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A GENERIC PROPERTY FOR THE
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ABSTRACT. In this work we show that, generically in the set of C2 bounded
regions of R™, n > 2, the inequality fj; ¢* # O holds for any eigenfunction
of the Laplacian with either Dirichlet or Neumann boundary conditions.

1. Introduction

Perturbation of the boundary for boundary value problems in PDEs have
been investigated by several authors, from many points of view, since the pio-
neering works of Rayleigh[8] and Hadamard [3]. There is, for example, a exten-
sive literature under the label ‘shape analysis’ or ‘shape optimization’, on which
the main issue is to determine conditions for a region to be optimal with respect
to some cost functional (see, for example [2], [11] and [10]).

In particular, generic properties for solutions of boundary value problems
have been considered by of Micheletti [7], Uhlenbeck {12], Saut and Teman [9)
and others. Many problems of this kind have also been considered by Henry
in {4] where a kind of Differential Calculus with the domain as the independent
variable was developed. This approach allows the utilization of standard analytic
tools such as Implicit Function Theorems and Lyapunov-Schmidt method. In his
work, Henry also formulated and proved a generalized form of the Transversality
Theorem, which will be the main tool used in our arguments.

We consider here the following questlion: is it true that, generically in the set

of C? regions in IR", n > 2 that / #3 # 0 for any eigenfunction of the Laplacian
a
{with either Neumann or Dirichlet boundary condition)?
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The result is easily seen to be false for n = 1. In fact, in this case, / =0
for any nonconstant eigenfunction in the interval 7. We will show, howex;,er, that
the situation is quite different if n > 2; the property is indeed generic in a sense
to be made precise below.

As pointed out to the first author by Prof. K. Rybakowsky, the question
above appears in connection with the study of stability for nonconstant equilibria
of the reaction-diffusion system

6u

where g : IR — IRP € C?, g(0) = 0, Dg(0) = 0.

The plan of this paper is as follows. In section 2, we state some background
results needed in the sequel. We prove the result for Dirichlet boundary condi-
tions in section 3, and for Neumann boundary conditions in section 4.

{ Gu=Do+pD1+g(u)=0 inQ

2. Preliminaries

The results in this section were taken from the monograph of Henry [4], where
full proofs can be found.

2.1. Some notation and geometrical preliminaries.
Given a function f defined in a neighborhood of z € R™, its m-derivative at
z can be considered as a homogeneous polynomial of degree m

h —s D™ f(z)h™

in IR™, with norm

|D™ f(z)| = maxjn<1}D™ f(z)h™),
or as a m-linear symmetric form, or as the collection of partial derivatives

o7 (e) ={(5) i lad = m}

6 @
(6_:) f(=)
If Q is an open subset of JR" and E is a normed vector space, C™(Q, £) is the

space of m-times continuously and bounded differentiable functions on {2 whose
derivatives extend continuously to the closure £, with the usnal norm

with (equivalent) norm

”Dmf(x)" = MaXjq)=m

[1fllem(a,E) = Mazogi<msupseal D™ f(z)|.
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If E = IR, we write simply C™(Q2).

Cinis (€, E) is the closed subspace of C™(Q, E) of functions whose m*? de-
rivative is uniformly continuous. If  is bounded, this is cm(Q, E).

We say that an open set  C JR" is C™-regularif there exists ¢ € C™ (IR", IR),

which is at least in C ;,(/R", IR), such that

unif
Q={z e R";¢(z) >0}

and ¢(z) = 0 implies [Vg| > 1.

Let m be a non negative integer and p > 1 a real number. We define the
Sobolev spaces W™?(K2) and Wy (1), as the completion of C™(Q) and CP*(R2)
respectively under the norm

1
u|| = D%ulPdz)”
ol (fn.a%,.' fpda)
where C*(€2) is the subspace of functions on €™ () with compact support (when
p =2 we usually write H™(Q) = W™2(Q) and HJ}(Q) = W™2(Q)).

We sometimes need to use differential operators (gradient, divergence and
Laplacian) in a hypersurface S C IR". The following definitions are all equivalent
to the corresponding formulas in Riemannian geometry, in the metric induced
in S by the sorroounding ambient space. These formulas are intrinsic to S but
our interest is precisely in their relation to a neighborhood of S. (see theorem
(2.1)).

Let S be a C! hypersurface in /R and let ¢ : § — IR be C! (so it can be
extended to be C! on a neighborhood of S), then Vg4 is the tangent vector field
in S such that, for each C! curve t — z(t) C S, we have

% (z(2)) = Vso(z(t)) - 2(t).

Let S be a C? hypersurface in JR" and @ : § — IR™ a (! vector field tangent
to S. Then divgd : S — IR" is the contimious function such that, for every C?
¢ : S — IR with compact support in S,

/S (divsd)d = — /S i Vsé.

Finally,if u: S —+ R is C?, then Asu = divg(Vsu) or, equivalently, for all C*
¢ : S — IR with compact support

[g¢A5u= —[svs¢-V5u.
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THEOREM 2.1.

(i) If S 45 a C* hypersurface and ¢ : R* — IR is C! in a neighborhood of
S, then, on 8, Vs¢(z) = the component of V¢(zx) tangent S at z, that
is 8¢

Vsdla) = V6(z) - 22 (c) N (2)
where N 1s an unit normal field on S.

(ii) If S is a C? hypersurface in R", &:S — IR" is C! in a neighborhood
of S, N : IR" — IR" is a C! unit normal field in a neighborhood of S
and H = divN is the mean curvature of S, then

divgd = diva — H& - N——(a N)

on S.
(iii) If S is a C? hypersurface , u: R® ~—+ IR is C? in a neighborhood of S
and N is a normal vector field for S, then

du  Hu N
Asu=Au-Hog - oma tVs¥ oy

on S. We may choose N so that % =0 on S and then the final term

vanishes.

