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Abstract

We investigate the quasi-integrability properties of various deformations of the Korteweg—de Vries (KdV)
equation, depending on two parameters €1 and &, which include among them the regularized long-wave
(RLW) and modified regularized long-wave (mRLW) equations. We show, using analytical and numerical
methods, that the charges, constructed from a deformation of the zero curvature equation for the KdV
equation, are asymptotically conserved for various values of the deformation parameters. By this we mean
that, despite the fact that the charges do vary in time during the scattering of solitons, they return after the
scattering to the same values they had before it. This property was tested numerically for the scattering of
two and three solitons, and analytically for the scattering of two solitons in the mRLW theory (¢ =¢1 =1).
In addition we show that for any values of &1 and & the Hirota method leads to analytical one-soliton
solutions of our deformed equation but for €1 # 1 such solutions have the dispersion relation which depends
on the parameter 1. We also discuss some properties of soliton-radiation interactions seen in some of our
simulations.
© 2018 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY license
(http://creativecommons.org/licenses/by/4.0/). Funded by SCOAP3.

1. Introduction

The objective of the present paper is to study the quasi-integrability properties of deformations
of the Korteweg—de Vries (KdV) equation [9,23] that include as particular cases the so-called reg-
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ularized long-wave equation (RLW), proposed by Peregrine [36] and T.B. Benjamin, J.L.. Bona
and J.J. Mahoney [5], and also the modified regularized long-wave equation (mRLW) introduced
and studied by J.D. Gibbon, J.C. Eilbeck and R.K. Dodd [19]. Concretely, the model we consider
involves a scalar field u satisfying the equation

o o
ur+ux + [E u? + & Z Wy U + Uy — €1 (Uys +uxx):| =0. (1.D
x

In which €1, €7, and « are real parameters, and where
U =W =Vx. (1.2)

Note that the integrable KdV equation [9,23], corresponds to the case where the deformation
parameters vanish, i.e. ] =&, = 0, and it is given by’

o
u,+ux—|—[§u2+uxx] —0. (1.3)
X

As is well known, this equation describes nonlinear waves in shallow water traveling in the
positive direction of the x-axis only. If one considers the linearization of the KdV equation one
finds that its traveling wave solutions satisfy a dispersion relation of the form w = k — k3, and
so the phase velocity w/k = 1 — k2, and group velocity fi—‘,f =1 — 3k?, which become negative,
and in fact unbounded, for large enough k.

Motivated by this fact, Peregine [36] and T.B. Benjamin, et al. [5] proposed the so-called

regularized long wave equation (RLW)
o
u,+ux+(5u2—ux,)x =0, (1.4)

which corresponds to (1.1) for the case £; = 1 and ¢, = 0. The advantage of the RLW equation
over the KdV equation is that the RLW equation yields a dispersion relation of the form w =
k/(1 4+ k?), and so a phase velocity that is bounded and tends to zero for short wavelengths. Its
disadvantage is that the RLW equation is not integrable and that it possesses only one analytical
solution, namely the one-soliton solution. The two and three-soliton solutions for RLW are only
known numerically and were constructed by Eilbeck and McGuire [12,13].

The mRLW equation, introduced by Gibbon, Eilbeck and Dodd [19], can be written in terms
of the u field as

o 2 o
u,+ux~|—[—u ~|——wxv,—uxt] —0 (1.5)
2 4 .

and so it corresponds to (1.1) for the case €1 = &3 = 1. The linearized version of such an equation
has the same dispersion relation as the RLW equation, and the same exact analytical one-soliton
solution as RLW. The remarkable property of the mRLW equation, however, is that it also pos-
sesses analytic two-soliton solutions, even though it is not integrable in the sense of possessing
an infinite number of conserved quantities.

The analytical one-soliton solution for the RLW equation, and the analytical one- and two-
soliton solutions for the mRLW can be constructed using the Hirota direct method where the
relation between the t-function and the u-field is of the form u ~ — (Int),,. Therefore, by

' The Kdv equation as presented here is not in its standard form, but one can perform a change of variables to get the
standard form of the KdV equation (see, for instance, the notes by M. Dunajski for more information [11]). The same
applies for the RLW and mRLW equations. In fact, to get the original notation used by the authors one should choose
a=12,in (1.4), and @ =8 in (1.5).
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changing the t-function as T — f (x) g () 7, does not change the solution for the u-field. So,
integrating (1.2) one gets that w ~ — (Int), 4+ / (x), and v ~ — (In1), + j (). Consequently, as
long as Hirota’s solutions are concerned the integration “constants” % (x) and j (¢), can be reab-
sorbed in the redefinition of the t-function. Therefore, when constructing the soliton solutions,
either analytically or numerically, it is convenient to work with the field g defined as

8
U=——qy. (1.6)

o
Dropping the integration “constants” as explained above one can then write w, = —g qxx and

v = —2 q::- Replacing the u-field by the g-field into (1.1) one gets an equation for g which can
in fact be written as the x-derivative of the equation

qit +qxt — 4‘1;%; —282qxx G1r + Guxxt — €1 (Gxxtr + Grxxe) =0. 1.7

Therefore, any solution of (1.7) leads to a solution of (1.1), in which the integration “constants”
in w and v have been absorbed as explained above. So in this paper we base our discussion on
the study of (1.7).

First, we show in this paper that (1.7) admits at least two types of analytical Hirota one-
solitons. The first one is obtained in section 4 by the Hirota’s method and it is given by

3 r r
= In2+4+ — +1Incosh| =} |, 1.8
Topel = o e (14 (1 — e k2) [ 2 (2” (19

with
, k+(1—e) i

F=kx—w1t+8, CL)]=1_—€1k2 (19)

The second type is constructed in Appendix A by a direct method and it is given by
3[1+(e1 — 1) k?
Gtype2 = [ (e ) ] In { cosh § +b&+c (1.10)
(2+¢€2) 2y 1+ (g1 — 1) k2

with

§=k t+38; __*k (1.11)

=KX — w2 5 w3 = 1— 12 .

where b and c are arbitrary parameters, and where we have to assume that 1 4 (¢; — 1) k2 >0,
for the solution to be real. In terms of the u-field these solutions take the form

6 k?
u = —
el 2+ ) (1—e1k?)

sech® [% (k x —w1t+8)j| (1.12)

and

6 k> kx —wrt+8
Uype2 = —ech2|:2 Xt t } (1.13)

o (2+g2)(1—k2)S V14 (1 —1) k2

Clearly they become the same for the case where ¢ = 1.

Note that (1.12) and (1.13) constitute two-parameter families of one-soliton solutions, labeled
by the deformation parameters 1 and &>. They interpolate between the one-soliton solution of
the RLW model (for ¢y =1, &, = 0 and o = 12) constructed in [5,36], and the one-soliton so-
Iution of the mRLW model (for e = &3 =1 and o = 8) in [19]. Note also that, as pointed out
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in [19], the expressions for the one-soliton solutions of the RLW and mRLW, indeed look the
same for the u-field, when the rescaling parameter « is chosen as above, i.e. « = 12 for RLW
and o = 8 for mRLW.

The analytical Hirota two-soliton solution, however, exists only for the case ¢; = &3 = 1, and
it is the solution constructed in [19] and given by

g=In(1+e" +e"2 + Apeth?) er=e=1, (1.14)
where
ki

[y =kix —wit +6;, wi=1_ki2,

i=12, (1.15)

and
(@1 — ) (ki — k2)* + (01 — @) (k1 — k2) — (@1 — )’
(@1 + @2)% (k1 4+ k2)? 4 (@1 + w2) (k1 + k2) — (w1 + @2)*

The previous paper by two of us (FtB and WJZ) [6], looked at the scattering properties of
various soliton-like configurations of the modified regularized long-wave (mRLW) equation,
originally introduced and studied by J.D. Gibbon, J.C. Eilbeck and R.K. Dodd [19], and given by
equation (1.7) for e; = &> = 1. As stated in the aforementioned paper, the three soliton-solutions
are not known and, in fact, they cannot be found using Hirota’s method.

The main results of the previous paper [6] involved the observation that the scattering of
two initially well-separated solitons, which, in fact, is described by an exact solution of the
equations of motion (see equation (1.14)), could be approximated very well by the numerical
time-evolution of a linear superposition of two one-soliton solutions. In fact, the approximation
was so good that it was virtually impossible to see any difference between them. Then [6] also
extended this idea to the simulation of various three-soliton interactions by numerically evolving
linear superpositions of three (initially well-separated) single-soliton solutions. Such scattering
were also found to be very elastic (in the sense that the solitons preserved their shapes and ve-
locities and there was no visible loss of radiation). Moreover, the phase shifts in the scattering of
three solitons were, again, very well approximated by the sums of the successive two two-soliton
scattering. This property holds for integrable models and the fact that it holds also for the mRLW
equation, which is not an Hirota integrable system, suggests that the mRWL equation may be
‘close’ to being integrable.

To test this further we have decided to extend the investigations presented in the previous
paper by considering this model as a perturbation of the integrable KdV equation since then we
can look at the conserved quantities of the integrable model and see how they change when we
perturb this model to become the mRLW model, or for that matter any other model ‘nearby’.

We discuss all of this in the context of quasi-integrability, a concept introduced in [14],
and developed further, for other models, in [3,15—-18]. As it is well known, in a theory in
(1 4+ 1)-dimensions, a soliton [39] is a classical solution of its equations of motion that trav-
els with constant velocity and without dissipation of energy. But more importantly, when two or
more solitons are scattered they do not destroy each other, and the only effect of their scatter-
ing is a shift in their positions relative to those they would have had, had the scattering not had
occurred. A well accepted explanation for such a behaviour is that soliton theories possess an
infinite number of exactly conserved charges that constrain the dynamics in such a way that the
solitons have no option but to retain their shapes and velocities after the scattering. Such theo-
ries are, in fact, exactly integrable admitting a zero curvature representation of their equations of
motion, i.e. a Lax—Zakharov—Shabat equation [25].

Ap=

(1.16)
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A few years ago, having performed many numerical simulations, we noticed that some de-
formations of exactly integrable soliton theories, like the sine-Gordon model, possess solutions
that approximately behave like solitons and this observation has lead us to propose the concept
of quasi-integrability, which can be formulated in the following form: We call a theory quasi-
integrable if it admits a representation of their equations of motion in terms of an anomalous
zero curvature condition, which in turn, leads to an infinite number of anomalous conservations
laws. In addition, the theory has to possess one-soliton like solutions that travel with constant ve-
locity without the dissipation of energy. Therefore, the conservation of energy is not anomalous
but exact. When two or more of these one-soliton like solutions scatter the anomalous charges
(and there is an infinite number of them) are conserved asymptotically, i.e. they do vary in time
during the scattering process, and sometimes quite a lot, but they all return, after the scattering,
to the values they had before the scattering took place. The asymptotic conservation of such an
infinite number of charges has the same effect, as in true soliton theories, of constraining the
dynamics in such a way that the soliton like configurations leave the scattering process basically
as they have entered it. We have tested these ideas, analytically and numerically, in several de-
formations of exact integrable soliton theories and, within the limitations of our methods, they
seem to have worked [3,14-18].

