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Abstract

Mass diffusion is one of the key physical mechanisms inherent to the phase change of multi-

component droplets. Modeling strategies often rely on simplifying assumptions such as Fick’s law

or the Hirschfelder and Curtiss’ approximation. This work seeks to propose a droplet mass transfer

formulation based on the Stefan-Maxwell equations without simplifying assumptions for diffusion

closures. Such an option has already been investigated by Tonini and Cossali (Int. J. Heat and Mass

Transfer, 2016). However, critical simplifications were employed in the analytical developments.

In this work, we relax these simplifications with a final model that handles any number of species

in general phase-change scenarios (evaporation and/or condensation), applicable to convective

environments, and with no hypotheses for the diffusion coefficients’ structure, such that it can

be regarded as a reference. To show the impact of diffusion simplifications, this formulation is

compared with two other approaches representing most mass transfer models used by the literature.

In particular, the model originally proposed by Law (Combust. and Flame, 1976) is detailed here

since its core results are still among the most used. The proposed formulation is validated with

experimental data, and simulations are conducted for droplets of multiple fuel compositions with

fixed or varying conditions at the far-away state to map diverse scenarios.
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1. Introduction

Droplet phase change modeling plays a key role in a wide range of applications. For instance, it

controls the fuel availability in spray combustion [1]. For this type of application, it is, therefore,

crucial for modeling strategies to be able to capture the most physics to reproduce accurate flame

structures since this will, in turn, lead to better combustion chamber design.

To this merit, we recently demonstrated the generality of an energy formulation [2] to provide heat

transfer rates for multi-component droplets undergoing phase change so that it can be coupled with

most mass transfer strategies. Care was taken such that the model was derived to still include more

complex physics, such as enthalpy diffusion effects, with no additional structural complexities. For

the mass transfer counterpart, however, there is no clear consensus currently, with a substantial

number of strategies existing in the literature.

Among the first published works on the treatment of multi-component droplet evaporation is the

contribution of Wood et al. [3]. Even though the theoretical development is lacking, the authors

published an expression that retrieves the global mass transfer rate of a droplet composed of two

components. This was further developed in [4] where the author shows that Wood et al.’s main

result corresponds to an evaporation rate constant used in a classicalD2 evaporation law. As a first

result, the contribution of Wood et al. [3] is useful, providing a structure that could be expanded

to accommodate more species.

However, one of the main features that we highlight is the ability of a multi-component phase-

change model to provide expressions for the mass transfer rates of each participating species, not

only the global mass transfer rate. This is a key characteristic of a discrete component model

(DCM), also referred to as a discrete multi-component [5, 6]. Within this category, one of the

most used approaches today dates back to the work of Law [7], where a theoretical framework is

developed to study spherical laminar diffusion flames that completely surround a droplet. Among

the showcased results, expressions for the fractional evaporation rates, the contribution to the total
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evaporation rate from each species, are provided. As shown in the present work, the main charac-

teristic of Law’s model is the assumption of equal diffusion coefficients between all species in the

gaseous phase. Therein, although no differential diffusion is accounted for, preferential diffusion

occurs as non-unity Lewis numbers are allowed. This is a useful simplification that creates an ana-

lytical structure analogous to classical single-component droplet treatments. However, this can be

regarded as contradictory: DCMs seek to provide distinguished contributions from each species,

so it would be best if the diffusional behavior of each species could also be described separately

since diffusion is one of the main mechanisms of mass transfer. Still, it should be noted that other

strategies are in development in the literature. One point of contention against DCMs, for exam-

ple, is that they usually employ the assumption of infinite liquid diffusivity inside the droplet, i.e.,

the mass fractions of each individual species are uniform inside the droplet and equal to the one at

its surface. This, of course, is usually done to avoid having to solve the species diffusion equation

inside the droplet and thus reduce computational costs. This has been brought to attention, for

instance, in [8], where the author proposes models with different sets of simplifications to try and

address this issue.

A natural second approach is, therefore, to relax the hypothesis of equal diffusion coefficients and

let each species now have its own average diffusion coefficient; this family of models is here clas-

sified through the term differential diffusion. This strategy has been gaining momentum recently,

as demonstrated by the useful contributions in the literature, e.g., [9, 10, 11, 12, 13]. In particular,

in [13], we proposed a robust numerical strategy with a rigorous analytical treatment that organ-

ically incorporates convection and Stefan flow effects for any number of species and for general

phase-change conditions.

In this work, we then provide an even finer model, one that does not need any structural hypothe-

ses for diffusion coefficients in the gaseous phase. In this sense, it can be seen as a reference

concerning the diffusion treatment, which is paramount for mass transfer strategies. Similar to

our previous works, care has been taken such that the final expression can be used for general

phase-change (evaporation and/or condensation regimes for each species) with organic incorpo-

ration of convection and Stefan flow and no limitations concerning the number and/or type of
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liquid or gaseous species. To accomplish this, we depart from general conservation equations for

mass and species as well as a general closure for mass diffusion obtained from kinetic theory. We

employ usual simplifications to finally analytically integrate the Stefan-Maxwell equations while

using results from species conservation, ensuring a coherent model. In particular, this work limits

itself to spherical droplets. This is a common strategy that has been used throughout most droplet

heat and mass transfer models, which allows for an analytical integration of both the conservation

equations and the Stefan-Maxwell equations in a single radial coordinate, as shown in the next

section. However, in complex flows, this hypothesis is not straightforward. For instance, in [14],

the authors argued that concomitant effects of surface tension and viscous stresses often generate

droplet shapes that deviate from the sphere. In this way, the authors from [14] proposed a multi-

component droplet mass transfer analytical expression that expands results to spheroidal shapes.

Also, in line with typical applications, we neglect the influence of the gravitational force, focusing

on small droplets; it is known that for big enough droplets, gravitational effects can also lead to

deviations from the sphericity hypothesis and impact key metrics for overall transfer rates onto the

surrounding gaseous medium [15] [16].

Of note is the fact that a previous model that analytically integrates the Stefan-Maxwell equations

has already been developed in [12]. However, to achieve that model, several restrictions have been

imposed. For instance, the analytical development was carried out allowing only a single inert

species in the gaseous phase; this could be particularly limiting in gases where many different

components can be present surrounding the droplets, as in the case of an atmosphere composed of

multiple combustion products, for instance, [17]. Furthermore, as presented, the model is limited

to non-convective applications, which can be particularly restraining for the aforementioned spray

configurations. Finally, the main strength that we seek to demonstrate, the absence of a structural

hypothesis for the diffusion, is also disrupted, since in [12] an additional condition for binary

diffusion coefficients between each fuel vapor and the sole inert species is enforced to reach the

final result. Therefore, we aim to demonstrate that our final result should enlarge the scope of the

original contribution of [12] with no drawbacks. Similarly, since this contribution seeks to extend

the results of [12], one perspective would be to consider spheroidal shapes as done in [14], to obtain
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a more general model. The relaxation of one degree of freedom concerning the mass diffusion

could also be useful when conducting sensitivity analyses for droplet phase-change models, and

so this is another advantage of the proposed model. For instance, in [18], the authors conducted

an uncertainty quantification study for parameters used in sub-models that affect droplet mass

transfer, including binary diffusion coefficients. With the approach proposed here, only binary

diffusion coefficients are used to describe the gaseous diffusion, even though a DCM is proposed,

which offers more detail for the phase-change description.

This paper is organized as follows. First, we present the analytical derivation of our proposed

model, departing from general conservation equations and enforcing hypotheses that are common

to all compared mass transfer strategies. Once the final result is obtained, we contrast the main

structural differences with regard to the similar strategy developed by Tonini and Cossali [12].

Then, a thorough derivation procedure is also carried out for the foundational model of Law [7].

Indeed, understanding the intricacies of this strategy is still warranted, given that researchers from

numerical, theoretical and experimental fronts in the literature have been steadily using its core re-

sults for a wide array of applications, see for instance [19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30].