We often need the Cauchy’s unigueness theorem for second order elliptic
equations. We state here a fairly general version whose proof can be found in
[5], theorem 8.9.1. :

THEOREM 2.2. Suppose Q C IR™ is an open connected set, B is a ball which
intersects 0Q in a C? hypersurface BN 6Q; aij = aji : Q@ — IR is a C! function
for 1< 4,5 < m, with 537,;_, aij(2)6ié; > colél? Vo € Q and £ € IR” for some

constant cg > 0. Assume u € H’(Q) and, for some constant K
|3 aule) | < K(Vu(a)}+ u(e))
§,5=1
foroe z€Qandu=0, £ =00n BNoQ. Thenu=0 a.e. in Q.
2.2 Differential Calculus of Boundary Perturbation.

Given an open bounded, C™ region £ C IR"™, consider the following open
subset of C™ (2, R™)

Dif f™(Q) = {h € C™ (82, R™); h is injective and is bounded in 2}.

ail .
|deth!(z)|
and the the collection of all regions

{h(Q0); 5 € Diff™(0)}.
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We introduce a topology in this set by defining a (sub-basis of ) the neighborhoods
of a given §) by

{A(2); |h — iqllem @,k < €, > 0 suficiently small}.

When ||h - ig|lem (e is small, b is a C™ imbedding of  in R®, a C™ dif-
feomorphism to its image h(£2). Michelleti [7} shows this topology is metrizable,
and the set of regions C™-diffeomorphic to 2 may be considered a separable met-
ric space which we denote by M (), or simply M,,. We say that a function
F defined in the space M,, with values in a Banach space is C™ or analytic
if h = F(h(Q)) is C™ or analytic as a map of Banach spaces (h near ig in
C™(Q, R")). In this sense, we may express problems of perturbation of the
boundary of a boundary value problem as problems of differential calculus in
Banach spaces.

More specifically, consider a formal non-linear differential operator u — v

u du 8%u u
v(y) = , i W)y e W), (7)) ———W),...),yEe R"
) = (1), 7m0, o 5o-0), 57 @), g 0), ), v
To simplify the notation, we define a constant matrix coefficient differential
operator L

u u 2y 8%u
Luo) = (o), o (0D 50D 3 0D o (), v € IR

with as many terms as needed, so our nonlinear operator becomes

v —v(-) = f(-, Lu("))
More precisely, suppose Lu(-) has values in IR? and f(y,)) is defined for (y, ))
in some open set O C IR" x IRP. For subsets Q C IR" define Fy by

Fa(ul(y) = f(y, Lu(y)), y€ @

for sufficiently smooth functions u in 2 such that (y, Lu(y)) € O for any y € 2.
For example, if f is continuous, Q is bounded and L involves derivatives of order
< m, the domain of Fy; is an open subset (perhaps empty) of C™(Q2), and the
values of Fg are in C°(§2). (Other function spaces could be used with obvious
modifications).

If h:Q+ R" is a C* imbedding, we can also consider Funy : €™ (R(2)) —
C°(h(Q?)). But then the problem will be posed in different spaces. To bring it
back to the original spaces we consider the ‘pull-back’ of A

B* :CR(h(Q) = C¥(Q) (0<k<m)
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defined by A*(p) = ¢ o h (which is a diffeomorphism) and then h*F;,(n)h*_l
is again a map from C™({2) into Co(f2). This is more convenient if we wish to
use tools like the Implicit Function or Transversality theorems. On the other -
hand, a new variable 4 is introduced. We then need to study the differentiability
properties of the function (h,u) = h*F,.(n)h*_lu. This has been done in [4]
where it is shown that, if (y, A} — f(y,A) is C* or analytic then so is the map
above, considered as a map from Diff™(Q) x C™(R2) to C°(R) (other function
spaces can be used instead of C™). To compute the derivative we then need only
compute the Gateaux derivative that is, the ¢-derivative along a smooth curve
t (h(2,.),uft,.)) € Diff™(2) x C™().

Suppose we wish to compute

2 Fa()(3) = 2 7w Lo(y))

with y = h(t, z) fixed in Q(z) = h(2,Q). To keep y fixed we must take z = z(2),
y = h{t, z(t)) with

2 ah ah lah

—2'(t) = '(t) = -(—)_
that is , z(t) is the solutlon of the differential equation %f— = —Uf(z,t) where
Ulz,t) = (§2)-1 4. The differential operator

[4]
D,:at (a:t) = U(zt)—(

is called the anti-convective den’vatwe. The results (theorems 2.3, 2.6) below are
the main tools we use to compute derivatives.

)18}1

THEOREM 2.3. Suppose f(t,y,A) is C' in an open set in IR x R" x R?,
L is a constant-coefficient differential operator of order < m with Lv(y) € R
(where defined). For open sets Q C IR™ and C™ functions v on Q, let Fg{t)v de
the function

y— f(t,y,Lv(v)), y € Q.
where defined.

Suppose t — h(t, ) is a curve of imbeddings of an open set 2 C R", Q@) =
h(t,Q) and for |j| < m, k| < m+1 (¢, z) — 8;00h(t,z), 8Lh(L,z), 6"u(t z)
are continuous on IR X Q near t = 0, and A(t,-)* " u(t,)} is in the domain of
Fo)- Then, at points of

De(* Fage ()4 ™) (4) = (b* Fagey(0)h" ™)) + (h* Fgy @)h*")(w) - Dou

where D, is the anti-convective derivative defined above,

Fa(ty(y) = gt—f(t,y, Lv(y))
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and
Fo(0 -u() = 21,3, 1) - Luty), v @
i3 the linearization of v — Fq(t)v.

REMARK 2.4. Suppose we deal with a linear operator A = Elal<m a.(y) (30—)
not ezplicitly dependent on t, and h(t,z) =z +tV(z) +o(t) ast > 0 e z € Q.
Then att =10

F AN TN = D AR )|+ B (b Ak )|

=A(—53—-V.Vu)+V~V(Au)
Bu

=Am+ V-V, Alu

since £A = 0. Note that the commutator [V -V, 4](-) is stsll an operator of
order m.

We also need to be able to differentiate boundary conditions, and a quite
general form is

b(t, y, Lv(y), M Ngey (y)) = 0 for y € 80(2),

where L, M are constant-coefficient differential operators and Nagy(y) is the
outward unit normal for y € 0Q(t), extended smoothly as a unit vector field
on a neighborhood of §2(t). We choose some extension of Ng in the reference
region and then define Np() = Ny, by

(k3 )" Na(z)

(2.2) B* Nae,0)(z) = Ny qy (h(2)) = 1(h= T Na(2)l]

for z near 09, where (A1) is the inverse-transpose of the Jacobian matrix hg
and || - || is the Euclidean norm. This is the extension understood in the above
boundary condition: b(t,y, Lv(y), M Nq(:)(y)) is defined for y € Q near 9Q and
has limit zero (in some sense, depending on the functional space employed) as
y — 0Q.

