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Abstract

Complex networks, which constitute the main subject of network science, have been wide and
extensively adopted for representing, characterizing, and modeling an ample range of structures
and phenomena from both theoretical and applied perspectives. The present work describes the
application of the real-valued Jaccard and real-valued coincidence similarity indices for translating
generic datasets into networks. More specifically, two data elements are linked whenever the
similarity between their respective features, gauged by some similarity index, is greater than a given
threshold. Weighted networks can also be obtained by taking these indices as weights. It is shown
that the two proposed real-valued approaches can lead to enhanced performance when compared
to cosine and Pearson correlation approaches, yielding a detailed description of the specific
patterns of connectivity between the nodes, with enhanced modularity. In addition, a parameter «
is introduced that can be used to control the contribution of positive and negative joint variations
between the considered features, catering for enhanced flexibility while obtaining networks. The
ability of the proposed methodology to capture detailed interconnections and emphasize the
modular structure of networks is illustrated and quantified respectively to real-world networks,
including handwritten letters and raisin datasets, as well as the Caenorhabditis elegans neuronal
network. The reported methodology and results pave the way to a significant number of theoretical
and applied developments.

1. Introduction

Though relatively recent, the area of network science (e.g. [1—4]) has established itself not only from the per-
spective of theoretical contributions, but also as a consequence of its ample range of applications to the most
diverse areas and problems [4]. Basically, a complex network is a graph with structure substantially distinct
from simpler, more regular, counterparts (e.g. [5]).

The representation of a structure as a complex network demands the adoption of some approach for defin-
ing the network nodes, and then the application of some objective criterion for linking these nodes. Indeed,
intrinsic interrelationships have been identified between connectivity, similarities and features [6]. In particu-
lar, the potential of network science can be extended even further provided datasets can be effectively translated
into respective networks, from which a wealthy of informative measurements can then be extracted (e.g. [3]).

Often employed approaches include the consideration of measurements such as the cosine similarity and
Pearson correlation, as well as the adoption of set-based alternatives, such as the Jaccard index (e.g. [7-11]),
which has been predominantly employed for data involving binary or categorical data. In the case of categor-
ical data, approaches such as the traditional Jaccard index have constituted an interesting option (e.g. [12]).
Though it is also possible to define connectivity with basis on differences and distances, these measurements
often need to be mapped into similarities in order to be taken as respective weights.

More recently, the Jaccard index has been generalized to real-valued data [13—16] through a multiset-
based approach. Multisets (e.g. [17-22]) constitute an interesting approach to set theory that allows repeated
entries of elements, with their repetitions being referred to as multiplicity. Observe that the ability to operate
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on negative values is often required in cases where the data has been preliminary normalized, e.g. through
standardization.

However, the classic Jaccard index is not able to take into account the relative interiority of the two compared
sets, which motivated the proposal [13, 16] of the coincidence index, corresponding to the combination, more
specifically the product, between the interiority (or homogeneity) and the Jaccard indices.

Recent results [13, 16, 23] have indicated that product-based similarity indices, which include both the
cosine similarity and Pearson correlation coefficient, tend to be relatively less strict regarding similarity quan-
tification than non-bilinear indices based on combination of the minimum and maximum operations, such
as the Jaccard and coincidence indices. The real-valued Jaccard, and in particular the coincidence, indices tend
to allow substantially more detailed and selective similarity quantification respectively to comparison of sig-
nals, being capable of removing secondary, smaller spatial scale noise and structure while emphasizing the
coincidence matches in terms of sharp, narrow matching peaks [23, 24].

Another interesting problem in network science concerns the issue of, given a network, to high-
light and/or identify its respective modular structure (e.g. [2]). Though several methods have been
proposed for community finding, this problem remains to a great extent open because of intrin-
sic difficulties. Remarkably, the real-valued Jaccard and coincidence indices-based approach reported
in the current work present encouraging potential for enhancing the modular structure of existing
networks accordingly to some specific set of measurements.

In this work, we aim at studying the potential of the real-valued Jaccard and the real-valued coincidence
similarity indices as the basis for mapping datasets, involving one or more features corresponding to numeric
values, into respective complex networks. It is shown not only that the proposed method tends to allow good
levels of detail about the specific interconnecting structure of datasets, but also present potential for highlight-
ing the network modularity. In particular, we apply the proposed method to real-world datasets of handwritten
letters and raisins [25, 26]. In addition to visualizing the networks obtained by considering the cosine similar-
ity, Pearson correlation, real-valued Jaccard and real-valued coincidence methods, we also report a quantitative
comparison regarding the specificity of the indices as well as the obtained modularity.

The real-valued Jaccard and real-valued coincidence methods for translating datasets into networks are
found to provide substantially better performance than the cosine similarity and Pearson correlation coeffi-
cient. In addition, as expected, by incorporating additional information about the relative interiority between
the two compared datasets, the real-valued coincidence approach tended to outperform the real-valued Jaccard
approach for generating networks from datasets.

The interesting issue regarding the relationship between the real-valued Jaccard and real-valued coinci-
dence methods and network modularity was considered further by starting not from features of the elements
in datasets, but from topological measurements (e.g. shortest path distances) derived from networks described
by their respective adjacency matrix (0 or 1 values). Encouraging preliminary results were obtained respectively
to networks derived from the raisin dataset as well as to the Caenorhabditis elegans neuronal network [27-29]
while considering both its undirected and directed respective versions.