Therefore, one of the main objectives of this work is to raise awareness that more general strategies

exist, in particular the reference we propose that reduces the degrees of freedom for the diffusion

description. A third model [13] is then brought to comparison to represent an intermediary diffu-

sion description between the proposed reference and Law’s simplified strategy. All mass transfer

models are coupled with the general energy formulation previously developed in [2]. Finally, we

compare the proposed reference approach with the two simplified DCMs through simulations for

droplets composed of different species, describing a gradient of complexity. We first study simple

cases where conditions at the far-away state are fixed throughout the droplet’s lifetime. Then, as

done in [2], we expose droplets to more complex scenarios where the velocity, composition, and

temperature at the far-away state are left free to vary following an analytical profile generated

through theoretical one-dimensional premixed laminar flames to represent the model application

on more general scenarios.
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2. Obtaining the reference model: Integration of the Stefan-Maxwell equations

The gas-phase conservation equations for global mass and for an individual species i can be written

as follows [31]:

∂ρ

∂t
+ ∇ ·

[
ρu

]
= 0, (1)

∂ρYi

∂t
+ ∇ ·

[
ρYivm

i
]
= ω̇i, (2)

where ρ is the density, u the velocity, Yi the mass fraction, vm
i the average molecular velocity, and

ω̇i the species source term for chemical reactions.

To simplify the above equations, the following assumptions can be made, as customary in the

literature:

2.1. Quasi-steadiness i.e. ∂/∂t = 0;

2.2. Spherical symmetry i.e. ∇ · γ = d
dr [r2γ] for any γ (only the radial dimension r is retained);

2.3. No chemical reaction i.e. ω̇k = 0 ∀k.

For the quasi-steadiness hypothesis to be valid, it is essentially assumed that the time scales for

processes in the gaseous phase are small compared to the time scale of the evolution of the droplet’s

radius [32]. In some cases, this can be relaxed, for example, in [33]. As discussed in the intro-

duction, the spherical symmetry is also enforced for simplicity and also to compare and extend

results of most currently used droplet phase-change models, which require this hypothesis. As for

the absence of chemical reaction, it is assumed that any reactions (including the eventual combus-

tion of evaporated fuels) occur sufficiently far away from the droplet, therefore not affecting its

boundary layer development. More details on this hypothesis can be found, for example, in [1]

and [34]; again, this same assumption is made for most evaporation models in the literature. For

a counter-example, spherical diffusion flames have been studied, for instance, in [7], where the

evaporated fuel immediately feeds into a diffusion flame surrounding the droplet.
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Applying these hypotheses to Eqs. 1 and 2 leads to:

d
dr

[
r2ρu

]
= 0, (3)

d
dr

[
r2ρYivm

i

]
= 0. (4)

Now, it is possible to proceed with the analytical integration of Eq. 3 over the spatial coordinate r.

This leads to the result that links the advective velocity u (the Stefan flow) to the droplet’s global

mass transfer rate ṁ:

ṁ = 4πr2ρu. (5)

Then, integrating the simplified species conservation Eq. 4 similarly while substituting the result

of Eq. 5 yields the following result for the average molecular velocity of each species, vm
i :

vm
i =

ṁi

4πr2ρYi
. (6)

Now, from a different perspective, the pair-wise difference of these molecular velocities can also

be related to the gradient field of molar fractions ∇Xi through the following relation, obtained from

kinetic theory [31]:

∇Xi = −

N∑
k=1

XiXk

D̃i,k
[vm

i − vm
k ] + (Yi − Xi)

∇p
p
+
ρ

p

N∑
k=1

YiYk( fi − fk)+

+

N∑
k=1

[(
XiXk

ρD̃i,k

) (
DT

k

Yk
−

DT
i

Yi

)] (
∇T
T

)
, (7)

where D̃i,k is the binary diffusion coefficient in a multi-component mixture, p the pressure, fi the

volumetric forces, DT
i the thermal diffusion coefficient, and T the temperature. The subscript k is

used to represent all gaseous species, including i.

To obtain the proposed reference formulation, the following simplifications need to be imposed:

2.4. Low-Mach, dilatable flow i.e. ∇p=0;

2.5. Negligible volumetric forces i.e. fk = 0, ∀k;

2.6. Negligible Soret effects, i.e.:∑N
k=1

[(
XiXk
ρD̃i,k

) (
DT

k
Yk
−

DT
i

Yi

)] (
∇T
T

)
= 0;
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The low-Mach dilatable flow hypothesis removes pressure effects and enforces that the gaseous

density only varies with temperature and composition. It is valid for many droplet phase-change

applications and is customary in the literature. As for the Soret effect, it has been shown to not

be too expressive for most applications concerning droplet phase-change. A useful study can

be found, for instance, in [35], where the authors state that even when this effect is not readily

negligible, it is often overshadowed by the main term concerning the difference of molecular

velocities. This study is also notable in that it browses a wide range of pressures. As for the

absence of gravitational effects, this was also discussed in the introduction and is an assumption

related to the spherical symmetry. We assume that droplets are small enough such that these effects

are small compared to the main term. One way to justify it is through the Bond dimensionless

number, which compares surface tension to gravitational forces. Droplets composed of typical

fuels will present Bond numbers smaller than 0.01 [52], which indicates that this is typically a

relevant assumption. Some studies have been made to better understand the impact of gravitational

forces on droplets, for instance, [36].

With these assumptions, Eq. 7 reduces to:

∇Xi = −

N∑
k=1

XiXk

D̃i,k
[vm

i − vm
k ], (8)

and the above result is usually referred to as the Stefan-Maxwell equation. For consistency, if the

results of Eqs. 5, 6 are to be used, then the gradient of molar fractions in Eq. 8 above can also be

simplified following spherical symmetry:

dXi

dr
= −

N∑
k=1

XiXk

D̃i,k
[vm

i − vm
k ]. (9)

Substitution of the integration result of species conservation Eq. 6 into the spherical version of the

Stefan-Maxwell equations Eq. 9 leads to:

4πr2ρ
dXi

dr
= −

N∑
k=1

XiXk

D̃i,k

[
ṁi

Yi
−

ṁk

Yk

]
, (10)

Now, the presence of a gradient of molar fractions suggests an integration along the radial coordi-

nate r using molar quantities. A molar transfer rate for each species ṅi = ṁi/Wi is then introduced,
8



and converting mass fractions on the RHS to molar fractions leads to:

4πr2c
dXi

dr
= −

N∑
k=1

[Xkṅi − Xiṅk]
D̃i,k

, (11)

where c = ρ/W is the mixture’s molar density.

Since when k = i the term in the summation cancels out, Eq. 11 above is also equivalent to:

4πr2c
dXi

dr
= −

N∑
k=1
k,i

[Xkṅi − Xiṅk]
D̃i,k

. (12)

By making the change of variable ξ = 1/r and by splitting the summation into two different parts,

the above equation can be rearranged as:

4πc
dXi

dξ
=

−
N∑

k=1
k,i

ṅk

D̃i,k

 Xi +

ṅi

N∑
k=1
k,i

Xk

D̃i,k

 . (13)

Before proceeding to the analytical integration, Eq. 13 can be recast in a matrix form as follows:

dX
dξ
= AX, (14)

where X is a column vector for molar fractions of each species i.e. X = [X1, X2, ...Xk, ...XN]T and

the matrixA is defined as:

A =
1

4πc



−
N∑

k=1
k,1

ṅk
D̃1,k

ṅ1
D̃1,2

... ṅ1
D̃1,N

ṅ2
D̃2,1

−
N∑

k=1
k,2

ṅk
D̃2,k

... ṅ2
D̃2,N

...
...

. . .
...

ṅN
D̃N,1

ṅN
D̃N,2

... −
N∑

k=1
k,N

ṅk
D̃N,k


(15)

Now, to carry out a simple integration for this system of equations, an additional hypothesis is

necessary, customary to droplet mass transfer modeling:

2.7. Constant transport properties (c, D̃i,k) in space;
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This hypothesis is customary for droplet heat and mass transfer models, and it is aligned with the

same hypothesis used for the energy formulation that will be coupled with this mass transfer result

for consistency. In this work, the one-third rule [37], [38] is employed to evaluate said constant

properties; however, potential impacts and how to improve on this assumption have also been the

focus of the literature as of late; see [39] and [40] for instance. With hypothesis #7, the system of

equations Eq. 14 can be integrated straightforwardly to yield:

X = exp
[
Aξ

]
C (16)

with a suitable constant of integration C, which is a second unknown paired with the matrixA.

