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A GENERIC PROPERTY FOR THE 
EIGENFUNCTIONS OF THE LAPLACIAN 

ANTONIO LUIZ PEREIRA - MARCONE CORREA PERElRA 

ABSTRACT. In this work we show that, generically in the aet of C2 bounded 
regioru, of n.n, n ~ 2, the inequality fn t/>s ¥: 0 holds for any eigenfunction 
of the La.placian with either Dirichlet or Neumann boundary conditiona. 

1. Introduction 

Perturbation of the boundary for boundary value problems in PDEs have 
been investigated by several authors, from many points of view, since the pio­
neering works of Rayleigh[8] and Hadamard [3). There is, for example, a exten­
sive literature under the label 'shape analysis' or 'shape optimization', on which 
the main issue is to determine conditions for a region to be optimal with respect 
to some cost functional (see, for example (2], [11] and [10]}. 

In particular, generic properties for solutions of boundary value problems 
have been considered by of Micheletti [7), Uhlenbeck {12], Saut and Teman [9] 
and others. Many problems of this kind have also been considered by Herny 
in (4] where a kind of Differential Calculus with the domain as the independent 
variable was developed. This approach allows the utilization of standard analytic 
tools such as Implicit Function Theorems and Ly~punov-Schmidt method. In his 
work, Henry also formulated and proved a generalized form of the Transversality 
Theorem, which will be the main tool used in our arguments. 

We consider here the following question: is it true that, generically in the set 

of C' regions in JFr, n 2:: 2 that L ,• ,/ 0 for any eigenfunction of the Laplacian 

(with either Neumann or Dirichlet boundary condition)? 
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The result is easily seen to be false for n = 1. In fad, in this case, [ 4,3 = 0 
for any nonconstant eigenfunction in the interval I. We will show, however, that 
the situation is quite different if n 2: 2; the property is indeed generic in &·sense 
to be made precise below. 

As pointed out to the first author by Prof. K. Rybakowsky, the question 
above appears in connection with the study of stability for nonconstant equilibria 
of the reaction-diffusion system 

{ 

Biu =Do+ µDi + g(u) = 0 
{}u 
{)N = 0 on an 

where g : ]RP ➔ m,P E C2 ' g(O) = 0, Dg(O) = 0. 

in 11 

The plan of this paper is as follows. In section 2, we state some background 
results needed in the sequel. We prove the result for Dirichlet boundary condi­
tions in section 3, and for Neumann boundary conditions in section 4. 

2. Preliminaries 

The results in this section were taken from the monograph of Henry [4], where 
full proofs can be found. 

2.1. Some notation and geometrical preliminaries. 
Given a function / defined in a neighborhood of :,; E m,n, its m-derivative at 

z can be considered as a homogeneous polynomial of degree m 

in ]Rn, with norm 

IDm f (z )I = ma.xi1119 IDm /(z )hm I, 
or as a m-linear symmetric form, or as the collection of partial derivatives 

with (equivalent) norm 

If O is an open subset of /Rn and Eis a normed vector space, C"' (0, E) is the 
space of m-times continuously and bounded differentiable functions on {l whose 
derivatives extend continuously to the closure fl, with the usual norm 
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If E = IR, we write simply cm (0). 
C:::,;1 (0, E) is the closed subspace of cm (0, E) of functions whose m th de­

rivative is uniformly continuous. If O is bounded, this is cm(n, E). 
We say that an open set fl CIR" is cm-regular if there exists ip E cm(IR", IR), 

which is at least in C~niJ (JR", JR), such that 

'1 = {x E JR";¢(x) > O} 

and ¢(x) = 0 implies l'v¢12:: 1. 

Let m be a non negative integer and p ::,: 1 a real number. We define the 
Sobolev spaces wm,P(fl) and w;;"•P(fl), as the completion of cm(fl) and Cg'(fl) 
respectively under the norm 

where Cg'(O) is the subspace offunctions on cm(n) with compact support (when 
p = 2 we usually write Hm(n):::: wm, 2(fl} and H{I'(fl) = W;'•2 (0)). 

We sometimes need to use differential operators (gradient, divergence and 
Laplacian) in a hypersurface S C IR". The following definitions are all equivalent 
to the corresponding formulas in R.iemannian geometry, in the metric induced 
in S by the sorroounding ambient space. These formulas are intrinsic to S but 
our interest is precisely in their relation to a neighborhood of S. (see theorem 
(2.1)). 

Let S be a C1 hypersurface in JR" and let qi : S --+ JR be C1 (so it can be 
extended to be C1 on a neighborhood of S), then 'v' slP is the tangent vector field 
in S such that, for each C1 curve t --t x(t) C S, we have 

! ¢(x(t)) = 'v' s1P(x(t)) . x(t). 

Let S be a C2 hypersurface in JR" and ii : S --+ JR" a C1 vector field tangent 
to S. Then divsii : S --t JR" is the continuous function such that, for every C1 

¢ : S --+ JR with compact support in S, 

ls (divsii)¢ = - ls ii · 'v s<f> . 

Finally, if u : S --+ IR is C2 , then a5 u = divs ('v 5 u) or, equivalently, for all C1 

IP : S --+ JR with compact support 

ls ifo!::.su = - ls Vs</>· Vsu. 
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THEOREM 2.1. 

(i) If S is a C1 hypersurface and <p : IR" --+- IR is C1 in a neighborhood of 
S, then, on S, V s<P( z) = the component of V 4,( z) tangent S at z:, that 
is 

8¢ 
V 5 ,p(z) = v'ef,(z) - aN (z)N(z) 

where N is an unit normal field on S. 
(ii) If S is a C2 hypersurface in IR", ii: S --+- IR" is C1 in a neighborhood 

of S, N : IR" ---+ IR" is a C1 unit normal field in a neighborhood of S 
and H = divN is the mean cun.1ature of S, then 

divsil = ditiil- Ha· N -
0
~ (a· N) 

on S. 
(iii) If S is a C2 hypersurface, u : IR" --+- IR is C2 in a neighborhood of S 

and N is a normal vector field for S, then 

ou 82u 8N 
~su = ~u - H 8N - 8N2 + V su. 8N 

on S. We may choose N so that~= 0 on S and then the final term 
vanishes. 

