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Abstract

The free generic Poisson algebras (GP-algebras) over a field k of characteristic 0 are studied. We

prove that certain properties of free Poisson algebras are true for free GP-algebras as well. In

particular, the universal multiplicative enveloping algebra U = U(GP(x1, . . . , xn)) of a free GP-

field GP(x1, . . . , xn) is a free ideal ring. Besides, the Poisson and polynomial dependence of two

elements are equivalent in GP(x1, . . . , xn). As a corollary, all automorphisms of the free GP-algebra

GP{x, y} are tame and we have the isomorphisms of groups of automorphisms Aut GP{x, y} ∼=

Aut P{x, y} ∼= Aut k[x, y].
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1. INTRODUCTION

Many interesting and important results are known about the structure of polynomial algebras, free

associative algebras, and free Lie algebras. Although free Poisson algebras are closely related to

these algebras, they were not studied till recently. The exact construction of a free Poisson algebra

first appeared in [22], where it was used for study of Poisson Jordan superalgebras. Then they were

used in [24, 25], in the proof of the Nagata conjecture on the existence of wild automorphisms in

the polynomial algebra of rank three. A systematic study of free Poisson algebras (over a field k

of characteristic zero) was started in [13], where the following analogue of the famous Bergman

Centralizer Theorem [2] was proved: the centralizer of a nonconstant element of a free Poisson

algebra is a polynomial algebra in single variable. In [12], the automorphisms and derivations of

the free Poisson algebra P〈x, y〉 of rank two were studied, and analogues of classical Jung’s [8]

and Rentschler’s [21] theorems were proved: all automorphisms of P{x, y} are tame and all locally

nilpotent derivations are triangulable; moreover, Aut P{x, y} ∼= Aut k〈x, y〉 ∼= Aut k[x, y], where

k〈x, y〉 and k[x, y] denote the free associative and polynomial algebras, respectively. Later on, the

automorphisms of the free Poisson field P(x, y) of rank two were studied, and it was proved the

isomorphism Aut P(x, y) ∼= Aut k(x, y), where k(x, y) is the field of rational functions [14]. Observe

that the last group is in turn isomorphic to the Cremona group Cr2(k) of birational automorphisms

of the projective plane P2
k .

Furthermore, in [11] the Poisson and polynomial dependences were studied in free Poisson algebras

and free Poisson fields. In [15], the Freiheitssatz was proved for free Poisson algebras. Finally, in

[16, 17, 30], the universal enveloping algebras of Poisson algebras were studied.
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In this paper, we prove some analogues of the cited above results for free generic Poisson algebras.

A generic Poisson algebra (GP-algebra) is a linear space with two operations:

• associative and commutative product x · y = xy,

• anti-commutative bracket {x, y},

satisfying the Leibniz identity

{x, yz} = {x, y}z + {x, z}y. (1)

Contrary to usual Poisson algebras, it is not required here that the bracket {, } were a Lie one. These

algebras were introduced in [23] in the study of speciality and deformations of Malcev-Poisson

algebras.

The variety of GP algebras contains Poisson algebras and some interesting examples of non-

Poisson algebras (Poisson-Malcev algebras [26, 31], Binary-Lie Poisson algebras [1], associated

graded algebras of universal enveloping algebras of Malcev algebras [20], Bol algebras [18], and

Sabinin algebras [19]).

An important example of generic Poisson algebra comes from the following setting. Let A be a

commutative associative algebra with 2n pairwise commuting derivations di, δj, i, j = 1 . . . , n.
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Define on A a new binary operation

{a, b} =

n∑

n=1

(di(a)δi(b)− δi(a)di(b)),

then A with this new bracket is known to be a Poisson algebra. If we allow the derivations di, δi to be

non-commuting then this bracket defines on a commutative algebra A a structure of a GP-algebra.

The free GP-algebras were first considered in [9], where the Freiheitssatz was proved for them.

Here we continue the study of these algebras.

The paper is organized as follow:

• In section 2 we study general properties of generic Poisson modules and of universal multiplica-

tive enveloping algebras.

• In section 3 we determine structure of free GP-algebra and of free GP-field.

• In section 4 we prove an analogue of Makar-Limanov - Shestakov’s Theorem [11] that two

Poisson dependent elements in a free GP-field are polynomial dependent.

• In section 5 we apply the obtained results to the study of automorphisms the free GP-algebra

GP{x, y} of rank 2 and prove that

Aut GP{x, y} ∼= Aut P{x, y} ∼= Aut k〈x, y〉 ∼= Aut k[x, y].

Throughout the paper, k denotes a field of characteristic zero.
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2. GENERIC POISSON MODULES AND UNIVERSAL MULTIPLICATIVE

ENVELOPING ALGEBRAS

Following to the general conception due to Eilenberg [6], define a notion of a generic Poisson

module. Let P be a GP-algebra over k. A vector space V over k is called a generic Poisson module

or just a GP-module over P if there are two bilinear maps

P × V → V , (p, v) → p · v,

and

P × V → V , (p, v) → {p, v},

such that the split null extension E = P ⊕ V with the operations

(p + v) · (q + u) = p · q + p · u + q · v,

{p + v, q + u} = {p, q} + {p, u} − {q, v},

is a GP-algebra. It is easy to see that this is equivalent to require that the following relations hold:

(x · y) · v = x · (y · v),

{x · y, v} = x · {y, v} + y · {x, v},

{x, y} · v = {x, y · v} − y · {x, v}

for all x, y ∈ P and v ∈ V .

Let V be a GP-module over a GP-algebra P. For every x ∈ P we denote by Mx and Hx the following

operators acting on V: Mx(v) = x · v, Hx(v) = {x, v} for any v ∈ V . Then the defining relations for

6
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a GP-module can be written as

Mxy = MxMy, (2)

Hxy = MyHx + MxHy, (3)

M{x,y} = [Hx, My], (4)

respectively.

A pair of mappings (M, H) : P → End V; x 7→ Mx, x 7→ Hx which satisfies identities (2) -

(4) we will call a representation of a GP-algebra P associated to a GP-module V . Clearly, the

notions of a module and of an associated representation define each other. Sometimes we will use

a term “representation” in more general situation, just for a pair of mappings (M, H) : P → A of a

GP-algebra P into an associative algebra A which satisfies identities (2) - (4).