The dynamical mechanism responsible for such a behaviour of these quasi-solitons is far from
having been understood yet. We have observed, however, some patterns that might be relevant
for the study of such a nonlinear phenomenon. First of all, the anomalies of the conservation
laws vanish for the one-soliton like solutions, and so the one-soliton sectors of these theories
do have an infinite number of exact conservation laws. Secondly, the anomalies also vanish for
configurations in which one-soliton like solutions are well separated from each other. Moreover,
the anomalies are non-zero only when the solitons are close together and interact with each
other. Thirdly, the observed phenomenon seems to occur when the multi-soliton solutions of the
equation of motion possess very specific symmetry properties under a space—time parity transfor-
mation which can be described as follows. In the situations when the phenomenon occurs the two
or three-soliton configurations are eigenstates, either odd or even, of an inversion transformation
of the space and time coordinates around a point in space—time that depends on the parameters of
the solutions, like speed, width, localization, efc. The quasi-integrability seems to occur when the
densities of the anomalies of the quasi-conserved charges are odd under this parity transforma-
tion. Thus, integrating these densities in a rectangle in space—time centered at the particular point
around which the inversion is performed, one gets zero. In consequence, the charges possess a
mirror-like symmetry in the sense that they have the same values at times equidistant from this
particular point in the time axis, around which the parity transformation is performed. So, we
have not only an asymptotic conservation of the charges but also a mirror symmetry. We do not
know whether such a parity property is the cause of quasi-integrability, but it seems to be present
whenever the theory is quasi-integrable.

The densities of the quasi-conserved charges are in general polynomials in the derivatives
of the fields, and so such densities vanish away from the core of the solitons. Therefore, when
the solitons are well separated, like in the “in states” of a scattering process, the value of any
one of the infinite number of charges should be the sum of the charges associated with each
individual soliton. After the scattering, when the solitons are well separated again, the values of
these charges should become again the sum of the charges of each “out soliton”. Consequently,
one is lead to believe that the asymptotic conservation of our infinite number of quasi-charges is
quite reasonable. However, for that to be the case the solitons have to leave the scattering, more
or less, in the same configurations that they have entered it, i.e. possessing the same speeds,
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widths, shape, efc. The more reasonable thing to expect is that they could radiate some energy
away, change their shapes and velocities, efc. This is the mystery still to be understood. What is
the dynamical mechanism that drives the solitons to remain the same after the scattering?

The answer to this question is not known but there are many results in the literature that are
related to it. First of all, there is the seminal paper of Zabusky and Kruskal [39], that has, in fact,
introduced the word soliton, in which the authors described their discovery that if one takes a
sinusoidal wave as an initial configuration and then evolves in a discretized version of the KdV
equation, one finds that instead of the wave crest breaking, like sea waves, the effect of the non-
linearity modifies it to evolve into a train of KdV solitons that continue to propagate, overtaking
one another and interacting, and not destroying each other. So, the solitons in the integrable KdV
model seem to be the “fixed points” of the dynamics and describe the states ‘where the system
prefers to be’, like natural normal modes of linear systems. Since Zabusky and Kruskal’s paper
[39] a lot of other dispersive equations have been studied, including non-integrable ones, and it
has been found that the above described behaviour seems to be quite common in nonlinear dis-
persive partial differential equations. This large number of studies is so robust that it has given
rise to a conjecture, the so-called Soliton Resolution Conjecture. This conjecture basically says
that with a generic data as initial condition the nonlinear systems, integrable or not, should evolve
into a finite number of solitons plus some radiation. The conjecture, itself, has not been proved
yet and it is not even easy to formulate it more rigorously. For a more concise discussion on this
topic see [26,38].2

The other concept that might be important to what we observe in quasi-integrable theories
is the notion of orbital asymptotic stability, or simply asymptotic stability [34,35], that has, in
fact, evolved from orbital stability put forward by Benjamin [4]. Here one does not look at
several solitons, but just at one solitary wave. One takes a given solitary wave solution ue. of the
equation under consideration, and considers the orbit of solutions g uy,). of the equation, under
the group G of symmetries of this equation, with g € G. The solitary wave is called orbitally
asymptotic stable if a small deviation of gug,. from the initial data implies that there exists a
g(t) € G, such that g(t) - g, and the solution converges to g Usol., iN SOME norm, as t — oo
[34]. There is a vast literature about asymptotic stability, in particular, on the RLW equation (1.4).
It is also worth mentioning the concept of asymptotic stability in the sense of the asymptotic
expansion of the PDE up to the first nonlinear correction [8,22]. Such a concept might also be
relevant to quasi-integrability.

The stability of the RLW solitary waves has been considered, for example, in [29,30]. In ad-
dition the concept of asymptotic stability has been extended to two-soliton-like solutions and in
the case of RLW some particular two-soliton configurations have been discussed and shown to
describe inelastic or quasi-elastic scattering in [27,28]. Such results certainly fit together with
what we describe in the present paper for the RLW equation (1.4), and in some sense also for
the more general deformations of the KdV equations given by equation (1.1). If solitary waves
can be shown to be asymptotically stable then one could intuitively (and naively) think that if the
deformations induced by the scattering of two of them are not too large then, when these waves
separate after the scattering and propagate without influencing each other, they would asymptot-
ically converge to solitary waves again. Of course, this is only a picture of the phenomenon but

2 We are very grateful to the referee for drawing our attention to this Soliton Resolution Conjecture and to the notion
of Asymptotic Stability that we discuss next.
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certainly such possible connections between asymptotic stability and quasi-integrability deserve
further studies.

The paper is organized as follows: In the next section we introduce our Lax—Zakharov—Shabat
equation which we then use to study the quasi-integrability of the model described by equa-
tion (1.1) for various values of £1 and &,. We perform the usual gauge transformations and finally
define the charges which are truly conserved when &1 = &2 =0 (i.e., for the KdV model). In sec-
tion 3 we introduce the parity argument for the travelling wave solutions of (1.1) and show that
if the multi-soliton field configurations of the model possess this symmetry, then the charges are
quasi-conserved. The next section discusses the Hirota method of finding solutions of some non-
linear equations and applying it to our equation (1.1). In it we show that this method gives a one
soliton solution for any &, with ¢; = 1 being constant. This is the case for the usual dispersion
relation (w = ﬁ), and for &1 # 1 the dispersion relation has to be modified. However, if we
insist on the usual dispersion relation the Hirota method does not work but a one-soliton solution
can still be found.® We discuss a construction of such a solution in the appendix A.

The next two sections discuss the analytical quasi-integrability of the mRLW model and
present arguments for the integrability based on the evenness parity properties of the multi-
soliton functions. Section 7 discusses the soliton solutions of the KdV equation, obtained via
the Hirota method, and the parity properties of two- and three-soliton solutions of this model.
The lengthy section 8 presents some results of our numerical simulations. These simulations
were performed using a specially constructed numerical program based on implicit and explicit
methods of solving (1.7). The calculations involved studying the time evolution of various field
configurations initially corresponding to two- or three-soliton systems and then checking whether
the observed results supported quasi-integrability of the model for various values of &1 and &5.
We finish the paper with our conclusions and a few short appendices presenting more informa-
tion about our numerical techniques and providing some details on the construction of conserved
or quasi-conserved quantities discussed in section 2 of the paper.

2. The anomalous Lax-Zakharov-Shabat equation

Our motivation is to study equation (1.1) in the context of quasi-integrability as a deformation
of the integrable KdV equation expressed by equation (1.3). Of course, there is a vast litera-
ture on deformations of integrable theories (see for instance [2,21]), using different techniques.
Here we work with the concept of anomalous zero curvature equations. To this end, we start by
constructing the quasi-zero curvature equation, and subsequently produce the quasi-conserved
charges from it. To do this we introduce the Lax potentials Ay and A;, as

o
Av==[b1—Sui - F], 1)

12

o o G
A;=—|:—4b3—b1+guxF0—§uF1+E(b_1 —F_l)i| , (2.2)
where the generators by, 41 and Fj,, are defined in the appendix C, and where
2 2
o o o o o

E§u2+ﬁ82wxv,—gslu”+g(1—81)u“+gu. (2.3)

The curvature of the Lax connection is given by

3 We thank the referee for drawing our attention to this possibility.
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o
Fix =01 Ax — 0xAr +[Ar, Al = —X Fo + Y (b—1 —F-1), (24
where Y = 0 corresponds to the equation of motion of our deformed model (1.1)
a 5 o
YEut+ux+|:§u +322wxvt+uxx_51 (“xt+”xx)] ) (2.5)
X
and where
aroa
= I3 [152wxvt —e&1 (uxr + ’/‘xx)] . (2.6)

Thus, if we now assume that u is a solution of the equations of motion (i.e., ¥ = 0), then X
represents the anomaly of the zero curvature equation. In the case of the KdV equation (i.e., &7 =
&1 = 0), the anomaly vanishes resulting in the well-known infinite number of truly conserved
charges.

2.1. Quasi-conserved charges

In order to construct the quasi-conserved charges we follow the procedure discussed in [14],
which is an adaptation to quasi-integrable theories, of the so-called abelianization procedure
for exactly integrable theories [1,10,32]. The key ingredient is that the generator b appearing
in Ay in (2.1), is a semi-simple element of the loop algebra and so splits this algebra into its
kernel and image under its adjoint action as explained in the appendix C. Then, we perform a
gauge transformation to rotate the Lax potentials into an infinite abelian subalgebra of the s((2)
algebra, generated by by, 41. The gauge transformation transforms the potentials as

Ay > ay =gAg ' — (cg) g™ ", 2.7)
A —>ar=gAg ' — (g g ", (2.8)

where the group element g is chosen to be

g =exp (Z &n F—n) = exp (Z F_n> : 2.9)
n=1 n=1

where ¢, are parameters to be determined (see below and appendix D), and F_, are generators
of the s[(2) loop algebra (see appendix C).
Performing the expansion we find that a, can be expressed as

o0 l o0 o0
Ay =Ax + |:Zf—n, Ax:| =+ 5 [Z_;I_n, |:X_:1f_m,Ax:|} + ...

n=1

o0 1 o0 o0
=Y 0 Fom— o |:Z.7-"_,,, > 8X}"_m:| (2.10)
mlzl . . n=1 OOm:l
-3 [ka, [ZI,,, > axfmﬂ +...
" Lk=1 n=1 m=1

Using the algebra defined by egs. (C.5) to (C.10), we can write a, as



F. ter Braak et al. / Nuclear Physics B 939 (2019) 49-94 57

ay =—Db;

+ &1 (b1, Fi]
o 1, (2.11)
+ & [b1, F2] + Tk (b1 —F_1) — i [Fo1. [Fo1,b1]] — 0:81 P

+...,

where we have written down all the terms of the same grade on the same line and the grading
is defined by the grading operator d given in (C.11). Note that the parameter ¢, in the expan-
sion (2.11), multiplying the commutator [b1, F_], and so first appears among the terms of grade
—k 4+ 1. Thus, one can choose the parameters ¢, recursively, to cancel the image part of a, at
the grade —k + 1, i.e. its component in the direction of F_4 . The expressions for the param-
eters {x, obtained this way, are given in the appendix D, and they are polynomials in u and its
x-derivatives. Having chosen the parameters ¢ this way, the expression for a, becomes

o0
ay=—b1+Y a Vb gy, (2.12)
n=0

D

where the first values of a)(fz"* are given by

_ o

a}({ n_ 3 u, (2.13)

“n_ &

4" = e (2.14)
3 2

a=2 3+ % (2.15)

x Tt Ty
504 o’
=7 _ 4
G = omraat + 33

1
2uxx + 3 (a3 uu)zc + azuuxxxx) . (2.16)

Note that in our gauge transformation we have not used the equations of motion Y = 0, with Y
given in (2.5). In the transformation (2.8) of the A; component of the Lax connection, the group
element g is already fixed, but we still can use the equations of motion Y = 0 to simplify it, i.e.
we are performing an on-shell gauge transformation. The on-shell result is then given by

o0 o
ar=4b3+b1+Y a " Vb g+ Y oV F (2.17)
n=0 n=-2
In the appendix D we give explicit expressions for the first few quantities a,(_zn_l) and c[(_n).