LEMMa 2.5. Let Q be a C2-regular region, Np(y a C' unit-vector field defined
on a neighborhood of 0Q which is the outward normal on 8%, and for a C?
Junction h : Q) — IR" define Ny(qy on a neighborhood of h(0S)) = Oh(2) by
(2.2) above. Suppose h(t,-) is an imbedding for each t, defined by

%h(t,z) =V, h(t,z)) paraz € Q, h(0,z) =z,
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(tiy) — V(t,y) is C* and Q(t) = h(t,Q), Nay) = Nag,n). Then for z near
8Q, y = h(t,z) near 8Q(t), we may compute the derivative (Z)y=constant and,
ify € 0Q,

a

7 Nom () = D,(h‘N;.(t,n))(z)

Nag)
(Van(z)tf + 0 Ba (y))

where 0 = V - Ny is the normal velocity and Vg is the component of the
gradient tangent to 89.

TrEOREM 2.6. Let b(t,y, Lv(y), M Ny (v)) be a C! function on an open
set of IR x IR™ x IR? x IR? and lelt L, M be constant-coefficient differential
operators with order < m of appropriate dimensions so b{t,y, Lv(y), M N (v))
makes sense. Assume that Q is a C™+! region, Na(z) is a C™ unit-vector field
near 6Q which is the outward normal on 0Q, and define Ny, o) by (2.2) when
h:Q— R" is a C™! smooth imbedding. Also define By (t) by

Bryv(v) = b(t, v, Lv{y), M Ny (v))
Jor y € h(2) near GR(S2).

Ift — h(2,-) is a curve of C™*1 imbeddings of Q and for }j| < m, |k| <
m+1, (¢, z) — (8:00h,0%,8,03u, 0% u)(t,z) are continuous on IR x Q near
t =0, then at points of Q near 8Q

Dy (h* Bh(g)h' 1)(‘") h'Bh(n)h' 1)(u)+(h'8'h(n)h' 1)(14) Diu

8B, - B
+ (B Y (u) - Di(* Nagy)
where h = h(t,"); B;.(n) e B'y(q) are defined as in theorem (2.3),

BB"(m( ) -n(y) = g;Z(t,y, Lv(y), M Ny (v) - Mn(y)

and D,(h‘Nn(g))Ln is computed in lemma (2.5).

2.3 The Transversality theorem.

A basic tool for our resulis will be the Transversality Theorem in the form
below, due to D. Henry [4]. We first recall some definitions.

A map T € £(X,Y) where X and Y are Banach spaces is a semi-Fredholm
map if the range of T is closed and at least one (or both, for Fredholm) of dim
N(T), codim R(T) is finite; the indez of T is then

indez(T) = ind(T) = dimN (T) — codimR(T).
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We say that a subset F of a topological space X is rare if its closure has
empty interior and meager if it is contained in a countable union of rare subsets
of X. We say that F is residual if its complement in X is meager. We also say
that X is a Baire space if any residual subset of X is dense.

Let f be a C* map betwen Banach spaces. We say that z is a regular point
of f if the derivative f'(z) is surjective and its kernell is finite-dimensional.
Oterwise, z is called a critical point of f. A point is critical if it is the image of
some critical point of f.

Let now X be a Baire space and I = [0, 1]. For any closed or o-closed F C X
and any nonnegative integer m we say that the codimension of F is greater or
equal to m (codim F> m) if the subset {¢ € C(J™, X) | §(J™)NF is non-empty }
is meager in C(I™, X). We say codim F = k if k is the largest integer satisfying
codim F > m.

THEOREM 2.7. Suppose given positive numbers k and m; Banach manifolds
X,Y,Z of class C*; an open set ACX x Y ;8C* map f: A Z and a point
§ € Z. Assume for each (z,y) € f~1(¢) that:

(1) 3z, y) : To X = Ty 2 is semi-Fredholm with indez < k.
(2) Either

() Df(z,v) = (gé, %) T X x T,Y = Tp 2 4s surjective
or
(8) dim {R (Df(z,v)) /R (gg(x,y))} >m+ dim/ (8(z,9)).
Further assume:
(B} () > y: f7HE) DY is o-proper,
f71(€) = UjZ, M; is a countable union of sets M; such that (z,y) —
y:M; Y, is a proper map for each j. [ Given (z,,3) € M; such
that y, converges inY, there ezists a subsequence (or subnet) with limit
in Mj].
We note that (3) holds if f=1(¢) is Lindelsf [ every open cover has a countable
subcover] or, more specifically, if f~1(£) is a separable metric space, or if X,Y
are separable metric spaces.
Let Ay = {z|(z,y) € A} and

Yerie = {y | € is a critical value of f(-,y) : Ay = Z}.

Then Yerit ts a meager set in'Y and, if (z,y) v~ y : F~1(£) = Y is proper, Y.y
is also closed. If ind 2 < —m < 0 on f~1(¢), then (2(a)) implies (2(B)) and

Yerie = {y | £ € f(Ay,v))
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has codimension > m in Y.[ See [4] for definition of codimension; note Yepis is
meager ¢ff codim Yepqe > 1 ]

REMARK 2.8. The usual hypothesis is that £ is a regular value of f, so
(2(a)) holds. If (2(B)) holds at some point then ind( gﬁ) < —m at this point,

since codim R (%ﬁ) > dim{%{%}. If ind (gﬁ) < —m and ( 2(a)) holds, then
( 2(B)) also holds. Thus (2(8)) is more general for the case of negative inder.