If P is a unitary GP-algebra with the unit element 1, then we will assume that M1 = IdV , that is, V

is unitary. It is easy to see that in this case also H1 = 0.

Following to [7] (see also [30]), define the (unitary) universal multiplicative enveloping algebra

U(P) of a GP-algebra P. Let mP = {ma|a ∈ P} and hP = {ha|a ∈ P} be two copies of the vector

space P endowed with two linear isomorphisms m : P → mP (a 7→ ma) and h : P → hP (a 7→ ha).

Then U(P) (or Pe in notation of [30]) is an associative algebra over k, with identity 1, generated

7
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by the direct sum of two linear spaces mP and hP, subject to the relations

mxy = mxmy, (5)

hxy = myhx + mxhy, (6)

m{x,y} = hxmy − myhx = [hx, my], (7)

m1 = 1 (8)

for all x, y ∈ P.

In a standard way, the universal multiplicative enveloping algebra is uniquely defined up to

isomorphism by its universal property:

Proposition 2.1. Let P be a GP-algebra. For any representation (M, H) : P → A of P into an

associative algebra A there exists a unique algebra homomophism ϕ : U(P) → A such that

ϕ(mx) = Mx, ϕ(hx) = Hx for any x ∈ P.

By the definition of the universal multiplicative enveloping algebra, the notion of a GP-module

over a GP-algebra is equivalent to the notion of a left module over its universal enveloping algebra.

Let V be an arbitrary GP-module over P. Then V becomes a left U(P)-module under the action

mxv = x · v, hxv = {x, v},

for all x ∈ P and v ∈ V . Conversely, if V is a left U(P)-module then the same formulas turn V to a

GP-module over P. Therefore, we have the following
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Proposition 2.2. The category of unitary GP-modules over a unitary GP-algebra P and the

category of (left) unitary modules over the universal enveloping algebra U(P) are equivalent.

The first example of a GP-module over P is the regular module Reg P = P, under the actions x · v

and {x, v}. Since 1 ∈ P and mx1 = x, it follows that the mapping

m : P → U(P), x → mx,

is an injection. Therefore we may identify mx with x. After this identification, the essential part of

the defining relations of the U(P) are

hxy = yhx + xhy, (9)

{x, y} = hxy − yhx = [hx, y], (10)

for all x, y ∈ P. In particular, it follows from (9) that the mapping h is a derivation of P into the left

P-module U(P). Moreover, if x ∈ P is an invertible element then

hx−1 = −x−2hx, hx−1y = −yx−2hx + x−1hy. (11)

Recall the notion of Hopf smash product. Let H be a Hopf algebra. A (left) H-module algebra A

is an algebra which is a (left) module over the algebra H such that

h · 1A = ǫ(h)1A and h · (ab) = (h(1) · a)(h(2) · b)

whenever a, b ∈ A, h ∈ H, ǫ is the counit of H, and1(h) = h(1)⊗h(2) is sumless Sweedler notation

for the coproduct in H.

9
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Now, let H be a Hopf algebra and A be a left Hopf H-module algebra. The smash product algebra

A ♯H is the vector space A ⊗ H with the product

(a ⊗ h)(b ⊗ k) := a(h(1) · b)⊗ h(2)k,

and we write a♯h for a ⊗ h in this context.

It is easy to see that A ∼= A ♯ 1 and H ∼= 1 ♯H; moreover, A ♯H ∼= A ⊗ H as a left A-module.

Besides, A is a left A ♯H-module under (a ♯ h)⊗ b 7→ a(h · b).

Observe that the smash product A ♯H is characterized by the following universal property:

For any associative algebra C and homomorphisms of algebras ϕ : A → C, ψ : H → C such that

ψ(h)ϕ(a) = ϕ(h(1) · a)ψ(h(2)) for any a ∈ A, h ∈ H, (12)

there exists a unique homomorphism ϕ♯ψ : A ♯H → C such that (ϕ♯ψ)(a♯1H) =

ϕ(a), (ϕ♯ψ)(1A♯h) = ψ(h).

An important example of smash-product is obtained when a Lie algebra L acts by derivations

on an algebra A. In this case A becomes a Lie module over L and also a left module over the

enveloping algebra U(L). It is well known that this U(L)-module structure is in fact a left Hopf

module structure, and we may construct the smash Hopf product A ♯U(L).
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In particular, let i : V → Der A be a linear mapping of a vector space V to the algebra of derivations

of an associative algebra A. We can extend i to a homomorphism of the free Lie algebra Lie(V) over

V to Der A. Then, as above, the algebra A has a left Hopf module structure over U(Lie(V)) ∼= k〈V〉,

the free associative algebra (tensor algebra) over the space V , and we may consider the smash Hopf

product A ♯ k〈V〉.

We will often use the following simple fact:

Lemma 2.3. Let A ♯ k〈V〉 be a smash Hopf product constructed as above via a linear mapping

i : V → Der A, and let B be an associative algebra. For any algebra homomorphism ϕ : A → B

and a linear mapping ψ : V → B such that

[ψ(v),ϕ(a)] = ϕ(i(v)(a)) = ϕ(v · a) for any v ∈ V , a ∈ A, (13)

there exists a unique homomorphism ϕ♯ψ : A ♯ k〈V〉 → B extending the mappings ϕ and ψ .

Proof. The mappingψ is extended to an algebra homomorphism of k〈V〉 to B, which we will denote

by ψ as well. Let us check that the pair (ϕ,ψ) satisfies condition (12). Let a ∈ A, u ∈ k〈V〉. It

suffices to consider the case when u is a monomial: u = v1 · · · vn, vi ∈ V . For n = 1 the condition

holds by (13). If n > 1, we write u = wv, v ∈ V , then

1(u) = 1(w)1(v) = (w(1) ⊗ w(2))(1 ⊗ v + v ⊗ 1) = w(1) ⊗ w(2)v + w(1)v ⊗ w(2),

11
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and we have by (13) and induction

ψ(u)ϕ(a) = ψ(w)ψ(v)ϕ(a) = ψ(w)(ϕ(a)ψ(v)+ ϕ(i(v)(a))

= ϕ(w(1) · a)ψ(w(2))ψ(v)+ ϕ(w(1) · (v · a))ψ(w(2))

= ϕ(w(1) · a)ψ(w(2)v)+ ϕ(w(1) · (v · a))ψ(w(2)) = ϕ(u(1) · a)ψ(u(2)).

