω−

)(
x

t

)
+

(


2 + δ+

δ−

)
, (5.6)

where we have denoted δ± = (δ1 ± δ2) /2. Then(
x̃

t̃

)
≡

(
x − x


t − t


)
=

(
k+ −ω+
k− −ω−

)−1 (
z+
z−

)
(5.7)

with

x
 = ω+ δ− − ω−
(



2 + δ+

)
k+ ω− − k− ω+

; t
 = k+ δ− − k−
(



2 + δ+

)
k+ ω− − k− ω+

. (5.8)

Thus, the space–time parity transformation

P : (z+ , z−) → (−z+ , −z−) (5.9)

is of the same form as (3.8), and from (5.5) we see that the field u evaluated on the two-soliton 
solution of the mRLW model is invariant under this parity, and so it satisfies the hypothesis made 
in (3.9), i.e. that P (u) = u. So, as shown in subsection 3.2, all the charges Q(−2n−1), defined in 
(2.24), satisfy the mirror symmetry described in (3.30), and they are asymptotically conserved in 
the scattering of two solitons.

We have thus presented an analytical proof of the quasi-integrability of the mRLW theory. It is 
worth adding that this is the first analytical proof of the quasi-integrability of a (non-integrable) 
field theory in 1 + 1 dimensions (as in this case we have an analytical form of a two-soliton 
solution).

6. The parity versus dynamics argument

We shall now check whether the dynamics of the deformed model (1.1) favours or not the 
correct parity property of the field u (3.9), so as to make the infinite set of charges Q(−2n−1), 
defined in (2.24), quasi-conserved. The plan of our approach is to write a given solution of 
(1.1) as a perturbative expansion around an exact solution of the integrable KdV equation. In 
addition, if that exact solution does satisfy the desired property (3.9) under the parity, we want 
to understand how the higher terms in the expansion behave under this parity. Our studies will 
show that the dynamics of the deformed model (1.1) does indeed favour the parity property (3.9)
in a quite non-trivial and interesting way.

To make the perturbative expansion simpler we parameterise our two deformation parameters 
as

ε1 = ε sin ξ ; ε2 = ε cos ξ. (6.1)

Then (1.1) becomes

ut + ux +
[α

2
u2 + uxx + ε

(
cos ξ

α

4
wx vt − sin ξ (uxt + uxx)

)]
x

= 0. (6.2)

Next we expand the field u as

u = u(0) + ε u(1) + ε2 u(2) + . . . , (6.3)

where each u(i), in general, depends upon ξ . Thus, we find that
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w =
∫

dt u =
∫

dt u(0) + ε

∫
dt u(1) + ε2

∫
dt u(2) + . . .

≡ w(0) + ε w(1) + ε2 w(2) + . . . (6.4)

and

v =
∫

dx u =
∫

dx u(0) + ε

∫
dx u(1) + ε2

∫
dx u(2) + . . .

≡ v(0) + ε v(1) + ε2 v(2) + . . . (6.5)

Next we split all fields into their eigen-function parts under the parity (3.8). Thus

u(i,±) = 1

2
(1 ± P)u(i) (6.6)

and the same for w and v. Of course, the ε0 part of (6.2) is the KdV equation, i.e.

u
(0)
t + u(0)

x +
[
α

2

(
u(0)

)2 + u(0)
xx

]
x

= 0 (6.7)

The next order – ε1 equation is then given by

u
(1)
t + u(1)

x +
[
α u(0) u(1) + u(1)

xx + cos ξ
α

4
w(0)

x v
(0)
t − sin ξ

(
u

(0)
xt + u(0)

xx

)]
x

= 0. (6.8)

Next we split this equation into its even and odd parts under the parity. The odd part is given 
by

u
(1,+)
t +u(1,+)

x +
[
α

(
u(0,+) u(1,+) + u(0,−) u(1,−)

)
+ u(1,+)

xx

+ cos ξ
α

4

(
w(0,+)

x v
(0,+)
t + w(0,−)

x v
(0,−)
t

)
− sin ξ

(
u

(0,+)
xt + u(0,+)

xx

)]
x

= 0 (6.9)

and the even part takes the form

u
(1,−)
t +u(1,−)

x +
[
α

(
u(0,+) u(1,−) + u(0,−) u(1,+)

)
+ u(1,−)

xx

+ cos ξ
α

4

(
w(0,+)

x v
(0,−)
t + w(0,−)

x v
(0,+)
t

)
− sin ξ

(
u

(0,−)
xt + u(0,−)

xx

)]
x

= 0. (6.10)

Let us now suppose that the zeroth order solution is even under the parity, i.e. that

P
(
u(0)

)
= u(0) ; and so u(0,−) = 0. (6.11)

In this case we find that

w(0,+) = v(0,+) = 0 (6.12)

In consequence, we see that (6.9) becomes

u
(1,+)
t + u(1,+)

x +
[
α u(0,+) u(1,+) + u(1,+)

xx

]
x

= −
[
cos ξ

α

4
w(0,−)

x v
(0,−)
t − sin ξ

(
u

(0,+)
xt + u(0,+)

xx

)]
x

u
(1,−)
t + u(1,−)

x +
[
α u(0,+) u(1,−) + u(1,−)

xx

]
x

= 0. (6.13)

Note that u(1,+) satisfies an inhomogeneous equation and u(1,−) a homogeneous one. Thus, 
we can have a solution for which
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u(1,−) = 0 and so w(1,+) = v(1,+) = 0. (6.14)

The order ε2 part of (6.2) takes the form

u
(2)
t +u(2)

x +
[

α

2

((
u(1)

)2 + 2u(0) u(2)

)
+ u(2)

xx

+ cos ξ
α

4

(
w(0)

x v
(1)
t + w(1)

x v
(0)
t

)
− sin ξ

(
u

(1)
xt + u(1)

xx

)]
x

= 0. (6.15)

Splitting (6.15) into its even and odd parts one gets that the odd part becomes

u
(2,+)
t +u(2,+)

x +
[
α

2

((
u(1,+)

)2 +
(
u(1,−)

)2 + 2
(
u(0,+) u(2,+) + u(0,−) u(2,−)

))
+ u(2,+)

xx + cos ξ
α

4

(
w(0,+)

x v
(1,+)
t + w(1,+)

x v
(0,+)
t + w(0,−)

x v
(1,−)
t + w(1,−)

x v
(0,−)
t

)
− sin ξ

(
u

(1,+)
xt + u(1,+)

xx

)]
x

= 0 (6.16)

while the even part takes the form

u
(2,−)
t +u(2,−)

x +
[α

2

(
2u(1,+) u(1,−) + 2

(
u(0,+) u(2,−) + u(0,−) u(2,+)

))
+ u(2,−)

xx

+ cos ξ
α

4

(
w(0,+)

x v
(1,−)
t + w(1,+)

x v
(0,−)
t + w(0,−)

x v
(1,+)
t + w(1,−)

x v
(0,+)
t

)
− sin ξ

(
u

(1,−)
xt + u(1,−)

xx

)]
x

= 0. (6.17)

Note that if (6.11), (6.12) and (6.14) are all satisfied, then these equations become

u
(2,+)
t + u(2,+)

x +
[
α u(0,+) u(2,+) + u(2,+)

xx

]
x

=

−
[
α

2

(
u(1,+)

)2 + cos ξ
α

4

(
w(0,−)

x v
(1,−)
t + w(1,−)

x v
(0,−)
t

)
− sin ξ

(
u

(1,+)
xt + u(1,+)

xx

)]
x

,

u
(2,−)
t + u(2,−)

x +
[
α u(0,+) u(2,−) + u(2,−)

xx

]
x

= 0. (6.18)