We often need the Cauchy's uniqueness theorem for second order elliptic 
equations. We 11tate here a fairly general version whose proof can be found in 
[5), theorem 8.9.1. 

THEOREM 2.2. Suppose QC IR" is an open connected set, Bis a ball which 
intersecta 8Q in a C2 hyperaurface B n 8Q; a.; = a;; : Q ---+ IR is a C1 function 
for 1 $ i,j $ n, with r:?.;=i a.;(z)U; 2'. col{l2 Vz E Q and { E JR" for some 
constant co > 0. Assume u E H 2 (Q) and, for some conatant K 

n [J2 I ,~
1 

a;;(z) oz;:; J $ K(l'vu(z)I + lu(z)I) 

for a.e. z E Q and u = 0, ~ = 0 on BrioQ. Then u = 0 a.e. in Q. 

2.2 Differential Calculus of Boundary Perturbation. 
Given an open bounded, C"' region 0 0 C IR", consider the following open 

subset of C"'(O, IR") 

Dif r(n) = {h E cm(n, JR"); his injective and !det~'(z)j is bounded in O}. 

and the the collection of all regions 

{h(Oo);h E Di/r(no)}. 
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We introduce a topology in this set by defining a (sub-basis of) the neighborhoods 
of a given n by 

{h(!l); llh - iollc-(o,.R-) < e, e > 0 suficiently small}. 

When llh - inllc•(o,R•) is small, his a C"' imbedding of n in !Rn, a C"' dif­
feomorphism to its image h(!l). Michelleti [7J shows this topology is metrizable, 
and the set of regions C"'-diffeomorphic ton may be considered a separable met­
ric space which we denote by Mm(!l), or simply Mm- We say that a function 
F defined in the space Mm with values in a Banach space is C"' or analytic 
if h >--+ F(h(11)) is cm or analytic as a map of Banach spaces (h near io in 
C"'(n, IR")). In this sense, we may express problems of perturbation of the 
boundary of a boundary value problem as problems of differential calculus in 
Banach spaces. 

More specifically, consider a formal non-linear differential operator u ➔ v 

( 
{}u 8u &2u iJ2u ) n v(y) = f Y, u(y), -8 (y), ... , -8 (y), -8 2 (:r), -8 8 (y), ... 'y E JR 
Yr Yn !/1 Y1 Y2 

To simplify the notation, we define a constant matrix coefficient differential 
operator L 

( 
&u 8u 82u &2u ) n Lu(y) = u(y), -8 (y), ... , -8 (y), -{} 2 (y), -8 8 (y), ... ' !IE JR 
!/I Yn !11 !/1 !/2 

with as many terms as needed, so our nonlinear opera.tor becomes 

u ➔ v(·) =!(·,Lu(-)) 
More precisely, suppose Lu(•) has values in JRP and f(y, >..) is defined for (y, >..) 
in some open set O C !Rn x JRP. For subsets n C !Rn define Fo by 

Fn(u)(y) = f(y, Lu(y)), y En 
for sufficiently smooth functions u in O such that (y, Lu(y)) E O for any y E 0. 
For example, if / is continuous, n is bounded and L involves derivatives of order 
:S m, the domain of F0 is an open subset (perhaps empty) of C"'(O), and the 
values of Fo are in c0 (n). (Other function spaces could be used with obvious 
modifications). 

If h: n .-+ !Rn is a C,. imbedding, we ca.n also consider F,.(o) : C"'(h(O)) >-+ 
c0 (h(O)). But then the problem will be posed in different spaces. To bring it 
back to the original spaces we consider the 'pull-back' of h 
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defined by h*(rp) = rp oh (which is a diffeomorphism) and then h*Fi.(o)h*- 1 

is again a map from cm(n) into C0 (0). This is more convenient if we wish to 
use tools like the Implicit Function or Transversality theorems. On the other 
hand, a new variable h is introduced. We then need to study the differentiability 
properties of the function (h, u) >4 h*Fi.coih*-1u. This has been done in [4] 
where it is shown that, if (y, >.) ....+ f (y, >.) is Ci, or analytic then so is the map 
above, considered as a map from Dif r(fl) x C"'(fl) to C°(O) (other function 
spaces can be used instead of C"' ). To compute the derivative we then need only 
compute the Gateaux derivative that is, the t-derivative along a smooth curve 
t >4 (h(t, .), u(t, .)) E Dif J"'(O} x C"'(!l). 

Suppose we wish to compute 

8 8 
at Fo(tJ(t1)(y) = a/CY, Lt1(y)) 

with y = h(t, z) fixed in O(t) = h(t, n). To keep y fixed we must take :r = :r(t), 
y = h(t, z(t)) with 

oh ah , ) , ah 1 oh 
O=&t+ll:r:z(t ==>z(t)=-( 8"')- &t, 

that is , z(t) is the solution of the differential equation ~: = -U(z, t) where 
U(z, t) = (~)-1 iz. The differential operator 

D,=!-U(z,t):z' U(z,t)=(:~)- 1
: 

is called the anti-convective derivative. The results (theorems 2.3, 2.6) below are 
the main tools we use to compute derivatives. 

THEOREM 2.3. Suppose J(t, y, >.) is C1 in an open set in JR x ]Rn x IR', 
L i., a constant-coefficient differential operotor of order :; m with Lt1(y) E JR' 
(where defined). For open sets QC ]Rn and C"' functions v on Q, let Fq(t)t1 be 
the function 

Y--+ f(t, 11, Lv(y)), y E Q. 
where defined. 

Suppose t --+ h(t, •) is a curve of imbeddings of an open set n C JR", O(t) = 
h(t,O) and for Iii:$ m, lkl :$ m + 1 (t,z)--+ 8,~h(t,z), &;h(t,z), &;u(t, z) 
are continuous on JR x n near t = 0, and h(t, •)°- 1u(t, •) is in the domain of 
Fn(t)• Then, at points of 0 

Dt(h* Fn(c)(t)h*-1)(u) = (h* Fn(t)(t)h*-1)(u) + W F~(c)(t}h*- 1}(u) • D,u 

where De is the anti-convective derivative defined abot1e, 

. of 
Fq(t)v(y) = &t (t, y, Lv(y)) 
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and 
Ff:J(t)v · w(y) = :{ (t, y, Lv(y)) · Lw(y), y E Q 

is the linearization of v -+ FQ(t)v. 