By the universal property of smash product, there exists a homomorphism ϕ♯ψ : A ♯ k〈V〉 → B

extending ϕ and ψ .

Theorem 2.4. Let P be a GP-algebra. Then U(P) ∼= (P ♯ k〈P〉)/I, where k〈P〉 is the free associative

algebra over the space P with the canonical Hopf algebra structure and I is the ideal of P ♯ k〈P〉

generated by the set {1♯(ab)− a♯b − b♯a | a, b ∈ P, ab is the product in P}.

Proof. Consider the linear mapping τ : P → Der P, τ(a)(x) = {a, x}. As above, we may construct

the smash Hopf product P ♯ k〈P〉. For any a, v ∈ P we have by (7)

[hv, ma] = m{v,a} = mv· a,

which proves that the applications m, h : P → U(P), m : p 7→ mp, h : p 7→ hp satisfy identity (13).

By lemma 2.3, there exists a homomorphism m♯h : P ♯ k〈P〉 → U(P) extending homomorphisms

m and h. Clearly, m♯h is surjective. By (9), the ideal I is contained in ker(m♯h), hence U(P) is a

homomorphic image of (P ♯ k〈P〉)/I. Finally, consider the mappings m̃, h̃ : P → (P ♯ k〈P〉)/I, m̃ :

p 7→ p♯1 + I, h̃ : p 7→ 1♯p + I. One can easily check that these mappings satisfy relations

(5)–(8), hence there exists a homomorphism φ : U(P) → (P ♯ k〈P〉)/I such that φ(m(p)) =

m̃(p), φ(h(p)) = h̃(p) for any p ∈ P. This implies clearly that U(P) ∼= (P ♯ k〈P〉)/I.

12
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Let L be an anticommutative algebra. The anticommutative product [, ] on L can be extended

via Leibniz identity (1) toan anticommutative bracket {, } on the (associative and commutative)

symmetric algebra k[L]. In this way, the algebra k[L] is endowed with the structure of a GP-algebra.

If e1, e2, . . . , ek, . . . is a linear basis of L, then k[L] is the polynomial algebra k[e1, e2, . . . , ek, . . .]

on the variables e1, e2, . . . , ek, . . ..

Theorem 2.5. Let L be an anticommutative algebra and k[L] be the symmetric algebra over L

equipped with the GP-algebra structure. Then

U(k[L]) ∼= k[L] ♯ k〈L〉,

where k〈L〉 is the free associative algebra over the space L with the canonical Hopf algebra

structure.

Proof. Consider the linear mapping τ : L → Der k[L], τ(a)(x) = {a, x}. As above, we may

construct the smash Hopfproduct k[L] ♯ k〈L〉, and a homomorphism ψ : k[L] ♯ k〈L〉 → U(k[L])

such that ψ : a ♯ l 7→ mahl for any a ∈ k[L], l ∈ L.

On the other hand, consider the mapping h : L → k[L] ♯ k〈L〉, h : l 7→ 1 ♯ l for l ∈ L. By the

propertiesof the symmetric algebra k[L], it is extended uniquely to a derivation H of the algebra

k[L] into the left k[L]-module k[L] ♯ k〈L〉. Let M : a 7→ a ♯ 1, then the pair of mappings (M, H) :

k[L] → k[L] ♯ k〈L〉 evidently satisfies identities (2), (3). To prove that it satisfies (4), consider,

for any a ∈ k[L], the mapping Ta : k[L] → k[L] ♯ k〈L〉, Ta : b 7→ M{b,a} − [Hb, Ma]. It is

13
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easy to see that Ta is a derivation of the algebra k[L] into the left k[L]-module k[L] ♯ k〈L〉. For any

l ∈ L, Ta(l) = 0, which implies that Ta = 0 and the pair (M, H) satisfies (4). By Proposition 2.1,

there exists a homomorphism ϕ : U(k[L]) → k[L] ♯ k〈L〉 such that ϕ(ma) = a ♯1, ϕ(hl) = 1 ♯ l for

any a ∈ k[L], l ∈ L. One can easily see that the homomorphisms ψ ,ϕ are mutually inverse.

Corollary 2.6. Let L be an anticommutative algebra with a base e1, . . . , en, . . .. The subalgebra

A of U(k[L]) generated by the elements he1
, . . . , hen

, . . . is a free associative algebra in variables

he1
, . . . , hen

, . . .. The left k[L]-module U(k[L]) is isomorphic to the left commutative k[L]-module

k[L] ⊗ A.

If L is a Lie algebra then the GP-algebra k[L] is in fact a Lie-Poisson algebra (a P-algebra). Denote

in this case by ULie(k[L]) its universal multiplicative enveloping algebra as a P-algebra considered

in [16, 17, 30]. Similar to the proof of the theorem, we get the following

Remark 2.7. Let L be a Lie algebra. Then ULie(k[L]) ∼= k[L] ♯U(L) where U(L) is the universal

enveloping associative algebra of the Lie algebra L. In particular, for a free P-algebra P〈X〉 we have

ULie(P〈X〉) ∼= P〈X〉 ♯ k〈X〉.

Let P be a GP-algebra and S ⊂ P be a multiplicative subset of P. The bracket {. , .} can be extended

to the algebra of fractions S−1P via

{s−1a, t−1b} = (st)−2({a, b}st − {a, t}sb − {s, b}at + {s, t}ab), s, t ∈ S, a, b ∈ P.

14
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In this way, S−1P also has a structure of a GP-algebra. In particular, the field k(L) of rational

functions on an anticommutative algebra L may be considered as a GP-algebra. As above, we may

construct the smash Hopf product k(L) ♯ k〈L〉 via the linear mapping i : L → Der k(L), i(l)(a) =

{a, l}.

Theorem 2.8. U(k(L)) ∼= k(L) ♯ k〈L〉.