Note that, due to the anomaly X, the quantities cl(_”) do not vanish, and so the potential a; is not

really rotated to the abelian subalgebra generated by b,41. That is a difference with respect to

the case of exactly integrable theories, but it will not be a concern for us as we explain below.
The on-shell gauge-transformed curvature then becomes

Fix = fix = 01y — dvay + [ar, ax] = gFrg ™' = —XgFog™! (2.18)

and so it takes the form

o0 o0
fo=—X (Z y b g+ Zﬂ<‘”>Fn) : (2.19)
n=0 n=0

where we have assumed that the equations of motion are satisfied (i.e., ¥ = 0), and where
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-3 _ _ o

y = 3x[2 3u], (2.20)
2

(75)__ (0% 2 o

V4 = —0y |:263” +253uxx:|v

7 _ _g 503 3 5a2 2 502 o
ST mp et T grgr e T gt

In addition we have that 8© =1, and B~ = 0 for m = 1, 2, 3, 4. The first nonvanishing @
is B, and it is given by

(=5) o

From the commutation relations egs. (C.5) to (C.10) one can deduce that the commutators of
a given element by, 41 with any element of the algebra never produce an element of the abelian
subalgebra generated by by,,41. Therefore, the commutator [a,, a;] does not contain any terms
in the direction of the b_,,_; generators, since a, lies in this abelian subalgebra. Thus, if we
now consider only the terms in the direction of the b_j,_1 generators of the gauge transformed
curvature, we find that

3al D — 9.0 7D = _xp (2D VneZf, (2.22)
which can be rewritten as
do2n=D o
Y — oD +a2D (2.23)
dt xX=—00
where
o0 o0
Q2= = /dm};%—” and oD =— /dxx;/<—2”—1>. (2.24)
—0 —00

Since all the terms of the parameters ¢,, depend on u and its x-derivatives, and u — 0 when x —
+o00, we see that g — 1 as x — =oo. This implies that

lim a;= lim A, (2.25)
x—+o0 x—Fo0
and so from (2.2), we get that
o
a2 b =0. (2.26)
X=—00

Hence, equation (2.23) becomes

dQ(—2n—1)
dt

and so the quantities Q~?"~1 are candidates for our quasi-conserved charges.
It is important to point out that the Lax potential Ay, given in (2.1), does not depend upon the

deformation parameters €1 and &7, and so it is the same as the Lax potential for the integrable
(—2n—

— g2 (2.27)

KdV equation. Therefore, the charge densities a D and, consequently, the charges Q=21
are the same as those for the KdV theory. The dependence upon the deformation parameters in
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(2.27), comes only from the anomaly X. Furthermore, we note that the lowest of these charges
is exactly conserved, i.e.

o
n_ % dob _
0 =5 dxu, T =0. (2.28)
—0oQ
Indeed, from (2.20) one sees that ~1 = 0, and this implies that Q=1 is conserved and so u is
a density of a conserved quantity for any value of €1, €7, and «.

The remaining charges are not properly conserved. However, as we show below, for some
special soliton solutions such charges are quasi-conserved. By that we mean that in the process
of a soliton scattering these charges do vary in time but, after the scattering, they all return to the
same values they had prior to this scattering (i.e. the values before and after the scattering are
the same). This property is not well understood yet, but we have found that it is accompanied
by a space—time parity symmetry of the soliton solutions, and this is useful in trying to gain
an understanding why the anomalies of the charges vanish when integrated over time during the
whole scattering process. In section 3 we explain how this works for the case under consideration
here.

3. The parity argument

Here we explain in detail how the quasi-integrability concept is related to the existence of
some parity symmetries of the soliton solutions. Before we show how it works for some specific
soliton solutions, let us present here a general argument for the deformations of the KdV theory
given by the equation (1.1).

3.1. Parity argument for the traveling wave solutions
Consider a class of traveling wave solutions u = u (x —Zt+ 8) of the equation (1.1) which,

of course, includes in it the one-soliton solutions as its particular cases. For a fixed value of the
time ¢, we define the shifted space coordinate as

=1

1))
=x——1t+34 (3.1)
k
and introduce the space parity transformation
P; : i— —X. (3.2)

The only hypothesis that we are making here is that the traveling wave solution is invariant under
parity, i.e. that

Pz (1) =u. (3.3)
Since u = w; = vy, it turns out that (d, = d3)
Pz (w) =w, Pz (v)=—v andso P;(wy)=—wy, Pz (vy) = —vy. (3.4)

In consequence, we see that ii,; = —wui; and so P; (uy;) = lys. Thus, the anomaly X given in
(2.6) and evaluated on such type of solutions, satisfies

Pz (X)=X. (3.5
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Note that the anomalies coefficients, y’s given in (2.20), always involve an odd number of
x-derivatives of the field u, and so

P <y<—2n—1>) — 2D, (3.6)

Thus we see that

o o0
/dnyH"*l): / dx Xy =D =0 (3.7)
—00 —0o0

and so the charges (2.24) are exactly conserved for all traveling wave solutions, and so also for
the one-soliton solutions.

3.2. Parity argument for multi-soliton fields

Now we consider the space—time parity transformation around a given point (xa, o), of
space—time
P ()E,f)—>(—)?,—t~); X=x—xp f=t—1ta. (3.8)

Again we make the hypothesis that the u-field evaluated on the soliton solution we are consider-
ing, that now we denote u, is even under such a parity transformation, i.e.

P (ug) = uy, (3.9

where u; in (3.9) is evaluated on that particular soliton solution. In addition, since ws = f dtug,
and vy = [ dx u; (see (1.2)), we see that

P (wg) = —wy, and P (vy) = —vy, (3.10)

where wg and v, are respectively the fields w and v evaluated on that soliton solution. From
(2.3), (2.5) and (2.6) we have that

P (G) =G, PY)=-Y, P(X)=X. (3.11)
Next we consider the following order 2 automorphism (i.e. > = 1) of the s[(2) loop algebra
o(T)=e"dT e 174, (3.12)
where d is the grading operator defined in (C.11). Then,
o (bant1) = —bon41, 0 (Font1) = —Font1, o (F2p) = Fop. (3.13)
We also consider the combination of these two operations, the parity and the automorphism:

Q=Po. (3.14)

One can check that the Lax operators (2.1) and (2.2), when evaluated on soliton solutions satis-
fying (3.9) and (3.10), satisfy

Q(Aﬂ)z—A,L, nw==x,t, (3.15)
and so the curvature (2.4) satisfies

Q(Fix) = Fix. (3.16)
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Let us rewrite (2.12) as

o0
ay = Z &)(C_Z”_l) :  where &)(Cl) =—b;; and
n=-—1
almHm D =gy . (3.17)

Since Q2 (b1) = —by, it follows that

Q([b1, Fon ) =—[b1. QZF-n) ], (3.18)
where F_,, is defined in (2.9), and so
A+ ([b1. Fou])=[b1. A=) (F-n) ]. (3.19)

From (2.11) we see that a\” = [b1, F-1].and so
1+a% =[b, -2 (F-D]. (3.20)

Since &)((0) lies in the kernel (of the adjoint action of 1) and €2 maps the kernel into the kernel, it
follows that the Lh.s. of (3.20) also lies in the kernel. But the r.h.s. of the same equation clearly
lies in the image. Therefore, we conclude that both sides vanish. Since (1 — €2) (F_1) cannot be
a non zero element of the kernel we conclude that

1= (F-1)=0; or Q(F_1) =F (3.21)
Using (3.21), we get from the third line of (2.11) that
1+al=[b1, 1 -2 (F2)]. (3.22)

Since 51)(6_1) lies in the kernel, we get that the 1.h.s. of (3.22) lies in the kernel, and its r.h.s. lies in
the image. Therefore both side have to vanish and so similarly to the previous case we conclude
that

Q(Foo) =Foo. (3.23)

Continuing this process we conclude that 2 (F_,) = F_,, for any positive integer n, and so the
group element g defined in (2.9) satisfies

Q=g (3.24)

Indeed from (D.1) we observed that

P (é‘n) = (_l)n Cn and so Q (Cn an) = F_y. (325)
Thus we see that

Q(g Fog‘l) =gFg! (3.26)
and so from (2.18) and (2.19) we get that

Py D) = =y, (3.27)

Thus we see that all the anomalies appearing in (2.27) satisfy (see (3.11))

P (Xy<—2n—1>> — X 2D, (3.28)
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In consequence, integrating the r.h.s. of this expression over a rectangle with centre at the origin
of the (¥, f) coordinates (see (3.8)) we get

P
/dt /dx XyC7=D =9 (3.29)
-7 -

Sending x to infinity we find that the charges (2.24) satisfy the mirror type symmetry (see (2.27))
Q(—2n—l) (;) _ Q(—zn—1> (_;) (3.30)

Thus, for any soliton solution satisfying the property (3.9), all the charges Q~2"~1 are quasi-
conserved, and the sector defined by such soliton solutions constitutes a quasi-integrable sector
of the theory.

4. The analytical Hirota soliton solutions

Next we investigate the existence of analytical soliton solutions for the deformed KdV equa-
tion (1.7), or equivalently (1.1). To do this we introduce the Hirota t-function as

g=pBInt 4.1)

for some parameter 8 to be appropriately chosen later. Hirota’s bilinear equations for KdV-type
equations as well for the RLW and mRLW equations have been discussed in the literature [20),
31,33]. Here we follow an approach that does not make use of the Hirota’s operators D, and D;.
Putting (4.1) into (1.7) one gets the following Hirota’s equation

- 7:2 [2ﬁ82771t7:xx + @48 — 281)7:31 + 7 (—261Texs — (61 — D Tyax + )
— 2 &1TxTarr — 1T Tux — 3(61 — D Tor Tax — 361 T Tuxr + 712 + 3fxfxxt]
+2t1 [(,382 — )Tt + (Ber — D) Tu Ty

+ T (B — et — 3(e1 — D) = 361 — Dl |

— 24,72 [(B(e2 +2) — 3e1)T — 3(e1 — D1y ]

+ T2 (—&1Txxr — &1Tuxnr + T + Tar + Tews) = 0. 4.2)
Next we take the one-soliton ansatz

=1+ k¥t (4.3)

and insert it into (4.2). We consider the expansion of the equation in powers of 7. In the lowest
order (770) the equation is automatically satisfied. In the next order (nl) we find that the equation
is satisfied if either w = 0 or

k+(1—e) k3
W=

44
1—e1k? (44)
The order n? terms show that the equation is satisfied if
264 [(e1 — DE* = 1] [Ble2+2) ((e1 — D> — 1) +3
[e1 = D —1][Be2+2) (1 - DE - D +3] _ (45)

81k2—1 2
(
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If we do not want k to depend on ¢’s, but do allow § to depend upon k, then we can take
3
p= Cte)(1+(1—enk?)’
With this choice one can check that all the higher order terms, in powers of 1, vanish automat-

ically, showing that the truncation of the series leads to an exact solution. Thus, we see that we
have found a family of one-soliton solutions, parameterized by €1 and >, and given by

(4.6)

u=® & 1 47
@ (2+e2) (1 - 21k%) [cosh (5] '
with
e K3
F=kx—wt+5; w:w, (4.8)

1—81k2

where we have absorbed the 1 parameter into 8, by writing 1 = ¢® and shifting § + § — 8. This
is the solution given in (1.12). Note that this solution, written in terms of the g field, takes the
form:

3

Q2+e)(1+0—e)k?)