This article starts by presenting the main basic concepts, and follows by presenting the real-valued Jaccard
and real-valued coincidence similarity indices, as well as the respective methodology for translating datasets
into networks. The potential of this methodology is then illustrated respectively to real-world datasets, with
the important relationship between the coincidence measurement, interconnectivity detail, and modularity
being addressed subsequently.

2. Basic concepts

A complex network is basically a graph composed of N nodes (or vertices) and E connections (or edges, or
links). Complex networks are often represented in terms of the respective adjacency matrices or edges lists.
The former of these possible representations involves using a matrix A where a connection from a node j to
a node 7 implies A [i, ]] =1, with A [i, ]] = 0 being otherwise enforced. In case A [i, ]] =A [j, i] , V1,7, the
network is said to be undirected. Complex networks involving weights associated to their respective links can
be represented by respective weight matrices.

The henceforth considered datasets are understood to incorporate N data elements, observations, samples,
or individuals, characterized in terms of M respective measurements or features. Each of these datasets can
be organized as a table or N x M matrix where each of the N rows corresponds to a data element, while the
columns contain the respective measurements or features x;, i = 1,2, ..., M, each of which represented in
terms of respective feature vectors.

In order to avoid biases typically implied by varying magnitudes between the several features, the statistic
linear transformation of standardization (e.g. [30]) is frequently adopted, in independent manner, over each
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feature f prior to similarity quantification. This transformation can be implemented as:

Jfk:fk—_ﬂf, ()

of

where p; and of are the mean and standard deviation of the feature f taken along all data elements
k=1,2,...,N.

It can be shown that each of the resulting features will have zero means and unit standard deviation (e.g.
[31]). In addition, most of the feature values become comprised within the interval [—2, 2], depending on their
respective statistical distributions. Conveniently, the newly obtained variables also become non-dimensional.
Observe that the standardization ensures a bijective mapping between the original and normalized datasets,
therefore preserving the features information.

The application of the standardization procedure intrinsically implies that any index or measurement
adopted to quantify the similarity between data elements will need to be able to cope with negative values,
which is not the case of the classic Jaccard index, or even its multiset generalization to non-negative values.

Possibly one of the most frequently adopted means for quantifying the similarity between network nodes
consists of the cosine similarity, which relies on the inner product between two feature vectors ¥ and ¥, being
expressed as:

N

XY

-
i

N
(%9 = in yi = |||y cos(8) = cos() = , (2)
i=1

=1

where (X, 7) is the inner product between the vectors X and ¥, |X| and |)| are their magnitudes, and cos(6) is
the cosine similarity. We also have that —1 < cos(6) < 1.
Observe that the cosine similarity does not take into account the original magnitudes of the two vectors,
therefore losing part of the information about the relationship between the elements in the original dataset.
Another closely related similarity measurement, referring to two nodes X and Y described by respective
feature vectors X and ¥, each with N components, is the Pearson correlation coefficient, expressed as:

S [ =% (v =)
VIS - - )7

P(X,Y) = (3)

with —1 < P(X,Y) < 1. Observe that the Pearson correlation coefficient can be strongly influenced by outliers
(e.g. [32]) as well as by small numbers of samples.

3. Real-valued Jaccard and coincidence similarity indices

The classic Jaccard index [7, 10, 13]) for quantifying the similarity between two sets A and B can be defined as

follows:
|ANB|

|AUB|’

where |A| > 0 is the cardinality of set A. Observe that 0 < J(A,B) < 1.

A generalization of the Jaccard index [13, 15, 16] by employing multiset concepts (e.g. [18—22, 33, 34]),
henceforth referred to as real-valued Jaccard similarity index, allows real, possibly negative data values (multiset
multiplicities) to be taken into account. The real-valued Jaccard similarity index between two multisets or
feature vectors X and ¥ can be expressed as:

J(A,B) =

(4)

> ics Suy; Min {sxixi’ SJ'iyi}

(5)
Zies max {sxixi’ SJ’iyi}

Jr(X%)) =

with —1 < Jr(X, 7) < 1 and where x; and y; correspond to the multiplicities of the vectors X and y, s, = sign(x),
s, = sign(y), sy, = sy, and S is the combined support of the multisets, which generally corresponds to the
union of the abscissae in X and y. Signed similarity indices, including the above, have been previously reported
[35] from the perspective of the L1 norm.

In addition, the numerator in equation (5) has been shown to correspond to the signed intersection (1)
between two real-valued multisets [15]:

xMy = Z Sxj,y; MIN {5x,-xi’5yi3’i} (6)

i€S

required so that x 1 ® = &, where @ is the empty multiset.
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Another possibility for taking into account the real values signs is as described in [36] in the context of the
L1 norm:

sy o= Z |5x,. + sy,.| min {sxixi,syiyi} (7)

ies
which allows only the cases in which the feature signs are aligned (i.e. sy = s,) to contribute to the overall sum
in equation (5). The situation in which s, = —s, can also be addressed by using the following quantity:

=3 Jou = sl min {smm s} v
i€S

which takes into account only the reversely aligned signs among each two instances of the same measurement.
The two above terms can then be combined as:

Sta = [O{] S+ — [1 - Oé] S (9)

where 0 < a < 1 is a real parameter controlling the relative weights of the aligned and anti-aligned terms s
ands_.
The real-valued Jaccard index, parametrized by «, can now be expressed as:
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with —2(1 — ) < Jr(X, %, @) < 2a, so that the range of the real-valued Jaccard similarity index is given as:

]R(z) )7> a)max - ]R(X’)}z a)min

=2a—[-2(1 —a)] =2. (11)
It can be verified that o = 0.5 implies that:
Jr(¥%,y,a = 0.5) = Jr(%,) (12)

with —1 < Ja(%7, o = 0.5) < L.