Proof. By Lemma 2.3 again, there exists a homomorphism ψ : k(L) ♯ k〈L〉 → U(k(L)) such that

ψ : a ♯ l 7→ mahl for any a ∈ k(L), l ∈ L. On the other hand, the mapping l 7→ 1 ♯ l, l ∈ L, is

extended uniquely first to a derivation of the algebra k[L] and then to a derivation H of the field

k(L) into the left vector k(L)-space k(L) ♯ k〈L〉. Let M : a 7→ a ♯ 1, then, as in the proof of Theorem

2.5, one can verify that the pair of mappings (M, H) : k(L) → k(L) ♯ k〈L〉 satisfies identities (2) -

(4). By Proposition 2.1 again, there exists a homomorphism ϕ : U(k(L)) → k(L) ♯ k〈L〉 such that

ϕ(ma) = a ♯1, ϕ(hl) = 1 ♯ l for any a ∈ k(L), l ∈ L. One can easily see that the homomorphisms

ψ ,ϕ are mutually inversible.

Corollary 2.9. Let L be an anticommutative algebra. Then U(k[L]) as a left k[L]-module is

isomorphic to k[L] ⊗k k〈L〉. Similarly, U(k(L)) ∼= k(L)⊗k k〈L〉 as a left k(L)-vector space.
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3. FREE GP-ALGEBRAS AND FREE GP-FIELDS

As usually, we call a GP-algebra P on a set of generators X the free GP-algebra with the set of

free generators X, if for any GP-algebra A, any mapping φ of X into A is uniquely extended to a

GP-algebra homomorphism φ∗ : P → A. From now on, AC〈X〉 and GP〈X〉 will denote the free

anticommutative algebra and the free GP-algebra on the set of free generators X over k.

Lemma 3.1. GP〈X〉 ∼= k[AC〈X〉].

Proof. Let A be a GP-algebra, and let φ : X → A be a mapping. By the universal property of

free algebras, φ extends uniquely to an anticommutative algebra homomorphism φ1 : AC〈X〉 →

〈A, +, {, }〉. Similarly, by the universal property of symmetric algebras, a linear mapping φ1 extends

uniquely to a homomorphism of associative algebras φ∗ : k[AC〈X〉] → A. Finally, the Leibniz

identity readily implies that φ∗ preserve brackets. The lemma is proved.

The corresponding field of fractions k(AC〈X〉) we will call the free GP-field on the set of free

generators X and will denote as QGP〈X〉. Theorems 2.5, 2.8 imply

Corollary 3.2. U(GP〈X〉) ∼= GP〈X〉 ♯ k〈AC〈X〉〉, U(QGP〈X〉) ∼= QGP〈X〉 ♯ k〈AC〈X〉〉

Let U = A ♯ k〈V〉 be, as above, a smash Hopf product induced by a linear mapping V → Der A.

We know that k〈V〉 = ⊕i≥0V⊗i, hence U = ⊕i≥0A ♯V⊗i. Denote Un = ⊕n
i=0A ♯V⊗i, then one can
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easily check that

A ♯ 1 = U0 ⊂ U1 ⊂ · · · ⊂ Un ⊂ · · · (14)

is a filtration on U, that is, UiUj ⊆ Ui+j for all i, j ≥ 0 and ∪i≥0Ui = U. Put

gr U = gr U0 ⊕ gr U1 ⊕ · · · ⊕ gr Un ⊕ · · · ,

where gr U0 = A ♯ 1 and gr Ui = Ui/Ui−1 for i ≥ 1. The multiplication on U induces a

multiplication on gr U and the graded vector space gr U becomes a graded algebra.

Proposition 3.3. The graded algebra gr U is isomorphic to A ⊗ k〈V〉.

Proof. Every element a ∈ gr Uk may be written in the form a =
∑

i ai ♯ vi + Uk−1, for some ai ∈

A, vi ∈ V⊗k. Define ϕk(a) =
∑

i ai⊗vi, then it is easy to see that the mapping ϕk : gr Uk → A⊗V⊗k

is correctly defined and is an isomorphism of left A-modules. Let ϕ = {ϕk}k≥0 : gr U → A ⊗

k〈V〉, ϕ(u) = ϕk(u) if u ∈ gr Uk; then evidently ϕ is an isomorphism of A-modules. Furthermore,

for any a, b ∈ A, v ∈ V⊗i, u ∈ V⊗j, consider the product

(a ♯ v)(b ♯ u) =
∑

(v)

av(1)(b) ♯ v(2)u = ab ♯ vu +
∑

v(2)∈
∑

k<i V⊗k

av(1)(b) ♯ v(2)u ∈ ab ♯ vu + Ui+j−1.

This proves that ϕ((a ♯ v + Ui−1)(b ♯ u + Uj−1)) = ab ⊗ vu = (a ⊗ v)(b ⊗ u) = ϕ(a ♯ v +

Ui−1)ϕ(b ♯ u + Uj−1). Therefore, ϕ is an algebra isomorphism.

Associate with filtration (14) the corresponding value function v : (U\{0}) → N; v(u) = n if

u ∈ Un\Un−1 (see [4]).
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Theorem 3.4. Let A be a field, then the above smash product U = A ♯ k〈V〉 satisfies the weak

algorithm for the value function v and it is a free ideal ring.

Proof. We consider only the left dependence in U since the right dependence can be treated

similarly. We have to prove that for any finite set of left U-dependent elements s1, s2, . . . , sk of

U with v(s1) ≤ v(s2) ≤ · · · ≤ v(sk) there exist i ∈ {1, · · · , k} and t1, . . . , ti−1 ∈ U such that

v(si − t1s1 − · · · − ti−1si−1) < v(si) and v(tj)+ v(sj) ≤ v(si) for all j ∈ {1, . . . , i − 1} (see [4]).

For an element u ∈ U with v(u) = n we denote by ū = u+Un−1 its projection in gr Un = Un/Un−1.

Assume that
∑k

r=1 ursr = 0. Put m = max{v(ur) + v(sr) | 1 ≤ r ≤ k}. Let r1, . . . , rl be the set of

indices r with v(ur)+ v(sr) = m. Consider
l∑

j=1

ūrj
s̄rj

=




l∑

j=1

urj
srj


+ Um−1 =

(
k∑

r=1

ursr

)
+ Um−1 = 0̄.