= 3 |:ln2+ E + Incosh (E):|
CQ2+e)(1+ 1 —enk?) 2 2]

Note also that, as we have stated in the introduction, for £; = 1 and ¢, = 0 we get the RLW
one-soliton solution, and for ] = ¢, = 1, we get the mRLW one-soliton. In between we get a
whole new family of one-soliton solutions. Note also that our dispersion relation (the relation
between w and k) is somewhat unusual, as it depends on &1. However, if we insist on keeping the
usual relation, i.e. v = 1—kW we can find a one-soliton solution, even for &1 # 1, by solving the
equation (1.7) directly. This calculation is presented in the Appendix A and the obtained solution

then takes the form
. 2
3[1+(81 D& ] In | cosh 5
2+e2) 2V 14 (g1 = 1) k2

where £ =kx — wt + 8, b and ¢ are arbitrary parameters, and @ =

In(1+e") (4.9)

qtype1 =

qtype2 = +b&+ C:| , (4.10)

k
1—k2"
14+ (1 —1) k2 > 0, in order for the solution to be real. Note that in the limit & 1 — 1, both
solutions, (4.9) and (4.10), become the same and are of the form

__3 £
q= 7o) |:ln<cosh<2>>+bé —i—c]. 4.11)

We have also checked that applying the above Hirota-type procedure for a two-soliton type
ansatz, i.e. by expanding t up to a second order in 1, leads to a solution only for the case &, =
g1 =1 and g = 1. In such a case, the Hirota’s equation (4.2) becomes

We have to assume

T+ T — 20 T + 275, — 20T + T o — T (T + Ty — Taa) =0. (4.12)
Its two-soliton solution is given by

T=1+e"+el2 4 At for m=e=p=1 4.13)
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with
ki

Ii=kix—wit+4; a)i=—1_ki2

i=1,2 (4.14)

and

ki —k)? [k — k3 (k5 — 1) + kika (k3 —4) +k35 — 3]
(k1 + k)2 [kiko + k3 (K3 — 1) + kiky (K3 —4) — k3 + 3]

This is precisely the two-soliton solution given in (1.14)—(1.16), and first found in [19]. One can

check that by replacing w; given in (1.15) and inserting them into (1.16), one finds that A, given
in (4.15) is the same as the one in (1.16).

Ap = (4.15)

5. The analytical quasi-integrability of the mRLW theory

In subsection 3.1 we have shown that if the field u# evaluated on a one-soliton is even under
the space parity (3.2) (see (3.3)), then the anomalies vanish (see (3.7)), and so all the charges
Q(’z"’l), introduced in (2.24), are exactly conserved. Note that the family of one-soliton solu-
tions (4.7) are even under the parity (3.2), and so this infinity of charges are exactly conserved
for such one-soliton solutions.

Let us now analyse the two-soliton solution (4.13)—(4.15). Denoting

Ap=ét (5.1
we can write the two-soliton tau-function (4.13) as

T=1+e14el2 4 l1H2HA 9 ptr [coshz+ +e A2 coshz_] , (5.2)
where we have defined

4= % T1+T2+4) and 7= % (' —T»). (5.3)

Note that if k; = k, we see that A1 = 0 and so the two-soliton solution reduces to a one-soliton
solution. Therefore, for truly two-soliton solutions, i.e. when ki # k2, z+ and z_ can be con-
sidered independent space—time variables, i.e. they are linearly independent combinations of x
and ¢. Then we have that

1 1
O0xZ+ = 3 (ki £ ko) =ky and 0174 = 3 (w1 £ an) =—w+. 5.4)

From (1.6) and (4.1), for 8 = 1, we find that the two-soliton solution (4.13)—(4.15) for the
u-field can be rewritten as (see (5.2))

_§ Tt —T )

a 72
8 —A/2
= — ¢ ) [eA/2k+a)+ + e_A/zk_a)_
@ [coshzy +e~2/2 coshz_]

+ (kywy +k_w_)coshzy coshz_ — (k—wy + kyw_)sinhzy sinhz_] . 5.5

To find the point of space—time around which we perform our parity transformation, we con-
sider the linear relation among z4+ and x and 7, i.e.
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<§+>:<i+ ii*)(f)+(%;ﬁ+), (5.6)

where we have denoted 64+ = (61 &= §2) /2. Then
X X — XA k w2
_ - _ [ k+ —o+ +
(F)=CG=)-( =) () &

with
kid_ —k_ (245
; th = — (3+34) (5.8)
k+w_—k_a)+

C()+8_ —ww— (% +5+)
XA =

k+ w_ —k_ w4

Thus, the space—time parity transformation

P (z4,2-) = (=24, —22) (5.9)

is of the same form as (3.8), and from (5.5) we see that the field u evaluated on the two-soliton
solution of the mRLW model is invariant under this parity, and so it satisfies the hypothesis made
in (3.9), i.e. that P (u) = u. So, as shown in subsection 3.2, all the charges Q~?"~ 1 defined in
(2.24), satisfy the mirror symmetry described in (3.30), and they are asymptotically conserved in
the scattering of two solitons.

We have thus presented an analytical proof of the quasi-integrability of the mRLW theory. It is
worth adding that this is the first analytical proof of the quasi-integrability of a (non-integrable)
field theory in 1 + 1 dimensions (as in this case we have an analytical form of a two-soliton
solution).

6. The parity versus dynamics argument

We shall now check whether the dynamics of the deformed model (1.1) favours or not the
correct parity property of the field u (3.9), so as to make the infinite set of charges Q(~"~D,
defined in (2.24), quasi-conserved. The plan of our approach is to write a given solution of
(1.1) as a perturbative expansion around an exact solution of the integrable KdV equation. In
addition, if that exact solution does satisfy the desired property (3.9) under the parity, we want
to understand how the higher terms in the expansion behave under this parity. Our studies will
show that the dynamics of the deformed model (1.1) does indeed favour the parity property (3.9)
in a quite non-trivial and interesting way.

To make the perturbative expansion simpler we parameterise our two deformation parameters
as

g1 =¢sin&; &) = ¢ cosé&. (6.1)

Then (1.1) becomes

o o .
U +uy + [5 u + Uy + € (cos& 1 Wy Uy — SINE (U + uxx))] =0. (6.2)

X

Next we expand the field u as

u:u(o)—l—su(l)—i—ezu(z)—i—..., (6.3)

where each 1@, in general, depends upon £. Thus, we find that
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w:/dtu:/dtu(o)+s[dtu(1)+82/dtu(2)+...

=w® +ew® +2w@ 4. (6.4)
and
UZ/dxu=/dxu(O)+8/dxu(l)—l-sz/dxu(z)—i—...
=00 40 4 2@ 4 (6.5)

Next we split all fields into their eigen-function parts under the parity (3.8). Thus
. 1 .
w6 = 5 1+ P)u(l) (6.6)
and the same for w and v. Of course, the &° part of (6.2) is the KdV equation, i.e.

o 2
uf°)+u§°)+[§ (u(0)> +u§£2] =0 (6.7)

X

The next order — ¢! equation is then given by
o
u® 4 ) ¢ [QM(O) u® + 1) +cose - w® v©@ _sing (u)(g) + u)(&))] =0. (6.8)
X

Next we split this equation into its even and odd parts under the parity. The odd part is given
by

ut(1,+) +u§1,+) + [a (u(0,+) u ) 4 0.0 u(l,—)) + u)(clx,+)
o — .
+ cosé 1 (wfco'*) vt(o’+) + w0 vt(o’ )) —siné (u)(g’” + u)(gg*))]x =0 (69

and the even part takes the form
ut(l’_) +u§1’_) + [(x (u(0’+) w402 u(l’+)) + u)(clx’_)
+ cosé % (w;‘)»*) 007 4 07 O+ )) — siné (uff}*) + u§(}—>)]x =0. (6.10)
Let us now suppose that the zeroth order solution is even under the parity, i.e. that
p (u<°>) O andso  u©®) =0. 6.11)
In this case we find that
w0+ — 0 _ (6.12)

In consequence, we see that (6.9) becomes

WD 4 0H [au(o,+>u(1,+) +M§Ix’+)]x
o —
=— [cosé " w® v _sing (ufg’ﬂ + u)(ggﬁ)]
X

ugl’_) + ufcl’_) + [oe u©®H) 0oy u)(clx’_)] =0. (6.13)

X

Note that u(') satisfies an inhomogeneous equation and u">~) a homogeneous one. Thus,
we can have a solution for which
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W19 = and 50 w1 = (15 = 0, (6.14)

The order &2 part of (6.2) takes the form

o 2
u;z) +u§c2) + |:§ ((u(1)> +2u©® u(z)) + u)(czx)
+ cosé % (wff’) v 4 ® vf‘”) — sing <u§},> + uQx))] —0. (6.15)
X

Splitting (6.15) into its even and odd parts one gets that the odd part becomes

u§2’+) +u§c2’+) + [% ((u(1’+))2 + (u(l’_))2 +2 (u(0’+) u®H 400 u(z’_)>)
Ul 405 L (094D 1 w00 4041 11 00)
— sin (u,(},’“ + uffﬁ)]x —0 (6.16)

while the even part takes the form

W@ 420 4 [% (Zu(1,+>u(1,—) ) (u(0,+>u(2,—) +u(0,—>u(2,+)>) +u®o)
i cos&‘% (w)(co,+) Uz(l’_) + ol vt(O»—) +w®) vt(1,+) +wlo) vt(0,+)>
— siné (uf};‘) + u§§—>)]x —0. (6.17)

Note that if (6.11), (6.12) and (6.14) are all satisfied, then these equations become

2
ul ,+>+M§2,+>+[W(o,+)u(2,+)+u%+)]

X

o 2 o - o .
_ [E (u<1,+>) +eosé (w)go,—> v ) O )) _ siné (u)gt,ﬂ +M§§;+))} ’

X

a7+ uP ) 4 [eu®H a1l ] <o, (6.18)

So, again u®1) satisfies an inhomogeneous equation and u>~) a homogeneous one. So again,
we can have a solution where

u®) =0 andso  w®P =@M =9, (6.19)

Continuing that process it seems that we can always have a solution in which the u field is
even under our parity. Such a solution of the perturbed model fits into the scheme presented in
subsection 3.2 and so all the charges 027=D (from their infinite set)are quasi-conserved, i.e.
they satisfy the property (3.30). In this sense, the dynamics of the perturbed model favours the
even u field, since as we saw there cannot exist pure odd u field solution. Of course, there can
exist mixed solutions, i.e. us with an even plus a (perhaps small) odd parts.
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We do not understand yet how one could fine tune the perturbed solution to be purely even
under the parity. Note that the condition of making the odd part of the solution vanish at each
order of perturbation, does not work like an initial condition. So, we cannot prepare the solution
at a given initial time #y and guarantee that it will evolve in time keeping its evenness. The
conditions discussed above are imposed at all times. However, as our analysis has shown that a
purely odd solution cannot exist, perhaps there might be a mechanism making the odd part of
the solution small (maybe its appearance is not energetically favorable). We have not found such
a mechanism yet. However, our numerical simulations, which we describe below, show that if
we start with a seed configuration which is even under the parity, the numerical evolution of the
configuration, under the perturbed dynamics, essentially keeps the configuration even. This is a
very intriguing property of our quasi-integrable field theories, and we shall describe it, in more
detail, in the next sections.