7 

REMARK 2.4. Suppose we deal with a linear operator A= Llorl~m aor(Y) (-k)"' 
not ezplicitly dependent on t, and h(t, z) = z + tV(z) + o(t) as t ➔ 0 e z En. 
Then at t = 0 

~(h"Ah*- 1u)I = Di(h*Ah*- 1u)i +h; 1ht'v(h*Ah*- 1u) I 
{Jt t=O 1=0 t=O 

au = A( &t - V ·'vu)+ V. 'v(Au) 

8u = A &t + [V · V, A]u 

since /,A= 0. Note that the commutator [V • V,A](-) is still an operator of 
orderm. 

We also need to be able to differentiate boundary conditions, and a quite 
general form is 

b(t, y, Lv(y), M No(t) (y)) = 0 for y E 8!l(t), 

where L, M are constant-coefficient differential operators and No(t)(Y) is the 
outward unit normal for y E 811(t), extended smoothly as a. unit vector field 
on a. neighborhood of 8!l(t) . We choose some extension of No in the reference 
region and then define Nn(t) = N11(1,0) by 

(2.2) h* N (z) - N (h(z)) - (h;lf No(z) 
h(t,n) - h(t,n) - ll(h;;-1)TNo(z)II 

for z near 80, where (h; 1f is the inverse-transpose of the Jacobian matrix h., 
and II • II is the Euclidean norm. This is the extension understood in the above 
boundary condition: b(t, y, Lv(y), M Nn(tJ(Y)) is defined for y E 11 near 811 and 
has limit zero (in some sense, depending on the functional space employed) as 
y-+80. 

LEMMA 2.5. Let n be a C2 -regular region, Nn(,) a C1 unit-vector field defined 
on a neighborhood of 80 which is the outward normal on 80, and for a C2 

function h : 0 ~ m," define N11(n) on a neighborhood of h(80) = 8h(11) by 
(2.2) above. Suppose h(t, •) is an imbedding for each t, defined by 

8 
&t h(t, z) = V(t, h(t, z)) para z E 0, h(O, z) = z, 
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(t, y) --+ V(t, y) is C2 and n(t) = h(t, n), Nn(t) = N11(t,O)· Then for :r: near 
an,!/= h(t,:r:) near an(t), we may compute the derivative (ft)11=co,uCanC and, 

if" e an, 
! Nn(t)(Y) = D,(h• N11(t,n))(:i:) 

= -( V' 80(t)O" + u/)
8

~
0

(t) (y)) 
"0(t) 

where u = V • Nn(t) is the normal velocity and 'ii eo(t)O" is the component of the 
gradient tangent ta 8n. 

THEOREM 2.6. Let b(t, !/, Lv(y), M Nn(t)(Y)) be a C1 function on an open 
set of IR x IR" x IR" x IRq and let L, M be constant-coefficient differential 
operators with order~ m of appropriate dimensions so b(t, y, Lv(y), M No(c)(Y)) 
makes sense. Assume that n is a cm+ 1 region, N0 (:r:) is a C"' unit-vector field 
near an which is the outward normal on an, and define N11(t,n) by (2.2) when 
h: fl--+ JR" is a cm+1 smooth imbedding. Also define B11(o)(t) by 

B1o{n)11(11) = b(t, V, L11(y), M N1o{n) (y)) 

for y E h(fl) near 8h(f2). 
If t -t h(t, ·) is a curve of cm+I imbeddings of n and for Iii ~ m, lkl $ 

m + 1, (t, :r:) -t (Bto!,h, 0:, Bto!,u, O:u)(t, :r:) are continuous on IR x n near 
t = 0, then at points of O near an 

D, (h 0 Bi.(o)h•- 1)(u) = W Bi.(n)h0
-

1){u) + (h 0 B' 11(o)h•-1)(u) · D,u 

+ (h* {)!i? h•- 1)(u) · D,(h0 No(t)) 

where h = h(t, ·); .Bi.(n) e B' h(O) are defined as in theorem (2.3), 

8811(0) ob 
BN(v) • n(y) = oµ (t, y,Lv(y), MN,.(n)(Y)) -Mn(y) 

and D,(h• Nn(c)) j is computed in lemma (2.5). 
80 

2.3 The Transversality theorem. 
A basic tool for our results will be the Transveniality Theorem in the form 

below, due to D. Henry [4] . We first recall some definitions. 
A map TE C(X, Y) where X and Y are Banach spaces is a semi-Fredholm 

map if the range of Tis closed and at least one (or both, for Fredholm) of dim 
N(T), codim 1l(T) is finite; the index of Tis then 

index(T) = ind(T) = dim.N(T) - codim1l(T) . 
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We say that a subset F of a topological space X is rare if its cl08ure has 
empty interior and meager if it is contained in a countable union of rare subsets 
of X. We say that F is residual if its complement in X is meager. We also say 
that X is a Haire space if any residual subset of X is dense. 

Let f be a c1c map betwen Banach spaces. We say that z is a regular point 
of f if the derivative f'(z) is surjective and its kernell is finite-dimensional. 
Oterwise, x is called a critical point of f. A point is critical if it is the image of 
some critical point off. 

Let now X be a Baire space and J = [O, l]. For any closed or u-closed F C X 
and any nonnegative integer m we say that the codimension of F is greater or 
equal tom (codim F?:. m) ifthesubset {¢> E C(Im,X) I efi(Im)nF is non-empty} 
is meager in C(Jm, X). We say codim F =kif k is the largest integer satisfying 
codim F 2: m. 