This equality holds in the algebra gr U ∼= A ⊗ k〈V〉 ∼= A〈V〉 which is a free associative A-algebra

(a tensor algebra) over the space of V . It gives a nontrivial left dependence of the homogeneous

elements s̄r1
, s̄r2

, . . . , s̄rl
. The free algebra A〈V〉 has a natural degree function deg with respect to the

generating space V and satisfies the weak algorithm for it [4]. Therefore, there exist i and elements

tr1
, · · · , tri−1

∈ U such that

s̄ri
= t̄r1

s̄r1
+ · · · + t̄ri−1

s̄ri−1
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and deg(t̄rj
) + deg(s̄rj

) ≤ deg(s̄ri
) for all j ∈ {1, . . . , i − 1}. Observe that deg(ū) = v(u) for any

u ∈ U. Therefore, we have

v(sri
− tr1

sr1
− · · · − tri−1

sri−1
) < v(sri

)

and v(trj
)+ v(srj

) ≤ v(sri
) for all j < i.

The proof of the theorem is constructive. Hence the standard algorithms (see, for example [29])

give the next result.

Corollary 3.5. Let A be a field and U = A ♯ k〈V〉 the above smash product. Then

(i) The left ideal membership problem for U is algorithmically decidable;

(ii) The left dependence of a finite system of elements of U is algorithmically recognizable.

Taking in account Corollary 3.2, we have

Corollary 3.6.

(i) The two problems from the previous corollary have positive solution in the universal multi-

plicative enveloping algebra U(QGP〈X〉) of the free GP-field QGP〈X〉;
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(ii) The left dependence of a finite system of elements is also algorithmically recognizable in the

universal multiplicative enveloping algebra U(GP〈X〉) of the free GP-algebra U(GP〈X〉).

Proof. It suffices only to prove (ii). Since U(GP〈X〉) ⊂ U(QGP〈X〉), for any finite system

s1, . . . , sk ∈ U(GP〈X〉) we may recognize whether it is left dependent in U(QGP〈X〉). If it is

left independent in U(QGP〈X〉) then clearly it is so in U(GP〈X〉). Assume now that the system

s1, . . . , sk is left dependent in U(QGP〈X〉); then there exist u1, . . . , uk ∈ U(QGP〈X〉) such that

∑k
i=1 uisi = 0. The algebras U(QGP〈X〉) and U(GP〈X〉) are isomorphic, as left GP〈X〉-modules,

to QGP〈X〉⊗k〈AC〈X〉〉 and GP〈X〉⊗k〈AC〈X〉〉, respectively. Therefore, there exist 0 6= g ∈ GP〈X〉

such that gui ∈ U(GP〈X〉) for all i = 1, . . . , k, and we have 0 = g(
∑k

i=1 uisi) =
∑k

i=1(gui)si,

which gives left dependence of s1, . . . , sk over U(GP〈X〉).

4. POISSON DEPENDENCE OF TWO ELEMENTS

Let S be an arbirtary GP-algebra over k. Elements a1, a2, . . . , am of S are called Poisson dependent

if there exists a non-zero element p(x1, x2, . . . , xm) in a free GP-algebra GP〈x1, x2, . . . , xm〉 such that

p(a1, a2, . . . , am) = 0 in S; otherwise a1, a2, . . . , am are called Poisson free or Poisson independent.

If a1, a2, . . . , am are Poisson free then the Poisson subalgebra of S generated by these elements is

a free GP-algebra in these variables.

Similarly, elements a1, a2, . . . , am are called polynomially dependent if there exist a non-zero

polynomial f (x1, x2, . . . , xm) ∈ k[x1, x2, . . . , xm] such that f (a1, a2, . . . , am) = 0.
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It was proved in [11] that in a free Poisson field any two Poisson dependent elements are

polynomially dependent. In this section we will prove that the same fact is true in a free GP-field.

A family of polynomial weight degree functions can be defined on k[y1, y2, . . .] by giving arbitrary

real weight wi = w(yi) to the generators and extending it on monomials M = y
j1
1 y

j2
2 . . . by

w(M) =
∑

i

jiw(yi). Then for f ∈ k[y1, y2, . . .] degree can be defined as D(f ) = max{w(M)|M ∈ f },

i.e. maximum by all monomials contained in f with non-zero coefficients. Of course not all of

these functions make sense for GP as a generic Poisson algebra. We say that a weight degree

function D on GP is compatible with the generic Poisson structures if it satisfies the following

natural condition:

for any two monomials M1, M2 ∈ GP (as a polynomial algebra) the bracket {M1, M2} is D-

homogeneous.

For example, the weight which is defined on an anticommutative monomial y as the number of

appearances of a free generator xk in y defines a compatible degree function dxk
. It is easy to check

(see [11] ) that in order to define a compatible degree function the weight should be given on an

anticommutative monomial by

w(y) =
∑

(w(xi)− c)dxi
(y)+ c,

where w(xi) and c are arbitrary real numbers.
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Examples of compatible degree function are dxk
defined above and the Poisson degree which

corresponds to w(x1) = . . . = w(xn) = 1, c = 0. Total polynomial degree deg is also compatible

and corresponds to w(x1) = . . . = w(xn) = c = 1.

Observe that deg({f , g}) = deg(f ) + deg(g) − 1 for homogeneous f and g if {f , g} 6= 0. Similar

relation is true for any compatible weight degree function:

D({f , g}) = D(f )+ D(g)− c

if {f , g} 6= 0 and f and g are D-homogeneous.

We will consider only weight functions for which all parameters are integers.

Below P and Q denote the free GP-algebra GP〈X〉 and the free GP-field QGP〈X〉 on a set of free

generators X = {x1, x2 . . .}.

Lemma 4.1. If f , g ∈ Q are Poisson dependent and r1(x1, x2), r2(x1, x2) ∈ k(x1, x2) are rational

functions then r1(f , g), r2(f , g) ∈ Q are also Poisson dependent.