3. A generic property for the
eigenfunctions of the Dirichlet Problem

We will show that, generically in the set of open, connected, bounded 2
regions 2 C IR™ with n > 2, the normalized eigenfunctions u of

(3.1) Au+Au=0in Q,u=00n 0R,uz#0
satisfy [, u3 #0.
We need first some preliminary results

LEMMA 3.1. Given hy € Diffz(ﬂ) there erists a neighborhood Vy of hy in
Diff*(Q) such that, for all h € V; and u € H2 N H}(Q)

l1(h* 8R"" — R AR ullza) < e(h)lfullasnmay

with (k) = 0 as h — hg in C3(Q, R").

ProOF. It is sufficient to consider the case hg = in. We have
« 0 . 0 -
h 51;" "u(z) = @j(‘”h ')(h(z))
%, du
=) s (@)(hiY)i(z)
].Z; 827,' X

=3 bs'a'(x)%:-_(@)

=1
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where b;;(2) = (h;1);i(z), that is, b;;(z) is the ¢, j-th entry in the transposed

inverse of the Jacobian matrix of h, = g—;‘-;):‘ j=1- Therefore
L0% L “ 0 2 u
W g e =Eb;k(z)ﬂ(z)(zb;j(z)§;) (2)
52
= E bir(z) Z [ + bij(z )61:1‘(‘;‘2_,,- (z)]
= 3 blolhslo) (5 e )( )
J,k 1
+ 3 bnle) (b)) ()2 )
Jk=1 7

= ( 6"’: 5 () (2) + Li(u)(z)

where o
L(#)(a) = (th(z) = ) (57 () @)
+ Y a- b1 )bin (5 (2) (5 ;)@
Jk 1
3 burle) (b)) (=) e (@)
7.k=1
Thus
(h‘Ah"‘l(u)) = Au+ Lu
with

Lu= i Liu.

i=1
Since bjx — b5 % in C2(Q, R*) when A — in in C?(Q, IR™) the coefficients of
L go to 0 uniformly in 2 as h —» iq in C3(Q, IR™). Tt follows that

ILullagn) < e(b)lullaanmy(a)
where £(h} goes to zero as h — i in C*(Q2, R").

Let 2 C IR" be a C* (k > 2), open, bounded, connected region and consider
the set

Dy ={h € Dif f¥(Q) | M is not an eigenvalue of (3.1) in
h(2) and all the eigenvalues A € (0, M) in h(Q) are simple }.
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LEMMA 3.2. Dy is an open and dense subset of Dif *(Q).
PROOF. Define
D ={h e Diff*(Q) | all the eigenvalues of (3.1) in h(S2) are simple }
and
Dy = {h € Diff* ()| all the eigenvalues A € (0, M) in h(Q) are simple }.

We first show that Dy is open. Let hg € Dy and let Ay,..., Ax be the
(simple) eigenvalues of A in ho(f2) smaller M. Let also v be the circle of radius
M with center in the origin.

From the previous lema and theorems (2.14), (3.16) of [6] it follows that
there exists a neighborhood V; of kg such that the dimension of the eigenspace
associated to the eigenvalues smaller than M of A*Ah*~? is constant and there
are no eigenvalues in 7y for h € Vp. From the implicit function theorem (see
{4] for details) the simple eigenvalues of ho*Ahg* ! depend continuously of A
in a peighborhood of Ap in C*. Therefore, for each 1 < i < k there exists a
neighborhood V; C Dif * {2) of hg and continuous functions A; : V; — (0, M)
such that A, (h) is a simple eigenvalue of A*Ah* " for any h € V; with A;(ho) = A;
and the sets A;(V;) are pairwise disjoint. Define then V = n:';o V;, neighborhood
of hg in Dif f¥(Q). Observe that YA € V, h*Ah*~! has k eigenvalues smaller
than M, which are all simple. Therefore, Dys is open.

To prove density we observe that D is dense in Dif f*(£2) (see [4] or [7]) and
therefore Dys is also dense. To conclude the proof we just need to show that,
if M is an eigenvalue of (3.1) in ©, there exists h near ig such that this does
not held anymore in A($2). To this end, it is enough to take h(z) = (1 + €)z. A
simple computation shows that each eigenvalue A of A in  changes to ﬁTAEV in
h(8).

Before proceeding, we try to outline the main steps of our argument. Let
2 C IR” be an open, connected, bounded C*-regular region and consider the
application

F:H 0 H}(Q) ~ {0} x (0, M) x Dy — L2(Q) x R x R
(u, A, ) — (B*(A + ,\)h"’u,/ u’det h',/ u®det b').
a o
We would like to show that, for each M € N, the set

Bu = {h € Du | (0,1,0) € F(H? n Hy(Q) — {0}, (0, M), )}
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is meager in Dp. Since the operator —(m(u A\ k) from H*n HY(Q) x R
into L?(Q) x IR x R is Fredholm with md( E5(u,\ b)) € —1¥(u,\,h) €
F=1(0,1,0) (see theorem (3.7) below), this would follow from the Transversality
Theorem (2.7) if we could prove that (0, 1,0) is a regular value of F. We try to do
that and fail. However, we do show that a critical point must have very special
properties, which enables us to show that they can only occur in a ‘exceptional’
set of regions. Repeating the argument in the complement of this set we can,
finally, prove our result.

LEMMA 3.3. Let 2 C IR"™ be an open connected, bounded, C5-reqular region.
If (u,\ h) € H2n H}(Q) ~ {0} x (0, M) x Dy is a critical point of F, with
F(u,A,h) = (0,1,0) then there exists ¢ € H3(h{Q)) satisfying (A + N9 = u?

Proor.