There are many other ways in which the s; and s_ indices can be combined, and it is also interesting to con-
sider them separately, or jointly with other indices. In addition, it is possible to separate the sign contributions
in more than two cases. For instance, we could have four cases with respective selectors: (+, +); (4, —); (—, +);
and (—, —), and so on. Analogue schemes can be employed respectively to other similarity measurements.

The interiority index (or overlap e.g. [37]) corresponds to another measurement which aims at expressing
how much one of the two sets is contained in the other (commutatively). In its traditional version considering
set cardinality, this index is expressed as:

ANB
1A= —A0H (13)
min {|Al, |B[}
with 0 < I(A,B) < 1.
When adapted to real values [13, 16], the interiority index between any two multisets becomes:
Z min {s,,X;, 5, }
R(Ej) = —= (14)
i {5 2]
ies ies

again with 0 < (X, 7) < L.

Unlike the Jaccard index, the interiority measurement takes into account, for normalization purposes, the
smallest size between the two multisets being compared. At the same time, the classic Jaccard index, as well as
its generalization to multisets and real-values, have been shown not be able to take into account the relative
interiority of the two sets [13].

In oder to combine the best features of each of the above two measurements, the coincidence index between
any two multisets (or vectors) ¥ and ¥ has been proposed [13, 14] as corresponding to the product of the
respective interiority and Jaccard indices. Therefore, we have that the real-valued coincidence index between
any two multisets or vectors X and ¥ can be calculated as:

Cr(%,7) = (%, 7) r(%, 7) (15)

with —1 < C(%,7) < 1.
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The coincidence index can also be parametrized by « as:
Cr(%,7,0) = (%, y) Jo(x. 7, 0) (16)

with —2(1 — a) < Cr(%, 7> @) < 20

The coincidence index tends to provide one of the most strict and detailed quantification of the similarity
between two mathematical structures, having allowed enhanced performance respectively to pattern recogni-
tion [23, 24] and hierarchical clustering [38]. In the former case, the coincidence index was shown [23, 24]
to be able to yield sharp, narrow peaks indicating the matches between a template and an object signal, while
substantially attenuating secondary, small scale noise and otherwise unwanted background structure.

As such, the coincidence index can be understood as a binary operator (in the mathematical sense of taking
two arguments) that combines low and high-pass filtering in order to best suit the pattern recognition objec-
tives. This important feature is a direct consequence of the non-bilinearity of the operations maximum and
minimum which are part of the definition of the coincidence index.

Also relevant is the fact that the normalization in equation (5) yields a similarity profile directly related to
the generalized Kronecker delta function [15, 16]:

55 = sign(i j) &y v

which implements the most strict quantification of the similarity between two numeric values.

4. Building coincidence networks

Given a dataset, we aim at obtaining a respective representation as a complex network. The commonly adopted
procedure consists of understanding each data element as a node, while the links are established based on the
similarity (or difference) between the features of the respective data elements.

Frequently applied methodologies rely direct or indirectly on the cosine similarity or Pearson correlation
between the features of pairs of data elements. In the present work, we focus on the real-valued Jaccard and
coincidence indices, especially on their versions parametrized by «.

The basic methodology proposed in this work for transforming datasets into networks consists of: (i) stan-
dardizing the original dataset; and (ii) obtaining the pairwise similarities by using the real-valued Jaccard
or coincidence indices. The cosine similarity and Pearson correlation are also considered as references for
comparison.

The adjacency matrix of the resulting network can then be obtained by thresholding the respective sim-
ilarity matrix (understood as a weight matrix) by a value T. It is also possible to preserve the weights of the
thresholded links, resulting in the representation of the original dataset in terms of a respective weight network,
in which case thresholding will not be necessary.

A welcomed characteristic of the proposed methodology to translate datasets into networks is that it
involves only two parameters, namely « and the threshold T.

Given that a controls the relative contribution of the joint signs of the features, it will typically have a
major effect on the respectively obtained distribution of similarity values. Therefore, it is interesting to consider
several values of « so as to identify the respective setting that is more suitable for each problem. For instance,
several values of v can be checked in order to identify which can lead to the largest modularity (e.g. [39, 40]).
In addition, the consideration of sequences of progressively increasing values of «, as illustrated in section 5,
can provide interesting insights about how the topology of the obtained networks progressively changes as «
is increased. Observe that larger values of « tend to imply more connected networks.

Regarding the threshold T, it influences the results in the sense that larger values will yield overall less
connected networks. Observe that, unlike «, the threshold T does not control the relative contribution of the
pairwise feature signs, but only acts on the overall obtained similarity values. As with «, several values of T'can
be compared so as to identify those more suitable for each specific situation. Interestingly, the same value of
T = 0.25 allowed good results to be obtained for all results in the present work.