7. The exact Hirota’s soliton solutions for the KdV equation

In section 6 we have shown that the dynamics of the perturbed equation (1.1) favours the even
property of the u field under the parity. Since our discussion involved a perturbative expansion
around an exact solution of the KdV equation (1.3), in this section we discuss the properties of
the exact multi-soliton solutions under the space—time parity transformation (3.8). We show that
the 1-soliton, 2-soliton and some special 3-soliton solutions of the KdV theory are even under
a parity transformation and so can be used as a seed in the expansion discussed in section 6. In
order to do this, we present these solutions, using the Hirota’s method, in a notation that is useful
for our purposes.

We introduce the Hirota’s t-function for the KdV equation (1.3) as

12
u=—29Int. (7.1)
o

Putting this expression into (1.3) we get the Hirota’s equation for KdV in the form
213 +8Tyxx tf — [6 rfx + 7 2Ty +3Tcx + erxxx)] Ty

+7 (2‘[)? - fox) + T [2Txx Toxx + T (Tuxr + Taxx + Toxxxn)] =0. (7.2)

As it well known, the N-soliton solutions of this equation can be obtained by the Hirota’s ansatz,
which takes the form

N N N
TN—501=1+Z€Fi+ Z elithi+ay Z elit T+l Aij+Ap+Aje o

i=1 i>j=I i>j>k=1
n T2 A TN+ iy Ay (7.3)
with
2 Ajj (kl kj)2
Fi=kix—wit+6; a),'zkl'<l+ki); el = 3 (7.4)
(ki + kj
Then, the 1-soliton solution reads as
3 k>
Uone-sol = — (7.5)

o cosh? [(kx —wt +8) /2]
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So we see that the KdV one-soliton is invariant under the space parity Pg, defined in (3.2).
The 2-soliton solution can be cast in the form

12 1
Utwo-sol = — 5 [eA/z (kz + ki) cosh(z—) cosh(z4)
@ (A2 cosh(z4) + cosh(z-))

2
+ k% cosh®(z_) — (k, sinh(z_) + kpe®/? sinh(Z+)) +k2et cosh2(1+):| , (7.6)
where

1 1
z+=§(F1+Fz+A), 17=E(F1—F2), ki = (ki k) /2. (7.7)
Thus, the KdV 2-soliton solution is even under the parity transformation P : (z4+,z—) —
(—z+, —z-), which is of the same form as (3.8).

In order to study the parity properties of the 3-soliton solutions we introduce the quantities

=D 4249, D=k Oy~ A i=1,2,3, (1.8)
where

k0= L Gk w1 XU S S SN
2( 1+ka+k3), o 2( ] + @y + w3), 2( 1 +382+683+ Azs),
1 1 1

k@ = 3 (k1 —ka +k3), 0@ = 3 (w1 — w2 + w3), A® = 3 B1—62+ 8+ Ar3),
1 1 1

kS = 3 (k1 + ko — k3), w® = 3 (w1 + w2 — w3), A® = 3 (01 +8 -8+ Ap2).

The 3-soliton T-function can be written as In Tyyree—sol = In2 + z4 + In F, with

F =coshzy + e~ (B tA1)/2 cogh oD 4 o= (A +A2)/2 (ogh ;@

+ e~ (A13+A2)/2 (4o /3 (7.9)

Thus, for the 3-soliton solution we get:

12 12 | 82F 3, F\?2
Uthree-sol = ; 3)% InF=— |:x_ - < ad ) :| (7.10)

o F F
with
3, F = (k(l) +k® 4 k(3)> sinhz + kM e~ (A12+213)/2 gipp oD
+ k@ o= (A1+A23)/2 Ginp @) 4 1 B) = (A3 +4823)/2 iy ) (7.11)

and

2 2
92F = (k(l) + k@ + k(3)) coshzy + (k(1)> e~ B1+81)/2 cogh 1)

+ (k<2)>2 e An+AN/2 (o D) (k(3>)2 o~ (An+AN/2 o () (7.12)

One way of implementing the parity argument for the KdV three-soliton solution is to have
the inversion (change of signs) of all three z(’)’s, ie. z(_’) — — (_l), fori =1, 2,3, which would
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also imply z4 — —z4. However, we are performing our calculations in two dimensions and the
three z’s cannot be linearly independent. Each 7 defines a straight line in the (x, ) plane,
and if they are to be simultaneously inverted, we need these three lines to cross at the same point,
(l) )

and so all three z’’s should vanish at this point. So, there should exist a point (xa , o) such that

D _p® AD

XA
@ _p@ AD ta | =0. (7.13)
k®  —_p®  A® 1

For this to happen, the determinant of this 3 x 3 matrix should vanish, and this implies
(AD +a®) (ko = ki) + (A0 + D) (k3K — ksk})
+(A® +A®) (ks — koki) =0.

Note that if we choose any pair of k;’s to be equal, we reduce the three-soliton solution to
a two-soliton solution. So, we need ki # k» # k3. One way of satisfying this is to choose §;,
i =1,2,3,in such a way that

AD ZAD — ABQ) 0. (7.14)
@@)»

Note that in such a case the z
ie.

s, given in (7.8), (and so z4+) become homogeneous in x and ¢,

D =kVx -0 i=1,2,3 (7.15)
Therefore, the parity transformation

P: (x,t)—> (—x, —t) (7.16)
is sufficient to have what we want, i.e. z) — —z*
The condition (7.14) leads to the linear system

,and S0 74 —> —2Z4.

1 -1 -1 81 An3
-1 1 -1 S |=1 Az (7.17)
-1 -1 1 83 A1

and so

[ (k1 — k3)? (ki —ko)? |
| (ki +k3)? (k1 +ka)* |

1 1
o1 = —3 (A3 + Ap) = ) In

1 1 [t —k3)? ki —k2)? |
hr=—=(A+Ap)=—=1In 3 ! 5| (7.18)
2 2 | o+ k3)” (ki + ko) |
1 1. [ (ko —k3)? (ky — k3)? ]
33=—= (A +Ap)=—=1In (k2 3)2 (k1 3)2 .
2 2 [ +k3)” (ki +k3) |
Denoting

we find that the corresponding t-function for the 3-soliton solution takes the form
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Three-sol = 1 + el 1112413 4 p=(A13+A12)/2 (grl + eF2+F3)

+ e~ (An+A1R)/2 (61:2 + eF1+F3) + e~ (A3+A13)/2 <6F3 + eF1+1~“2) ) (7.20)

One can check that in all these cases the three soliton collide simultaneously at the origin x =0
at t = 0. The conclusion we can draw from this is that, for the KdV three-soliton solution in
which the three solitons collide at the same point in space—time, the field u is even under the
parity (7.16), when evaluated on such a solution.

8. Numerical analysis of quasi-conserved charges

In this section we discuss results of some of our numerical simulations of equation (1.7) per-
formed for various values of £; and &;. We particularly focus on investigating the corresponding
first non-trivial quasi-conserved charge Q=3 defined in equation (2.24). The numerical scheme
used to approximate equation (1.7) is very similar to the algorithm used to solve the mRLW
equation [6]. We have adjusted this scheme appropriately, which is discussed in appendix B, for
the simulations presented in this section.

We have used several different initial conditions depending on the values of ¢; and &, used
for each simulation, and we discuss these initial conditions in more detail in the subsections
below. We have performed the numerical experiments for two-soliton simulations for a range
of values for I'1 and I'; but, for consistency, all the plots presented in this section regarding
two-soliton simulations are obtained using the same values regardless of the initial conditions
used, and similarly for all the three-soliton simulations (I", I'; and I'3) presented in this section.
For all the simulations presented in this section we have used a grid spacing 72 = 0.1 and time
level T = 0.001. More details on the variables used for the simulations discussed in this section
can be found in appendix B.2.

8.1. Quasi-conserved charges of the mRLW equation

In this subsection we discuss the results of our investigations of the quasi-conserved charges of
the mRLW equation. To perform the simulations of the mRLW equation, we have set 61 = ¢ = 1
in equation (1.7).

8.1.1. Two-soliton solutions of the mRLW equation

In Fig. 1 we have plotted the scattering of two solitons described by equation (1.14) at various
values of ¢, and in Fig. 2a we have plotted the time dependence of ; Q=2 for this interaction.
Since the mRLW equation possesses an analytical form of the two-soliton solution, in Fig. 2
we have in fact plotted the values 8, Q~% for both the analytical and numerical simulation. To
better illustrate how small the discrepancy is, we have added an insert of the region near the
global maximum on a much smaller scale. We note that there is hardly any discrepancy between
the analytical and numerical values.

Now, comparing Figs. 1 and 2a, we see that as t — oo the charge is conserved except for
during the collision, where it first decreases and then increases back to the same value as before
the collision. Fig. 2b presents the plots of fot dr’ 8, Q¥ and we see that the two lumps exactly
cancel each other out, that is,

lim 0¥ = lim Y. 8.1

——00 t—00
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Fig. 1. The spatial-dependence of the u field for two solitons described by mRLW equation, interacting with each other
at different points in time, as given in equations (1.6) and (1.14).
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Fig. 2. The time-dependence of the analytical and numerically (represented by the red line and the green line, respec-
tively) obtained values of the quantity o, Q(*3) and fé dt’ 0, Q(*3) for the two-soliton simulation of the mRLW equation.
(For interpretation of the colors in the figure(s), the reader is referred to the web version of this article.)

Thus, we can conclude that these quantities are indeed quasi-conserved, as has been shown ana-
lytically in section 5. The agreement of the analytical and numerical results is a good test of the
numerical code that we are using.

8.1.2. Three-soliton solutions of the mRLW equation

In Fig. 3 we present a selection of plots (at different values of ¢) of the u field obtained in a
typical numerical simulation of a superposition of three one-soliton solutions. This was done in
this way since we do not have analytic three-soliton solutions of the mRLW equation. However,
as was discussed in [6], such a field is a very good approximation to a solution and the solitons of
the numerical three-soliton configuration behave as integrable (or quasi-integrable) solitons. So
here we have tested this by looking at the behaviour of corresponding charges. Fig. 4 shows the
corresponding time dependence of 9, 0~ and fot dr’ 8,03 . As Q=¥ changes only during
the collision, and has the same value in the asymptotic regions (see Fig. 4b), we conclude that
our charge is also quasi-conserved for the three-soliton configuration.
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Fig. 3. Snapshots at different points in time of the numerical three-soliton solution of the mRLW equation (equation (1.7)
for e; = ¢, = 1), for the case when the solitons collide all around the point x = 0.
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Fig. 4. The time-dependence of the obtained values of the quantity d; 0% and fot dr’ 9, 03 for the three-soliton
simulation of the mRLW equation.

In section 7 we have shown that the u-field for the exact Hirota three-soliton of the KdV equa-
tion is even under the parity transformation (7.16), when the three solitons collide all at the same
point. As we have discussed in section 6, one should therefore expect that the deformed three-
soliton solution should keep that parity property, and so to have an infinity of quasi-conserved
charges given by (2.24) (see section 3.1). The numerical results presented in Fig. 4 show that the
charge Q™% is indeed quasi-conserved for the mRLW equation, and so it confirms this expec-
tation.