By ‘transfering the origin’, we can suppose h = ig. We prove below (see
proof of theorem (3.7)) that the ‘partial derivative’ -5(%%-5 is Fredlholm and thus,
its range has finite codimension. It follows that ImDF(u, ), ig) also has finite
codimension and, therefore, is closed. Suppose (u, A, iq) € H? N H} () — {0} x
(0, M) x Dy is a critical point of F with F(u, ), i) = (0,1,0). We prove below
(see proof of theorem (3.7)), that then, there exists (¢, a,6) € L?(2?) x R x IR
ortogonal to ImDF(u, },ig), that is,

(3.2) 0=/ {$[(a+ 26— h-vu)+ 3]+
o
o [2111'4 + widin(h)] +6 [3ua +waiv(h)] }
V(%A h) € BN HY() — {0} x R x C5(Q, ™). o
Taking % = h = 0 in (3.2), we obtain Jo¥u=0. Taking h = A = 0, we have
(3.3) / {$(A+ i + 20 + 30u2ﬂ} =0 Vi e H2n HY(Q).
o

If 4 = u in (3.3) it follows that & = 0 and so, by regularity of solutions of elliptic
problems we conclude that ¢ € H2 N H}(R) NC2(Q) for all 0 < @ < 1 and
(A +X\)¢ = —30u?. Taking now, @ = A =0in (3.2)

(3.4) / H(A+N)(h-Vu) = / 9uldiv(h) Yh € C5(Q, R™).
1] O
Let N a unit vector field normal to 8Q. Since

. . Bu By
-Vu) = -Vu - ——h-N
984290 = [ - vayas /aNaNh

/3au2(h Vu) - / ;’;‘,g}f’,
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we obtain, substituting in (3.4)

AW . Ou Gy ;
Lauadzv(h)z—/nsou’(h-w) LBV aNh N

(3.5) Yh e C(Q, R").
Observe now that

div(u3h) = 3u*Vu . h + udiv(h)

and so
(3.6) / oudiv(h) = — / 30u?(h - Vu).
a Q
Therefore, substituting (3.6) in (3.5), we have
6u 6¢ 5 n
(3.7 m@NaNh N=0VhecCs( , R")
from which, W?}‘{)T = 0 em 8Q. Since u is not identically zero it follows from

Theorem (2.2) that §% = 0 on 0% and (multiplying ¢ by a constant if needed)
our result follows.

REMARK 3.4. Observe that,by regularity in the elliptic problem, ¢ € H* N
H}(Q)NC**(Q) since u? € H? N H(Q) NC3%(Q) foral0 < a < 1.

LEMMA 3.5. Let Q@ C IR™ be an open connected, bounded C®-regular region.
If ¥ € HY(Q) satisfies (A + ) = u? for some u € H3 N HL(2) N C2(R), then

(1) Z=0indQ foralll <i<n;

) 52 =0indQ forall1 <i,j < n;

(3) %:0 in8Q forall1 <i,j,k<n.

Proor.

From ¢ = 0 and 2% = 0 in 8Q it follows that V¢ = 2% - N = 0 in 5Q and
thus—”’--OonBQforalllSzSn

From (2.1) we obtain 0 = u? = (A + A}y = %‘% + HEZ in 9Q where
H = div(N) which implies g_;g =0 in Q.

Now, since —ﬁ 0 and ﬁ‘% 0 in 90 we have V(—ﬁ -N =0and
then V(-—'ﬁ) = 0 in 9. Therefore, forall 0 < i< n we have Per 3—1":: =0 in 6902
from which it follows that z2- = DI Nka—!— = 0in 8%, that is, E,, =1 ngz{-g; =
—N%_Ombﬂ foral]0<:<n Thereforewehave - = ra =0 on 80
which implies V—f— =0 in 892, that is, ﬂb‘d’? =0in 00 for all1<4,5<n.
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To obtain the last equality, observe that
0

u? —
54 = (A4 )
=(A+ ,\)— in £,
and so P
u
0 21.‘16—:’
8
= (A+,\)_‘[’
oM d 8 oy &y
= Asgn—o — s i
””a + HBN Bz; t Nt ON?2 dz; +/\6a:.-
o? Bq/)
6—]\/2_6_1:, on c'?Q,
smce—'l’— E—;;/’?'—Don091<1]<n
Now, since W % — 5‘%’;5}’& = 0 on 9Q we have Vsﬁa—;‘/’— = 0 on 02, and
8o,
_ i(iﬂ'ﬁ)
- sz 8N Oz;
Z (aN 8%y Py )
= Bz, 8::,5:: "6::.-8::_.,—8:zk
e} 621/;
TN Bz.azk on 642,

Therefore 3—3L —N;z—,gé— = 0 on §Q which implies VF&_— =0 on 892, that
is, 3?,3??3—“—0011 0Qforall1 <i,j,k<n.

LEMMA 3.6. Let Q C IR" be an open, connected, bounded, C8-regular region.
Consider the application
G:H*OH{(Q) x [0, M] x H* 0 H3(Q) x Dayr — L*(Q) x L3(Q) x H-2(50)
defined by

63

a A= l'ﬁ‘

— » =1 =1 *
Glu\ ¥, k)= (B (A+ M)A Tu h*(A+ A" g + 2, b onie)”

Tixen, the set

Cu = {h € Dy | (0,0,0) € G(En, [0, M), HA(\ HE(Q), b))}

1s meager and closed in Dy, .

PRrOOF.
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We will apply the Transversality Theorem.
Let (u, )\, ¢,h) € G71(0,0,0). As before, we may assume that b = ig. The
partial derivative 328~ (u, ), ¥, in) defined from H2NH}(Q) x R x H*NH3(Q)

into L’(Q) X L’(Q) x H- 1/2(502) is given by

)(u A 'ﬁ!‘n)()_

8(u, A ¥
( (3G1 )(u A, iq), a( X '/))(u A 1/;,;,,),3 = w)(u A, ,Am))()
where b, N
B, 3, 9) (N P in) (3, A ¥, h) = (A +N)i+ du
8( aci ¥) (., %, 6a) (i, A, 9, h) = (A + \)d + My + 2ui

9G3 At i) & h)——ai-iﬁ
W(u’ "I)s’ﬂ)(“: ¥, —6N3 .

Now DG(u, A, ¥, in) defined from H3NH}(Q) x Rx H*NHZ(Q) x C5(2, R™)
into L?(Q) x L3(2) x H~1/2(8%) is given by

DG(“: A» 1/% in)() = (DG1 (uy ’\7 ¢| iﬂ)x DGS(“) ’\1 'bl iﬂ)y DGa(u, )‘: 'ﬁ: t'n))(‘)
where

DGy (u, M, ¥, in)(8, A, %, B) = (A + A)(t — h - Vu) + Au
DG3(u, A, %, ia)(it, A, ¥, h) = (A +X)($—h-VY) + Ay + 2utt

DGs(u, \, %, ia) (i, A, %, h) = a(us h-9)+ (h- N)aT‘

The first two components are easy to compute. To compute the third component
we first observe that

il
qu:V[V(pr-N)-N]-N

—kz:lNka [Z ’Bz ( Bz.)]