5. Real-world datasets

In this section, we illustrate the potential of the real-valued Jaccard and coincidence indices respectively to
real-world datasets. In particular, we consider handwritten letters and the raisin (e.g. [25, 26]) datasets. All
network visualizations have been obtained from the respective adjacency matrices. In addition, every visual-
ization presented in this section were obtained by using the Kamada—Kawai method [41], which was found to
allow particularly effective results respectively to the considered data.
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Figure 1. PCA of the letters dataset considering all four original features. The percentages in the axes indicate the relative
explanation of the data variance considering 1 and 2 principal components, from which it can be verified that the PCA projection
accounts for 93.5% of the data variation. Each of the handwritten letters has been shown in specific respective colors: ‘¢’ in blue,
‘0’ ain salmon, and ‘e’ in green. There are 50 samples of each handwritten letter. Overlaps can be observed between every pair of
categories.

The letters dataset contains 50 samples handwritten letters ‘c’, ‘e’ and ‘0’, which have been chosen because of
their mutual similarity. Each of the data elements is characterized in terms of four respective numeric features,
namely the written area, the width and height of each character, as well as the arc length of their external
contour.

Figure 1 depicts the principal component analysis (PCA) [30, 31] of the letters data set considering all four
original features. In addition, in order to avoid effects of the varying magnitudes of the four original mea-
surements, which could therefore bias the network representations, we consider the respectively standardized
dataset. All networks obtained from the letters dataset take into account all the four original features. We can
see from figure 1 that overlaps are found between each of the respective three categories.

The application of the cosine similarity and Pearson correlation approaches to obtain the weights defining
the respective complex networks resulted in the graphs shown in figure 2. One of the categories (blue) resulted
relatively well separated in the case of the cosine similarity. However, the other two categories (nodes in green
and red) present substantial overlap in both cases.

In order to illustrate the interiority index, we obtained the respective complex network for the letters
dataset. The result is shown in figure 3. All the three categories present substantial overlaps, indicating that,
despite its ability in providing valuable information about the relative interiority between the datasets, the
interiority index has limited potential for accurately reflecting the interconnectivity structure and modularity
of the original dataset, at least for the cases and configurations considered here.

Now, we proceed to applying the recently introduced real-valued Jaccard index parametrized by
a = 0.25,0.32,0.39,0.46,0.53, 0.60 to the letters dataset, yielding the networks depicted in figure 4.

The resulting networks reveals a surprising separation between the groups for the smaller values of . Not
only the groups have coalesced into a relatively compact community (especially for the two smallest adopted
values of «), but the blue group resulted well-separated while a substantial portion of the red group has also
resulted separated from the green group. In addition, when compared to the results obtained by using the
cosine similarity and Pearson correlation, these results are characterized by a substantially more detailed and
specific representation of the original dataset.

Figure 5 shows the network obtained for the letters data by adopting the coincidence index with
a = 0.25,0.32,0.39,0.46,0.53,0.60 and threshold T = 0.25.

The enhanced discriminative potential of the coincidence index [14, 23] has allowed a network represen-
tation of the letters dataset that is even more detailed and structured regarding the interrelationship between
the data elements, as well as the overall data modular structure, presenting compact communities (especially
for the two smallest values of «v) and little overlap between the three groups even in the cases where the green
and red groups are adjacent (contrast with the networks in figure 2).
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(b)

Figure 2. Complex networks of the letters dataset obtained by using the cosine similarity (a) and Pearson correlation (b) methods
while considering all four original features in standardized version. The adopted thresholds were 0.60 and 0.70, respectively.
Although the blue group resulted moderately separated in both cases, the other two categories (red and green) present a
substantial overlap.

A particularly detailed network has obtained respectively to o« = 0.32, in which not only the blue cluster
resulted significantly separated from the others, but substantial separation can be observed also regarding the
green and a substantial part of the red groups.

It is interesting to compare the networks obtained for the letters dataset by using the Jaccard (figure 4)
and coincidence (figure 5) methods. Substantially less compact networks, with less-separated communities,
were obtained for the Jaccard method as a consequence of the respective similarity index being less strict than
the coincidence index, the latter also reflecting the interiority between the two multisets. By imposing less
demanding conditions, larger similarity values are obtained for the real-valued Jaccard index that are related
to the respectively obtained networks being less separated.

Given that both the real-valued Jaccard and the real-valued coincidence indices convey separated informa-
tion about the sign of the joint variation of the two multisets, it becomes possible to derive respective complex
networks considering exclusively the negative coincidence similarities. In the case of the letters dataset, the
obtained network considering only negative coincidence values (i.e. & = 0) is shown in figure 6.
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Figure 3. Complex network of the letters dataset obtained by taking into account the real-valued interiority index, adopting 0.9 as
threshold. The obtained result corroborates that, despite the ability of the interiority index to quantify the relative interiority
between two datasets, it has limited potential for providing a detailed representation of the interconnections and respective
modularity.

o =025,T= 025 a =032,T= 025 a=039,T=025

Figure4. Complex network of the letters dataset obtained by using the real-value Jaccard index and the four original features, for
a = 0.25,0.32,0.39,0.46,0.53, 0.60 and threshold T = 0.25.