So, again u(2,+) satisfies an inhomogeneous equation and u(2,−) a homogeneous one. So again, 
we can have a solution where

u(2,−) = 0 and so w(2,+) = v(2,+) = 0. (6.19)

Continuing that process it seems that we can always have a solution in which the u field is 
even under our parity. Such a solution of the perturbed model fits into the scheme presented in 
subsection 3.2 and so all the charges Q(−2n−1) (from their infinite set)are quasi-conserved, i.e.
they satisfy the property (3.30). In this sense, the dynamics of the perturbed model favours the 
even u field, since as we saw there cannot exist pure odd u field solution. Of course, there can 
exist mixed solutions, i.e. us with an even plus a (perhaps small) odd parts.
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We do not understand yet how one could fine tune the perturbed solution to be purely even 
under the parity. Note that the condition of making the odd part of the solution vanish at each 
order of perturbation, does not work like an initial condition. So, we cannot prepare the solution 
at a given initial time t0 and guarantee that it will evolve in time keeping its evenness. The 
conditions discussed above are imposed at all times. However, as our analysis has shown that a 
purely odd solution cannot exist, perhaps there might be a mechanism making the odd part of 
the solution small (maybe its appearance is not energetically favorable). We have not found such 
a mechanism yet. However, our numerical simulations, which we describe below, show that if 
we start with a seed configuration which is even under the parity, the numerical evolution of the 
configuration, under the perturbed dynamics, essentially keeps the configuration even. This is a 
very intriguing property of our quasi-integrable field theories, and we shall describe it, in more 
detail, in the next sections.

7. The exact Hirota’s soliton solutions for the KdV equation

In section 6 we have shown that the dynamics of the perturbed equation (1.1) favours the even 
property of the u field under the parity. Since our discussion involved a perturbative expansion 
around an exact solution of the KdV equation (1.3), in this section we discuss the properties of 
the exact multi-soliton solutions under the space–time parity transformation (3.8). We show that 
the 1-soliton, 2-soliton and some special 3-soliton solutions of the KdV theory are even under 
a parity transformation and so can be used as a seed in the expansion discussed in section 6. In 
order to do this, we present these solutions, using the Hirota’s method, in a notation that is useful 
for our purposes.

We introduce the Hirota’s τ -function for the KdV equation (1.3) as

u = 12

α
∂2
x ln τ. (7.1)

Putting this expression into (1.3) we get the Hirota’s equation for KdV in the form

2τ 3
x +8τxxx τ 2

x −
[
6 τ 2

xx + τ (2τxt + 3τxx + 5τxxxx)
]
τx

+τt

(
2τ 2

x − ττxx

)
+ τ [2τxxτxxx + τ (τxxt + τxxx + τxxxxx)] = 0. (7.2)

As it well known, the N -soliton solutions of this equation can be obtained by the Hirota’s ansatz, 
which takes the form

τN-sol = 1 +
N∑

i=1

e�i +
N∑

i>j=1

e�i+�j +
ij +
N∑

i>j>k=1

e�i+�j +�k+
ij +
ik+
jk + . . .

+ e
�1+�2+...+�N+∑N

i>j=1 
ij (7.3)

with

�i = ki x − ωi t + δi ; ωi = ki

(
1 + k2

i

)
; e
ij =

(
ki − kj

)2(
ki + kj

)2 (7.4)

Then, the 1-soliton solution reads as

uone-sol = 3 k2

2 . (7.5)

α cosh [(k x − ω t + δ) /2]
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So we see that the KdV one-soliton is invariant under the space parity Px̄ , defined in (3.2).
The 2-soliton solution can be cast in the form

utwo-sol = 12

α

1(
e
/2 cosh(z+) + cosh(z−)

)2

[
e
/2

(
k2− + k2+

)
cosh(z−) cosh(z+)

+ k2− cosh2(z−) −
(
k− sinh(z−) + k+e
/2 sinh(z+)

)2 + k2+e
 cosh2(z+)

]
, (7.6)

where

z+ = 1

2
(�1 + �2 + 
) , z− = 1

2
(�1 − �2) , k± ≡ (k1 ± k2) /2. (7.7)

Thus, the KdV 2-soliton solution is even under the parity transformation P : (z+ , z−) →
(−z+ , −z−), which is of the same form as (3.8).

In order to study the parity properties of the 3-soliton solutions we introduce the quantities

z+ = z
(1)
− + z

(2)
− + z

(3)
− , z

(i)
− = k(i) x − ω(i) t + 
(i), i = 1,2,3, (7.8)

where

k(1) = 1

2
(−k1 + k2 + k3) , ω(1) = 1

2
(−ω1 + ω2 + ω3) , 
(1) = 1

2
(−δ1 + δ2 + δ3 + 
23) ,

k(2) = 1

2
(k1 − k2 + k3) , ω(2) = 1

2
(ω1 − ω2 + ω3) , 
(2) = 1

2
(δ1 − δ2 + δ3 + 
13) ,

k(3) = 1

2
(k1 + k2 − k3) , ω(3) = 1

2
(ω1 + ω2 − ω3) , 
(3) = 1

2
(δ1 + δ2 − δ3 + 
12) .

The 3-soliton τ -function can be written as lnτthree−sol = ln 2 + z+ + lnF , with

F = cosh z+ + e−(
12+
13)/2 cosh z
(1)
− + e−(
12+
23)/2 cosh z

(2)
−

+ e−(
13+
23)/2 cosh z
(3)
− . (7.9)

Thus, for the 3-soliton solution we get:

uthree-sol = 12

α
∂2
x lnF = 12

α

[
∂2
xF

F
−

(
∂xF

F

)2
]

(7.10)

with

∂xF =
(
k(1) + k(2) + k(3)

)
sinh z+ + k(1) e−(
12+
13)/2 sinh z

(1)
−

+ k(2) e−(
12+
23)/2 sinh z
(2)
− + k(3) e−(
13+
23)/2 sinh z

(3)
− (7.11)

and

∂2
xF =

(
k(1) + k(2) + k(3)

)2
cosh z+ +

(
k(1)

)2
e−(
12+
13)/2 cosh z

(1)
−

+
(
k(2)

)2
e−(
12+
23)/2 cosh z

(2)
− +

(
k(3)

)2
e−(
13+
23)/2 cosh z

(3)
− . (7.12)

One way of implementing the parity argument for the KdV three-soliton solution is to have 
the inversion (change of signs) of all three z(i)

− ’s, i.e. z
(i)
− → −z

(i)
− , for i = 1, 2, 3, which would 
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also imply z+ → −z+. However, we are performing our calculations in two dimensions and the 
three z(i)

− ’s cannot be linearly independent. Each z(i)
− defines a straight line in the (x , t) plane, 

and if they are to be simultaneously inverted, we need these three lines to cross at the same point, 
and so all three z(i)

− ’s should vanish at this point. So, there should exist a point (x
 , t
) such that⎛⎝ k(1) −ω(1) 
(1)

k(2) −ω(2) 
(2)

k(3) −ω(3) 
(3)

⎞⎠ ⎛⎝ x


t

1

⎞⎠ = 0. (7.13)

For this to happen, the determinant of this 3 × 3 matrix should vanish, and this implies(

(1) + 
(2)

)(
k3

1k2 − k1k
3
2

)
+

(

(1) + 
(3)

)(
k3

3k1 − k3k
3
1

)
+

(

(2) + 
(3)

)(
k3

2k3 − k2k
3
3

)
= 0.