THEOREM 2.7. Suppose given positive numbers k and m; Banach manifolds 
X, Y,Z of class Ck; an open set ACX x Y; a C,. map f: A>-+ Zand a point 
(. E Z. Assume for each (x,y) E f- 1 (£.) that: 

{1) U(x, y) : TsX >-+ TtZ is semi-Fredholm with index< k. 
(2) Either 

(er) Df(x,y)= (u.u) :T~XxT.,Yi-+TEZissuriective 
or 

(/3) dim { 'R. (Df(z, y)) /'R. (U(z, 11))} 2: m + dimN ( *(x, y)). 
Further assume: 

(3) (z, y) >-+ y: r 1 (0 >-+ y is u-proper, 
1- 1 (£.) = LJ~1 M; is a countable union of sets M; such that (z, y) >-+ 
y : M; >-+ Y, is a proper map for each j. ( Given (z.,, y.,) EM; such 
that y., converges in Y, there exists a subsequence (or subnet) with limit 
in M;]. 

We note that (3) holds if f- 1((.) is Lindelof { every open cover has a countable 
subcover} or, more specifically, if J-1(€) is a separable metric space, or if X, Y 
are separable metric spaces. 

Let A11 = {zj(z, y) EA} and 

Yer;t = {y I { is a critical value off(·, y) : A 11 >-+ Z}. 

Then Ycrit is a meager set in Y and, if (:r:,y) >-+ y: J- 1 (€) >-+ Y is proper, Ycrit 

is also closed. If ind U ~ -m < 0 on J- 1 (€), then (2(a)) implies (2(,8)) and 

Ycrit = {y I£. E f(A11, y)} 
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has codimension ~ m in Y.[ See [4J for definition of codimension; note Ycri• is 
meager if! codim Ycn1 ~ 1 ]. 

REMARK 2.8. The usual hypothesis is that { is a regular value of f, so 
(2(a)) holds. If (2(,8)) holds at some point then ind( U) S -m at this point, 

.,ince codim 'R (U) ~ dim{~tv.Jl · If ind(*) S -m and ( 2(a)) holds, then 

( 2(,8)) also holds. Thus (2(,8)) is more general for the case of negative indez. 

3. A generic property for the 
eigenfunctions of the Dirichlet Problem 

We will Bhow that, generically in the set of open, connected, bounded C2 

regions O C IR" with n ~ 2, the normalized eigenfunctions u of 

(3.1) .0.u + ~U = 0 lD 0 1 U = 0 OD 80. 1 U 'F 0 

satisfy J0 u3 
-.:/:- 0. 

We need first some preliminary results 

LEMMA 3.1. Given ho E Dif / 2 (0) there exists a neighborhood Vo of ho in 
Dif / 2 (0) auch that, for all h E Vo and u E H2 n HJ(O) 

with e(h) ➔ 0 as h-➔ ho in C2(0, JR"). 

PROOF. It is sufficient to consider the case ho= io. We have 
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where b,j(z) = (h;1);;(z), that is, b;;(z) is the i,j-th entry in the transposed 
inverse of the Jacobian matrix of h,, = ( ~ )~i=l. Therefore 

. a2 n n 

h• lHh•-1u(z) = Lb;1r(z)f(::)(Lb;;(z):u.)(z) 
Y; /c=l :Cir j=l Z3 

n n {) {Ju [)2 
= Eb;1c(z) E [(;r-b;;)(z)~ + b,;(z) a ; . M] 

k=l j=i :l!Jr z, :t:1, z, 
n 02 

= E b,1<(:t:)b,;(:c) (a ; .) (z) 
j,k=l Zic :t:3 

n a {) 
+ E b;1:(z)(ab;;)(z))(z)a u_(z) 

j,k=l Zk :C3 

= (~(u)) (z) + L,(u)(z) 
• 

where 

Thus 

with 
n 

Lu= EL,u. 
t:1 

Since b;,k --+ 5;,k in C2 (0, !Rn) when h --+ io in C2 (0, JR") the coefficients of 
L go to O uniformly in z as h--+ io in C2 (0, JR"). It follows that 

IILullL•(O) ~ <(h)lluJIH•nHHO) 

where dh) goes to zero as h -+ io in C2 (n, JR") . 

Let O C !Rn be a Ck (k ~ 2), open, bounded, connected region and consider 
the set 

DM ={h E Difl(O) I Mis not an eigenvalue of (3.1) in 

h(O) and all the eigenvalues ,\ E (0, M) in h(O) are simple }. 
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LEMMA 3.2. Du is an open and dense subset of Dif f"(O). 

PROOF. Define 

D = {h E Diff"(O) I all the eigenvalues of (3.1) in h(n) are simple} 

D~ = {h E Diff"(O.) I all the eigenvalues A E (0, M) in h(O} are simple}. 

We first show that DM is open. Let ho E DM and let At, ... , A1, be the 
(simple) eigenvalues of .ti. in h0 (0) smaller M . Let also -y be the circle of radius 
M with center in the origin. 

From the previous lema and theorems (2.14), (3.16) of [6] it follows that 
there exists a neighborhood Vo of ho such that the dimension of the eigenspace 
associated to the eigenvalues smaller than M of h" .ti.h•-1 is constant and there 
are no eigenvalues in 'Y for h E Vo . From the implicit function theorem (see 
[4] for detaila) the simple eigenvalues of ho• Ci.ho •-l depend continuously of h 
in a neighborhood of ho in C". Therefore, for each I $ i $ k there exists a 
neighborhood V; C Dif J"(n) of h0 and continuous functions~ : V; ---t (0, M) 
such that A~(h) is a simple eigenvalue of h• .ti.h•-1 for any h E V; with A;(ho) = ,\; 
and the sets A;(V;) are pairwise disjoint. Define then V = (1'=0 V;, neighborhood 
of ho in Diff"(O). Observe that Vh EV, h•fih•- 1 has k eigenvalues smaller 
than· M, which are all simple. Therefore, DM is open. 

To prove density we observe that D is dense in Dif !" (0) (see [4] or [7]) and 
therefore D'u is also dense. To conclude the proof we just need to show that, 
if M is an eigenvalue of (3.1) in n, there exists h ne&r io such that this does 
not hold anymore in h(O). To this end, it is enough to take h(x) = (I+ £)x. A 
simple computation shows that e&eh eigenvalue A of .ti. in n changes to ~ in 
h(O). 