Interestingly, two hierarchical levels, or modules, can be observed. The most central one corresponds to the
blue group. The other two groups, which are more intertwined and dispersed, resulted at the outer community
(network border).

In order to illustrate the potential of the coincidence methodology respectively to a larger dataset, we con-
sidered the raisin dataset [25, 26], containing 900 individual raisin samples from two varieties grown in Turkey,
Kecimen and Besni. Each of the data elements is characterized in terms of seven measurements corresponding
to area, perimeter, major axis length, minor axis length, eccentricity, convex area, and extent. In the original
dataset, each of the two varieties is represented in terms of 450 respective samples. The visualizations of the
respectively obtained networks were obtained by using the Fruchterman—Reingolg (e.g. [42]) approach.
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o =025,T= 025 a =032,T= 025 a=039,T=025

Figure 5. Complex network of the letters dataset obtained by using the coincidence index on the four original features for
o = 0.25,0.32,0.39,0.46,0.53,0.60 and threshold T = 0.25.

Figure 6. Network obtained for coincidence values smaller or equal than —0.30, assuming cv = 0. The connections are therefore
established between features having opposite signals. The most well-separated original category (blue) resulted as the most
internal module in the negative coincidence network, with the two other categories found at the respective border.

Figure 7 illustrates the coincidence network obtained for the raisin dataset considering all measure-
ments and T = 0.25, and o = 0.15,0.18,0.21,0.24,0.27, 0.3. For the sake of enhanced visualization, only 450
alternated (every other one) samples have been taken into account.

The raisin example illustrates the potential of the coincidence methodology for identifying groups (clusters)
and communities in relatively large datasets. As «v increases, two separated groups can be observed to progres-
sively appear, grow and then merge into two respective communities interconnected in a ring-like manner.
The two obtained groups and communities correspond very closely to the two varieties or raisins, though a
number of Besni raisins having been progressively incorporated into the Kecimen group as a consequence of
these specific samples being more similar to the other group.

The ring-like observed in the raisin example illustrates an interesting situation in which the data elements
are gradually similar, defining a chain of transitive interconnections that, in the case of this particular dataset,
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Figure 7. Coincidence complex networks obtained for the raisin dataset [25, 26] considering all seven original features,

T =0.25,and a = 0.15,0.18,0.21,0.24,0.27,0.3. As « is increased, two separated groups, corresponding mostly to the two main
varieties of raisins (Kecimen, in blue, and Besni, in red), progressively appear and then grow until coalescing into two respective
modules or communities at & & 0.21. A ring-like topology can be observed for the three largest values of cv. This example
illustrates the potential of the coincidence methodology for identifying groups and communities in datasets. Relatively few
misplacements can be observed, which are mostly limited to cases of Besni raisins appear within the Kecimen group.

ends up by establishing a major cycle. Several additional examples of varying topologies found in datasets
visualized as networks by using the proposed methodology, as well as complementary information on data
and other material related to the present work, can be found at [43].

6. Coincidence networks and modularity

When visually compared to the network construction approaches based on the cosine and Pearson correlation
indices, the real-valued Jaccard and real-valued coincidence methods tend to yield networks characterized not
only by an impressive level of connectivity details, but also enhanced modular structure. Then, the coincidence
method typically allows improved results respectively to the real-valued Jaccard approach. These characteristics
have been observed not only respectively to the networks presented in section 5, but also in other studies
considering these similarity indices for template matching between two signals [23, 24].

Possible reasons accounting for the relative limitations of the cosine and Pearson methods are as follows.
Regarding the cosine similarity, we have that this measurement does not take into account the magnitude of
the two compared vectors, therefore overlooking potentially important information. In addition, as a conse-
quence of its own mathematical properties, the cosine index frequently tends to result higher similarity values
[16, 23]. In the case of the Pearson correlation, we have that it is known to be particularly sensitive to outliers
(e.g. [32]), and also to provide biased estimations when applied to relatively few samples. For instance, maxi-
mum Pearson correlation (equal to 1) will be always be obtained between any two points. In addition, as with
the cosine similarity, the Pearson correlation has also been observed to provide relatively high similarity values
(e.g. [23,24]).

The real-valued Jaccard and real-valued coincidence indices not only take into account the magnitude of
the vectors, but also implement a more strict quantification of their similarity. This is mainly a consequence
of the close relationship between the Jaccard and the generalized Kronecker delta function [15, 16], which
accounts for the most strict possible characterization of the similarity between two numeric values. The even
more strict quantification of similarity implemented by the real-valued coincidence index relatively to the

10
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Table 1. The average and standard deviation of the similarity values
obtained by the cosine, Pearson correlation, Jaccard and coincidence
indices respective to the letters dataset, with o = 0.5. The more strict
quantification of similarity implemented by the two latter approaches is
implied by the respectively smaller obtained standard deviations.

Similarity Average St. dev.
Cosine 0.000 0.651
Pearson —0.005 0.682
Jaccard 0.011 0.387
Coincidence 0.011 0.349

Table 2. The average and standard deviation of the similarity values
obtained by the cosine, Pearson correlation, Jaccard and coincidence
indices respective to the raisin dataset, for « = 0.5. As with the letters
dataset, the real-valued Jaccard and real-valued coincidence again led to
a more strict similarity quantification.