Note that if we choose any pair of ki’s to be equal, we reduce the three-soliton solution to 
a two-soliton solution. So, we need k1 �= k2 �= k3. One way of satisfying this is to choose δi , 
i = 1, 2, 3, in such a way that


(1) = 
(2) = 
(3) = 0. (7.14)

Note that in such a case the z(i)
− ’s, given in (7.8), (and so z+) become homogeneous in x and t , 

i.e.

z
(i)
− = k(i) x − ω(i) t i = 1,2,3 (7.15)

Therefore, the parity transformation

P : (x , t) → (−x , −t) (7.16)

is sufficient to have what we want, i.e. z
(i)
− → −z

(i)
− , and so z+ → −z+.

The condition (7.14) leads to the linear system⎛⎝ 1 −1 −1
−1 1 −1
−1 −1 1

⎞⎠ ⎛⎝ δ1
δ2
δ3

⎞⎠ =
⎛⎝ 
23


13

12

⎞⎠ (7.17)

and so

δ1 = −1

2
(
13 + 
12) = −1

2
ln

[
(k1 − k3)

2

(k1 + k3)
2

(k1 − k2)
2

(k1 + k2)
2

]
,

δ2 = −1

2
(
23 + 
12) = −1

2
ln

[
(k2 − k3)

2

(k2 + k3)
2

(k1 − k2)
2

(k1 + k2)
2

]
, (7.18)

δ3 = −1

2
(
23 + 
13) = −1

2
ln

[
(k2 − k3)

2

(k2 + k3)
2

(k1 − k3)
2

(k1 + k3)
2

]
.

Denoting

�i = �̃i + δi with �̃i = ki x − ωi t (7.19)

we find that the corresponding τ -function for the 3-soliton solution takes the form
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τthree-sol = 1 + e�̃1+�̃2+�̃3 + e−(
13+
12)/2
(
e�̃1 + e�̃2+�̃3

)
+ e−(
23+
12)/2

(
e�̃2 + e�̃1+�̃3

)
+ e−(
23+
13)/2

(
e�̃3 + e�̃1+�̃2

)
. (7.20)

One can check that in all these cases the three soliton collide simultaneously at the origin x = 0
at t = 0. The conclusion we can draw from this is that, for the KdV three-soliton solution in 
which the three solitons collide at the same point in space–time, the field u is even under the 
parity (7.16), when evaluated on such a solution.

8. Numerical analysis of quasi-conserved charges

In this section we discuss results of some of our numerical simulations of equation (1.7) per-
formed for various values of ε1 and ε2. We particularly focus on investigating the corresponding 
first non-trivial quasi-conserved charge Q(−3), defined in equation (2.24). The numerical scheme 
used to approximate equation (1.7) is very similar to the algorithm used to solve the mRLW 
equation [6]. We have adjusted this scheme appropriately, which is discussed in appendix B, for 
the simulations presented in this section.

We have used several different initial conditions depending on the values of ε1 and ε2 used 
for each simulation, and we discuss these initial conditions in more detail in the subsections 
below. We have performed the numerical experiments for two-soliton simulations for a range 
of values for �1 and �2 but, for consistency, all the plots presented in this section regarding 
two-soliton simulations are obtained using the same values regardless of the initial conditions 
used, and similarly for all the three-soliton simulations (�1, �2 and �3) presented in this section. 
For all the simulations presented in this section we have used a grid spacing h = 0.1 and time 
level τ = 0.001. More details on the variables used for the simulations discussed in this section 
can be found in appendix B.2.

8.1. Quasi-conserved charges of the mRLW equation

In this subsection we discuss the results of our investigations of the quasi-conserved charges of 
the mRLW equation. To perform the simulations of the mRLW equation, we have set ε1 = ε2 = 1
in equation (1.7).

8.1.1. Two-soliton solutions of the mRLW equation
In Fig. 1 we have plotted the scattering of two solitons described by equation (1.14) at various 

values of t , and in Fig. 2a we have plotted the time dependence of ∂tQ
(−3) for this interaction. 

Since the mRLW equation possesses an analytical form of the two-soliton solution, in Fig. 2
we have in fact plotted the values ∂tQ

(−3) for both the analytical and numerical simulation. To 
better illustrate how small the discrepancy is, we have added an insert of the region near the 
global maximum on a much smaller scale. We note that there is hardly any discrepancy between 
the analytical and numerical values.

Now, comparing Figs. 1 and 2a, we see that as t → ±∞ the charge is conserved except for 
during the collision, where it first decreases and then increases back to the same value as before 
the collision. Fig. 2b presents the plots of 

∫ t

0 dt ′ ∂t ′Q(−3), and we see that the two lumps exactly 
cancel each other out, that is,

lim Q(−3) = lim Q(−3) . (8.1)

t→−∞ t→∞
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Fig. 1. The spatial-dependence of the u field for two solitons described by mRLW equation, interacting with each other 
at different points in time, as given in equations (1.6) and (1.14).

Fig. 2. The time-dependence of the analytical and numerically (represented by the red line and the green line, respec-
tively) obtained values of the quantity ∂tQ

(−3) and 
∫ t

0 dt ′ ∂t ′Q(−3) for the two-soliton simulation of the mRLW equation. 
(For interpretation of the colors in the figure(s), the reader is referred to the web version of this article.)

Thus, we can conclude that these quantities are indeed quasi-conserved, as has been shown ana-
lytically in section 5. The agreement of the analytical and numerical results is a good test of the 
numerical code that we are using.

8.1.2. Three-soliton solutions of the mRLW equation
In Fig. 3 we present a selection of plots (at different values of t ) of the u field obtained in a 

typical numerical simulation of a superposition of three one-soliton solutions. This was done in 
this way since we do not have analytic three-soliton solutions of the mRLW equation. However, 
as was discussed in [6], such a field is a very good approximation to a solution and the solitons of 
the numerical three-soliton configuration behave as integrable (or quasi-integrable) solitons. So 
here we have tested this by looking at the behaviour of corresponding charges. Fig. 4 shows the 
corresponding time dependence of ∂tQ

(−3) and 
∫ t

0 dt ′ ∂t ′Q(−3). As Q(−3) changes only during 
the collision, and has the same value in the asymptotic regions (see Fig. 4b), we conclude that 
our charge is also quasi-conserved for the three-soliton configuration.
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Fig. 3. Snapshots at different points in time of the numerical three-soliton solution of the mRLW equation (equation (1.7)
for ε1 = ε2 = 1), for the case when the solitons collide all around the point x = 0.

Fig. 4. The time-dependence of the obtained values of the quantity ∂tQ
(−3) and 

∫ t
0 dt ′ ∂t ′Q(−3) for the three-soliton 

simulation of the mRLW equation.

In section 7 we have shown that the u-field for the exact Hirota three-soliton of the KdV equa-
tion is even under the parity transformation (7.16), when the three solitons collide all at the same 
point. As we have discussed in section 6, one should therefore expect that the deformed three-
soliton solution should keep that parity property, and so to have an infinity of quasi-conserved 
charges given by (2.24) (see section 3.1). The numerical results presented in Fig. 4 show that the 
charge Q(−3) is indeed quasi-conserved for the mRLW equation, and so it confirms this expec-
tation.

8.2. Quasi-conserved charges of the RLW equation

In this subsection we discuss similar topics for the RLW equation. This model, is described 
by equation (1.4), in which the conventional re-scaling of the u-field used in the literature sets 
α = 12. The model possesses the same exact one-soliton solution with the same dispersion re-
lation as the mRLW equation, but it does not possess an analytical two-soliton solutions [7]. 



74 F. ter Braak et al. / Nuclear Physics B 939 (2019) 49–94
Fig. 5. The field u, at selected values of time, seen in our simulation of a two-soliton configuration of the RLW equation.