Proof. We modify the proof for free Poisson algebras in [11, Lemma 1]. Elements f , g

are Poisson dependent if the basic anticommutative monomials of f , g are algebraically

dependent. Denote by y1, . . . , yN(a) the set of all basic anticommutative monomials in two

variables with d(yj) ≤ a. Consider the smallest A for which y1(f , g), y2(f , g), . . . , yN(A)(f , g)
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are algebraically dependent. It is easy to check using induction on ai = d(yi(x1, x2)) that

yi(r1(f , g), r2(f , g)) ∈ k(f , g)[y3(f , g), . . . , yN(ai)(f , g)]. Hence there is an algebraic dependence

between y1(r1(f , g), r2(f , g)), . . . , yN(A)(r1(f , g), r2(f , g)).

For f ∈ Q denote by supp (f ) the minimal set of polynomial variables on which f depends.

Lemma 4.2 ([11, Lemma 2]). Let f , g ∈ Q be elements which are algebraically independent. Then

for a given polynomial weight degree function D there exists an element h ∈ k[f , g] such that the

leading form fD, hD are algebraically independent.

Lemma 4.3 ([11, Lemma 3]). Let f , g ∈ Q be elements which are Poisson dependent but not

algebraically dependent. Then there exists a pair of elements which are homogeneous relative to

any compatible weight degree function D with the same property.

We call elements which are homogeneous relative to all compatible degree functions completely

homogeneous.

Lemma 4.4. Let f , g ∈ Q be a Poisson dependent pair and x be the smallest element in supp (f ).

Write f = xnfx + · · · , g = xmgx + · · · , where fx, gx do not contain x and dots stand for terms with

smaller (polynomial) degrees in x. Then the pair fx, gx is Poisson dependent as well.
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Proof. Consider the Poisson polynomial P(x1, x2) for which P(f , g) = 0; it is a sum of monomials

of the type

u = y
k1

1 y
k2

2 . . . y
ks
s ,

where yi are anticommutative monomials in x1, x2. We have

{f , g} = xn+m{fx, gx} + · · · ,

yi(f , g) = xNiyi(fx, gx)+ · · · , Ni = ndx1
(yi)+ mdx2

(yi),

u(f , g) = xN(u)u(fx, gx)+ · · · , N(u) =
∑

kiNi,

where again dots means terms of smaller degree in x. Observe that x cannot appear in {fx, gx} or in

yi(fx, gx)when d(yi) > 1 since for any y ∈ supp (f ), z ∈ supp (g)we have {y, z} > y ≥ x. Therefore

0 = P(f , g) = Q(fx, gx)x
N + · · · ,

where N = max{N(u)| u monomial in P(x1, x2)}, Q(x1, x2) =
∑

N(u)=N u(x1, x2). Since all

monomials u in P(x1, x2) are linearly independent, we have Q(x1, x2) 6= 0 and hence fx, gx are

Poisson dependent.

Lemma 4.5. In the conditions of Lemma 4.4, assume that fx = 1, f = xn+αxn−1+· · · , deg(gx) 6= 0.

Then the pair nx + α, gx is Poisson dependent.
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Proof. We modify the proof for free Poisson algebras in [11, Lemma 5]. Let us check by induction

on the Poisson degree that

yi(f , g) = xNiyi(nx + α, gx)+ · · ·

for any anticommutative monomial yi(x1, x2) 6= x1, where Ni = (n − 1)dx1
(yi) + mdx2

(yi) and

dots stand for the terms of smaller degree in x (recall that degx(g) = m). The base of induction

for y2(f , g) = g is clear. An anticommutative monomial yk(f , g) with k > 2 can be presented as

{yl(f , g), yj(f , g)}, where yl, yj are monomials with a smaller Poisson degree and l < j. If k = 3,

then l = 1, j = 2 and

y3(f , g) = {f , g} = nxn−1+m{x, gx} + xn−1+m{α, gx} + · · · = xn−1+m{nx + α, gx} + · · ·

= xn−1+my3(nx + α, gx)+ · · · .

If k > 3 then by induction

yj(f , g) = xNjyj(nx + α, gx)+ · · ·

and either l = 1 and yl(f , g) = f , or l > 1 and

yl(f , g) = xNlyl(nx + α, gx)+ · · · .

In both cases, the similar computations verify the claim. It is essential that x is the smallest element

in supp (f ) because supp ({y, z}) does not contain x if y ≥ x and no additional powers of x may

appear as results of Poisson brackets.
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Therefore, for u = y
k1

1 y
k2

2 . . . y
ks
s the leading form of u(f , g) relative to x is

xnk1+Nuy2(nx + α, gx)
k2 . . . ys(nx + α, gx)

ks ,

where

Nu = (n − 1)dx1
(y

k2

2 . . . y
ks
s )+ mdx2

(y
k2

2 . . . y
ks
s ).

Hence different monomials of P(f , g) cannot cancel in the x-leading form of P(f , g) and the

elements nx + α, gx are Poisson dependent.

Consider now a pair of algebraically independent elements f , g ∈ Q. By Shirshov Theorem a

subalgebra of a free anticommutative algebra is a free anticommutative algebra (see [27, 28]) so

the elements of supp (f ) ∪ supp (g) generate a free anticommutative algebra A with the free basis

which contains two smallest elements x, y of supp (f ) ∪ supp (g). Elements x and y are different

since otherwise supp (f )∪supp (g) = x and f , g are algebraically dependent. If P is the free generic

Poisson algebra which correspond to A and Q is the field of fraction of P then f , g ∈ Q. Though

f , g are possibly written through different generators, the size of supp (f )∪supp (g) did not change.

Assume that there exist a pair of algebraically independent Poisson dependent elements in a free

generic Poisson field Q. Then we can find a pair which is minimal in the following sense: the size

|f , g| of supp (f ) ∪ supp (g) is minimal possible, Q is generated by supp (f ) ∪ supp (g), elements f

and g are completely homogeneous.
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As we observed |f , g| does not change when we replace the original generic Poisson field with

the minimal one. The elements may stop being completely homogeneous but by Lemma 4.3 we

can produce a completely homogeneous pair which belongs to k[f , g], hence the union of supports

of these two elements belongs to the union of supports of the original elements. Since |f , g| is

minimal it implies that the size cannot become smaller, so the union of supports of a completely

homogeneous pair is the same as for the original pair.

Recall (see [2]) that if two homogeneous polynomials f , g ∈ k[X] are algebraically dependent then

there exist a homogeneous polynomial h ∈ k[X] such that f = αhk, g = βhl for some α,β ∈ k

and natural numbers k, l. Similar statement is true for two algebraically dependent homogeneous

rational functions f , g ∈ k(X) if one of them, say f , has a non-zero degree (see [11]).