To proceed with the solution, it is necessary to specify two boundary conditions. First, at the sur-

face of droplet ξ = 1/Rd, the molar fractions vector must be X = Xs
= [Xs

1, X
s
2, ...X

s
k , ...X

s
N]T . The

second boundary condition is enforced here using film theory to incorporate convection effects, an

important goal for general applications. Namely, at ξ = 1/(Rd + δM,max), molar fractions must be

X = X
∞
= [X∞1 , X

∞
2 , ...X

∞
k , ...X

∞
N ]T , with δM,max = max(δM,1, δM,2, ... δM,k, ... δM,N) with the differ-

ent δM representing the mass transfer boundary layer of each species. In this way, the boundary

layer thickness δM,max is the largest boundary layer thickness among those of all species, chosen to

ensure that all of them have reached the far-away state, i.e., Xk = X∞k ∀k.

The problem is now reduced to solving the following set of equations simultaneously:

X
s
= exp

[
1

Rd
A

]
C, (17)

X
∞
= exp

[
1

(Rd + δM,max)
A

]
C. (18)

A more practical approach follows if the boundary layer thicknesses are further developed. To

do so, the classical boundary layer theory developed in [41] can be used, which has been derived

when Stefan flow is not taken into account:

δM,i,0 =
2Rd

Shi,0 − 2
, (19)

where δM,i,0 is the mass transfer boundary layer thickness when no Stefan flow is present and

Shi,0 is the Sherwood number of each species for such a scenario. Since our proposed derivation
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includes Stefan flow, the result of Eq. 19 must be corrected for that. The approach we elect to use

here is the same as in [42], namely, a correction for the Sherwood number is introduced:

Sh∗ = 2 +
Sh0 − 2

FM
, FM = (1 + BM)0.7 ln(1 + BM)

BM
, (20)

where BM is the Spalding mass transfer. The above result was originally employed for a single-

component droplet, which means that only a single mass transfer boundary layer was useful, that

of the single fuel vapor. In this way, we assume that the proposed correction could also be extended

to the boundary layers of each individual species as such:

Sh∗i = 2 +
Shi,0 − 2

FM,i
, FM,i = (1 + BM,i)0.7 ln(1 + BM,i)

BM,i
, (21)

where the Spalding mass transfer numbers of each species is computed as being:

BM,i = ṁ
(

Y s
i − Y∞i

ṁi − ṁY s
i

)
. (22)

In this way, a corrected version of the boundary layer thickness could be computed through:

δ∗M,i =
2Rd

Sh∗i − 2
. (23)

The maximum value to be used in Eq. 18 is then computed as δmax = 2Rd/(Sh∗min − 2), with

Sh∗min = min(Sh∗1, Sh∗2, ...Sh∗k, ...Sh∗N), leading to:

X
s
= exp

[
1

Rd
A

]
C, (24)

X
∞
= exp

[
Sh∗min − 2
Sh∗minRd

A

]
C. (25)

Once the system is solved and A is found, molar transfer rates ṅk are found from its entries, and

so the individual mass transfer rates ṁk follow (ṅk = ṁk/Wk).

As for the numerical algorithm, the problem is first initialized with the matrix Aguess
0 constructed

through mass transfer rates computed using any other simpler model. Then, Cguess
0 can be initial-

ized assuming a non-convective case i.e. Cguess
0 = X

∞

0 . For subsequent iterations, outputs from the

previous iteration are used to construct the arrays Aguess, Cguess. To actually solve the non-linear

system, this model was implemented in a Python code and the numerical library "root" from the
11



SciPy optimize package was utilized. More specifically, the modified Powell method is used to

solve the system of equations, called through the MINPACK hybrid routine [43] that numerically

computes the Jacobian to minimize the right-hand side of the equation.

Eqs. 24 and 25 represent the final result of the proposed reference strategy. Since the proposed

formulation does not make any structural assumptions on diffusion coefficients, it can be com-

pared with other mass transfer models as a reference in this regard. However, as mentioned in

the introduction, the analytical integration of the Stefan-Maxwell equations had been previously

carried out in [12]. A brief comment is dedicated here to better clarify their differences.

A first limitation of their proposed modeling strategy is the restriction to a single inert species, pos-

sibly made to accommodate comparisons with their previous simplified works [11]. Our proposed

model, however, follows a derivation procedure that allows multiple inert species to participate,

avoiding the necessity of more averaging rules and degrees of freedom, which might obscure the

underlying physics. Following this rationale, this more expanded formulation could potentially be

used to relax the inert assumption, i.e., no inert species exist. In such a case, molar transfer rates

ṅi are left free to vary for all species, with adequate physical models used to handle the conden-

sation of such species onto the liquid phase. As an additional difference, the result in [12] does

not provide any treatment for convection applications which can be limiting. As shown above, our

proposed model has also been derived with an analytical integration following the limits of inte-

gration of classical boundary layer theory to organically incorporate convection effects, avoiding

the introduction of ad-hoc corrections. Finally, in [12], an additional hypothesis was imposed for

binary diffusion coefficients that essentially translates to Di,i = Di,Ω = DΩ,i, where Di,i is the auto-

diffusion coefficient for each species i and Di,Ω,DΩ,i are the binary diffusion coefficients between

each species i and the sole inert species Ω. This hypothesis actually changes the structure of the

system of equations, resulting in this final form:

4πc
dX
dξ
= A′X + B′, (26)

in contrast with our simplified form Eq 26. Not only this hypothesis disrupts the framework of

a reference model with respect to the diffusion closure, but, as shown in the results section, can
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actually significantly impact calculations.

3. Simplified models and their approach to diffusion

3.1. Extending Law’s model: Preferential diffusion

As discussed in the introduction, one of the most used DCMs in the literature today can be traced

back to the works of Law [7]. It is the purpose of this section to derive and establish the main

characteristics and limitations of this model.

To do that, first, an alternative version of the spherical Stefan-Maxwell is constructed in terms of

diffusion velocities for each species, vD
i . This velocity is defined as the difference between the

average molecular velocity and the advective velocity, as follows [31]:

vD
i = vm

i − u. (27)

This means that the difference in molecular velocities between a pair of species is equal to the

difference in diffusion velocities of the same pair:

vm
i − vm

k = vD
i − vD

k . (28)

Therefore, the Stefan-Maxwell equations Eq. 8 can also be written in an equivalent form for the

difference of diffusion velocities, as such:

∇Xi = −

N∑
k=1

XiXk

D̃i,k
[vD

i − vD
k ]. (29)

Now, to reproduce the structure of Law’s results, the supplementary simplification that must be

applied is the following:

• Equal diffusion coefficient for all species in the gaseous phase, i.e., D̃i,k = D̄, ∀i, k.

Substituting this average diffusion coefficient onto Eq. 29 and rearranging leads to:

XivD
i = Xi

N∑
k=1

XkvD
k − D̄∇Xi. (30)
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Multiplying the above equation by Yi/Xi yields:

YivD
i = Yi

N∑
k=1

XkvD
k − D̄

[
Yi
∇Xi

Xi

]
. (31)

Now, in parallel, it is possible to rewrite a version of Eq. 2 in terms of the diffusion velocity as

defined in Eq. 27:
∂ρ

∂t
+ ∇ ·

[
ρYiu + ρYivD

i

]
= ω̇i. (32)

If Eq. 32 above is summed for all species, then global mass conservation must be retrieved, i.e., Eq.