Before proceeding, we try to outline the main steps of our argument. Let 
0 C IR" be an open, connected, bounded C2-regular region and conside! the 
application 

F: H2 n HJ(n)-{0} x (0,M) x DM ~ £2(0) x IR x JR 

(u, A, h) ~ (h"(Ll. + A)h"- 1u, L u2det h', l u3det h'). 

We would like to show that, for each M E N, the set 

BM= {h E DM I (0, I, 0) E F(H2 n HJ(n) - {O}, (0, M), h)} 
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is meager in DM. Since the operator 8(8:,x)(u,>.,h) from H 2 n HJ(Q) x JR 
into £2 (0) x JR x JR is Fredholm with ind( 8(8:,>.)(u,>.,h)) :5 -1 V(u,>.,h) E 
F-1 (0, 1, 0) (see theorem (3 .7) below), this would follow from the Transversality 
Theorem (2.7) ifwe could prove that (0, 1, 0) is a regular value of F. We try to do 
that and fail . However, we do show that a critical point must have very special 
properties, which enables us to show that they can only occur in a 'exceptional' 
set of regions. Repeating the argument in the complement of this set we can, 
:finally, prove our result . 

LEMM.A 3.3. Let fl C JRn be an open connected, bounded, C5 -regular region. 
If (u,>. ,h) E H 2 n HJ(O) - {0} x (0,M) x DM is a critical point of F, with 
F(u , >., h) = (0, 1, 0) then there exists ,p E HJ(h(f!)) satisfying (t:. + >.),/J = u2• 

PROOF. 

By 'tranefering the origin', we can suppose h = in. We prove below (see 
proof of theorem (3 .7)) that the 'partial derivative' 8 (~~;,.) is Fredlholm and thus, 
its range has finite codimeneion. It follows that ImDF(u , >., in) also has finite 
codimension and, therefore, is closed. Suppose (u, >., in) E H 2 n HJ(!l) - {0} x 
(0, M) x DM ie a critical point of F with F(u, >.,in)= (0, 1, 0) . We prove below 
(see proof of theorem (3.7)), that then, there exists (,/J,o:,0) E L2 (f!) x JR x JR 
ortogonal to ImDF(u, >., in) , that is, 

(3.2) 0= L {'!/J[(t:.+>.)(u-h-'vu)+Au]+ 

a [ 2uu + u 2di11(h)] + 0 [ 3u2-u + u3div(h)]} 

V(u), h) e H 2 n HJ(n) - {0} x JR x C5 (n, JR"). 
Taking u = h = 0 in (3.2), we obtain fn ,pu = 0. Taking h = ,\ = 0, we have 

(3 .3) L { ,J;(t:. + >.)u + 2o:uu + 30u2u} = 0 Vu E H 2 n H~ (f!) . 

If u = u ~ (3.3) it follows that a= 0 and so, by regularity of solutions of elliptic 
problems we conclude that ,jJ E H 2 n HJ(f!) n C~(O) for all O < a < 1 and 
(t:. + >.),t, ~ -30u2 . Ta.king naw, u = ,\ = 0 in (3.2) 

(3.4) L ,J,(t:. + >.)(h •Vu)= L 0u3 div(h) Vh E C6 (n, JR"). 

Let N a unit vector field normal to 80. Since 
[ - {· [ 8uo,p-

ln ,t,(t:. + >.)(h. 'vu)= lo (h . V'u)(t:. + >.)ip - 180 aN aNh . N 

= -130u2 (h • 'vu) - f !}!!_ o,J, h • N, 
n ]80 8N 8N 
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we obtain, substituting in (3.4) 

L 81idiv(h) = - L 30u
2 (h • Vu) - ho:; :i h · N 

(3.5) Vh E C6 (n, JRn). 

Observe now that 

and so 

(3.6) L 8u3 div(h) = - L 38u2 (h • Vu). 

Therefore, substituting (3 .6) in (3.5), we have 

(3.7) 

from which, -D1,~ = 0 em 80. Since u is not identically zero it follows from 
Theorem (2.2) that m = 0 on 80 and (multiplying T/J by a constant if needed) 
our result follows. 

REMARK 3.4. Observe that,by regularity in the elliptic problem, T/J E H 4 n 
Hl(O) n C4•0 (il) .since u2 E H 2 n Ht{n) n C2•0 (0) for all O <a< 1. 

LEMMA 3.5. Let n C JR,n be an open connected, bounded C5 -regular region. 
If ,/J E Hi(n) satisfies (~ + >.),/> = u 2 for some u E H 2 n HJ(n) n C!(O), then 

(1) ~ = 0 in 8n for all l $ i $ n ; 

(2) 11:;•:.,; = 0 in an for all 1 $ i,j $ n; 

(3) 8,.;Z:;8.,. = 0 in 80 for all l $ i, j, k $ n. 

PROOF . 

From ,p = 0 and ~ = 0 in an it follows that Vt/I=~· N = 0 in an and 
thus l!; = 0 on an for all 1 ~ i $ n. 

From (2.1) we obtain O = u 2 = (~ + >.)-rp = fz/;- + H ~ in 80 where 
H = div(N) which implies~= 0 in an. 

Now, since~= 0 and~= 0 in an we have V(~) = IN!Jt ·N = 0 and 
then V(~) = 0 in an. Therefore, for all O $ i $ n we have a!;~ = 0 in an 
from which it follows that /J!; I:Z=i N,. /!; = 0 in 80, that is, I:~=l N,. e::t,.; = 
~~{}. = 0 in an for all O < i < n. Therefore we have !.!/!_BB. =~~Ba' = 0 on an UJ'II :,;• - - Ct Oi'f ~, 

which implies V ~ = 0 in an, that is, 8!~1,. . = 0 in t1n for a.II 1 ::5 i, j $ n. . . , 
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To obtain the last equality, observe that 

and so 

a:, (u2) = a:, (A+ >.)'lj) 

0 = 2u au 
OZ; 

=(A+>.):: 

= (A+ >.) %! in n, 

= Aao 8,/1 + H ~ 81/> + !:_ 81/> + ). 8,/1 az, 8N 8:r; 8N2 OX; 8z; 
a2 81/> = --2 -8 on an, 

aN xj 

since !!Ji!...8B., _ = 8~
2

8"' . = 0 on on I< i,j < n. • ... , zr, - -

15 

Now, since -bl£=~~= 0 on an we have 'il /N-l!; = 0 on an, and 
so, 

0 _a(oo'f/;) 
- oz,. 8N fJz, 

= t (aN; ~ + N; EJ3ef; ) 
. 8x1, 8x,8xj 8x;8zj8z:1, J=l 

a fPef; 
= {}N 8z,8z,. on an. 