Ll 2

Pl 5;‘-1:555 k ’62 3::,, Bz.
ON; 02 'l/) aN; %
+NeN; 5o 8z; Oz;0zx k 7 Bzy 8z:0z;
3
+ Np N; N; Oy

52.‘ sz 3:!:), ’
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Using theorem (2.6), we obtain

. 33 .— " -
B s T = KByt
= b(Lo(y), M Ny (1))

where v = A* "1y, y = h(z), MNyq) = ((Nh(n))i 1<idmn, ﬂNThy(ng)i 1

.. 8N, ' ..
1)]5"1%95%3)_ 15';J,ksﬂ),

. 3 .. 3, ..
Lv= (i’i__lngn,j_W"yjISz,JSn,E‘—‘gWIS:,J,kSn)
and b: R0« Rrtn®+n® o given by

n
b(A, p) = Z {okntiipindi + prpts pige i + picssspri M
i,5,k=1

+ pepipindig + BrpitsicNi; + prpips Mg}

A=A 1<i<nX; 1<ii<nAjx 1<i,5,k<n),
p= 1<i<nu; 1<i,j<npmin 1<4,5,k<n)

2 (o)
TR (o
= (h‘B.h(n)h*_l)(lb)L:o + (h'B’ h(n)h'_])(“’) ‘Dﬂp‘t:ﬂ
() D

+ bz 9| (h‘B,,m)h‘*‘) ) o

Observe that Byq) = 0; B'any (v(y)) - w(y) = sosw(y) and
2 (0) - n(v) = £ (Lo(y), MNacay) - ().

17

<
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Now
&b
= Ly, MN,.(m)\

o
{BN aN; 61[1 N, ONj 8y n; .. ON; 8¢ on;
if k Y Ozy Oz; 8z}, Oz; Oz; y Oz; Ox; Ox;
PN; oy N; 0 9% 0%n;
i 52302 b2+ V¥ 52,00, 3z T V¥ Ni 5 52,00
oN; 0% ON; 8% Py ons
i s Bmivan ™ Ve gz, Gmtan ™ T Vi 5y 2,
oN; 8%y oN; 0% On
— e gAY | & fP=ui X N
N B O2i02; ™ T Ga, Gzide; ™t NI Gy, B2
ON; 9 ON; 8% 2y o
N sz 0z;0z; - Bz ,8:_., t NN 0z;0z; 69:;;
8y 8By i
Rt P R ey P R v ot
=0. :

In fact, by lemma (3.5) 2£ 5., =0forall1 <i<n, 3—_,‘L_._0foralll<s i<n
and a—ﬂ,:,%:;?gﬁ—()foraﬂISg],kSnonaﬂ.

Now, we can easily see that the hypothesis (1) of the Transversality Theorem
is satisfied, in fact ker(-ﬂ%(u, A, ¥,in)) is one dimensional and generated by
(u,0,2¢) since ) is a simple eigenvalue of A and (A+)) is injective in H*NHZ(Q)
by Theorem (2.2). Therefore, ind(a‘%(u, A ¥,in)) <1,

We now prove that (28) also holds, that is, we show that

dim { [m(eg(ux A: ’/}: fn?) } = co.
Im(m(u, A v,4q))

Suppose this is not true and so, there exist 6y, ..., 6, € L2(Q) x H-Y/3(Q) x
L?%(09Q) such that, for all he C%(Q, IR™) there exist %, 4, ) and ¢, .. ., Cm With

(3.8) DG(u, A, in) (%, A, , h) = _Z c;65,

that is
(& + X = h- V) + S, (A + (6 = h - V) + 3 + 2us,
T —h-T) 4 ()

=Z‘-‘j9:'

i=1

aN“)
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for all (4, ), 4, h) € H2 N H}(Q) x R x H*N H3(Q) x C3(Q, R"), where §; =
(6},62,63).
Define the operators

Aar : L3(Q) — H2N HM Q)
Sa+a: H”(Q) — H* an(Q)

by
v=Aauf
where
(A+Xv—feker(A+ ), viker(A+ 1)
and
P=3Sasrg
where

(A+A)p—g€ker(A+2) in HYn H3(Q), pLker(A+ ).

From the first component in (3.8), we obtain

m
t—h Vu=fu+ ) c;Aasaf}

j=1

and similarly for ¥ — h - V¢. Substituting in the third component of (3.8), we
conclude that
8y
aN*
belongs to a finite dimensional space of H~1/2(3Q) for each h € C5($2, IR"). But
this can only occur {in dimension > 2) if g—;‘%— =0in 8Q.

Now, since (A + A)¢¥ = u? in Q we have %,(A + Ay = GL;,-uz on 82, and

(h-N)

80
82 0 82y
— AP = —u? - A—%
N2 = v T AT
8%u\2
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Observe that
B AP~ (8N 0N Oy B
A=A 2 [az,g(az,-a—z.- '8—_z;6zj)+

i,7,k=1
2BN.-( 82 N; ﬁ/}_+8N.- 8%y ON; 8%y : 83y )
Oz \Ozp0z; Oz; = Oz; Oz;0zx ' Oz Oz;0z; * Oz;0z;0zy,
+N-( & N; % . 0*N; %y 8N; 8%y oN; 0%y )}
J Ozi%0z; 0z; '~ 0zx0z; OziOzx = B2y’ OziOz; Oz Ozi0z;0%k
= Aazl on 80
ON?

by lemma (3.5) and, therefore

Hu\2 92
2(5x) = syat¥
8¢
=A5n7
3y 8y 8y
ON? + H0N3 + onN*t

=Apq
_ 9
~ 8Nt

=0on 89.

that is , 8%‘{, = 0 on 9. By uniqueness in the Cauchy Problem (2.2) u = 0,
which is a contradiction. .

Since the spaces are separable, the hypothesis (3) is automatically satisfied.
The result is, therefore, proved

THEOREM 3.7. For a generic set of open, connected, bounded C2-reqular
regions 2 C IR", (n > 2) the eigenfunctions u of (3.1) satisfy [, u® #0.

Proor.