1 must be verified. In this way, the following relation must be true for global mass conservation to

be satisfied:
N∑

k=1

YkvD
k = 0. (33)

Having established the previous result, Eq. 31 is then summed for all species N:

N∑
j=1

Y jvD
j =

N∑
j=1

Y j

N∑
k=1

XkvD
k

 − D̄
N∑

j=1

Yi
∇Xi

Xi
. (34)

At the LHS, we see the result of Eq. 33; Therefore, the LHS must be zero. The first term of the

RHS is straightforwardly opened up as follows:

N∑
j=1

Y j

N∑
k=1

XkvD
k

 =
 N∑

j=1

Y j


 N∑

k=1

XkvD
k

 = N∑
k=1

XkvD
k . (35)

Using both information for the LHS and RHS, Eq. 34 becomes:

N∑
k=1

XkvD
k = D̄

[
Yi
∇Xi

Xi

]
. (36)

Eq. 36 above is therefore an expression for the term
∑N

k=1 XkvD
k . The above result can therefore be

injected onto the first term of the RHS of Eq. 30 to yield:

vD
i = D̄

 N∑
k=1

Yk
∇Xk

Xk

 − ∇Xi

Xi

 (37)

In parallel, the following expression can be developed for the ratio of gradients of molar fractions

to molar fractions:
∇Xi

Xi
=
∇(YiW)

XiWi
=

W∇Yi + Yi∇W
XiWi

=
∇Yi

Yi
+
∇W
W
. (38)
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Substituting this result on Eq. 37 leads to:

vD
i = D̄

 N∑
k=1

∇Yk

 +  N∑
k=1

Yk
∇W
W

 − ∇Yi

Yi
−
∇W
W

 (39)

From Eq. 33, it follows naturally that
∑N

k=1 ∇Yk = 0. Furthermore,
∑N

k=1 Yk
∇W
W =

(∑N
k=1 Yk

)
∇W
W =

∇W
W . Then, inside Eq. 39, molar weight terms cancel out, leading to the following formulation:

YivD
i = −D̄∇Yi. (40)

The above equation is almost identical to classical "Fick’s Law", which is defined for a binary

mixture composed of species 1, 2 as being, for example:

Y1vD
1 = D1,2∇Y1, (41)

where D1,2 is the binary diffusion coefficient defined between species 1, 2 in a binary mixture. In

this way, the result of Eq. 40 shows that assuming equal diffusion coefficients for all species in the

gaseous mixture creates a structural analogy with the pure binary case.

Note that all of these developments do not require the assumption of spherical symmetry. However,

to obtain Law’s model, an analytical integration is required, and so first spherical symmetry is

enforced onto Eq. 40 to obtain:

YivD
i = −D̄

dYi

dr
. (42)

Opening up Eq. 4 in terms of diffusion velocities (as done for Eq. 32) and substituting Eq. 42

above as well as Eq. 5 leads to:

d
dr

[
ṁ
4π

Yi − r2ρD̄
dYi

dr

]
= 0. (43)

This equation represents the difference between gas-phase advective and diffusive fluxes and can

be integrated once with respect to the radial coordinate to yield:

ṁiYi − 4πr2ρD̄
dYi

dr
= ṁi. (44)

A second characteristic of Law’s strategy relies on defining a representative global fuel vapor mass

fraction ȲF through:

ȲF =

N∑
k=1

k ∈ vapors

Yk. (45)
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Then Eq. 44 can be summed only for the fuel vapor species, leading to:

ṁȲF − 4πr2ρD̄
dYF

dr
= ṁ, (46)

noting that on the RHS
∑N

k=1,k ∈ vapors ṁk =
∑N

k=1 ṁk = ṁ, that is, the global mass transfer rate is

retrieved since all remaining species have no contribution to phase-change. As expected, due to

the structural similarity of Eq. 40 to the binary case, Eq. 46 is also structurally similar to single-

component droplet mass transfer treatments. Rearranging the terms of Eq. 46, a second integration

can then be carried out towards a general coordinate R:

−4πρD̄
∫ ȲF (R)

Ȳ s
F

dȲF

1 − ȲF
= ṁ

∫ R

Rd

dr
r2 . (47)

The integration result can be rearranged as:

ṁ = 4π

 1
1

Rd
− 1

R

 ρD̄ln
(
1 − ȲF(R)

1 − Ȳ s
F

)
. (48)

Notice that at the LHS of Eq. 47, we have an integration of the type
∫

dx/x = ln|x| for any x.

However, we omit the absolute value operator since it is impossible to have negative values inside

the logarithm operator, as it would require mass fractions superior to one, as seen in Eq. 48.

Furthermore, the original result was developed for non-convective applications by taking R→ ∞,

which yields:

ṁ = 4πRdρD̄ln
(
1 − Ȳ∞F
1 − Ȳ s

F

)
. (49)

If a Spalding mass transfer representative of all fuel vapors is also defined:

B̄M =
Ȳ s

F − Ȳ∞F
1 − Ȳ s

F

, (50)

then Eq. 49 assumes its classical form:

ṁ = 4πRdρD̄ln
(
1 + B̄M

)
. (51)

The above results allow for the obtention of the global mass transfer rate of a multi-component

droplet. The next step would be to carry out the integration process of each individual species’

conservation equations, i.e., Eq. 44 this time around, instead of Eq. 46. This would allow for the
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obtention of mass transfer rates of each species, the main characteristic of a DCM. Carrying out

the same steps of integration for the species conservation equation of an individual fuel vapor i

leads to:

ṁ = 4πRdρD̄ln
∣∣∣1 + BM,i

∣∣∣. (52)

Note that at the LHS, the global mass transfer rate ṁ still appears; the contribution ṁi from species

i is present inside the BM,i term Eq. 22 at the RHS. Also, in contrast with Eq. 51, an absolute value

operator is present after integration. This is because, from the definition of BM,i (Eq. 22), it is seen

that it is now physically possible to have negative values inside the logarithm term. This happens

if either of the following is true for the fractional evaporation rates of each species ϵi = ṁi/ṁ:

3.1. ϵi > Y s
i with ϵi < Y∞i ;

3.2. ϵi < Y s
i with ϵi > Y∞i .

The integration along the spherical coordinate establishes a monotonically increasing or decreas-

ing profile of mass fractions in case of evaporation or condensation, respectively. Therefore, the

two previous conditions can be respectively rephrased as:

3.1. Y s
i < ϵi < Y∞i ;

3.2. Y∞i < ϵi < Y s
i .

Since there is no functional a priori connection between fractional evaporation rates and mass

fractions, the absolute value operator should be kept for general phase-change cases, where some

species might go from evaporation to condensation or vice-versa during the droplet’s lifetime.

The final step is to equate Eq. 51 with Eq. 52, and to do that a splitting is needed for each case of

the previous conditions. This leads to the following formulation:

ṁi = ṁ

Y s
i +

(
Y s

i − Y∞i
)

B̄M

 , if (
1 + BM,i

)
> 0; (53)

ṁi = ṁ

Y s
i

(
1 − B̄M

)
+ Y∞i

2 + B̄M

 , if (
1 + BM,i

)
< 0. (54)
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Eq. 53 is the main result of the DCM proposed by Law 1. Indeed, the original publication did not

consider the absolute value operator, which we have deployed here to extend its range of validity

through Eq. 54. In the original work [7], the author actually expressed the results in terms of

fractional evaporation rates ϵi = ṁi/ṁ, and this has been the most used form in the literature.

However, we opt to state results here in terms of mass transfer rates directly due to our extension

of the model to general condensation scenarios. Indeed, if either an individual species or the global

mass transfer behaviors change from evaporation to condensation or vice-versa during the droplet

lifetime, an overshoot on the fractional evaporation rate is expected, which is numerically difficult

to handle. This was first reported in [13], and the same strategy was employed in [2].

For convective applications, Eq. 47 can be integrated assuming the same treatment as done for Eq.

19, yielding:

ṁ = 2πRdρD̄S̄h0ln
(
1 + B̄M

)
, (55)

where S̄h0 is the Sherwood number that corresponds to the boundary layer of the representative

fuel species assuming that no Stefan flow is present (subscript 0). Then it is possible to also assume

that Abramzon and Sirignano’s correction would apply here, and the Sherwood number could be

corrected as follows:

S̄h∗ = 2 +
S̄h0 − 2

F̄M
, F̄M = (1 + B̄M)0.7 ln(1 + B̄M)

B̄M
. (56)

In this way, the global mass transfer rate Eq. 51 becomes, for general convection applications:

ṁ = 2πRdρD̄S̄h∗ln
(
1 + B̄M

)
. (57)

Similarly, for such cases the contribution from each species Eq. 52 becomes:

ṁ = 2πRdρD̄Sh∗i ln
∣∣∣1 + B̄M,i

∣∣∣. (58)

1Note that if Y∞i = 0 for all fuels, then Y∞F = 0 in Eq. 50; Eq. 53 then degenerates to ṁi = ṁY s
i /Y

s
F or simply

ϵi = Y s
i /Y

s
F . This means that each fuel’s evaporation participation is simply regulated by their mass participation.