8.2. Quasi-conserved charges of the RLW equation

In this subsection we discuss similar topics for the RLW equation. This model, is described
by equation (1.4), in which the conventional re-scaling of the u-field used in the literature sets
«a = 12. The model possesses the same exact one-soliton solution with the same dispersion re-
lation as the mRLW equation, but it does not possess an analytical two-soliton solutions [7].
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Fig. 5. The field u, at selected values of time, seen in our simulation of a two-soliton configuration of the RLW equation.
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Fig. 6. The time-dependence of the obtained values of the quantity o, Q(_3) and fé dr’ oy Q(_3) for the two-soliton
simulation of the RLW equation.

However, since we are simulating equation (1.7) with ¢; =1 and &, = 0, we must perform the
appropriate rescaling of g (i.e., ¢ — %q) in order to obtain the analytical one-soliton solution.
Thus, to construct the two- and three numerical systems we have used, as initial conditions for the
numerical simulation, a linear superposition of the following analytical single-soliton solutions

= % > In(14€") (8.2)

i=1

where n = 2 corresponds to the two-soliton simulation and n = 3 to the three-soliton simulation.

8.2.1. Two-soliton solutions of the RLW equation

The results of the two-soliton simulation for the RLW equation are shown in Fig. 5. Clearly,
the figure shows some radiation (see the inserts in Figs. Se and 5f), and this agrees with the results
presented in [24]. This is expected since the initial conditions used for this simulation do not solve
the RLW equation analytically. Note that the amplitudes of these solitons are bigger compared
to the solitons of the mRLW equation due to the aforementioned rescaling of ¢g. Furthermore, in
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Fig. 7. The field u, for a few values of time, found in our simulation of the three-soliton system of the RLW equation.

004 0.00
&
0.02 X
& & -0.05
4 =
L)
Q o000 *
® O, -0.10
—
-0.02
-0.15
0 20 40 60 0 20 40 60
t t
(a) (b)

Fig. 8. The time-dependence of the quantity 9, 0 and fé dr' 9, 0 found in our three-soliton simulation of the
RLW equation.

Fig. 6 we have presented the plots of the time dependence of 3, Q3 and fOt dr’ 3, 0 seen
in this simulation. The shapes of the curves in these plots are very similar to the ones found in
Fig. 2. We note that the small observed emission of radiation does not seem to have a visible
effect on the quasi-conservation of the charge.

8.2.2. Three-soliton solutions of the RLW equation

Next we have looked at the three solitons systems of the RLW equation. In Fig. 7 we present
the plots of the fields u seen at various times in their evolution, and in Fig. 8 the plots of the
corresponding 9; Q> and f(; dr’ 9,0,

Note that the amplitudes of the solitons are again larger when compared with the solitons of
the mRLW equation (see Fig. 3). This is due to the factor of 3/2, mentioned before. The three
solitons behave in a very similar way to the solitons shown in Fig. 3 except that, around the time
they collide, a small bit of radiation is emitted (see the inserts in Figs. 7d, 7e and 7f). Just as for

the two-soliton simulation, this emission of radiation does not seem to have a visible effect on
the quasi-conservation of the charge.



76 F. ter Braak et al. / Nuclear Physics B 939 (2019) 49-94

1.6 — zlil ands;io,s 1.6 — z,i1anuz2io.5 1.6 — eljland :,jo.s

1.4 a=lande=15 1.4 fe=lande=15 - 1.4 &fs=lande; =15
S 12 = 12 g 12
1 L0 | L0 .10
~ 08 w 08 T os
x 0.6 X 06 w 06
S 04 S 04 < o4

0.2 0.2 0.2

0.0 0.0 0.0

0 50 100 150 0 50 100 150 0 50 100 150
X X X
(a) Att=0 (b) At t=5 (c) At t=10

1.6 — s,=:an: :z=<l>.§ 1.6 f— E;=ian:£z=:.: 1.6 — s,=:an: :z=(1:.i
- 1.4 —— &a1=land &; =1.! - 1'4 — & =land e=1. . 1.4 —— &a=lande=1.
S 12 n 12 S 12
§ 1o T 1o nl? 1.0
& 08 X Y 0.004

- 06 - 0.6 L b6 0oz

= x b3 0.000

0.4 2 04 2 04 -0.002
S 02 S o2 S 5 ~0.004

: - : 130130140
0.0 0.0 0.0
[) 50 100 150 0 50 100 150 [) 50 100 150
X X X
(d) At t =20 (e) At t =25 (f) At t =30

Fig. 9. The time-evolution of two-soliton systems found in our simulation of equation (1.7) with 1 = 1, &, = 0.5 (red
curve) and g1 =1, &2 = 1.5 (green curve).

8.3. Intermediate models: quasi-conserved charges for 1 = 1 and e, # 1

So far we have discussed the properties of solutions of the mRLW and RLW equations. How-
ever, as we have shown in section 4, our basic equation (1.7) possesses one-soliton solutions,
whose analytical form is given by equation (1.8), for any real value of &5 as long as &1 = 1. Soin
this section we investigate the question of quasi-integrability of two- and three-soliton systems
by performing simulations with the initial conditions taken from linear superpositions of such
analytical single-soliton solutions, that is, from

3

1= 2% e

n
> n(1+eM), (8.3)
i=1
where n = 2 corresponds to the two-soliton simulation and n = 3 to the three-soliton simulation.
We present the results of such two- and three-soliton simulations of equation (1.7), for various
values of &3 # 1 while keeping £; = 1 constant.

8.3.1. Two-soliton configurations

As before, first we present our results for two solitons. Fig. 9 shows the time-evolution of the
u field for a simulation with &5 = 0.5 and a simulation with e, = 1.5. Figs. 10a and 1 1a show the
time dependence of 3, 0~ and fé dt’ 8, Q= seen these simulations. The system for &, = 0.5
emits a small amount of (visible) radiation during the interaction of the soliton fields (similarly
to the two-soliton simulation for the RLW equation (see subsubsection 8.2.1)). This radiation is
difficult to spot on the scale shown in Fig. 9, and so we have added inserts in plots 9e and 9f to
show more clearly this radiation emitted during the interaction. Looking at Fig. 10a, we see that
03 changes significantly only during the interaction of the two soliton fields. Furthermore,
Fig. 1 1a shows that the quantity Q3 satisfies
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lim 0¥ = lim 0¥, (8.4)
—>—00 t—00
which is again what we saw for the RLW and mRLW equation.
The other plots in Figs. 10 and 11 show the time dependence of 8; Q%) and fot dr’ 3, 0 for
simulations with various other values of &, 7 1. They show similar patterns to the ones described

for 5 = 0.5 and g3 = 1.5. Note that as |1 — g7| becomes smaller, the values of 8,Q<’3) and
fot dt’ 8, Q= converge closer to the values displayed in Fig. 2.

8.3.2. Three-soliton configurations

Next, we also looked at some three solitons systems which were constructed using equa-
tion (8.3), with n = 3, as the initial conditions. Fig. 12 shows the time evolution seen in two
simulations for the values 1 =1, &, =0.5 and ¢; = 1, &, = 1.5. These plots show that the three
solitons interact with each other in a way very similar to the mRLW and RLW equation (see
subsections 8.1.2 and 8.2.2). Unlike for the two-soliton simulation, we now see slightly more ra-
diation emitted in the &y = 1.5 case than in the £ = 0.5 case (see the insert in Fig. 12f). Figs. 13
and 14 present the plots of time dependence of 8, Q> and fOt dt’' 3, Q=% seen in our simula-
tions. Fig. 13 clearly shows that O~ only changes during the interaction of the soliton fields,
and Fig. 14 demonstrates that this quantity is indeed truly quasi-conserved in the sense that

im0 = i 0. @9
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Fig. 15. The u field configurations seen in our time-evolution of the numerical time-evolution of the equation (1.7) for
&1 =1 and &, = 1.5 at several values of time ¢.

8.4. Intermediate models: quasi-conserved charges for various values of €1 and &

We also would like to consider other values of €1 and €. However, we have no analytical
expressions of one-soliton solutions when &1 # 1. Therefore, we have used the analytical two-
soliton solutions of the mRLW equation as initial conditions for the two-soliton configurations,
and the linear superposition of three single-soliton solutions of the mRLW equation for the three-
soliton simulations.

In the next subsection we use the same values as those used in subsection 8.3 (for ¢y = 1 and
&2 # 1) to simulate the two-soliton configurations. We have repeated these simulations to study
the effect of using the ‘wrong’ initial conditions. This was achieved by starting our simulations
with the initial conditions corresponding to ¢; = 1 and &; also equal to 1 and then performing
the simulations for different values of &;. Then in the subsequent subsubsections we investigate
the quasi-integrability for various values of €] # 1 while keeping e, = 1.

8.4.1. Two-soliton configurations for e1 =1 and g3 # 1

Fig. 15 presents various plots of the simulation with &1 =1 and &7 = 1.5, and Fig. 16 shows
the plots of the time-dependence of the corresponding quantities 8; Q=3 and fot dr’ 8, Q3.
Fig. 15a shows the initial condition at t = 0. Fig. 15b shows these two soliton fields after they
have evolved for 5 units of time. Looking at that figure, we note that both solitons have moved
to the right and have left some radiation behind immediately after the start of the simulation,
while their amplitudes have increased slightly. This is because the true soliton of such a system is
probably significantly different the one described by the initial conditions used in this simulation.
This implies that the field # changes from the form given by the initial conditions and settles to
a true solution, and in doing so the two solitons leave behind some radiation. Then Fig. 15¢
shows the largest soliton field after it has interacted with the radiation emitted by the smallest
soliton field. Fig. 15d shows the solution at = 15 when the largest soliton starts to interact
with the smallest soliton. Fig. 15e shows the actual soliton fields interacting with each other.
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Fig. 17. The time-dependence of the obtained values of 9; 03 seen in the simulation of equation (1.7) for e =1 and
& # 1, with the analytical two-soliton solutions of the mRLW equation used as initial conditions.

Finally, Fig. 15f shows the field when the solitons have moved away from each other again. These
changes are all seen in Fig. 16a; from the beginning (at # = 0 to ¢ >~ 2) the initial conditions settle
down to the true solution of the equation leaving behind some radiation, from about >~ 6 to t >~
10 the largest soliton interacts with the radiation left behind by the smallest soliton. Finally, from
t >~ 16 to t >~ 23 the two soliton fields interact, after which the solitons keep moving unhindered.
Notice also that Fig. 16b shows that, after the initial conditions settle down to the true solution,
all the lumps cancel each other out.

For other values of ¢; = 1 and &3 % 1 we have observed a very similar behaviour to the one
described above. To illustrate this better, Fig. 17 presents three plots comparing 3, Q3 for ¢ =
0.5 and &, = 1.5 (see Fig. 17a), ¢, =0.7 and ¢ = 1.3 (see Fig. 17b), and e =0.9 and e, = 1.1
(see Fig. 17¢). We see that the larger |1 — 5| becomes, the more intense are the changes of Q%
when the solitons readjust their form from the one described by the initial conditions and when
the larger soliton interacts with the radiation left behind by the smaller soliton. This is expected
since the larger the value of |1 — &3] is, the larger is the difference between the initial conditions
and the true solutions of the equation, which results in a faster rate of change of the charge
Q3. Furthermore, this implies that the radiation left behind by the soliton is larger, and so the
interaction between the larger soliton and the radiation due to the smaller soliton is more intense.
However, when the two actual soliton fields collide, we see that as |1 — &,| becomes smaller, the
peak of 9, Q™3 converges closer to the peak shown in Fig. 2a, both in terms of amplitude as
well as in terms of its location on the horizontal axis. The horizontal movement is due to the fact
that when the solitons emit radiation, their amplitudes increase/decrease (depending on whether
&y < 1 or g3 > 1) which causes their velocities to increase/decrease as well.
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Fig. 18. The time-evolution of two two-soliton systems studied in the equation (1.7) with ¢; = 1 and &y = 0.5 (red curve),
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Fig. 19. The time-dependence of fé dr’ 9,/ Q<_3) seen in the simulation of equation (1.7) with different values of ¢] =1
and ey # 1.