Fig. 6. The time-dependence of the obtained values of the quantity ∂tQ
(−3) and 

∫ t
0 dt ′ ∂t ′Q(−3) for the two-soliton 

simulation of the RLW equation.

However, since we are simulating equation (1.7) with ε1 = 1 and ε2 = 0, we must perform the 
appropriate rescaling of q (i.e., q → 3

2q) in order to obtain the analytical one-soliton solution. 
Thus, to construct the two- and three numerical systems we have used, as initial conditions for the 
numerical simulation, a linear superposition of the following analytical single-soliton solutions

q = 3

2

n∑
i=1

ln(1 + e�i ) (8.2)

where n = 2 corresponds to the two-soliton simulation and n = 3 to the three-soliton simulation.

8.2.1. Two-soliton solutions of the RLW equation
The results of the two-soliton simulation for the RLW equation are shown in Fig. 5. Clearly, 

the figure shows some radiation (see the inserts in Figs. 5e and 5f), and this agrees with the results 
presented in [24]. This is expected since the initial conditions used for this simulation do not solve 
the RLW equation analytically. Note that the amplitudes of these solitons are bigger compared 
to the solitons of the mRLW equation due to the aforementioned rescaling of q . Furthermore, in 
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Fig. 7. The field u, for a few values of time, found in our simulation of the three-soliton system of the RLW equation.

Fig. 8. The time-dependence of the quantity ∂tQ
(−3) and 

∫ t
0 dt ′ ∂t ′Q(−3) found in our three-soliton simulation of the 

RLW equation.

Fig. 6 we have presented the plots of the time dependence of ∂tQ
(−3) and 

∫ t

0 dt ′ ∂t ′Q(−3) seen 
in this simulation. The shapes of the curves in these plots are very similar to the ones found in 
Fig. 2. We note that the small observed emission of radiation does not seem to have a visible 
effect on the quasi-conservation of the charge.

8.2.2. Three-soliton solutions of the RLW equation
Next we have looked at the three solitons systems of the RLW equation. In Fig. 7 we present 

the plots of the fields u seen at various times in their evolution, and in Fig. 8 the plots of the 
corresponding ∂tQ

(−3) and 
∫ t

0 dt ′ ∂t ′Q(−3).
Note that the amplitudes of the solitons are again larger when compared with the solitons of 

the mRLW equation (see Fig. 3). This is due to the factor of 3/2, mentioned before. The three 
solitons behave in a very similar way to the solitons shown in Fig. 3 except that, around the time 
they collide, a small bit of radiation is emitted (see the inserts in Figs. 7d, 7e and 7f). Just as for 
the two-soliton simulation, this emission of radiation does not seem to have a visible effect on 
the quasi-conservation of the charge.
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Fig. 9. The time-evolution of two-soliton systems found in our simulation of equation (1.7) with ε1 = 1, ε2 = 0.5 (red 
curve) and ε1 = 1, ε2 = 1.5 (green curve).

8.3. Intermediate models: quasi-conserved charges for ε1 = 1 and ε2 �= 1

So far we have discussed the properties of solutions of the mRLW and RLW equations. How-
ever, as we have shown in section 4, our basic equation (1.7) possesses one-soliton solutions, 
whose analytical form is given by equation (1.8), for any real value of ε2 as long as ε1 = 1. So in 
this section we investigate the question of quasi-integrability of two- and three-soliton systems 
by performing simulations with the initial conditions taken from linear superpositions of such 
analytical single-soliton solutions, that is, from

q = 3

(2 + ε2)

n∑
i=1

ln
(
1 + e�i

)
, (8.3)

where n = 2 corresponds to the two-soliton simulation and n = 3 to the three-soliton simulation. 
We present the results of such two- and three-soliton simulations of equation (1.7), for various 
values of ε2 �= 1 while keeping ε1 = 1 constant.

8.3.1. Two-soliton configurations
As before, first we present our results for two solitons. Fig. 9 shows the time-evolution of the 

u field for a simulation with ε2 = 0.5 and a simulation with ε2 = 1.5. Figs. 10a and 11a show the 
time dependence of ∂tQ

(−3) and 
∫ t

0 dt ′ ∂t ′Q(−3) seen these simulations. The system for ε2 = 0.5
emits a small amount of (visible) radiation during the interaction of the soliton fields (similarly 
to the two-soliton simulation for the RLW equation (see subsubsection 8.2.1)). This radiation is 
difficult to spot on the scale shown in Fig. 9, and so we have added inserts in plots 9e and 9f to 
show more clearly this radiation emitted during the interaction. Looking at Fig. 10a, we see that 
Q(−3) changes significantly only during the interaction of the two soliton fields. Furthermore, 
Fig. 11a shows that the quantity Q(−3) satisfies
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Fig. 10. The time-dependence of the obtained values of the quantity ∂tQ
(−3) of the simulation of equation (1.7), for 

two-soliton solutions, with different values of ε1 = 1, ε2 �= 1.

Fig. 11. The time-dependence of the obtained values of 
∫ t

0 dt ′ ∂t ′Q(−3) seen in our simulations of equation (1.7), for 
two-soliton solutions, for ε1 = 1, and ε2 = 0.7 and ε2 = 1.3.

lim
t→−∞Q(−3) = lim

t→∞Q(−3) , (8.4)

which is again what we saw for the RLW and mRLW equation.
The other plots in Figs. 10 and 11 show the time dependence of ∂tQ

(−3) and 
∫ t

0 dt ′ ∂t ′Q(−3) for 
simulations with various other values of ε2 �= 1. They show similar patterns to the ones described 
for ε2 = 0.5 and ε2 = 1.5. Note that as |1 − ε2| becomes smaller, the values of ∂tQ

(−3) and ∫ t

0 dt ′ ∂t ′Q(−3) converge closer to the values displayed in Fig. 2.

8.3.2. Three-soliton configurations
Next, we also looked at some three solitons systems which were constructed using equa-

tion (8.3), with n = 3, as the initial conditions. Fig. 12 shows the time evolution seen in two 
simulations for the values ε1 = 1, ε2 = 0.5 and ε1 = 1, ε2 = 1.5. These plots show that the three 
solitons interact with each other in a way very similar to the mRLW and RLW equation (see 
subsections 8.1.2 and 8.2.2). Unlike for the two-soliton simulation, we now see slightly more ra-
diation emitted in the ε2 = 1.5 case than in the ε2 = 0.5 case (see the insert in Fig. 12f). Figs. 13
and 14 present the plots of time dependence of ∂tQ

(−3) and 
∫ t

0 dt ′ ∂t ′Q(−3) seen in our simula-
tions. Fig. 13 clearly shows that Q(−3) only changes during the interaction of the soliton fields, 
and Fig. 14 demonstrates that this quantity is indeed truly quasi-conserved in the sense that

lim
t→−∞Q(−3) = lim

t→∞Q(−3) . (8.5)
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Fig. 12. The time-evolution of two three-soliton systems seen in our simulations of the equation (1.7) with ε1 = 1, 
ε2 = 0.5 (red curve) and ε1 = 1, ε2 = 1.5 (green curve).

Fig. 13. The time-dependence of ∂tQ
(−3) for a three-soliton system as determined by the simulation of equation (1.7)

with ε1 = 1 and different values of ε2 �= 1.

Fig. 14. The time-dependence of the quantity 
∫ t

0 dt ′ ∂t ′Q(−3) as determined in the simulation of equation (1.7), for 
three-soliton solutions, with ε1 = 1 and different values of ε2 �= 1.
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Fig. 15. The u field configurations seen in our time-evolution of the numerical time-evolution of the equation (1.7) for 
ε1 = 1 and ε2 = 1.5 at several values of time t .