This also justifies in [2] why properties that should be computed using fractional evaporation rates can sometimes be

computed using mass fractions to a good accuracy.
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Now, when equating Eq. 57 with Eq. 58, the equivalent of previous relations Eqs. 53,54 becomes

more complex:

ṁi = ṁ

Y∞i − Y s
i

(
1 + B̄M

)S̄h∗/Sh∗i

1 −
(
1 + B̄M

)S̄h∗/Sh∗i

 , if
(
1 + BM,i

)
> 0; (59)

ṁi = ṁ

Y∞i + Y s
i

(
1 + B̄M

)S̄h∗/Sh∗i

1 +
(
1 + B̄M

)S̄h∗/Sh∗i

 , if
(
1 + BM,i

)
< 0. (60)

Following these results, our proposal for the extension of Law’s model would, therefore, be able

to not only handle general condensation cases (through the absolute value operator splitting) but

also would have an organic inclusion of convective effects.

However, when summing for instance the first possibility Eq. 59 for all species, the global mass

transfer rate at the LHS cancels out with the multiplicative one at the RHS and the following would

have to be true:
N∑

k=1

Y∞k − Y s
k

(
1 + B̄M

)S̄h∗/Sh∗k

1 −
(
1 + B̄M

)S̄h∗/Sh∗k

 = 1. (61)

There is, however, no structural relationship between S̄h∗ and Sh∗i that guarantees that Eq. 61

holds, as the average Sherwood number is in itself an additional model to describe the average

mass transfer of all individual boundary layers. It is easy to see that the same is true for the second

case for the absolute value operator if Eq. 60 is developed instead of Eq. 59. This indicates that

the structure of Law’s model is not able to organically include convection effects.

To still be able to incorporate convection effects, what is typically done in the literature is to

first compute the global mass transfer rate in a convective environment through Eq. 57. Then,

individual mass transfer rates ṁi are computed using the non-convective expressions, Eqs. 53, 54,

but with the global mass transfer rate computed with convection. In this way, individual Sherwood

numbers for each species Shi (and thus, the boundary layer development for each one) play no

role, and we can further see another disadvantage when comparing this simplified model with our

proposed reference.
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3.2. Sacomano et al. model: Differential diffusion

Having introduced the reference model and the proposed extension for Law’s model, the compar-

ison with an intermediary model is now more easily justifiable. An intermediary model is here

represented through the category of "differential diffusion" models, where the hypothesis of equal

diffusion coefficients for each species is relaxed, with Eq. 40 now replaced by:

YivD
i = −Di∇Yi, (62)

where Di is a gaseous diffusion coefficient for each species. It is straightforward to see that this

strategy is more complex than Law’s model since the model would be able to individually charac-

terize the diffusion of each fuel vapor species, even if only toward the whole mixture. To compute

such diffusion coefficient, the strategy of Wilke [44], also used in [12] for instance, is here em-

ployed:

Di =
(1 − Xi)

N∑
k=1
k,i

Xk/Di,k

. (63)

Then, the mass transfer rates can be computed for convective environments as developed in [13],

with the following expressions being the main result:

ṁk = ṁ


Y∞k − Y s

k exp
[

ṁ
2πRdSh∗kρDk

]
1 − exp

[
ṁ

2πRdSh∗kρDk

]
 , if

(
1 + BM,i

)
> 0; (64a)

ṁk = ṁ


Y∞k + Y s

k exp
[

ṁ
2πRdSh∗kρDk

]
1 + exp

[
ṁ

2πRdSh∗kρDk

]
 , if

(
1 + BM,i

)
< 0. (64b)

It should be highlighted that, as argued in our original work [13], this formulation is also able to

organically include convection effects throughout the analytical derivation using boundary layer

theory, which is therefore also an advantage when compared to Law’s model.

3.3. Complete phase-change strategy: The energy formulation and convection corrections for

condensation scenarios

In our previous work [2], we demonstrated that, regardless of the choice for a mass diffusion

closure, a general energy model can be derived. Therefore, the final result is also employed here for
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all compared mass transfer strategies since it also organically incorporates convection, Stefan flow,

general phase-change, and any number of species, which does not create any structural conflict

with all presented models. In this way, heat transfer rates Q̇ are computed through:

Q̇ =

∑N
k=1 ṁkcp,k(T s − T∞)

exp
[∑N

k=1 ṁkcp,k

2πRdNu∗λ

]
− 1

, if 1 + BT > 0, (65a)

Q̇ = −


∑N

k=1 ṁkcp,k(T s − T∞)

exp
[∑N

k=1 ṁkcp,k

2πRdNu∗λ

]
+ 1

 , if 1 + BT < 0, (65b)

where cp,k are specific heats at constant pressure, Nu∗ is the corrected Nusselt number computed

using a correction for Stefan flow effects analogous to the ones used here for Sherwood numbers,

and λ is the thermal conductivity. The Spalding heat transfer number BT is computed through:

BT =

∑N
k=1 ṁkcp,k(T s − T∞)

Q̇
. (66)

Now, in condensation scenarios, the Spalding transfer number for each species BM,i can become

negative and in particular inferior to −1, in which case the Stefan-flow corrections for their corre-

sponding Sherwood numbers would fail; see Eq. 21 for instance. Indeed, originally Abramzon and

Sirignano [42] state that their analytical derivation was carried out for 0 < BM, BT < 20, as also

observed in [45]. Using a simple analogy from boundary layer theory, it is known that an outward

mass flux (evaporation) will tend to stretch the corresponding boundary layer whereas an inward

flux (condensation) will tend to compress it [46]. Therefore, we propose the following extension

for the correction factors F, to extend the original correction to extreme condensation scenarios:

F = (1 + B)0.7 ln (1 + B)
B

, if 0 ≤ B < 20, (67)

F = (1 − B)0.7 ln (1 − B)
B

+ 2 , if − 20 < B < 0. (68)

This extension of the Stefan flow correction can be seen in Fig. 1. Ideally, it would be better to

derive from scratch a boundary layer model that is able to transition from condensation to evapo-

ration continuously. However, for a first estimation, we deemed that this correction is satisfactory

as it reproduces the global expected physical trends while allowing for the whole mass transfer

model to consider Stefan flow effects continuously for consistency.
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4. Results

4.1. Model Validation and Benchmarks

The model is first validated against experimental results through the work of Ma et al. [25], and

results can be seen in Fig. 2. For this specific validation case, a droplet composed of 6 species was

chosen to roughly estimate the characteristics of Diesel fuel. The fuel species are Toluene (C7H8),

N-decane (C10H22), N-dodecane (C12H26), N-tetradecane (C14H30), N-hexadecane (C16H34) and

N-octadecane (C18H38). In this experiment, droplets of around 80 − 90µm of initial diameter are

suspended in a filament surrounded by hot air at T∞ = 735K. It is possible to see an overall good

agreement between the proposed model and the experimental data. Differences may be explained

by experimental uncertainties, for instance since our model does not include radiation effects nor

the heat conduction through the supporting filament. Also, thermodynamic and transport prop-

erties are computed using different datasets; our properties are extracted from [47]. Overall, the

validation is deemed to be satisfactory.

The proposed model will be compared with Sacomano et al.’s model as well as the proposed

extension of Law’s model, so it would be useful to have time benchmarks to see how they perform

comparatively in terms of computational cost. Using the validation cases of [25], all models were

run and benchmarked with a Python in-house code, using a 2.3Ghz 8-core Intel Core i9 processor;

the average simulation time was t1 = 14.3s for the proposed model, t2 = 11.6s for Sacomano et

al.’s model (t1/t2 = 1.23) and t = 9.5s for Law’s model (t1/t3 = 1.51). This trend is expected, as

the proposed model solves a system of equations that is numerically more complex to handle than

that of Sacomano et al.’s, whereas Law’s model does not require a system of equations altogether.