Similarity Average St. dev.
Cosine 0.0181 0.636
Pearson 0.0174 0.649
Jaccard 0.0273 0.354
Coincidence 0.0249 0.319

real-valued Jaccard index stems from the fact that the former corresponds to a combination of the real-valued
Jaccard and interiority index, therefore complementing the latter index regarding its inability to take the relative
interiority between multisets into account [13].

In order to illustrate and complement the aforementioned discussion on the relative characteristic perfor-
mance of the considered similarity methods, in this section, we consider a quantitative approach to charac-
terizing the interconnectivity detail and modularity allowed by the several considered similarity methods with
respect to the letters and raisin datasets, as well as by the C. elegans neuronal network [27-29]. In addition, we
apply the modularity index (e.g. [39, 40]) for characterizing the separation of the obtained network respec-
tively to the original data elements category. Observe that the modularity is closely related to the obtained level
of details, in the sense that an enhanced level of details tends to contribute to a better definition of eventual
communities.

First, we quantify how much each of these methods is strict regarding the resulting connectivity in terms of
the respectively obtained similarity values. Similarity indices leading to broader histograms, i.e. having larger
standard deviations, are understood to be less strict that indices resulting in narrowed histograms, given that
less strict indices will favor larger similarity values. The standard deviation of the cosine similarity, Pearson
correlation, real-valued Jaccard and real-valued coincidence indices can be directly compared in terms of the
respective standard deviations because, in all cases with a = 0.5 their average is close to zero while their values
are distributed within the same interval extension (i.e. [—1, 1]).

Table 1 presents the mean and standard deviation of the similarity values obtained by the cosine, Pearson
correlation, real-valued Jaccard and real-valued coincidence indices respectively to the letters datasets. The two
latter indices adopt & = 0.5.

The nearly null obtained average values are a consequence of the standardization of the original features,
which implies the respective new random variables to result centered at the coordinate axis, and to become
uncorrelated.

As expected, the real-valued Jaccard and real-valued coincidence yielded substantially smaller standard
deviations of the similarity values than obtained for the cosine and Pearson correlation, corroborating the
ability of the two real-valued Jaccard and real-valued coincidence approaches to implement a more demanding
quantification of the similarity between feature vectors.

Table 2 shows the mean and standard deviation of the similarity values of the cosine, Pearson correlation,
real-valued Jaccard and real-valued coincidence applied to the raisin dataset. The two latter indices consider
a = 0.5. The respective results again substantiate the more strict quantification of similarity implied by the
real-valued Jaccard and real-valued coincidence indices.

Figure 8 presents the histograms of similarity values obtained by the real-valued Jaccard and real-valued
coincidence indices obtained respectively to the letters and raisin datasets, for a« = 0.5. In addition to being
consistent with the average and standard deviation values discussed above, the results in this figure allow us
to directly observe the narrower similarity values distribution implied by the real-valued coincidence index
relatively to the real-valued Jaccard measurement. The obtained differences are a direct consequence of the
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Figure 8. Histograms of the similarity values obtained by applying the real-valued Jaccard and real-valued coincidence, with

a = 0.5, for the letters and raisin datasets: (a) real-valued Jaccard applied to letters; (b) real-valued coincidence applied to letters;
(c) real-valued Jaccard applied to raisin; (d) real-valued coincidence applied to raisin. A narrower distribution of similarity values
obtained by the coincidence index can be observed in both cases.

Table 3. Modularities of the considered similarity indices respectively to the
networks obtained for the letters and raisin datasets. Observe the larger
modularity values resulting from the Jaccard and coincidence methods
respectively to both datasets.

Similarity Modul. letters Modul. raisin
Cosine 0.438 0.252
Pearson 0.348 0.151
Jaccard 0.436 0.266
Coincidence 0.467 0.271

fact that the latter index incorporates the quantification of the relative interiority between the two compared
vectors, being therefore even more strict and complete.

Having substantiated in a quantitative manner the enhanced ability of the real-valued Jaccard and real-
valued coincidence indices for implementing a more strict quantification of the similarity between two feature
vectors, therefore contributing to more detailed respective networks to be achieved, we now approach the
modularity of the networks obtained by using the adopted similarity methods.

Table 3 presents the modularity (e.g. [39, 40]) of the letters and raisin networks obtained in section 5,
assuming o = 0.5 in the case of the Jaccard and coincidence indices. The modularity was calculated respectively
to the original categories, three letters in the case of the letters dataset, and the two varieties of raisins in the
raisin dataset.

It can be readily observed that the Pearson correlation yielded the smallest modularity, followed by the
cosine similarity or the real-valued Jaccard, and then the real-valued coincidence. These results mirror the
same characteristics already observed with respect to the standard deviation of the similarity values allowed
by each similarity index, substantiating the tendency of more strict and purposive similarity quantification to
contribute to enhanced modularity characterization.

In order to study the effect of the parameters «, modularity values were also calculated regarding all respec-
tive configurations in section 5. Table 4 presents the modularity values obtained for the application of the
real-valued Jaccard and real-valued coincidence methods to the networks respectively derived from the letters
dataset.
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Table 4. Modularity values resulting from the letters network by application of the using the real-valued
Jaccard and real-valued coincidence index parametrized by c. The latter method allowed larger modularity
values for each considered instance of «, except for the case a = 0.25. Observe that, in the case of this
particular dataset, the maximum modularity is not obtained for the reference value & = 0.5 in neither of the
two considered methods.