8.4. Intermediate models: quasi-conserved charges for various values of ε1 and ε2

We also would like to consider other values of ε1 and ε2. However, we have no analytical 
expressions of one-soliton solutions when ε1 �= 1. Therefore, we have used the analytical two-
soliton solutions of the mRLW equation as initial conditions for the two-soliton configurations, 
and the linear superposition of three single-soliton solutions of the mRLW equation for the three-
soliton simulations.

In the next subsection we use the same values as those used in subsection 8.3 (for ε1 = 1 and 
ε2 �= 1) to simulate the two-soliton configurations. We have repeated these simulations to study 
the effect of using the ‘wrong’ initial conditions. This was achieved by starting our simulations 
with the initial conditions corresponding to ε1 = 1 and ε2 also equal to 1 and then performing 
the simulations for different values of ε2. Then in the subsequent subsubsections we investigate 
the quasi-integrability for various values of ε1 �= 1 while keeping ε2 = 1.

8.4.1. Two-soliton configurations for ε1 = 1 and ε2 �= 1
Fig. 15 presents various plots of the simulation with ε1 = 1 and ε2 = 1.5, and Fig. 16 shows 

the plots of the time-dependence of the corresponding quantities ∂tQ
(−3) and 

∫ t

0 dt ′ ∂t ′Q(−3). 
Fig. 15a shows the initial condition at t = 0. Fig. 15b shows these two soliton fields after they 
have evolved for 5 units of time. Looking at that figure, we note that both solitons have moved 
to the right and have left some radiation behind immediately after the start of the simulation, 
while their amplitudes have increased slightly. This is because the true soliton of such a system is 
probably significantly different the one described by the initial conditions used in this simulation. 
This implies that the field u changes from the form given by the initial conditions and settles to 
a true solution, and in doing so the two solitons leave behind some radiation. Then Fig. 15c 
shows the largest soliton field after it has interacted with the radiation emitted by the smallest 
soliton field. Fig. 15d shows the solution at t = 15 when the largest soliton starts to interact 
with the smallest soliton. Fig. 15e shows the actual soliton fields interacting with each other. 
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Fig. 16. The time dependence of the quantity ∂tQ
(−3) and 

∫ t
0 dt ′ ∂t ′Q(−3) obtained in two-soliton simulation of equa-

tion (1.7) with ε1 = 1 and ε2 = 1.5.

Fig. 17. The time-dependence of the obtained values of ∂tQ
(−3) seen in the simulation of equation (1.7) for ε1 = 1 and 

ε2 �= 1, with the analytical two-soliton solutions of the mRLW equation used as initial conditions.

Finally, Fig. 15f shows the field when the solitons have moved away from each other again. These 
changes are all seen in Fig. 16a; from the beginning (at t = 0 to t � 2) the initial conditions settle 
down to the true solution of the equation leaving behind some radiation, from about t � 6 to t �
10 the largest soliton interacts with the radiation left behind by the smallest soliton. Finally, from 
t � 16 to t � 23 the two soliton fields interact, after which the solitons keep moving unhindered. 
Notice also that Fig. 16b shows that, after the initial conditions settle down to the true solution, 
all the lumps cancel each other out.

For other values of ε1 = 1 and ε2 �= 1 we have observed a very similar behaviour to the one 
described above. To illustrate this better, Fig. 17 presents three plots comparing ∂tQ

(−3) for ε2 =
0.5 and ε2 = 1.5 (see Fig. 17a), ε2 = 0.7 and ε2 = 1.3 (see Fig. 17b), and ε2 = 0.9 and ε2 = 1.1
(see Fig. 17c). We see that the larger |1 − ε2| becomes, the more intense are the changes of Q(−3)

when the solitons readjust their form from the one described by the initial conditions and when 
the larger soliton interacts with the radiation left behind by the smaller soliton. This is expected 
since the larger the value of |1 − ε2| is, the larger is the difference between the initial conditions 
and the true solutions of the equation, which results in a faster rate of change of the charge 
Q(−3). Furthermore, this implies that the radiation left behind by the soliton is larger, and so the 
interaction between the larger soliton and the radiation due to the smaller soliton is more intense. 
However, when the two actual soliton fields collide, we see that as |1 − ε2| becomes smaller, the 
peak of ∂tQ

(−3) converges closer to the peak shown in Fig. 2a, both in terms of amplitude as 
well as in terms of its location on the horizontal axis. The horizontal movement is due to the fact 
that when the solitons emit radiation, their amplitudes increase/decrease (depending on whether 
ε2 < 1 or ε2 > 1) which causes their velocities to increase/decrease as well.
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Fig. 18. The time-evolution of two two-soliton systems studied in the equation (1.7) with ε1 = 1 and ε2 = 0.5 (red curve), 
and ε1 = 1 and ε2 = 1.5 (green curve).

Fig. 19. The time-dependence of 
∫ t

0 dt ′ ∂t ′Q(−3) seen in the simulation of equation (1.7) with different values of ε1 = 1
and ε2 �= 1.

To illustrate better these observed properties, Fig. 18 presents again the various plots shown 
in Fig. 15 corresponding to ε1 = 1 and ε2 = 1.5 but it also shows the results of the simulation 
corresponding to ε1 = 1 and ε2 = 0.5, in order to compare the two simulations. This figure also 
illustrates the fact that if ε2 > 1, then the solitons’ amplitudes and velocities increase as a result of 
the emission of this radiation. On the other hand, if ε2 < 1, the solitons’ amplitudes and velocities 
decrease. Fig. 19 presents the corresponding values of 

∫ t

0 dt ′ ∂t ′Q(−3). Overall, we see that after 
the fields have settled from their form given by the initial conditions to the values corresponding 
to a solution, all the lumps in Fig. 17 cancel each other out.

8.4.2. Two-soliton configurations for ε1 �= 1 and ε2 = 1
Armed with the observation of the last subsection we present here results of some simulations 

for ε1 �= 1 and ε2 = 1 where, just as in the previous subsubsection, the initial conditions were 
constructed from the analytical two-soliton solution of the mRLW equation.

Fig. 20 shows the u fields seen in the two-soliton simulation corresponding to ε1 = 0.5 (rep-
resented by the red curve) and ε1 = 1.5 (represented by the green curve). We observe that when 
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Fig. 20. The time-evolution of two two-soliton systems of equation (1.7) for ε1 = 0.5, ε2 = 1 (red curve) and ε1 = 1.5, 
ε2 = 1, (green curve) in which the initial conditions were taken from solitons of the mRLW equation.

Fig. 21. The time-dependence of the determined values of the quantity ∂tQ
(−3) see in the simulations of equation (1.7)

for different values of ε1 �= 1, ε2 = 1.

Fig. 22. The time-dependence of 
∫ t

0 dt ′ ∂t ′Q(−3) seen in the simulations of equation (1.7) for different values of ε1 �= 1, 
ε2 = 1.
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Fig. 23. The time-evolution of two three-soliton systems seen in our simulations of equation (1.7) for ε1 = 0.5 and ε2 = 1
(red curve), and ε1 = 1.5 and ε2 = 1 green curve).

Fig. 24. The time-dependence of ∂tQ
(−3) seen in the simulations of equation (1.7) for two values of ε1 �= 1 and ε2 = 1.

ε1 < 1 the radiation emitted by the solitons has initially a positive amplitude, and the solitons’ 
amplitudes and velocities increases as a result of emission of this radiation. On the other hand, if 
ε1 > 1, the radiation emitted by the solitons has initially a negative amplitude, and the solitons’ 
amplitudes and velocities decrease. Comparing Fig. 20 with Fig. 18, we see that changing ε1

(while keeping ε2 = 1) results in more radiation emitted than when changing ε2 (while keep-
ing ε1 = 1) by the same amount. Figs. 21 and 22 present the time dependence of ∂tQ

(−3) and ∫ t

0 dt ′ ∂t ′Q(−3) observed in these simulations, and for various other simulations with other values 
of ε1 �= 1.