Next, we show the differences between our proposed model and the one originally published by

Tonini and Cossali in [12]. Since the model in [12] is limited to a single inert species and non-

convective applications, one such comparison case is selected. In Fig. 3, results are presented for

three simulations. At the top, two pure droplets are depicted; to the left is the mass transfer rate for

a pure ethanol droplet, and to the right is the mass transfer rate for a pure water droplet. Then, the

bottom row is dedicated to a 50%-50% ethanol-water droplet in mass fractions. All simulations

have only a single species, air, as the inert one, and with a high-temperature surrounding gas, i.e.,
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T∞ = 1800K. As expected, both models perform quite similarly for pure conditions (top row).

However, for a mixed configuration (bottom row), we see more significant changes in the water

mass transfer rate. These may appear to not be as significant, but as seen in the next figures, these

can be essentially of the same order as changing completely the mass transfer model to simplified

strategies. Recall again that the only difference between both models for non-convective and

single-inert cases is the additional hypothesis for binary diffusion coefficients Di,i = Di,Ω = DΩ,i,

with i being any fuel vapor andΩ being the sole inert species. During the demonstration procedure,

we showed that this hypothesis is not necessary and, furthermore, that avoiding it leads to a simpler

final structure. For the results that follow, scenarios with multiple inert species and/or convection

are present, and so we omit further comparisons with the model from [12].

4.2. Comparing different mass transfer models

In sequence, to illustrate the impact of the choice of the mass transfer method, three different

liquid mixtures are studied here to represent typical mixtures that may arise for spray combustion

applications, for instance. Each simulation tracks the lifetime of a single droplet composed of

ethanol and water (E/W), acetone, ethanol, butanol, and water (A/E/B/W), and finally, n-hexane,

n-octane, n-decane, and n-dodecane (Alk), with symmetrical initial compositions in mass, as seen

in Table 1. For all upcoming figures, the mass transfer strategy presented in this work is labeled

as "Reference". Even though the proposed extension of Law’s model is used here, our structure

is identical to that of Law’s when the absolute value is not required. Therefore, in terms of the

mass transfer structure, all comparisons here are valid even for users of the original formulation

of Law’s model - the range of validity is only increased with no compromise. To account for

convection in Law’s extended model, we use Eq. 57 for the global mass transfer rate and then

compute individual mass transfer rates with Eqs. 53 and 54.

For all results that follow, mass fractions at the surface of the droplet were computed with the

vapor-liquid equilibrium assumption and employing the activity coefficient method [48], with ac-

tivity coefficients being computed with the UNIFAC strategy [49]. Also, as customary in the

literature, binary diffusion coefficients in the multi-component gaseous mixture are approximated

as if a binary mixture, i.e., D̃i,k = Di,k. The proposed models do not need this simplification per
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se, but since no practical method for computing D̃i,k exists to the knowledge of the authors, we

compute them as such. A previous study in [50] indicates that this hypothesis is typically valid,

but modern treatments on the subject could be envisaged.

In Fig. 4, the baseline case for the E/W droplet is plotted with the far-away state being composed

of pure air and the same temperature as the droplet, with no convection. It is possible to see

that Sacomano Filho et al.’s model closely follows the reference, whereas Law’s model deviates.

Particular attention is drawn to the fact that the ethanol mass transfer rate is first underpredicted

and then overpredicted, with the inverse behavior observed for water. At the start of the droplet

lifetime, these compensate each other, and this information would be lost with a model that does

not compute the mass transfer rates of different species. In addition, Law’s model tends to predict

a longer droplet lifetime, with the ethanol (more volatile species) completely exiting the droplet

sooner, when compared to the other models.

In Fig. 5, the same conditions are imposed for the E/W droplet except for the far-away temperature,

raised to T∞ = 1800K. Once again, Law’s model clearly differentiates itself from the other two;

this time, however, differences can be seen between the intermediary approach, Sacomano et al.’s

model, in comparison to our reference. The same opposed behavior is seen between ethanol and

water: underestimated first, then overestimated for ethanol mass transfer rates, and vice-versa for

water. The droplet lifetime is nearly identical between all three models; the global mass transfer

rate also has an overall similar structure. This raises awareness again of the fact that simple metrics

can be deceiving since the availability of different species will be regulated through their individual

mass transfer rates.

Moving to Fig. 6, the far-away temperature is changed back to the same as the droplet, but now a

convective case is presented, with a far-away velocity of U∞ = 25m/s. The initial droplet velocity

is still fixed at Ud,0 = 0m/s, but it is left free to vary following a standard drag law for spherical

bodies, with a momentum relaxation timescale as in [42]. We see that the physical behavior

between individual mass transfer rates is really similar to the one Fig. 4, but more compressed;

namely, the under/overshoots are less severe. Still, Law’s model predicts a higher droplet lifetime,

with the ethanol completely vaporizing earlier than other models.
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Finally, in Fig. 7, the baseline case (low temperature, no convection) but with a relative humidity

of 80% water at the far-away state instead of pure air is plotted. The humidity is computed using

the relative vapor presence ϕRVP
i parameter as in [2].

In this case, no appreciable differences are visible between the models. A sharp evaporation rate

for ethanol at the early stages is coupled with a sharp change from evaporation to condensation for

water until the droplet becomes pure water, after which a slow evaporation regime is established.

For the other studied droplets, namely A/E/B/W and Alk, baseline cases are now plotted in Figs.

8 and 9, with the same characteristics as the baseline E/W droplet but with compositions as listed

in Table 1. At the lower left quadrant of Fig 8, evaporation for the most volatile species (acetone

and ethanol) seems to be accurately reproduced among all three models. However, at the lower

right quadrant, we see that Law’s model predicts an undershoot followed by an overshoot for the

computation of butanol’s mass transfer rates and the opposite behavior for water. These differences

cancel out and predict similar global mass transfer rates and droplet lifetimes. As for the Alk

configuration, no substantial difference is seen between the models in any particular metric.

Now, in Figs. 10 and 11 the surrounding temperature is once again raised to T∞ = 1800K. Once

again, we see that the temperature tends to increase discrepancies between models, specifically for

mass transfer rates of individual species. Differences between Sacomano et al.’s formulation and

the reference tend to be limited, whereas Law’s model again tends to present higher deviations for

the least volatile species, butanol and water. Once again, no appreciable difference is seen for the

alkane mixture, as seen in Fig. 11.

As for the convective and humidity cases, we opt to omit them for conciseness since the conclu-

sions follow the same trends as those presented for the E/W droplet. In general, Law’s model

tends to approximate the most toward the reference formulation for alkane mixtures. Therefore,

for users that expect to work only with such mixtures, it could still be a viable option, provided that

the droplets are not expected to drastically change their composition during their lifetime (if, for

instance, gaseous species that were not originally present in the droplets are allowed to condensate

toward them). However, for multi-component mixtures containing ketones and/or alcohols, the
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use of more robust models is advised since differences can become significant, especially for the

prediction of individual mass transfer rates. This could severely impact the prediction of a flame

structure through fuel availability.

To approach conditions more representative of what a droplet might face in spray combustion

scenarios, we conduct an extra simulation using the framework first developed in [2]. Namely, a

one-dimensional premixed laminar flame is generated following an analytical treatment. In this

setup, as the droplet moves, it encounters varying conditions at the faraway state for temperature,

composition, and velocity instead of fixed ones. Results are shown for the E/W droplet in Fig.

12, including the profiles generated by the flame in temperature and mass fractions. It is directly

possible to see that little difference is present in global mass transfer rates and the variation of

the droplet’s diameter squared. As for the species, the main difference is observed for the water

mass transfer rates; all models predict roughly the same physics, but Law’s model presents higher,

then lower evaporation rates than the reference. The model of Sacomano Filho et al., in contrast,

exhibits an intermediary behavior closer to that of the reference.