Similarity a=0.25 o =0.32 a=0.39 o = 0.46 o =0.53 a = 0.60
Jaccard 0.537 0.535 0.505 0.458 0.415 0.381
Coincidence 0.533 0.546 0.521 0.491 0.452 0.410

Table 5. Modularity values resulting from the raisin networks by the two multiset methods parametrized by
. The real-valued coincidence method allowed larger modularity values to be obtained for each considered
instance of a.

Similarity a=0.15 a=0.18 a=021 o =0.24 a=0.27 a = 0.30
Jaccard 0.323 0.300 0.297 0.280 0.268 0.264
Coincidence 0.327 0.301 0.303 0.289 0.278 0.273

It is of particular interest to observe that, were not for the additional degree of freedom allowed by the
incorporation of the parameter « into the real-valued Jaccard and real-valued coincidence methods, the high-
est observed modularity could not have been obtained. In fact, the parameterless versions of both these two
indices, which correspond to taking o = 0.5, can be found to lead to modularity values that are smaller than
most of those obtained for the other values of .

Table 5 presents the modularity values obtained respectively to the raisin dataset. The obtained results
substantiate the potential of the parametrized real-values coincidence method, respectively to the real-valued
Jaccard, for obtaining detailed interconnections and enhanced modularity.

Having approached in a quantitative manner the potential of the considered methods respectively to imple-
menting more strict quantification of similarity and reflecting the modular structure of the obtained networks,
we complement our studies by applying the multiset similarity-based network generation approaches not on
dataset features, but on fopological measurements (e.g. [3]) derived from networks represented by respective
adjacency matrix involving only Os and 1s as entries.

The rationale here is that, provided the topological measurements of the networks interconnectiv-
ity reflect to some significant extent the modular structure of the original networks, the similarity-
based methods of deriving respective networks may become capable of highlighting the respective
modularity accordingly to some specific criterion.

Community finding methods have been proposed (e.g. [12]) based on the application of the traditional
Jaccard index for categorical data (sets) to quantify the similarity between the sets of neighbors of each node in
the original network. The basic idea is that nodes in the same community will tend to have similar neighbors.
Once these similarities are obtained, some respective clustering approach can then be applied in order to iden-
tify the communities. Here, analogously to [44], we associate to each of the nodes of the network of interest
the relative shortest distance values between that node and other network nodes.

Figure 9 depicts the networks obtained from the raisin network derived with T'= 0.25 and o = 0.24
(figure 7). This network has been chosen among the others in this work for presenting two well-defined main
modules, mostly corresponding to the original data elements categories, while also incorporating additional
details.

The respective adjacency matrix (0 or 1 values) was obtained, and the shortest distances between each
node and the remainder nodes in the original network were adopted as feature vectors to be supplied to the
real-valued Jaccard and real-valued coincidence methods of network generation from data. The derivation of
the new network assumed T'= 0.25 and o = 0.5. The shortest path lengths have been obtained by using the
Floyd—Warshall method [45, 46].

Though starting with only the binary interconnectivity between the nodes of the original network, both
the real-valued Jaccard and real-valued coincidence methods were capable of yielding networks with two well
separated modules or communities. As a consequence of its more strict and complete characterization of sim-
ilarity, the real-valued coincidence approach allowed an even more separated and detailed resulting network.
The additional small scale structures in the network in figure 9(b) reflects the interconnections between the
two communities originally present in figure 7. The larger separation allowed by the real-valued coincidence is
indicated by the fact that thinner interconnections between the two main communities can be observed, with
fewer nodes along them, and also by the respectively more compact (smaller) obtained modules.
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(b)

Figure 9. The networks obtained from the adjacency matrix of the raisin network with T'= 0.25 and oo = 0.24 (figure 7) by
using the real-valued Jaccard (a) and real-valued coincidence (b) methods. The shortest path distances between each pair of nodes
were adopted as features. Observe that the more strict and complete quantification of the similarities allowed by the real-valued
coincidence index led to more detailed interconnectivity and enhanced separation of the two main modules (fewer nodes along
the two main long interconnections between the two communities and more compact modules).

To complement our analysis, we also applied the real-valued coincidence approach to the binary adjacency
matrix of the C. elegans network [27-29]. Figure 10 illustrates the original C. elegans network visualized from
its respective binary adjacency matrix by using the Fruchterman—Reingold methodology (e.g. [42]).

As in the previous example, the feature vector assigned to each data element corresponds to the shortest
path distances from the respective node to the remainder nodes. As before, the shortest paths distances have
been calculated by using the Floyd—Warshall method [45, 46]. The generation of the new network from the
adjacency matrix of the previous network assumed 7'= 0.25 and o = 0.4.

Given that the C. elegans neuronal network is a directed graph, here we consider both its undirected and
directed versions. The undirected network is obtained by the symmetrization of the original network, i.e. by
adding the original adjacency matrix with its transpose and considering the obtained elements that are larger
than zero as 1.