8.4.3. Three-soliton configurations for ε1 �= 1 and ε2 = 1
The simulations of three soliton systems corresponding to ε1 = 0.5, ε2 = 1 and ε1 = 1.5, 

ε2 = 1 are shown in Fig. 23, and Figs. 24 and 25 present the time dependence of the corre-
sponding ∂tQ

(−3) and 
∫ t

0 dt ′ ∂t ′Q(−3). These simulations are run with the linear superposition 
of three analytical one-soliton solutions of the mRLW equation as initial conditions, just as in 
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Fig. 25. The time-dependence of the determined values of 
∫ t

0 dt ′ ∂t ′Q(−3) seen in the simulations of equation (1.7) for 3 
sets of values of ε1 �= 1 and ε2 = 1.

subsubsection 8.1.2. These simulations show similar patterns to those seen for the two-soliton 
simulations.

9. Conclusions

We have performed a detailed study of the quasi-integrability properties of various defor-
mations of the KdV equation which include among them the RLW and mRLW equations. The 
charges were constructed by introducing an anomalous zero-curvature condition as explained in 
section 2. Note that only the time component At of the Lax pair was deformed away from the 
KdV potentials. The space component Ax was not deformed and so the charges Q(−2n−1), that 
we presented in (2.24), are the same as the exact conserved charges of the KdV equation. The 
difference lies in the anomalies α(−2n−1), also introduced in (2.24), which vanish for KdV but 
not for its deformations. However, we have also shown that the deformations of the KdV theory 
considered in this paper possess a very interesting property. Even though the charges are not 
conserved and do vary during the scatterings of solitons, they all return, after the scattering, to 
the values they had before the scattering. It is this property, the asymptotic conservation of the 
charges, that defines what we call a quasi-integrability of the theory. The mechanisms underly-
ing such an asymptotic conservation of the charges are still not fully understood. Our results are 
clearly consistent with the property of asymptotic stability of these models but we have tried to 
relate them to some specific properties of the soliton fields. From these studies we have learned 
that the quasi-integrability goes hand in hand with some special properties of the soliton solutions 
under a specific space–time parity transformation, as explained in section 3, and that these prop-
erties lead to the asymptotic vanishing of the anomalies. In addition, another intriguing property 
that correlates with quasi-integrability is that if a soliton solution of the exactly integrable theory 
possesses the correct behaviour under this parity, then the dynamics of the deformed theories 
seem to preserve this behaviour under a perturbative expansion around the integrable theory. In 
section 6 we have presented the details of such an expansion and showed its compatibility with 
the expected parity behaviour of the solutions.

Our analysis of the deformations of the KdV theory present two novel ideas in the study of the 
quasi-integrability. First, we believe that it is the first time that the quasi-integrability ideas were 
tested for the scattering of three solitons, where the implementation of the parity transformation 
is much more involved. When the three solitons scatter in separated pairs, it is expected that 
the quasi-integrability of two-soliton scattering would be preserved, since the third soliton is 
away and not interacting with the other two. However, when all three solitons collide together 
at the same time and in a given position in space, the three body interactions come into play, 
and one cannot rely on the two body interactions to analyze the quasi-integrability. We have 
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shown in section 7 that the exact Hirota three-soliton solutions of the KdV equation do have 
the correct parity properties when their solitons all collide together at the same point in space. 
Using the results of section 6 one could therefore expect that deformed three-soliton solutions 
would possess the same property. That is exactly what our numerical simulations have shown: 
the charges are indeed asymptotically conserved when the three solitons of various deformations 
of the KdV theory collide together. This provides a strong support for our working definition of 
quasi-integrability.

The other key result of the present paper is that it presents the first example of an analytical 
and not only numerical, demonstration, of the quasi-integrability of a truly non-integrable theory. 
This was discussed in section 5 where we have showed that the two-soliton sector of the mRLW 
theory was analytically quasi-integrable. The proof of this result is valid for all charges from 
their infinite set. Our numerical simulations have confirmed it for the case of the first non-trivial 
charge. For next charges the results were also supportive; however, as the next charges involved 
expressions which contained terms with more derivatives, our numerical results had more numer-
ical errors and so were less reliable. Clearly, better numerical techniques have to be developed to 
prove our claims more decisively (i.e. to get the same accuracy as we had for Q(−3)). This work 
lies beyond the present paper.

We must emphasise, however, that the strongest support for our working definition of quasi-
integrability comes from the results of our numerical simulations. In all simulations reported in 
section 8 it has been shown that the charge Q(−3) is quasi-conserved, i.e. that it returns, after 
the scattering of two or three solitons, to the value it had before the scattering. This quasi-
conservation has been tested to a very good precision. In addition, our simulations have shown 
what had been observed before in other theories; namely, that the charge only varies in time when 
the solitons come together and interact with each other. The charge remains constant when the 
solitons are far apart. Another important and intriguing result of our simulations is related to the 
observation that our simulations have shown that the interaction of radiation with the solitons 
also seems to respect quasi-integrability.

For our simulations we have used the initial fields constructed from various combinations of 
one soliton solutions of our equations. At the beginning of our study we did not have an expres-
sion for one soliton field when ε1 was different from one. So we used slightly incorrect fields 
as seeds for these simulations. In these cases we observed a small amount of radiation sent out 
while the initial configuration gradually settled to a proper solution of the deformed theory. The 
radiation emitted by each soliton interacted nonlinearly with the other solitons, and we observed 
that such a radiation-soliton interaction made the charge Q(−3) to vary quite reasonably in time. 
However, when the radiation and the soliton have got separated, the charge returned to its original 
value. So, we have observed that the radiation-soliton interaction also seems to respect quasi-
integrability, but at this stage we do not have any clear idea why this property holds too. Our 
analytical parity arguments do not apply to such an interaction. All our results have confirmed 
our expectations as to the behaviour of the fields – supporting our claims of quasi-integrability 
of our models.

We have recently found analytical expressions for 2 different one soliton solutions of the mod-
els when ε1 �= 1, which become the same, and agree with the known expression, in the limit of 
ε1 → 1. We expect that simulations with such fields would give even stronger results but they are 
clearly outside the scope of this paper. As the two solutions have different dispersion relations it 
would be interesting to study the effects of their difference on the properties of various superposi-
tions of the fields and their scattering properties. As our results, started with slightly incorrect ini-
tial fields, were in good agreement with our quasi-integrability expectations (as the radiation ef-
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fects were small and restricted themselves to the initial re-adjustments) we expect the effects also 
to be very small, and though very important, they are clearly not likely to be of great help in what 
we have tried to demonstrate in this paper. This is clearly one of the topics to study in future work.