Now in Fig. 13 it is possible to see the A/E/B/W droplet now exposed to the same Ethanol stoi-

chiometric flame. No major differences can be observed concerning global quantities, except for

the end of the droplet lifetime; it is possible to see that Law’s model simply misses some part

of the physics therein. Upon further inspection, it is possible to see a sharp contrast between the

behavior of Law’s model and the two others especially concerning the Butanol and Water species.

The complex physical behavior missed by Law’s model is the sharp valley on Butanol’s evapo-

ration rate showcased by the two other models, which actually indicates a premature complete

evaporation of Water and thus a droplet composed only of butanol towards the end of its lifetime,

whereas Law’s model predicts the opposite, with a quite complex zig-zag motion on water’s evap-

oration rate toward the end. A small difference can also be observed considering the minimum

value of Ethanol’s evaporation rate, which is roughly the same between both simplified models

and different compared to the reference. A flame configuration was also run for the Alk droplet,

this time using a n-hexane flame, but no appreciable difference can be seen between all three mod-

els. This would indicate that discrepancies tend to be higher for mixtures containing substances
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that interact with water and that also present more complex vapor-liquid equilibriums (typically,

activity coefficients farther away from unity).

As seen in the previous figures, for most scenarios, Sacomano et al’s model tends to closely follow

the proposed reference model. Differences tend to appear in a more pronounced fashion as the

surrounding conditions get more complex; this will be the case for, e.g., reactive flows and spray

combustion Since the computational overhead is not too great, it is recommended that this model

be at least tested for a particular droplet phase-change application to see if the additional physics

are relevant. This is especially recommended to users who still are using some version of Law’s

model; as discussed in the literature, many different versions of the same result are widely in use,

and progressing to this more complex model might be valuable.

5. Summary and conclusions

In this work, a mass transfer formulation for droplet general phase-change with no structural con-

straints concerning diffusion coefficients was derived and investigated in diverse conditions. This

formulation was based on the analytical integration of the Stefan-Maxwell equations following

fundamental simplifications which are common to all mass transfer models in the literature. The

hypothesis and simplications adopted during the derivation process, as well as the obtained re-

sults, allow us to conclude that the proposed formulation can be used as a reference concerning

the diffusion modeling, the main driver for droplet phase-change.

To corroborate this, it was demonstrated that one of the most used droplet evaporation results, the

one developed originally by Law [7], requires the assumption of equal diffusion coefficients for all

gaseous species, whereas other intermediary treatments, such as those in [9, 10, 11, 13] all require

the computation of a new diffusion coefficient between each species and their surrounding mixture.

This is in contrast with the proposed reference model, which requires no simplifications for the

mass diffusion closure, its main feature. As a second feature, the final formulation is also devel-

oped to avoid restrictions on the number of fuel and inert species. Another benefit that contributes

to the rigor of the proposed model is the fact that boundary layer effects are included organically,

and an extension based on a physical interpretation of the boundary layer is included to allow the
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film thickness correction for general evaporation and condensation mechanisms. In particular, it

was also demonstrated that Law’s formulation, although frequently used, cannot organically in-

corporate convection effects; this must be done in analogy with the single-component case, which

is not the case for the reference formulation.

To allow for the comparison between modeling strategies throughout the paper, the general energy

formulation demonstrated in [2] was employed. The proposed model was first validated through a

comparison with experimental data for droplets composed of Diesel fuels from [25]. Benchmarks

showed that for this validation case, a factor of around 1.5x is the maximum extra computational

cost of using the proposed formulation when compared to both other mass transfer strategies. The

model is also briefly compared to the one of [51]. Then, simulations were run for three types

of droplets: ethanol / water, acetone / ethanol / butanol / water, and n-hexane / n-octane / n-

decane / n-dodecane to represent typical mixtures in spray combustion applications. The effects

of temperature, surrounding composition, and velocity were first isolated and then mixed together

following a surrounding laminar flame profile obtained from stoichiometric analytical results as

done previously in [2]. In general, it was seen that Law’s model systematically deviated more in

comparison with the two other models, often predicting completely different physics. This was

mainly limited to mixtures that contained fuels that interacted with water and presented larger

deviations from the ideal vapor-liquid equilibrium (Raoult’s law). Representing an intermediate

class of mass transfer formulations, the model proposed in [13] delivered results with a generally

satisfactory agreement with the reference formulation. Deviations become more noticeable when

varying surrounding conditions are imposed on the droplet, highlighting a potential sensibility

for more complex applications. For mixtures containing only alkanes, all models behaved in a

similar fashion. Therefore, one of the main takeaways is that, even though Law’s formulation

has the advantage of its simplified formulation, care must be taken when employing it for general

mixtures, at least in comparison with such models.

From perspectives in this field, the first important task concerns relaxing even more the restrictions

on the diffusion mechanism through the binary diffusion coefficients D̃i,k. Indeed, these have been

historically computed as being those between a pair of species in a binary mixture and not the
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real multi-component diffusion coefficients, where the interaction between the pairs is affected by

the presence of other molecules. For such an endeavor, a strategy could be to use semi-empirical

models, such as the Chapman-Enskog formalism, as seen, for instance, in [48]. Also, another

possibility is to conduct a study using this reference model to evaluate if the average diffusion

coefficients D̄ and Di used for Sacomano et al.’s and Law’s model, respectively, can be calibrated

to yield accurate results with less computational cost. Also, since all of the proposed formula-

tions were obtained through analytical integrations for the gaseous phase, there is no impediment

to coupling this model with a finer description of the droplet’s interior. A useful starting frame-

work can be found in [8], where a theoretical solution is proposed for the temperature diffusion

equation, analogous to the species’s equations for this simplified case. We reiterate that all of the

above propositions could be coupled with no restrictions with the general energy formulation of

[2]. Notably, Soret effects thermodiffusion effects could also be studied in this framework, further

incorporating features that impact mass diffusion. Following the treatment done in [14] to ex-

tend the previous model [12] toward spheroidal shapes, theoretically, the same could be done with

this reference model, with perhaps a greater challenge considering the organic incorporation of

boundary layer effects and the Stefan flow effect onto said boundary layers, for general convective

applications. It would also be ideal to develop an analytical or numerical correlation to rigor-

ously incorporate Stefan flow effects for general phase-change scenarios. Finally, an important

perspective is the comparison of different mass transfer strategies on two-way frameworks, ideally

for complex flows, e.g., with combustion. This would further indicate whether other strategies

perform similarly to the proposed reference and would provide computation benchmarks that are

more useful to the interested user.
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Figure 1: Correction factors for boundary layer under evaporation/condensation regimes following Eqs. 67 (blue) and
68 (red).
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Figure 2: Normalized diameter squared (D/D0)2 versus time t/D2
0 for a Diesel droplet composed of the following

initial mass fractions YC7H8 = 0.08, YC10H22 = 0.11, YC12H26 = 0.21, YC14H30 = 0.27, YC16H34 = 0.17 and YC18H38 = 0.16.
Experimental data extracted from [25]. For this simulation, D0 = 80µm, Td,0 = 300K, T∞ = 723K, Ud,0 = 0m/s,
U∞ = 0m/s and the far-away state is composed of pure air.
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Figure 3: Top-left: Water mass transfer rate ṁk versus reduced time t/D2
0 for a pure water droplet. Top-right: Ethanol

mass transfer rate ṁk versus reduced time t/D2
0 for a pure ethanol droplet. Bottom row: Ethanol and water mass

transfer rates ṁk versus reduced time t/D2
0 for a 50%/50% ethanol-water droplet. For all cases, D0 = 20µm, Td,0 =

300K, T∞ = 1800K, Ud,0 = 0m/s, U∞ = 0m/s and the far-away state is composed of pure air.
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Droplet Initial composition (mass fractions)

E/W [C2H5OH] = 0.5, [H2O] = 0.5

A/E/B/W [C3COCH3] = 0.25, [C2H5OH] = 0.25,

[C4H9OH] = 0.25, [H2O] = 0.25

Alk [C6H16] = 0.25, [C8H18] = 0.25,

[C10H22] = 0.25, [C12H26] = 0.25

Table 1: Initial droplet compositions in mass fractions used in the numerical investigations of this section. "E/W"
refers to ethanol/water, "A/E/B/W" to acetone/ethanol/butanol/water, and "Alk" to n-hexane/n-octane/n-decane/n-
dodecane.