Therefore 8::t.,j = IN 8::t.,j = 0 on an which implies 'il a::t.,; = 0 on an, that 
is, 8,,,g:ta.,. = 0 on an for all I $ i, j, k $ n . 

LEMMA 3.6. Let n C JR" be an open, connected, bounded, C5 -regular region. 
Consider the application 

a-: H 2 n HJ(O) x [O, MJ x H 4 n Hl(n) x DM --+ £ 2 (0) x £ 2 (0) x n-112(80) 

defined by 

G(u,>., 'If;, h) = (h 0 (A + >.)h0
-

1u, h*(A + ).)h 0
-

1ef; + u2
, h0 

O
~ 3h0

-
1 '1/; [

8
,.(o)). 

Then, the set 

c~ = {h E DM J (0,0,0) E G(EM,[0,M],H4 nHJ(O),h)} 
is meager and closed in DM. 

PROOF. 
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We will apply the Transversality Theorem. 
Let (u, >., f/1, h) E a-1(0, 0, 0). As before, we may assume that h = in. The 

partial derivative ac!.r.iJi) (u, >.,¢,in) defined from H 2 nHJ(O) X IR X H 4 nH5(D) 
into £ 2 (0) x £ 2(0) x n-112(80) is given by 

8(u~~,¢/",>.,¢,in)(·) = 

( 8(:~: ¢) (u, >., ,p, in), a(:~:¢) (u, >., 1/J, io), o(:~: ¢) (u, >.,¢,in))(·) 

where 
8G1 . . · · · . · lJ(u, >., VJ) (u, >., ¢, zn){u, >., ¢, h) =(A+ >.)u + >.u 

8G2 . . · · · · · . O(u, >., ¢) (u, >., t/>, io)(u, .>., ¢, h) =(~+>.),ti + ).ip + 2uu 

8Ga . . - - . 83 • 
8(u, ..X, ,t,) (u, >., ,t,, zn)(u, >., ,t,, h) = 8Na ,t,. 

Now DG(u, >., ,t,, in) defined from H 2 nHJ(O) x JR.x H 4 nH~(O.) x C1 (Sl, IR") 
into L 2 (0) X L 2 (0) X n- 1 12 (00) UI given by 

DG(u, >., ,t,, in)(-)= (DG1(u, >., ,t,, in), DGs(u, .>., ,t,, in), DGa(u, >., ,t,, in)H·) 

where 

DG1 (u, >., ,/J, io)(u, )., ¢, h) = (~ + >.)(u - ii· 'ii'u) + ).u 

DG2(u, >., i/), in)(u, )., ¢, h) = (~+.>.)(¢-ii. V,f;) + 5..¢ + 2uil 
. . . . . a3 . . . a4,p 

DGa(u, >., ,t,, zo)(u, .>., ,f;, h) = ---;;;:;s(t/J- h · V,t,) + (h · N)-;:;-;-;-i. 
8N 8N 

The first two components are easy to compute. To compute the third component 
we first observe that 
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Using theorem (2.6), we obtain 

n 

b(>., µ) = L {µ,.µ;jµj1cA; + µ1cµjµ,j1c>.; + µ1cµjµ,jA1c; 
i,;,k::1 

if>.=(>.; 1$i$n,>.;J 1$i,j:Sn,>.;,;,1c 1$i,j,k$n), 
µ = (µ; 1::; i :Sn,µ;,; 1 ::S i,j $ n,µ,J,lc 1 $ i,j,k $ n) 

! ( h• 81,cn)h•-
1

) (,t,) J,=o 

= D, (h• B1,(n)h•-
1

) (t/i) I t=□ + h;1 h, V [ ( h• B1i(n)h•-
1

) (t/J)] L,,
0 

= (h*B,.(o)h•- 1 )(,p>L=□ + {h*B',.(n)h•-
1
)(t/i) ·D1,t, l

1
=

0 

+ (h* aB,.(n) h*- 1) ('¢,) · D1(h" N1i(o)) I 
8N l=O 

+ h;1h1 V [ (h*Bh(O)h·-
1

) (T/Jl] I ,=□· 

. 8. 
Observe that B1i(n) = O; B'h(n)(v(y)) · w(y) = aNYw(y) and 
8 ~';4°1 (v) . n(y} = Pi;(Lv(y}, M N1i(n)) · n(y). 

17 
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Now 

=0. 
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In fact, by lemma (3.5) ~ = 0 for all I :5 i :5 n, »::l; = 0 for all 1 :5 i,j :5 n 

and 8.,,::;\i ... = 0 for all 1 $ i, j, le $ n on 80. 
Now, we can easily see that the hypothesis (1) of the Transversality Theorem 

is satisfied, in fact leer( a(!,Y,,JJ ( u, >., ,p, in)) is one dimensional and generated by 
(u, 0, 21/1) since). is a simple eigenvalue of A and (A+).) is injective in H 4nH6(0) 
by Theorem (2.2) . Therefore, ind(ac:.X,,;,) (u, >., t/>, in))$ I. 

We now prove that (2,8) also bolds, that is, we show that 

d . { Im(DG(u , >., 1/J, in)) } 
1m BG = 00. 

Im( ~(u, >., VJ, in)) 

Suppose this is not true and so, there exist 81, ... , Om E L2 (f2) x H-112(0) x 
L2 (80) such that, for all h E C5 (0, JR") there exist u, ti,,>. and c1 , . . . , Cm with 

(3.8) 

that is 

n 

DG(u, >., ,fl, i0 )(u, >., ~. h) = E c;B;, 
i=l 

((A+ >.)(ti- h · Vu) +~u, (A+ >.)(,ti- h -VI/;)+ ~¢+2uu, 

lJ3 . . . a•"') -;;-;:;J(V' - h · 'v,p) + (h · N) ­
{}N 8N4 
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for all (u, ~. ,i;, h) E H2 n HJ(n) X m X H 4 n H~(n) X C5(0, JI{'), where 9; = 
(9},9J,9J). 