To illustrate better these observed properties, Fig. 18 presents again the various plots shown
in Fig. 15 corresponding to &1 = 1 and &3 = 1.5 but it also shows the results of the simulation
corresponding to €1 = 1 and &, = 0.5, in order to compare the two simulations. This figure also
illustrates the fact that if & > 1, then the solitons’ amplitudes and velocities increase as a result of
the emission of this radiation. On the other hand, if &5 < 1, the solitons’ amplitudes and velocities
decrease. Fig. 19 presents the corresponding values of f(; dr’ 8, Q3. Overall, we see that after
the fields have settled from their form given by the initial conditions to the values corresponding
to a solution, all the lumps in Fig. 17 cancel each other out.

8.4.2. Two-soliton configurations for ¢1 # 1 and g7 =1

Armed with the observation of the last subsection we present here results of some simulations
for 1 # 1 and &3 = 1 where, just as in the previous subsubsection, the initial conditions were
constructed from the analytical two-soliton solution of the mRLW equation.

Fig. 20 shows the u fields seen in the two-soliton simulation corresponding to 1 = 0.5 (rep-
resented by the red curve) and ¢ = 1.5 (represented by the green curve). We observe that when
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Fig. 21. The time-dependence of the determined values of the quantity d; 03 see in the simulations of equation (1.7)

for different values of 6] # 1,65 = 1.

— f=05ande=1

— fn=07ande;=1

— s =09ande=1

-0.10| fs=15ande=1 -0.10| fg=13ande=1 -0.10| fg=1lande=1
0 10 20 30 40 0 10 20 30 40 10 20 30 40
t t t

(a)

(b)

(©)

Fig. 22. The time-dependence of fé dr’ o, 03 seen in the simulations of equation (1.7) for different values of e] # 1,

e =1.



F. ter Braak et al. / Nuclear Physics B 939 (2019) 49-94 83

1.6 [— & =05ande; =1 1.6 [— & =05ande; =1 1.6 — &=05ande; =1
1.4 — f=15ande =1 1.4 = fs=15ande =1 S 4 — f=15ande =1
‘ J —_ J [
~ 1.2 o 12 M 12
T 10 < 10 AR
4+ 0.8 Il o8 | 0.8
-~
> 0.6 > 0.6 + 0.6
5 04 X 0.4 % 0.4
0.2 S 0.2 S 02
0.0 0.0 0.0
-200 —100 0 100 -200 -100 0 100 -200 -100 0 100
X X X
(a) Att=0 (b) At t =4.9 (c) At t =14.7
1.6 [— & =05ande, =1 1.6 — & =05ande=1 1.6 — & =05ande =1
— 14 |— a=15ande=1 —~ 14 — g =15ande; =1 1.4 — g =15ande; =1
& J = L J - L
1.2 1.2 o)
2 Lo I 10 <
II 08 i o8 &
+ 0.6 +« 0.6 -
% 04 % 04 351
S o2 S 02
0.0 0.0
-200 -100 0 100 -200 -100 0 100 -200 -100 0 100
X X X
(d) At t =34.3 (e) At t =44.1 (f) At t =149
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Fig. 24. The time-dependence of 9, Q(_3) seen in the simulations of equation (1.7) for two values of 1 # 1 and e = 1.

&1 < 1 the radiation emitted by the solitons has initially a positive amplitude, and the solitons’
amplitudes and velocities increases as a result of emission of this radiation. On the other hand, if
&1 > 1, the radiation emitted by the solitons has initially a negative amplitude, and the solitons’
amplitudes and velocities decrease. Comparing Fig. 20 with Fig. 18, we see that changing &
(while keeping ¢ = 1) results in more radiation emitted than when changing &, (while keep-
ing &; = 1) by the same amount. Figs. 21 and 22 present the time dependence of 3, 0~ and
fot dr’ 9,03 observed in these simulations, and for various other simulations with other values
of g1 # 1.

8.4.3. Three-soliton configurations for 1 # 1 and e = 1

The simulations of three soliton systems corresponding to 1 = 0.5, &2 =1 and ¢ = 1.5,
&2 = 1 are shown in Fig. 23, and Figs. 24 and 25 present the time dependence of the corre-
sponding 8; 0~ and f(; dr’ 3, 0. These simulations are run with the linear superposition
of three analytical one-soliton solutions of the mRLW equation as initial conditions, just as in
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subsubsection 8.1.2. These simulations show similar patterns to those seen for the two-soliton
simulations.

9. Conclusions

We have performed a detailed study of the quasi-integrability properties of various defor-
mations of the KdV equation which include among them the RLW and mRLW equations. The
charges were constructed by introducing an anomalous zero-curvature condition as explained in
section 2. Note that only the time component A; of the Lax pair was deformed away from the
KdV potentials. The space component A, was not deformed and so the charges Q"1 that
we presented in (2.24), are the same as the exact conserved charges of the KdV equation. The
difference lies in the anomalies a(~2"~ D also introduced in (2.24), which vanish for KdV but
not for its deformations. However, we have also shown that the deformations of the KdV theory
considered in this paper possess a very interesting property. Even though the charges are not
conserved and do vary during the scatterings of solitons, they all return, after the scattering, to
the values they had before the scattering. It is this property, the asymptotic conservation of the
charges, that defines what we call a quasi-integrability of the theory. The mechanisms underly-
ing such an asymptotic conservation of the charges are still not fully understood. Our results are
clearly consistent with the property of asymptotic stability of these models but we have tried to
relate them to some specific properties of the soliton fields. From these studies we have learned
that the quasi-integrability goes hand in hand with some special properties of the soliton solutions
under a specific space—time parity transformation, as explained in section 3, and that these prop-
erties lead to the asymptotic vanishing of the anomalies. In addition, another intriguing property
that correlates with quasi-integrability is that if a soliton solution of the exactly integrable theory
possesses the correct behaviour under this parity, then the dynamics of the deformed theories
seem to preserve this behaviour under a perturbative expansion around the integrable theory. In
section 6 we have presented the details of such an expansion and showed its compatibility with
the expected parity behaviour of the solutions.

Our analysis of the deformations of the KdV theory present two novel ideas in the study of the
quasi-integrability. First, we believe that it is the first time that the quasi-integrability ideas were
tested for the scattering of three solitons, where the implementation of the parity transformation
is much more involved. When the three solitons scatter in separated pairs, it is expected that
the quasi-integrability of two-soliton scattering would be preserved, since the third soliton is
away and not interacting with the other two. However, when all three solitons collide together
at the same time and in a given position in space, the three body interactions come into play,
and one cannot rely on the two body interactions to analyze the quasi-integrability. We have
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shown in section 7 that the exact Hirota three-soliton solutions of the KdV equation do have
the correct parity properties when their solitons all collide together at the same point in space.
Using the results of section 6 one could therefore expect that deformed three-soliton solutions
would possess the same property. That is exactly what our numerical simulations have shown:
the charges are indeed asymptotically conserved when the three solitons of various deformations
of the KdV theory collide together. This provides a strong support for our working definition of
quasi-integrability.

The other key result of the present paper is that it presents the first example of an analytical
and not only numerical, demonstration, of the quasi-integrability of a truly non-integrable theory.
This was discussed in section 5 where we have showed that the two-soliton sector of the mRLW
theory was analytically quasi-integrable. The proof of this result is valid for all charges from
their infinite set. Our numerical simulations have confirmed it for the case of the first non-trivial
charge. For next charges the results were also supportive; however, as the next charges involved
expressions which contained terms with more derivatives, our numerical results had more numer-
ical errors and so were less reliable. Clearly, better numerical techniques have to be developed to
prove our claims more decisively (i.e. to get the same accuracy as we had for Q(—3)). This work
lies beyond the present paper.

We must emphasise, however, that the strongest support for our working definition of quasi-
integrability comes from the results of our numerical simulations. In all simulations reported in
section 8 it has been shown that the charge Q(’3) is quasi-conserved, i.e. that it returns, after
the scattering of two or three solitons, to the value it had before the scattering. This quasi-
conservation has been tested to a very good precision. In addition, our simulations have shown
what had been observed before in other theories; namely, that the charge only varies in time when
the solitons come together and interact with each other. The charge remains constant when the
solitons are far apart. Another important and intriguing result of our simulations is related to the
observation that our simulations have shown that the interaction of radiation with the solitons
also seems to respect quasi-integrability.

For our simulations we have used the initial fields constructed from various combinations of
one soliton solutions of our equations. At the beginning of our study we did not have an expres-
sion for one soliton field when ¢; was different from one. So we used slightly incorrect fields
as seeds for these simulations. In these cases we observed a small amount of radiation sent out
while the initial configuration gradually settled to a proper solution of the deformed theory. The
radiation emitted by each soliton interacted nonlinearly with the other solitons, and we observed
that such a radiation-soliton interaction made the charge Q> to vary quite reasonably in time.
However, when the radiation and the soliton have got separated, the charge returned to its original
value. So, we have observed that the radiation-soliton interaction also seems to respect quasi-
integrability, but at this stage we do not have any clear idea why this property holds too. Our
analytical parity arguments do not apply to such an interaction. All our results have confirmed
our expectations as to the behaviour of the fields — supporting our claims of quasi-integrability
of our models.

We have recently found analytical expressions for 2 different one soliton solutions of the mod-
els when &1 # 1, which become the same, and agree with the known expression, in the limit of
&1 — 1. We expect that simulations with such fields would give even stronger results but they are
clearly outside the scope of this paper. As the two solutions have different dispersion relations it
would be interesting to study the effects of their difference on the properties of various superposi-
tions of the fields and their scattering properties. As our results, started with slightly incorrect ini-
tial fields, were in good agreement with our quasi-integrability expectations (as the radiation ef-
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fects were small and restricted themselves to the initial re-adjustments) we expect the effects also
to be very small, and though very important, they are clearly not likely to be of great help in what
we have tried to demonstrate in this paper. This is clearly one of the topics to study in future work.