We prove first that the property holds for any eigenfunction associated to
eigenvalues smaller than a fixed natural number N , in a open dense set of
Diff3(9). The result then follows easily, taking intersection. The opennes
property is easy to obtain using the continuity of the (simple) eigenfunctions.
To prove density, we may first approximate (in the C? topology) by a more
regular region and then use stronger norms.

Consider the map

F:H*OH}(Q) - {0} x (0,M) X Dyy — Cpy — L*(Q) x Rx R

(u, A, B) —> (A*(A + A)A* "y, / uldet I, / widet h').
o

o
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Observe that, by lemmas (3.2) and (3.6), Dy — Ci is an open dense subset
of Dif fs(ﬂ). We wish to apply the Transversality Theorem to conclude that
the set

By ={h € Dy — Cpn;(0,1,0) € F(H* N H}(Q) — {0}, (0, M), h)}

is a meager set in Dy; —Cy and, therefore, its complement is dense in Di f78(0).
We claim first that the operator —(m(u A k) from H2N HYQ) x R —
L%(Q)x Rx IR is Fredholm with znd(7—5(u A h)) £ -1, Y(u, A h) € F71{0,1,0).
Let (u,A,h) € F71(0,1,0). Again, we assume wolog that h = ig. Computing
the derivatives ( using (2.3)), we have

DF(u,),ig) : H* N H§(Q) — {0} x R x C*(Q, R™) — L*(Q) x R x R
(i, A, h) — (DFy(u, ), in), DFa(u, A, in), DFs(u, \, i))(t, A, k)

where o ) )
DFy(u, X, in)(%, A, h) = (A + A)is + Au+ [h - V, (A + A)]u
=(B+A) (- h-Vu)+ du
DFy(u, ), ig)(w, A h) = / {2ut + wdiv(h)}
1
DFa(u, A, in) (i, » h) = / (3% + udiv(h)}
[t}
and
%(u, A, i) (i, A)
(BF‘ (1, ), iq) (5, X i), (A, ) i 3)
3(u, N) “’a( ,\) “’a( ) Al
= ((A+,\)u+)\u,/ 2ud,/ 3u?s).
Cleaxly (u A, i) is Fredholm, since m(u A, in) is Fredholm and Fy, F3

have ﬁmte dimensional range. Observe now that the application

oF 2 3
69 (550N 1“)'6( A)(u Xia)) : H* N HY(Q) x R — L3(Q) x R
is surjective. In fact, given (f,z) € L3() x IR, let (v,£) € H2N HY{(2) x IR be
defined by

v=uo+ﬂand£=/uf
2 a
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where vo € H? N H} () satisfy
(A+XNvo=f—Efuewvylu
Note that such a vy exists, since (f — £u)Lu. Thus

OF
B(u, A)
=(A+/\)v+£u=f—£u+§(A+A)u+fu=f

= (u, A, ia) (%, A)

OF,
O(u,

Observe also that (%’:‘ﬂ(u, X, iq), 50e4y(u, A, in)) is injective, since

)(u/\m (#,4) = /2u(vo+—-u)_z-[)u3—z

( 6F1

Btu ) (% in), a( A)(u Ain)) (1,6) = (0,0) <=

(A+A)v+£Eu=0and /2uv=0.
a

Now A+ A)v + £u = 0 == u(A + A)v + £u? = 0 from which — [, u(A + Ay =
§ &= ¢ = 0. Therefore, (A + A)v = 0 with [,2uv = 0, that is, ulv
e (A+X)v = 0. Since ) is a simple eigenvalue associated to u, it follows
that v = 0. Now, since (3.9) is a continuous surjective operator with domain
H*N H}(Q) it follows, from the Closed Graph Theorem, that its inverse is
continuous in L?(02) and thus, (3.9) is an isomorphism so g(%y(u,k, in) is not
surjective. Furthermore, since its kernellistrivia.l we have ind(m(u Aia)) <
—1. Therefore Y(u, A, h) € F~1(0,1,0) md( (u A, h)) < —1, as we wish to
show.

Now, by lemma (3.3) and the definition of Cy, (see also remark (3.4)) it
follows that (0,1,0) is a regular value of F. Therefore, by the Transversality
Theorem, we conclude that By is meager as claimed. The result is, therefore,
proved.

4. A generic property for the
eigenfunctions of the Neumann Problem

We now consider the same property of the previous section in the case of
Neumann boundary conditions. We show that, generically in the set of open,
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connected, bounded C* regions  C IR™ with n > 2, the normalized eigenfunc-

tions u of

Au+du=0in Q,

Ou
4.1 — =
(4.1) AN 0 on 8Q,
uFl
satisfy fn ud £ 0.
REMARK 4.1.

We could prove the result for C? regions as in the previous section. However,
we have chosen to work here in the setting of C* regions, which slightly simplify
the arguments.

We first observe that the result is trivial if u is a constant eigenfunction and,
therefore, we do not need to consider the eigenvalue 0. )
Let us define as before the set

Dy ={h € Diff3(2) | M is not an eigenvalue of (4.1) in
k() and all the eigenvalues A € (0, M) in h(R) are simple }.

This is again an open and dense subset of Diff3(Q). The proof is very similar to

the Dirichlet case. However, in the present case we need to consider the following
subset of Dyy.
Emvy={h€e Dy | Vuz0ondQ,

for any eigenfunction associated to an eigenvalue in (0, M).}
LEMMA 4.2. Ejs is an open dense subset of Dif £3(Q).

Proor.
Opennes is easy to obtain, by continunity of the eigenfunctions. To prove
density, we apply the Transversality Theorem to the map

G : HA(@) x (0, M) x Dar — L*(@) x (L*(09))"
defined by

_ * «—1 ‘i -1
G(u, A, h) = (h (A+X)h* " u,h az’.h u(ah(n)

where

HYy(Q) = {ue H}Q) | % =0, on Q).
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Let (u, ), h) be such that G(u,A,h) = (0,---,0). As before, we may assume
h = ig. Now, the kernell of m(u A, h) is finite-dimensional. Therefore, to
use the Transversality Theorem, we need to prove that :

dim { Im(DGuAh) }

“.2) Im( 5255 (u, M, b))

The partial derivative m(u, A in) defined from H3 () x R into L?() x
(L"‘(@Q))" is given by

0G, 9Git1

G (""’“)()“(a( e ”“)’a( A)(u,\m) l<1<n)()

8(u, N)

where

(, A, ia) (4, A, &) = (A + A + du

a( ,\)
g(G't\)(" A, ig) (4, Ah)_?—i‘ja 1<i<n.