Define the operators 

by 

where 

and 

where 

AA+~ : L2 (0) -t H 2 n HJ(f.l) 

SM~ ; H2 (f.l) -t H 4 n H~(O) 

(A+ ..\.)v - f E ker(A + .X), vl.ker(A + ..\.) 

(A+ ..\.)rp - g E ker(A + .X) in H 4 n H~(O), rpHer(A + .X). 

From the first component in (3 .8), we obtain 

and similarly for ti, - h · Vef., . Substituting in the third component of (3 .8), we 
conclude that 

(h • N/4
ef., 

8N4 

belongs to a finite dimensional space of H-1l 2(an) for each h E C5 (0, JRn). But 
this ca.n only occur (in dimension 2:: 2) if ~ = 0 in an. 

Now, since (A+ ..\.)t/1 = u2 in n we have ~(A+ .X)t/1 = -IN-ru2 on an, and 
so 
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Observe that 

tP A - fl {}2,p - ~ [lPN; (IJN; 81/J + N, a2,µ )+ 
{}N2 "' - 8N2 . L.., az,. 2 8z; 8z; 1Jz;8Zj 

t.J,lr=l 

+ lN; ( {J2N; {},p + 8N; ....!:.!__ + 8N; ....!:.!__ + N; fr'1/J )+ 
{)zi, 8z1r8Xj {)z; {}:,ej 8z;8z1, 8z1, 8z;8Xj 8z;{)z;8z1c 

+ N· ( fr'N; 8¢ + 2 8
2
N; 8

2
,/J + 82

N; ~ + 28N; fr',/1 )] 
, ax,. 28z; {Jz; ax,.8z; /Jx;OXJ, ax,. 2 8x;8z; OZI, 8x;8x;8z1r 
{)2,t., 

= llfJN2 on an 

by lemma (3 .5) a.nd, therefore 

2 ( 8u )2 = .!:._ll,t., 
8N IJN2 

a2,/J 
=AaN2 

{ J21/J B3 ,p lJ" tp = A.,n 8N2 + H 8N3 + ON.., 
l)4,p 

= 8N4 

= 0 on an. 
that is , IN = 0 on 80. By uniqueness in the Cauchy Problem (2.2) u = O, 
which is a contradiction. 

Since the spaces are separable, the hypothesis (3) is automatically satisfied. 
The result is, therefore, proved 

THEOREM 3.7. For a generic set of open, connected, bounded C2 -regular 
regions O C IRn, ( n ~ 2) the eigenfunctions u of (3.1) satisfy In u 3 #: o. 

PROOF. 

We prove first that the property holds for any eigenfunction associated to 
eigenvalues smaller than a fixed natural number N, in a open dense set of 
Dif r(n). The result then follows easily, ta.king intersection. The opennes 
property is easy to obtain using the continuity of the (simple) eigenfunctions. 
To prove density, we may first approximate ( in the C2 topology) by a more 
regular region and then use stronger norms. 

Consider the map 

F: H 2 n HJ (0) - {O} X (0, M) X DM - CM --t £ 2(0) x IR X IR 

(u, >., h) --t (h•(ti. + >.)h•- 1u, L u2det h', L u3det h'). 
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Observe that, by lemmas (3.2) and (3.6), DM - CM is an open dense subset 
of Dif / 5 (0.) . We wish to apply the Tra.nsversality Theorem to conclude that 
the set 

BM= {h E DM - CM; (0, 1,0) E F(H2 n HJ(O)- {0}, (0,M), h)} 

is a. meager set in DM-C1t1 and, therefore, its complement is dense in Di/fs(O). 
We claim first that the operator 61~~"-J (u, >., h) from H2 n HJ(O.) x JR ➔ 

L2 (O)x1Rx IR is Fredholm with ind(,i(,;,,._j (u, >., h)) :S -1, V(u, >., h) E F-1(0, 1, 0). 
Let (u, >., h) E F- 1 (0, 1, 0). Again, we assume wolog that h = io. Computing 

the derivatives ( using (2.3)), we have 

DF(u, >., io) : H 2 n HJ(O.) - {0} x JR x C6 (0., !Rn)---+ L2(0) x JR x IR 
(u, .X, h)---+ (DF1(u, >., in), DF2(u, >., in), DFs(u, >., io))(u, >., h) 

where 

and 

DF1 (u, >., io)(u, A, h) = (~ + >.)u + >.u + [h · 'v, (~+>.)Ju 

=(A+ >.)(u - h. 'vu)+ ,\u 

DF2(u, >., in)(u)., h) = L {2uu + u2 div(h)} 

DFs(u, >., i0 )(u, .X, h) = L {3u2u + u3div(h)} 

a(~~>.) ( u, >., in)( u, .X) 

= (8~:\) (u, >., in), 8f :~) (u, >., in), 8f :;) (u, >., in)) (u, .:\) 

=((A+ >.)u + >.u, L 2uu, L 3u2u). 

Clearly a?.;,x)(u, >., in) is Fredholm, since 8(,!\J(u, >., io) is Fredholm and F2, F3 
have finite dimensional range. Observe now that the application 

(3.9) (a~:\) (u, >., in), af :.~) (u, >., in)) : H 2 n HJ(n) x JR ----t L
2
(0) x JR 

is surjective. In fa.ct, given(!, z) E L2 (O) X JR, let (v, e) E H 2 n HJ(n) X JR be 
defined by 

ti = Vo + - and e = uf zu l 
2 n 
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where vo E H2 n HJ (0) satisfy 

(a+ ,\)110 = f - eu e 110.Lu. 

Note that such a Vo exists, since (f - {u).iu. Thus 

{)~:~) (u, ,\, in)(u, A)= L 2u(vo + iu) = z L u2 = z. 