The numerical methods used in this paper involved the specially constructed numerical pro-
grams which were based on the original program of [12] and have been appropriately adapted to 
the numerical study of the equation (1.7). More details are given in appendix B. The results of 
our numerical simulations supported very well our expectations. This was particularity true for 
the lowest charge but it was also true to higher charges. However, expressions for higher charges 
involved more derivatives of the fields and so our expressions were more prone to numerical 
errors. Thus, although their behaviour supported our claims, the reliability of these results was 
not as sound as for the ones we have included in this paper.
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Appendix A. A more conventional solution to (1.7) for the case ε1 �= 1

We have stated in the Introduction that when ε1 �= 1 a one soliton solution with the usual dis-
persion relation (ω = k

1−k2 ) cannot be found by the Hirota method. However, one can construct 
it using a more direct method. Since, we are interested in traveling wave solutions we use the 
ansatz

q = f (ξ) ; ξ = kx − ωt (A.1)

in the equation (1.7), which then leads to the following ordinary differential equation(
ω2 − kω

)
fξξ −

(
4k2ω2 + 2ε2k

2ω2
)

f 2
ξξ −

(
ωk3 − ε1ωk3 + ε1ω

2k2
)

fξξξξ = 0 (A.2)

where the subindices ξ denote the derivatives w.r.t. ξ . Since, we want to keep the same dispersion 
relation as in the RLW and mRLW equations, we choose ω to have the form ω = k

1−k2 . Putting 
this into (A.2), dropping an overall factor ω, and denoting fξξ ≡ g we get the equation

k3

1 − k2 g − (4 + 2ε2)
k3

1 − k2 g2 −
[
ε1

k3

1 − k2 + (1 − ε1)k
3
]

gξξ = 0. (A.3)

Dividing (A.3) by the factor k3

1−k2 we note that it can be written as

g − Gg2 − H gξξ = 0 with G = 2 (2 + ε2) ; H = 1 + (ε1 − 1) k2. (A.4)

Note that by rescaling the function g and the variable ξ we can change the coefficients G and H
as we wish. In addition, the second derivative of cosh−2 produce terms proportional to cosh−2

and cosh−4, which can be cancelled by the g and g2 in the equation. So, we take the ansatz
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g = R

cosh2(αξ)
. (A.5)

Substituting it into (A.4) we get the equation

R

2 cosh4 (α ξ)

[
1 + 8α2 H − 2GR +

(
1 − 4α2 H

)
cosh (2α ξ)

]
= 0, (A.6)

which implies that

α = 1

2
√

H
; and R = 3

2G
. (A.7)

Thus

g = 3

4 (2 + ε2)
cosh−2

(
ξ

2
√

1 + (ε1 − 1) k2

)
(A.8)

Integrating this expression twice we find that

q = 3
[
1 + (ε1 − 1) k2

]
(2 + ε2)

[
ln

(
cosh

(
ξ

2
√

1 + (ε1 − 1) k2

))
+ b ξ + c

]
(A.9)

with b and c being arbitrary constants. One needs the condition

1 + (ε1 − 1) k2 > 0 (A.10)

for this solution to be real.

Appendix B. Numerical methods

B.1. Numerical approximation of the deformations of the KdV equation

In order to perform numerical simulations of equation (1.7) we follow the techniques dis-
cussed by J.C. Eilbeck and G.R. McGuire [12]. The equation necessitates the introduction of 
implicit methods. Hence first of all we introduce a new field p(x, t) by

p = qt , (B.1)

so that equation (1.7) can be written as

pt + px − 4p2
x − 2ε2qxxpt + pxxx − ε1 (pxxt + pxxx) = 0 . (B.2)

We see that the main difference in approximating this equation compared to the numerical 
scheme used in [6] is an extra term proportional to pxxx .

In order to adjust our scheme to this extra term, we first discretize in both x and t by taking a 
finite set of points x0, x1, . . . , xN and t0, t1, . . . , tK , where h and τ denote the step size in space 
and time. Furthermore, we denote the grid points as (ih, mτ) ≡ (i, m), where i = 0, 1, 2, . . . , N
and m = 0, 1, 2, . . . , K , and we employ the notation pi

m ≡ p(ih, mτ) and qi
m ≡ q(ih, mτ). 

Finally, let vi
m denote our approximation to pi

m and let wi
m denote our approximation to qi

m.
Next we introduce the following central finite difference operators by their actions on vi

m:

δ2
xvi

m = (vm
i+1 − 2vi

m + vm
i−1)/h2 , (B.3)

Hxvi
m = (vm

i+1 − vm
i−1)/2h , (B.4)

Htvi
m = (vm+1

i − vm−1
i )/2τ , (B.5)
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and similarly on wi
m. Applying these operators to equation (B.2) in a straightforward manner 

we get

Htvi
m + Hxvi

m − 4
(
Hxvi

m
)2

− 2ε2δ
2
xwi

mHtvi
m + δ2

xHxvi
m − ε1(δ

2
xHtvi

m + δ2
xHxvi

m) = 0 , (B.6)

which can be rewritten as

vm+1
i

2τ
− ε1

vm+1
i+1 − 2vm+1

i + vm+1
i−1

2h2τ
− ε2

wm
i+1v

m+1
i − 2wi

mvm+1
i + wm

i−1v
m+1
i

h2τ

= vm−1
i

2τ
− vm

i+1 − vm
i−1

2h
− ε1

vm−1
i+1 − 2vm−1

i + vm−1
i−1

2h2τ

− ε2
wm

i+1vi
m−1 − 2wi

mvm−1
i + wm

i−1v
m−1
i

h2τ

+ (vm
i+1)

2 − 2vm
i+1v

m
i−1 + (vm

i−1)
2

h2

− (1 − ε1)
vm
i+2 − 2vm

i+1 + 2vm
i−1 − vm

i−2

2h3 .

(B.7)

Next we introduce the following matrices and vectors

A ≡

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 0 0 0 · · · 0 0
0 1 0 0 · · · 0 0

0 1
2h2τ

a2
m 1

2h2τ
0

...
...

0 0 1
2h2τ

a3
m 1

2h2τ
...

. . .
. . .

. . . 0 0
1

2h2τ
am
N−2

1
2h2τ

0
0 0 · · · 0 0 1 0
0 0 · · · 0 0 0 1

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
, (B.8)

B ≡

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝

vm+1
0

vm+1
1

vm+1
2
...

vm+1
N−1

vm+1
N

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠
, C ≡

⎛⎜⎜⎜⎜⎜⎜⎜⎝

c0
m

c1
m

c2
m

...

cm
N−1
cm
N

⎞⎟⎟⎟⎟⎟⎟⎟⎠
, (B.9)

where

ai
m ≡ 1 − ε2

wm
i+1 − 2wi

m + wm
i−1 + ε1

vm+1
i , (B.10)
2τ h2τ h2τ
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ci
m ≡ vm−1

i

2τ
− vm

i+1 − vm
i−1

2h
− ε1

vm−1
i+1 − 2vm−1

i + vm−1
i−1

2h2τ

− ε2
wm

i+1vi
m−1 − 2wi

mvm−1
i + wm

i−1v
m−1
i

h2τ

+ (vm
i+1)

2 − 2vm
i+1v

m
i−1 + (vm

i−1)
2

h2

− (1 − ε1)
vm
i+2 − 2vm

i+1 + 2vm
i−1 − vm

i−2

2h3 , i = 2,3, . . . ,N − 2 ,

(B.11)

with the following boundary conditions

c0
m ≡ vm+1

0 , cm
1 ≡ vm+1

1 , (B.12)

cm
N−1 ≡ vm+1

N−1 , cm
N ≡ vm+1

N . (B.13)

Note that we need 2 elements per boundary, which is a consequence of the term proportional 
to pxxx . Having introduced this notation, our problem reduces to solving the following matrix 
equation

AB = C , (B.14)

where we need to solve for vector B . In our algorithm we have used the well-known LU decom-
position method for this problem, see for instance the book [37] for more information.

Once we have solved for B , we have the values of vm
i at the next time level. We then solve 

equation (B.1) to determine all the values of wm
i at the next time level

vi
m = wm+1

i − wm−1
i

2τ
=⇒ wm+1

i = 2τvi
m + wm−1

i . (B.15)

Repeating this procedure for many time levels allows us to determine the numerical time evolu-
tion of a system.