On the other hand, DG(u, ), in) defined from H%(Q) x IR x C3(, R") into
L*(Q) x (Lz(aﬂ)) is given by

DG(u, A,i0)()) = (DG1(y, A, in), DGiy1(u, A, in) 1 < § < n)()

where

DGi(u, A i) (i, A, h) = (A + A)(ii — h - V) + Au,
DGig1(u, A, in) (i, , ) = {3 (a—h-Vu)+h- v(az’)}[m,

for 1< 1n< n. Suppose (4.2) is false, that is, there exist 8;,..., 8, € L3(Q) x
(L’(an)) such that, for any A € C3(Q, IR™) there exist @, A and €1, ...,Cm with

(4.3) DG(u, Ada) (i, A, h) = 3 ¢;6;,
i=1

where 8; = (63,62, .. 0_,”.""1).

J 3 J 1’
Define the operator

(4.4) Laya: L} (Q) — HE(Q)
by
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v="Lauf
where
(A+A)v - f € ker(A+)) in HE(Q), viker(A + ).
We obtain, from the first equation in (3.8)

m
U—h-Vu={u+) c;lapab).

j=1
Substituting in the i + 1-th component of (4.3), we conclude that

Ou
h- V(ax,) |

belongs to a finite dimensional subspace of L2(8() when h varies in C3(Q, R").
But this can only happen ( in dim Q > 2) if Vit 8" =0in 0Q, for1 < i< n,
that is , ﬁb“;; =0indQfor 1 <i,j<n. Therefore, foreach 1<i<n g%
satisfies (4.1) in Q and g’}‘_ = 0 on 0Q. By uniqueness in the Cauchy problem,
we have 3@:—‘_ = 0 em Q and so u constante em 2 coniradicting the hypothesis.
Since our spaces are separable, the hypothesis (3) of the Transversality Theorem
is verified, and the result claimed follows.

THEOREM 4.3. For a generic set of open, connected, bounded C3-regular
regions 2 C IR™, ('n > 2) the eigenfunctions u of (4.1) satisfy [, u®#0.

Proor.

We prove first that the property holds for any eigenfunction associated to
eigenvalues smaller than a fixed natural number M, in a open dense set of
Diff3(Q). The result then follows easily, taking intersection. The opennes
property is, as in lemma (4.2), easy to obtain. To prove density, we again use
the Transversality Theorem.

Consider the application

F:HE(Q) x (0,M)x Epyy — L) x Rx R
(u,\,B) — (h*(A + A)h‘—lu,/ uldet h',/ uddet h').
o o)
We wish to prove that the set
{h € Ex | (0,1,0) € F(H{(Q) - {0}, (0, M), h)}
is a meager set in Epy and therefore, in Diff® ().
We cla.rm first that (u A, h) is Fredholm, with

znd( o (u, A R)) < -1 V('u X, k) € F~1(0,1,0). The proof is almost the same
as the one in theorem (3.7). We need to prove that hypotheses (2(a)) of the
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Transversality Theorem is satisfied. Suppose it is not, and (u, A, in) € H3(Q) x
(0, M) x Ey is a critical point, with F(u, ), ig) = (0,1,0). Then, there exists
(¥,a,8) € L*(Q) x IR x IR ortogonal to ImDF(u, ), ig), that is,

0= /ﬂ {4+ 06~k vu) + 3a]
(4.5) ta [m +u?div(h)| + [314211 + uadiv(il)] }

V(u, ), k) € H3(Q) x R x C3(Q, R").
Hi=h=0in (4.5) then f,gu=0. If h =1 =0, then

(4.6) / {w(a + i + 20 + 3pui} = 0 Vi € B},
(1]

If we take # = % in (4.6), then & = 0 and by regularity of solutions in the Cauchy
problem we conclude that ¢ € HZ(Q) N C2(Q) for all 0 < a < 1 and satisfies

(A + N = ~38u® em Q.

If now we take 4= A = 0 in (4.5) then, since o = 0
4.7 = - h 3div(}
4.7) 0 /n A +A)(h - Vu) + /n puddiv(h)

Vh € C3(Q, R").
Now, we have

/n (A + A)(h - Vu)
= [ (h.vu 9 v = (h.vu) 3
__/n(h v )(A+A)¢+/m¢aN(h Va)— (h- V) 2¥
. 8 .
= - u2 -Vu ol vVu
- /nsﬁ h-v )+/m¢aN(h Vi)
_ L. . . 8 ..
= /n B{wSdiv(h) — div(u®h)} + /8 g va)
. 8 .. .
= uw3div (A Vu)— fu(h-
= [ Bty + [ (w20 - puih )
Substituting in (4.7), we obtain
. 8 .
(4.8) /m{ﬁua(h -N) - wz,w(h -Vu)} =0
for all h € C3(Q, R™)

If 7 is any vector field in C3(2, IR™) with * L N = 0 € 89, and h = gr, for
gome g € C3(Q, IR), g = 0 in 69 then
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0=/ {ﬁua(ﬁ-N)—wg%-(f.t-Vu)}

/ ¢ (h Vu)
69 Ou
/m {ava +‘an (r-Vu)
/ A 8g du
an N 31'
Since 3819\7 can be arbitraly chosen in 8Q and Vu Z 0 we must have
(4.9) Yv=0

in a neighborhood of 6Q.
On the other hand, if & = gN, we have

_ / {ﬂuS(h N)— ¢-é%(h - Vu)}

8g Ou 5%u
/‘9 9=Y5nan ~Yanz

= [ (2 v3) o

for any g € C3(Q, IR). Therefore, we must have

3u
3
(4.10) Bu’ — SN = =0 on 99Q.

But then, it follows from (4.9) and (4.10) that u = 0 in a neighborhood of 8Q
and, by uniquennes in the Cauchy problem v = 0, a contradiction. The result

is, therefore, proved.
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