Lemma 4.6. Let f , g ∈ Q be a minimal pair. If x is the smallest element in supp (f ) ∪ supp (g),

then there exists a minimal pair f̃ = x + f1, g̃ where x /∈ supp (f1) ∪ supp (̃g).

Proof. Write f = xnfx + · · · , g = xmgx + · · · , where fx, gx do not contain x and dots stand for

terms with smaller (polynomial) degrees in x. Then the pair fx, gx is Poisson dependent by Lemma

4.4 and is algebraically dependent since |fx, gx| < |f , g|. If D(fx) = 0 for any compatible degree

function consider the second smallest element y ∈ supp (f )∪ supp (g) and present f = yn1fy + · · ·

where fy does not contain y and dots stand for terms with smaller degrees in y. If D(fy) = 0 for any

compatible degree function then D(xn) = D(yn1) for any compatible degree. But x, y are elements

of a free basis, so the Poisson degrees dx and dy are compatible degree functions and either x = y

27



A
cc
ep
te
d
M
an
us
cr
ip
t

which is impossible or n = n1 = 0. Similar considerations for g show that either D(gx) or D(gy) is

not identically zero or m = m1 = 0. If n = m = 0 consider polynomial dependence q between fx, gx

and a minimal pair f , g1 = q(f , g). Then g1 = xkg1x +· · · where k < 0. So either D(g1x) or D(g1y)

is not identically zero. Since x, y are elements of a free basis we can reorder them as well as f , g1 and

assume that D(fx) 6= 0 for some compatible degree function. Then by above there exist a completely

homogeneous element h ∈ Q such that fx = c1ha, gx = c2hb where c1, c2 ∈ k\{0}, D(h) 6= 0 for

some compatible degree function, and a 6= 0. Without loss of generality we may assume that

c1 = c2 = 1. Hence f = xnha + · · · , g = xmhb + · · · . The pair f bg−a, f ∈ Q is Poisson dependent

by Lemma 4.1. We can write f bg−a = xbn−am + αxbn−am−1 + · · · . Hence by Lemma 4.5 the

pair (bn − am)x + α, ha is Poisson dependent. Recall that x /∈ supp (α) ∪ supp (h). Therefore

(bn − am)x +α and h are algebraically independent if bn − am 6= 0. So if bn − am 6= 0 we proved

the lemma.

If bn−am = 0 then algebraically independent rational functions f , g have algebraically dependent

leading forms relative to polynomial degx . According to lemma 4.2 ring k[f , g] contains an element

g′ such that degx-leading forms of f and g′ are algebraically independent. Since supp (g′) ⊂

supp (f ) ∪ supp (g) the pair f , g′ is minimal and we can use it to prove the lemma.

Theorem 4.7. Every two Poisson dependent elements in free generic Poisson field Q are alge-

braically dependent.
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Proof. Assume that the theorem is not true. Then by the previous lemmas there exist a completely

homogeneous Poisson dependent algebraically independent pair f = x + f1, g ∈ Q, where the

size |f , g| is minimal possible, x is the minimal element in supp (f ) ∪ supp (g) and x /∈ supp (f1) ∪

supp (g), and x is an element of the basis of P .

Consider the smallest element y ∈ supp (g) and write f = ynfy + · · · , g = ymgy + · · · where

y /∈ supp (fy) ∪ supp (gy). Elements fy and gy should be Poisson dependent by Lemma 4.4 and

algebraically dependent since |fy, gy| < |f , g|.

If n = 0 then fy = x + f1y and gy are algebraically dependent and dx(fy) = 1. Hence gy = cf b
y and

b = 0 since otherwise x ∈ supp (gy). If furthemore m = 0 then g = c + · · · where c ∈ F and

we will replace g by g̃ = g − c. Then g̃ = ym̃g̃y + · · · where m̃ < 0. Furthemore, fy = x + f1y

and g̃y are Poisson and algebraically dependent, which as above is possible only if g̃y ∈ k. Since

y is an anticommutative monomial and y 6= x, there exist an element z 6= x in the free basis for

which dz(y) 6= 0 and dz(̃g) = m̃dz(y) 6= 0. But D(̃g) = 0 for any compatible weight degree

function (since g is completely homogeneous and D(̃g) = D(g) = D(c) = 0). Therefore g̃y /∈

k, g̃y = cf b
y where b is a non-zero integer, and x ∈ supp (̃gy), a contradiction. We can conclude

that m 6= 0 and that fy, my + β are Poisson dependent by Lemma 4.5. Since fy = x + f1y where all

elements of supp (f1y) are larger than x and all elements of supp (β) are larger than y, we can see

that yi(x + f1y, y + m−1β) = yi(x, y)+· · · for any anticommutative monomials yi where dots stand

for anticommutative monomials larger than yi(x, y). Hence these elements are Poisson independent

and n = 0 is impossible.
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The condition n 6= 0 implies that x /∈ supp (fy); otherwise 1 = fx = yng1 where y /∈ supp (g1)which

is impossible. Since x is an element of the free basis, it follows from the complete homogeneity that

0 = dz(x) = dz(y
nfy). Therefore dz(fy) = −ndz(y) 6= 0 and fy /∈ k. Elements fy, gy are algebraically

dependent, hence fy = c1ha, gy = c2hb for some element h where a 6= 0 and we may assume that

c1 = c2 = 1.

If b = 0 and m 6= 0 then g = ym+· · · and by Lemma 4.5 fy and my+β are Poisson dependent. They

are algebraically independent since y /∈ supp (fy), y ∈ supp (my+β). But x /∈ supp (fy)∪supp (gy),

and we have a contradiction with the minimality of the pair f , g. If m = 0, consider g̃ = g − 1.

Then g̃ = ym̃g̃y + · · · where m̃ 6= 0 and g̃y = h̃b because fy = ha where a 6= 0. Now,

dx(f ) = dx(x) = 1 = dx(y
nfy) = dx(y

nha) = ndx(y)+ adx(h),

dz(f ) = dz(x) = 0 = dz(y
nfy) = dz(y

nha) = ndz(y)+ adz(h),

dx(̃g) = dx(1) = 0 = dx(y
m̃hb̃) = m̃dx(y)+ b̃dx(h),

dz(̃g) = dz(1) = 0 = dz(y
m̃hb̃) = m̃dz(y)+ b̃dz(h).