It is not too difficult to verify that this scheme is both second-order accurate in τ and in h. 
Furthermore, this scheme is an extension of the scheme discussed in [6], and so that gives us an 
indication that we can trust the results of our simulations.

B.2. Summary of parameters used to produce figures

Tables 1, 2 and 3 show all the parameters used to produce the figures shown in this paper.

Appendix C. The sl(2) loop algebra

We use the sl(2) finite algebra with commutation relations

[T3, T±] = ±T± and [T+, T−] = 2T3 , (C.1)

which is satisfied by the basis

Ti = 1

2
σi and T± = T1 ± iT2 , (C.2)

where σi , are the Pauli matrices. To proceed further, we take the following basis for the corre-
sponding loop algebra
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Table 1
This table summarizes the variables used to produce Figs. 1 to 8.

Figs. 1 and 2 Figs. 3 and 4 Figs. 5 and 6 Figs. 7 and 8
x0 −50 −200 −50 −200
xN 250 200 250 200
h 0.1 0.1 0.1 0.1
t0 0 0 0 0
tK 40 70 40 70
τ 0.001 0.001 0.001 0.001
ω1 5.00 0.80 5.00 0.80
δ1 0.00 27.71 0.00 27.71
ω2 3.00 3.07 3.00 3.07
δ2 −40.00 106.28 −40.00 106.28
ω3 N/A 4.28 N/A 4.28
δ3 N/A 148.34 N/A 148.34

Table 2
This table summarizes the variables used to produce Figs. 9 to 19.

Figs. 9, 10 and 11 Figs. 12, 13 and 14 Figs. 15, 16, 17, 18 and 19
x0 −50 −200 −50
xN 300 200 300
h 0.1 0.1 0.1
t0 0 0 0
tK 40 70 40
τ 0.001 0.001 0.001
ω1 5.00 0.80 5.00
δ1 0.00 27.71 0.00
ω2 3.00 3.07 3.00
δ2 −40.00 106.28 −40.00
ω3 N/A 4.28 N/A
δ3 N/A 148.34 N/A

Table 3
This table summarizes the variables used to produce 
Figs. 20 to 25.

Figs. 20, 21 and 22 Figs. 23, 24 and 25
x0 −50 −200
xN 300 300
h 0.1 0.1
t0 0 0
tK 40 70
τ 0.001 0.001
ω1 5.00 0.80
δ1 0.00 27.71
ω2 3.00 3.07
δ2 −40.00 106.28
ω3 N/A 4.28
δ3 N/A 148.34

b2m+1 = λm (T+ + λT−) , (C.3)

and

F2m+1 = λm (T+ − λT−) and F2m = 2λmT3 , (C.4)
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where m ∈ Z, and λ is the so-called spectral parameter. The algebra is then given by

[b2m+1, b2n+1] = 0 , (C.5)

[F2m+1,F2n+1] = 0 , (C.6)

[F2m,F2n] = 0 , (C.7)

[b2m+1,F2n+1] = −2F2(m+n+1) , (C.8)

[b2m+1,F2n] = −2F2(m+n)+1 , (C.9)

[F2m+1,F2n] = −2b2(m+n)+1 . (C.10)

We introduce the grading operator as

d = T3 + 2λ
d

dλ
(C.11)

such that

[d, b2m+1] = (2m + 1) b2m+1 and [d, Fm] = mFm . (C.12)

The important ingredient in such procedure is that the generator b1 in Ax given in (2.1), is a 
semi-simple element of the algebra in the sense that its adjoint action on the loop algebra, splits 
it into kernel and image with a trivial intersection, i.e.

G = Ker + Im ; [b1 , Ker ] = 0 ; Im = [b1 , G ] ; Ker ∩ Im = 0 (C.13)

and we have that

Ker = {b2n+1 | n ∈ Z} ; Im = {Fn | n ∈ Z} (C.14)

Appendix D. The parameters of the gauge transformation (2.7)

We give here the explicit expressions for the parameters of the group element performing the 
gauge transformation (2.7):

ζ1 = 0

ζ2 = − 1

24
αu

ζ3 = 1

48
αu(1,0)

= ∂x

[
1

48
αu

]
ζ4 = 1

288

[
−α2u2 − 3αu(2,0)

]
(D.1)

ζ5 = 1

192

[
α2uu(1,0) + αu(3,0)

]
= ∂x

[
1

192

[
α2

2
u2 + αuxx

]]
ζ6 = 1

[
−4α3u3 − 36α2u(2,0)u − 27α2

(
u(1,0)

)2 − 27αu(4,0)

]

10368
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ζ7 = 1

20736

[
22α3u2u(1,0) + 90α2u(1,0)u(2,0) + 45α2uu(3,0) + 27αu(5,0)

]
= ∂x

[
1

20736

[
22

3
α3u3 + 45

2
α2u2

x + 45α2uuxx + 27αuxxxx

]]
ζ8 = 1

41472

[
−2α4u4 − 36α3u(2,0)u2 − 53α3

(
u(1,0)

)2
u − 54α2u(4,0)u − 90α2

(
u(2,0)

)2

− 135α2u(1,0)u(3,0) − 27αu(6,0)
]

where we have used the notation

∂m
x ∂n

t u ≡ u(m,n) (D.2)

The explicit expressions for the first few components of the time component at of transformed 
connection given in (2.17) are given by

a
(−1)
t = −α2

72
u2 − G

2

a
(−3)
t = α2

288

(
u(1,0)

)2 + α2

288
u2 − α

24
Gu

a
(−5)
t = α4u4

13824
+ α3u(2,0)u2

1728
+ α3u3

1728
− 1

192
α2Gu2 + α2u(1,1)u

1152
+ 1

576
α2u(2,0)u

− α2
(
u(1,0)

)2

1152
+ α2

(
u(2,0)

)2

1152
− α2u(0,1)u(1,0)

1152
− 1

96
αGu(2,0)

a
(−7)
t = α5u5

62208
+ 5α4u(2,0)u3

20736
− 5α4

(
u(1,0)

)2
u2

82944
+ 5α4u4

55296
− 5α3Gu3

6912
+ α3u(1,1)u2

3456

+ 5α3u(2,0)u2

6912
+ α3u(4,0)u2

6912
+ α3

(
u(2,0)

)2
u

1728
− α3u(0,1)u(1,0)u

6912
− α3u(1,0)u(3,0)u

2304

+ α3
(
u(1,0)

)2
u(2,0)

2304
− 5α2Gu(2,0)u

1152
− 5α2G

(
u(1,0)

)2

2304
+ α2u(3,1)u

4608
+ α2u(4,0)u

2304

+ α2
(
u(2,0)

)2

4608
− α2

(
u(3,0)

)2

4608
+ α2u(1,1)u(2,0)

4608
− α2u(1,0)u(2,1)

4608
− α2u(0,1)u(3,0)

4608

− α2u(1,0)u(3,0)

2304
+ α2u(2,0)u(4,0)

2304
− αGu(4,0)

384
and

c
(2)
t = 0

c
(1)
t = 0

c
(0)
t = 0

c
(−1)
t = −α2

36
u2 − α

12
u(2,0) − α

12
u + G

2

= X

2

c
(−2)
t = α2

uu(1,0) + α
u(0,1) + α

u(1,0) + α
u(3,0)
24 24 24 24
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= −1

4
Xx

c
(−3)
t = − 1

432
α3 u3 − 1

36
α2 u(2,0) u − 1

48
α2

(
u(1,0)

)2 − 1

144
α2 u2 + 1

24
α Gu

− 1

48
α u(1,1) − 1

48
α u(2,0) − 1

48
α u(4,0)

= α

24
uX + 1

8
Xxx (D.3)
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