The numerical methods used in this paper involved the specially constructed numerical pro-
grams which were based on the original program of [12] and have been appropriately adapted to
the numerical study of the equation (1.7). More details are given in appendix B. The results of
our numerical simulations supported very well our expectations. This was particularity true for
the lowest charge but it was also true to higher charges. However, expressions for higher charges
involved more derivatives of the fields and so our expressions were more prone to numerical
errors. Thus, although their behaviour supported our claims, the reliability of these results was
not as sound as for the ones we have included in this paper.
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Appendix A. A more conventional solution to (1.7) for the case &1 # 1

We have stated in the Introduction that when £ # 1 a one soliton solution with the usual dis-
persion relation (@ = #) cannot be found by the Hirota method. However, one can construct
it using a more direct method. Since, we are interested in traveling wave solutions we use the
ansatz

q=r&:; §=kx —owt (A.D)
in the equation (1.7), which then leads to the following ordinary differential equation
(@ — ko) fee = (4207 + 262202 fE = (0k® — 10k + £10%K2) freee =0 (A2)

where the subindices & denote the derivatives w.r.t. £. Since, we want to keep the same dispersion
k

relation as in the RLW and mRLW equations, we choose w to have the form w = ;= . Putting
this into (A.2), dropping an overall factor w, and denoting fss = g we get the equation
K3 B, K3 3
vt e (4+282)1 28 - [81 - +(1 —81)k‘} gee = 0. (A.3)
Dividing (A.3) by the factor % we note that it can be written as
§—Gg*—Hge=0 with G=2Q2+¢); H=1+ (e — 1) k% (A.4)

Note that by rescaling the function g and the variable & we can change the coefficients G and H
as we wish. In addition, the second derivative of cosh™ produce terms proportional to cosh™>
and cosh™, which can be cancelled by the g and g2 in the equation. So, we take the ansatz
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R

= — A5
cosh?(a€) (A-5)
Substituting it into (A.4) we get the equation
R 2 2
74[1+8a H-2GR+(1—4a H) cosh(2a§)]=0, (A.6)
2cosh™ (@ &)
which implies that
! d R 3 (A7)
o=—; an =—. .
2VH 2G
Thus
3
g= —— cosh™? d (A.8)
42+ e) 214 (g1 — 1) k2

Integrating this expression twice we find that

3[1+(e1 = 1) k] £
- 1 h bE+c A9
! 2+e2) [H(COS (2‘/1+<51 —he)) e (A9

with b and ¢ being arbitrary constants. One needs the condition
1+ (1= 1D k*>0 (A.10)

for this solution to be real.

Appendix B. Numerical methods
B.1. Numerical approximation of the deformations of the KdV equation

In order to perform numerical simulations of equation (1.7) we follow the techniques dis-
cussed by J.C. Eilbeck and G.R. McGuire [12]. The equation necessitates the introduction of
implicit methods. Hence first of all we introduce a new field p(x, t) by

P=4q, (B.1)

so that equation (1.7) can be written as

pr+ px — 4[7)% —282qxx Pt + Pxxx — €1 (Pxxt + Paxxx) =0. (B.2)

We see that the main difference in approximating this equation compared to the numerical
scheme used in [6] is an extra term proportional to pyyy.

In order to adjust our scheme to this extra term, we first discretize in both x and ¢ by taking a
finite set of points xg, x1, ..., xy and fg, t1, ..., tx, where h and t denote the step size in space
and time. Furthermore, we denote the grid points as (ik, mt) = (i, m), where i =0,1,2,..., N
and m =0,1,2,..., K, and we employ the notation p;” = p(ih,mt) and ¢;"" = q(ih, m7).
Finally, let v;"" denote our approximation to p;"" and let w;" denote our approximation to g;.

Next we introduce the following central finite difference operators by their actions on v;™:

82u™ = (v — 2v™ + )/ 2, (B.3)
Hev™ = (o — v )/2h, (B.4)
Hyv™ = " — o2, (B.5)
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and similarly on w;"”. Applying these operators to equation (B.2) in a straightforward manner
we get

H,v,-m + Hxv,-m —4 (Hxvim)z
— 26282w;"™ Hyv™ 4 82 Hyvi™ — &1 (82 Hyvi™ + 82 Hyv™) =0, (B.6)

which can be rewritten as

m+1 m+1 _ A m+1 m+1 m om+1 m, m+1 m o m+1
v; . vipp — 2 . Wi 1Y; 2w+ wi
2t 2h%t h%t
m—1 m m m—1 m—1 m—1
Y Vi T Ui e Vi — 2 v
21 2h 2h%t
m o om—1 _ m,m—1 m ,m—1
e wi Vi 2w+ wit (B.7)
h’t
m N2 m m m N2
(Ui+l) — 2vi+1vi71 + (i)
h2
m m m m
(1 etz 2y 200, vl
2h3

Next we introduce the following matrices and vectors

1 0 0 0 0 0
0 1 0 0 0 0
0 2h121 a21m 2h12r ?
a=|? 0 @m @ Fx , (B.8)
’ 0 0
1 m 1
s N2 i O
0 0 0 0 1 0
0 0 0 0 0 1
vg’“ co™
v’1"+1 C]m
v%"‘“ ™
B= : , C= , (B.9)
U%ﬂ N1
v%"‘l 67\1]
where
1 wh o —2w;™ 4+ wh il
ai" = - e e (B.10)
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m—1 m m m—1 m—1 m—1
em= Y Vw1 TVie 1”i+1 R
' 2t 2h 2h2t
m m—1 m, m—1 m ,m—1
_gsz_lv, —2w;""v; + w;”v;
2
) h*t , (B.11)
m m m m
W )” =207 v + ()
hz
m m m m
v =207+ 20" — vt
—(l—e)B2 Tl 22 =23, N =2,
2h°
with the following boundary conditions
" =vptt, =t (B.12)
o=t =it (B.13)

Note that we need 2 elements per boundary, which is a consequence of the term proportional
to p.xx. Having introduced this notation, our problem reduces to solving the following matrix
equation

AB=C, (B.14)

where we need to solve for vector B. In our algorithm we have used the well-known LU decom-
position method for this problem, see for instance the book [37] for more information.

Once we have solved for B, we have the values of v{” at the next time level. We then solve
equation (B.1) to determine all the values of w" at the next time level

1 —1
m w;’” B w;n m+1 m m—1
L = w!"" =2ty" +w]" . (B.15)

Repeating this procedure for many time levels allows us to determine the numerical time evolu-
tion of a system.

It is not too difficult to verify that this scheme is both second-order accurate in 7 and in A.
Furthermore, this scheme is an extension of the scheme discussed in [6], and so that gives us an
indication that we can trust the results of our simulations.

B.2. Summary of parameters used to produce figures
Tables 1, 2 and 3 show all the parameters used to produce the figures shown in this paper.
Appendix C. The s[(2) loop algebra

We use the sl(2) finite algebra with commutation relations
[T3, Te] = +T4 and [T}, T-1=2T53, (C.1
which is satisfied by the basis
1

T = Eai and T. =T £iT, (C2)

where o;, are the Pauli matrices. To proceed further, we take the following basis for the corre-
sponding loop algebra
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Table 1
This table summarizes the variables used to produce Figs. 1 to 8.

Figs. land2  Figs.3and4  Figs.5and 6  Figs. 7 and 8
X0 —50 —200 -50 —200
xy | 250 200 250 200
h 0.1 0.1 0.1 0.1
to 0 0 0 0
tx | 40 70 40 70
T 0.001 0.001 0.001 0.001
w; | 5.00 0.80 5.00 0.80
81 0.00 27.71 0.00 27.71
wy | 3.00 3.07 3.00 3.07
8 —40.00 106.28 —40.00 106.28
w3 | N/A 4.28 N/A 4.28
83 N/A 148.34 N/A 148.34
Table 2
This table summarizes the variables used to produce Figs. 9 to 19.
Figs.9,10and 11  Figs. 12, 13 and 14  Figs. 15, 16, 17, 18 and 19

X0 -50 —200 —50

xy | 300 200 300

h 0.1 0.1 0.1

to 0 0 0

txg | 40 70 40

T 0.001 0.001 0.001

w; | 5.00 0.80 5.00

81 0.00 27.71 0.00

wy | 3.00 3.07 3.00

8 —40.00 106.28 —40.00

w3 | N/A 4.28 N/A

83 N/A 148.34 N/A

Table 3

Fym1 =A" (T4 —AT-)

This table summarizes the variables used to produce

Figs. 20 to 25.

Figs. 23, 24 and 25

Figs. 20, 21 and 22
X0 —-50
xy | 300
h 0.1
to 0
tg 40
T 0.001
) | 5.00
81 0.00
wy | 3.00
8 —40.00
w3 | N/A
83 N/A

—200
300
0.1

0

70
0.001
0.80
27.71
3.07
106.28
4.28
148.34

bomy1 =A" (Ty +AT-) ,

and Fa, =20M"T3,

(C.3)

(C.4)
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where m € Z, and X is the so-called spectral parameter. The algebra is then given by

[b2m+1, bon+11 =0, (C.5)
[Fom+1, Font11=0, (C.6)
[Fom, F2,]1=0, (C.7)
(b2m+1, Foang1] = =2Fomgnt1y s (C.8)
[b2m+1, Fonl = =2 F2(ntny+1 5 (C.9)
[(Fom+1, Fanl = =2b2mtn)+1 - (C.10)

We introduce the grading operator as
d=1+22 L (C.11)

di
such that

[d, bams1] = @m + 1) bapmsrt and [d, Fyl=m Fp. (C.12)

The important ingredient in such procedure is that the generator b; in A, given in (2.1), is a
semi-simple element of the algebra in the sense that its adjoint action on the loop algebra, splits
it into kernel and image with a trivial intersection, i.e.

G=Ker+1Im; [b1, Ker]=0; Im=[b1,G]; KerNIm=0 (C.13)

and we have that

Ker = {by,1+1 |n€Z}; Im={F, |neZ} (C.14)
Appendix D. The parameters of the gauge transformation (2.7)

We give here the explicit expressions for the parameters of the group element performing the
gauge transformation (2.7):

1=0
1
sz—ﬂau
o= Lt
48
1
= Oy &Olbt
1
G = 5a [—a2u2 - 3au(2’0)] D.1)
1 2.(1,0) (3,0)
{5:—[0{ uu +au ]
192
= L ﬁuz—}—otu
192 2 o
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1= 20736 (22070240 + 9002u M Ou 0 4 450230 + 270050 |
1 22 45
= ax [m [?0[31/{3 + 76(21,{)2( +45052MMXX + 27auxxxx:|}
1 ) 2
6= 75 | 20t = 3600 =530 (1) SO o0 ()

— 1350%u19, 30 _ 27au(6’o)]
where we have used the notation
3" u = umm (D.2)

The explicit expressions for the first few components of the time component a; of transformed
connection given in (2.17) are given by

&) o« 5 G

a, =—7—u iy
Ol (07
=288 (”(10)> 288 2_ﬁG”
a™> = otut | euCOu? + o LazGu2+“2“(l’])” +La2u(2 0,
13824 1728 1728 192 1152 ' 576
- a2 (u(1,0))2 o? (u(z,O))Z - 20D, (1,0) B i Gy
1152 T s 1152 96~ "
-7 adud 50403 5a4(u(1’0))2u2 5%t 503Gud @Pul-Dy?
T 62208 20736 82944 55206 6912 | 3456
503u20,2 3,402 a3(u(2,0))2u BuOD 0, 3,0,0,60),
©i2 ez T 128 6912 B 2304
053(14(1’0))214(2’0) 502Gu0y 5a2G(u(l’O))2 a2uBVy  o2y®*0y
2304 1152 2304 4608 2304
az(u(z,()))2 az(u(w))z o2u(LD, 20 42,0, 2,0,1),3,0
T 4608 4608 4608 4608 4608
2u10,6.0 42,020,400  4G,40
T 2304 T 3 3sa
and
c®_g
<1> _0
<0) _o
2
i - 8ueS
X
2
o

( ) _ % 110 20D (10 ERD)
a Tt 5 24" 5 24" t o 24"
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=——X,
Y = —Loﬁ ud — i()(214(2’0) u— i012 (u(l’o))2 - L012 u? + iot Gu
! 432 36 48 144 24
1
— —O[u(l’l) — —a M(Z’O) — ! au(4’0)
48 48 48
o 1
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