38



0 1 2 3 4
t/2

0[s/m2] 1e8

−2.0

−1.5

−1.0

−0.5

0.0

ṁ
[k
g/
s]

1e−10

0 1 2 3 4
t/2

0[s/m2] 1e8

0.0

0.2

0.4

0.6

0.8

1.0


/

2 0

0 1 2 3 4
t/2

0[s/m2] 1e8

−1.50

−1.25

−1.00

−0.75

−0.50

−0.25

0.00

Et
ha
no
l -

 ṁ
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Figure 4: Ethanol/water (E/W) droplet withD0 = 20µm, Td,0 = 300K, T∞ = 300.01K, Ud,0 = 0m/s, and U∞ = 0m/s.
The far-away state is composed of pure air. Results are displayed for the global mass transfer rate ṁ, the normalized
diameter squared (D/D0)2 and individual mass transfer rates ṁk for each species, versus a reduced time t/D2
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Figure 5: Ethanol/water (E/W) droplet with D0 = 20µm, Td,0 = 300K, T∞ = 1800K, Ud,0 = 0m/s, and U∞ = 0m/s.
The far-away state is composed of pure air. Results are displayed for the global mass transfer rate ṁ, the normalized
diameter squared (D/D0)2 and individual mass transfer rates ṁk for each species, versus a reduced time t/D2
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Figure 6: Ethanol/water (E/W) droplet with D0 = 20µm, Td,0 = 300K, T∞ = 300.01K, Ud,0 = 0m/s, and U∞ =
25m/s. The far-away state is composed of pure air. Results are displayed for the global mass transfer rate ṁ, the
normalized diameter squared (D/D0)2 and individual mass transfer rates ṁk for each species, versus a reduced time
t/D2
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Figure 7: Ethanol/water (E/W) droplet withD0 = 20µm, Td,0 = 300K, T∞ = 300.01K, Ud,0 = 0m/s, and U∞ = 0m/s.
The far-away state is composed of a mixture of air and water at 80% humidity. Results are displayed for the global
mass transfer rate ṁ, the normalized diameter squared (D/D0)2 and individual mass transfer rates ṁk for each species,
versus a reduced time t/D2
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Figure 8: Acetone/ethanol/butanol/water (A/E/B/W) droplet with D0 = 20µm, Td,0 = 300K, T∞ = 300.01K, Ud,0 =

0m/s, and U∞ = 0m/s. The faraway state is composed of pure air. Results are displayed for the global mass transfer
rate ṁ, the normalized diameter squared (D/D0)2 and individual mass transfer rates ṁk for each species, versus a
reduced time t/D2
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[k
g/
s]

1e−10

C6 - Ref.
C6 - S.F. et al
C6 - Law (ext.)
C8 - Ref.
C8 - S.F. et al
C8 - Law (ext.)

0 2 4
t/2

0[s/m2] 1e9

−3.0

−2.5

−2.0

−1.5

−1.0

−0.5

0.0

N-
de

ca
ne

, N
-d

od
ec

an
e-

 ṁ
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Figure 9: N-hexane/N-octane/N-decane/N-dodecane (Alk) droplet with D0 = 20µm, Td,0 = 300K, T∞ = 300.01K,
Ud,0 = 0m/s, and U∞ = 0m/s. The faraway state is composed of pure air. Results are displayed for the global mass
transfer rate ṁ, the normalized diameter squared (D/D0)2 and individual mass transfer rates ṁk for each species,
versus a reduced time t/D2
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Figure 10: Acetone/ethanol/butanol/water (A/E/B/W) droplet with D0 = 20µm, Td,0 = 300K, T∞ = 1800K, Ud,0 =

0m/s, and U∞ = 0m/s. The faraway state is composed of pure air. Results are displayed for the global mass transfer
rate ṁ, the normalized diameter squared (D/D0)2 and individual mass transfer rates ṁk for each species, versus a
reduced time t/D2
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Figure 11: N-hexane/N-octane/N-decane/N-dodecane (Alk) droplet with D0 = 20µm, Td,0 = 300K, T∞ = 1800K,
Ud,0 = 0m/s, and U∞ = 0m/s. The faraway state is composed of pure air. Results are displayed for the global mass
transfer rate ṁ, the normalized diameter squared (D/D0)2 and individual mass transfer rates ṁk for each species,
versus a reduced time t/D2
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Figure 12: Ethanol/water (E/W) droplet withD0 = 20µm, Td,0 = 300K and Ud,0 = 0.5m/s against a premixed laminar
Ethanol stoichiometric flame. The surrounding gaseous temperature, composition, and velocity are embedded in the
figure. Results are displayed for the global mass transfer rate ṁ, the normalized diameter squared (D/D0)2 and
individual mass transfer rates ṁk for each species, versus a reduced time t/D2
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Figure 13: Acetone/ethanol/butanol/water (A/E/B/W) droplet with D0 = 20µm, Td,0 = 300K and Ud,0 = 0.5m/s
against a premixed laminar Ethanol stoichiometric flame. The surrounding gaseous temperature, composition, and
velocity are embedded in the figure. Results are displayed for the global mass transfer rate ṁ, the normalized diameter
squared (D/D0)2 and individual mass transfer rates ṁk for each species, versus a reduced time t/D2
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Nomenclature

BM Spalding mass transfer number
B̄M Average Spalding mass transfer num-

ber
BM,k Spalding mass transfer number of

species k
BT Spalding heat transfer number
c Molar density (mol/m3)
cp,k Gaseous specific heat at constant

pressure for species k (J/(kg · K))
D0 Droplet initial diameter (m)
D̄ Average diffusion coefficient when

assumed equal between all species
(m2/s)

Dk Average multi-component diffusion
coefficient between species k and the
remainder of the multi-component
mixture (m2/s)

Dk, j Binary diffusion coefficient between
species k and j in a binary mixture
(m2/s)

D̃k, j Binary diffusion coefficient between
species k and j in a multi-component
mixture (m2/s)

DT
k, j Thermal diffusion coefficient be-

tween species k and j (kg/(m · s))
FM Average correction factor to incorpo-

rate Stefan flow effects
FM,k Correction factor to incorporate Ste-

fan flow effects for species k
fk Volumetric forces field on species k

(N)
md Droplet mass (kg)
ṁ Gaseous mass transfer rate (kg/s)
ṁd Droplet mass transfer rate, ṁd = −ṁ

(kg/s)
ṁk Mass transfer rate of species k (kg/s)
ṅk Molar transfer rate of species k

(mol/s)
Nu∗ Nusselt number with Stefan flow ef-

fects
p Pressure field (Pa)
Q̇ Heat transfer rate (J/s)
r Radial coordinate

R Universal gas constant (J/(mol · K))
Rd Droplet instantaneous radius (m)
Sh0 Sherwood number in the absence of

Stefan flow effects
S̄h0 Average Sherwood number in the ab-

sence of Stefan flow effects
Sh∗ Sherwood number with Stefan flow

effects
S̄h∗ Average Sherwood number with Ste-

fan flow effects
Shk,0 Sherwood number of species k in the

absence of Stefan flow effects
Sh∗k Sherwood number of species k with

Stefan flow effects
t Time (s)
T Temperature (K)
Td,0 Droplet initial temperature (K)
T s Temperature at the surface of the

droplet (K)
T∞ Temperature far away from the

droplet (K)
u Velocity field (m/s)
Ud,0 Droplet initial velocity (m/s)
U∞ Surrounding field velocity (m/s)
vD

k Mass diffusion velocity of species k
(m/s)

vm
k Average molecular velocity of

species k (m/s)
Wk Molar weight of species k (kg/mol)
Xk Molar fraction of species k
Yk Mass fraction of species k
ȲF Sum of mass fraction of all species

that participate in phase-change
δM Average mass boundary layer thick-

ness (m)
δM,k Mass boundary layer thickness of

species k(m)
εk Fractional evaporation rate of species

k, εk = ṁk/ṁ
λ Thermal conductivity (W/(m · K))
ρ Density (kg/m3)
ω̇k Chemical reaction source term,

species k (kg/(m3 · s))
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