The obtained network respectively to the undirected C. elegans distances, shown in figure 11, presents an
enhanced modular structure with more intricate and detailed interconnectivity than the original network
shown in figure 10.

Figure 12 depicts the network obtained while taking into account the respective directed adjacency matrix.
As expected, the consideration of the edges directionality impacted considerably on the respectively obtained
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Figure 10. Visualization of the C. elegans [27—29] from its original adjacency matrix (0 and 1 values). No particular
interconnectivity pattern or modularity can be observed in this network.

Figure 11. The coincidence network obtained from the unweighted undirected adjacency matrix of the C. elegans neural network,
adopting T = 0.25 and a = 0.4. The resulting network presents a well-defined modular structure, as well as intricate
interconnectivity details.

modularity. More specifically, the reduced number of edges in this case implied two separated groups, or
connected components, to appear.
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Figure 12. The network obtained from the unweighted directed adjacency matrix of the C. elegans network, adopting T = 0.25
and o = 0.4 by using the real-valued coincidence methodology. As could be expected, the consideration of the edges
directionality strongly impacted on the obtained modularity, which is now characterized by two completely separated groups.

7. Concluding remarks

Network science has consolidated itself as an important area, with ample theoretical and applied contributions.
Much of this success stems from the ability of complex networks to represent virtually every possible discrete
structure or system, while continuous counterparts can always be discretized to a given resolution.

One of the remaining challenges in network science concerns how to effectively transform datasets, having
elements characterized by respective features, into networks. Though measurements such as the cosine simi-
larity and Pearson correlation coefficient have been frequently applied, other interesting measurements such
as the traditional Jaccard index have been mostly constrained to categorical or binary data.

The present work set out at addressing the possibility of using the real-valued Jaccard and real-valued coin-
cidence indices as the basis for deriving complex network representations from numeric (e.g. integer, rational,
real) data. The motivation for this stems from the potential of these two multiset-based indices for providing
more strict and complete quantification of the similarity between two multisets or vectors [13, 16, 23].

The results obtained with respect to the letters and raisin real-world datasets substantiated the enhanced
precision and discrimination potential of the real-valued Jaccard and real-valued coincidence indices. In par-
ticular, when compared to results obtained by using the cosine similarity and Pearson correlation coefficient,
the networks obtained by the real-valued Jaccard and real-valued coincidence indices were systematically found
to present enhanced levels of interconnection detail and modularity structure.

In addition, the incorporation of the parameter « into these indices was found to provide a flexible
and valuable means for selecting the overall level of interconnectivity of the obtained networks, with less
densely connected structures being obtained for smaller values of «. Thanks to this parameter, networks
have been achieved that present modularity higher than could be otherwise obtained by using the respective
parameterless indices (i.e. & = 0.5).

Allin all, the interesting features provided by the reported methodology, and especially by the real-valued
coincidence index, can be summarized as: (i) effectiveness for revealing more detailed patterns of interconnec-
tions between the original data elements; (ii) potential for enhancing the modular structure of the original data;
(iii) can be applied on datasets involving real-valued, integer, categorical and binary types, including hybrid
cases: (iv) based on non-bilinear operations (including the maximum and minimum) that can substantially
attenuate noise and secondary structures (low-pass filtering) simultaneously as more meaningful structures
are enhanced (high-pass filter), an effect that cannot be achieved through bilinear operations such as Pearson
correlation and cosine similarity: (v) conceptual and computational simplicity, relying on the maximum, min-
imum, sign and division operations; (vi) employ an improved version of the well-known and extensively used
(mostly for categorical and binary data) Jaccard index; (vii) integrates verification of the relative interiority
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between the datasets (in the case of the coincidence index); (viii) founded on a formal framework correspond-
ing to the generalization of multisets to real, possibly negative values; (ix) incorporate a parameter « allowing
the control of the contributions of the positive and negative pairwise combinations of sign alignments between
the original features; (x) the features remain in their original domain, except for their eventual standardization,
not being mapped into other less intuitive spaces; (xi) can be readily adapted to take into account similar-
ity between three or more data elements [13]; and (xii) the implemented similarity comparisons can have a
probabilistic interpretation reflecting the Jaccard formulation and normalization.

It should be nevertheless observed that the choice of the similarity measurement, as well as the frequently
adopted standardization, can have significant respective effects on the obtained results. The adoption of
these approaches therefore needs to take into account demands and requirements specific to each applica-
tion and problem. It is also important to keep in mind that data analysis methods and results should be always
understood only as hypotheses to be further explained, validated, and verified.

The proposed methodology bears significant potential for ample application in complex network research,
allowing an enhanced manner of obtaining representations of the most diverse type of data and features,
including cases of mixed types of measurements. Several prospects for further developments are therefore
established that includes but are not restricted to the following possibilities.

It would be interesting to have the original datasets to be pre-processed so as to enhance the separation
between their elements, e.g. by using linear discriminant analysis [31], before being fed into the considered
similarity-based methods for network construction from datasets. Another promising possibility consists in
extending other similarity indices, such as those described in [13], to real-valued data, including those capable
of taking into account higher order combinations of data elements (e.g. three feature vectors instead of just a
pair). Along a related line, it would also be of interest to take integer powers of the numerator in the Jaccard
index [13], with potential for more strict characterization of similarity.
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