Since (m̃, b̃) 6= (0, 0), we have (n, a) = λ(m̃, b̃) for some λ ∈ k and then ndx(y) + adx(h) = 0, a

contradiction. Therefore b 6= 0.

Replace now g by g̃ = g−af b. Then g̃ = yk + yk−1g̃1 + · · · . The case k = 0 could be brought to a

contradiction just as the case b = m = 0 above. Therefore k 6= 0.
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Elements ky + g̃1, fy are algebraically independent since y /∈ supp (fy) and k 6= 0. Since supp (ky +

g̃1)∪supp (fy) ⊆ supp (f )∪supp (g), we should have supp (ky+g̃1)∪supp (fy) = supp (f )∪supp (g)

by the minimality condition, and thus x ∈ supp (̃g1). Recall that g̃ = g−af b and therefore x ∈

supp (̃g1) only if n = 1, i.e. if f = yha + (x + δ)+· · · where dots stand for the terms with negative

powers in y. Hence

g̃ =
(yha + (x + δ)+ · · · )b

(ymhb + ǫym−1 + · · · )a
= yk + [b(x + δ)h−a − aǫh−b]yk−1 + · · ·

and g̃1 = b(x + δ)h−a − aǫh−b.

The elements (ky + g̃1)fy, fy are Poisson dependent by Lemma 4.1. Hence

[ky + b(x + δ)h−a − aǫh−b]ha = b(x + δ)− aǫha−b + kyha

and ha are Poisson dependent.

It is clear that supp (ha) is a proper subset of supp (g). So we may apply induction on the size of

supp (g) to prove the theorem. The base of induction when |g| = 1 corresponds to g = ym, m 6= 0.

As we have seen above in order to avoid a contradiction we should have f = ynfy + · · · where

n 6= 0, fy /∈ k, and gy /∈ k, But gy = 1 and we have a contradiction which proves the theorem.

Corollary 4.8. Let f , g ∈ Q, {f , g} 6= 0. Then f , g generate a free anticommutative algebra with

respect to the bracket {, }, and they generate a free generic Poisson subalgebra in Q in complete

analogy to the case of free associative algebras [3].
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Proof. It suffices to notice that f , g are algebraically independent. In fact, let F(x, y) 6= 0 be a

polynomial of minimal degree such that F(f , g) = 0. Then 0 = {F(f , g), g} = Ff (f , g){f , g} and

Ff (f , g) = 0, a contradiction.

Remark 4.9. Observe that the theorem is evidently not true for more than two elements: the

elements x1, x2, {x1, x2} are Poisson dependent but are algebraically independent. It is not true

as well if char(k) = p > 0; the elements x1, x
p

2 are algebraically independent but {x1, x
p

2} =

px
p−1
2 {x1, x2} = 0.

5. APPLICATION TO AUTOMORPHISMS

In this section we prove the following analogue of Makar-Limanov - Turusbekova - Umirbaev’s

Theorem [12]) for ordinary Poisson algebras:

Theorem 5.1. Automorphisms of the free generic Poisson algebra GP〈x, y〉 of rank two over a field

k of characteristic 0 are tame.

Proof. The proof repeats the proof given for ordinary Poisson algebras in [11]. We will give it for

the sake of complicity.

Let α be an automorphism ofP2 = GP〈x, y〉. Since any (tame) automorphism of k[x, y] can be lifted

to a (tame) automorphism of P2, we can assume without loss of generality that the abelianization
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of α (that is, its homomorphic image under the natural epimorphism Aut (P2) → Aut (k[x, y])) is

the identity automorphism of k[x, y]. It remains to show that then α is the identity automorphism

Let α(x) = f , α(y) = g. Assume that either f 6= x or g 6= y. If we take weights w(x) = ρ, w(y) = 1

where ρ > 0 then f = x and g = y where f and g are the lowest Poisson forms of f and g with

respect to w. If we start now to decrees ρ then for some non-positive value of ρ either f 6= x or

g 6= y for the corresponding f and g . Let us take the largest ρ with this property. Then f and g

are Poisson w-homogeneous, dw(f ) = ρ, dw(g ) = 1, f = x + f1, g = y + g1, where at least one

of f1, g1 is non-zero and their abelianizations in k[x, y] are both zero. Clearly, f and g are Poisson

independent.

Let x = X(f , g) for some Poisson polynomial X(x1, x2), then x = (X(f , g)) = X (f , g ) since f

and g are Poisson independent. Similarly, y belongs to the Poisson subalgebra generated by f and

g . Therefore, the w-homogeneous Poisson forms f , g generate P2.

Consider now the Poisson leading forms (̃f ) and (̃g ) of f and g with respect to the Poisson degree,

when d(x) = d(y) = 1. If they were Poisson independent, then as above they would generate P2.

But this is impossible since otherwise their abelianizations, the images under the epimorphism

P2 ։ k[x, y], would generate k[x, y], while at least one of them is 0.
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Next we can use Theorem 4.7 and conclude that (̃f ) and (̃g ) are algebraically dependent. Therefore

up to scalars they are ha, hb for a certain Poisson-homogeneous element h ∈ P2 and non-negative

integers a, b. Then we have adw(h) = ρ, bdw(h) = 1 where ρ < 0, which is impossible.

From this theorem and the previous results [5, 10, 12], we have

Corollary 5.2. Let k be a field of characteristic zero. Then

Aut GP{x, y} ∼= Aut P{x, y} ∼= Aut k〈x, y〉 ∼= Aut k[x, y],

where k[x, y] is the polynomial algebra; k〈x, y〉 is the free associative algebra; P{x, y} is the free

Poisson algebra, and GP{x, y} is the free generic Poisson algebra, respectively, on variables x, y.

We will finish with the following open question:

Let GP(x, y) be the free generic Poisson field on two generators. Is it true that Aut GP(x, y) ∼=

Aut P(x, y)? Observe that by [14], the last group is isomorphic to the Cremona Group Cr2(k) =

Aut k(x, y).
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