Observe also that ( 8 ~1!\l ( u, ,\,in), 8r:1) ( u, ,\,in)) is injective, since 

(ai:~) (u, >., in), ai:~) (u, >., io)) (11,e) = (0, 0) ~ 
(a+ ,\)v + {u = O &nd L 2uv = 0. 

Now a+ >.)v + {u = 0 =} u(a + ,\)11 + {u2 = 0 from which - Io u(-6. + ,\)v = 
e ~ e = 0. Therefore, (.6. + ,\)11 = 0 with Io 2uv = 0, that is, u.Lv 
e (.6. + >.)v = 0. Since >. is a simple eigenvalue associated to u, it follows 
that t1 = 0. Now, since (3.9) is a continuous surjective operator with domain 
H2 n HJ(n) it follows, from the Closed Graph Theorem, that its inverse is 
continuous in £ 2(0) and thus, (3.9) is &n isomorphism so 8 (~~>.) (u, >., in) is not 
surjective. Furthermore, since its kernell is trivial, we have ind( 8(".;.X) ( u, ,\, io)) $ 
-1. Therefore 'v'(u,,\,h) E F-1 (0, 1,0) ind( 8(":.xi(u,,\,h)) $ -1, as we wish to 
show. 

Now, by lemma (3 .3) and the definition of CM, (see also remark (3.4)) it 
follows that (0, 1, 0) is a regular value of F. Therefore, by the Ttansversality 
Theorem, we conclude that BM is meager as claimed. The result is, therefore, 
proved. 

4. A generic property for the 
eigenfunctions of the Neumann Problem 

We now consider the same property of the previous section in the case of 
Neumann boundary conditions. We show that, generically in the set of open, 
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connected, bounded C3 regions O C JR," with n 2'.'. 2, the normalized eigenfunc­
tions u of 

(4.1) 

Au+ >.u = 0 in 0, 
8u 
aN =0 on 80, 

u:;eO 

satisfy JO u
3 -::/= 0. 

REMARK 4.1. 

We could prove the result for C2 regions as in the previous section. However, 
we have chosen to work here in the setting of C3 regions, which slightly simplify 
the arguments. 

We first observe that the result is trivial if u is a constant eigenfunction and, 
therefore, we do not need to consider the eigenvalue 0. 

Let us define as before the set 

DM = {h E Diff3 (0.) I M is not a.n eigenvalue of (4 .1) in 

h(O.) and all the eigenvalues>. E (0, M) in h(O) are simple} . 

This is again an open and dense subset of Di ff 3 ( n). The proof is very similar to 
the Dirichlet case. However , in the present case we need to consider the folio-wing 

subset of DM . 

EM= {h E DM I 'vu 1, 0 on an, 
for any eigenfunction associated to an eigenvalue in (0, M).} 

LEMMA 4.2. EM is an open dense subset of Dif / 3 (0). 

PROOF . 

Opennes is easy to obtain, by continuity of the eigenfunctions. To prove 
density, we apply the Transversality Theorem to the map 

defined by 

G(u >. h} = (h•(A + >.)h•- 1u h•...!!.._h•- 1ul 1 _< i <_ n) 
' ' ' {h:, 8h(O) 

where 

2 au 
Hl.,(O) = {u E H (0) I {)N = 0, on an}. 
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Let (u, ,\, h) be such that G(u, ,\, h) = (0, .. · , 0). As before, we may assume 
h = io. Now, the kemell of l1(~~>.)(u1 ,\1 h) is finite-dimensional. Therefore, to 
use the Tr.a.nsversality Theorem, we need to prove that 

(4.2) dim { /m(~~(u,,\,h)) } = oo. 
/m(~(u, ,\, h)) 

The partial derivative B(~~>..) ( u, >., io) defined from H~ (0) x JR into £2 (0) x 
(L2(8n)r is given by 

8G ( \ • )() ( 8G1 ( \ . ) lJG;+1 ( \ . ) l <. < )() o(u,,\)U 1 A1 1{l • = o(u,,\)U 1 A,l{l,-O(U,,\)U,A,IO _l_n • 

where 

8G1 . . · · . · o(u, ,\) (u, ,\, •o)(u, .>., h) = (.1. + >.)u + AU 

8G;+1 < , . ><. , h. > au I 1 < . < 8(u,>.) "•"•'0 u,,.., = 8z; 80 -
1 

- n. 

On the other hand, DG(u, >., io) defined from H~(O) x JR x C3 (0, JR") into 
L2 (!2) x (£2 (8!2))" is given by 

where 

DG1(u, >., i0 )(u, >., h) = (.1. + ,\)(u - h. 'i7u) + >.u, 

DG;+1(u,,\,io)(ii,>.,h) = {a~; (u - h -'i7u) + h- 'i7(::nlao' 

for 1 $ i :5 n. Suppose (4.2) is false, that is, there exist 01 , ... , Om E L2 (0) x 
( L2(8n))" such that, for any h E C3 (n, JR") there exist u,). and C1, ... , Cm with 

n 
(4.3) DG(u, >., io)(u, ..\, h) = Ec;O;, 

i=l 

where 8; =(DJ, BJ, ... , e;+1
) . 

Define the operator 

{4.4) 

by 
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where 

(.6. + ,\)v - f E ker(.6. + ,\) in Hl.t(fl), vl.ker(.6. + ,\). 
We obtain, from the fil'8t equation in (3.8) 

m 

ii- h ·'vu= eu + L c:;£6.+-1.8}. 
j=l 

Substituting in the i + 1-th component of (4.3), we conclude that 

ii v(au) I 
• OZ; 80 

25 

belongs to a finite dimensional subspace of L2 (8fl) when h varies in C3 (n, IR"). 
But this can only happen ( in dim fl ~ 2) if 'v I:; = 0 in on, for 1 :$ i $ n, 

that is , a::bz; = 0 in on for 1 S i, j S n. Therefore, for each 1 ::; i S n ~ 
satisfies (4.1) inn and ~ = 0 on an. By uniqueness in the Cauchy problem, 
we have ~ :a: 0 em n and so u constante em n contradicting the hypothesis. 
Since our spaces are separable, the hypothesis (3) of the Transversality Theorem 
is verified, and the result claimed follows. 

THEOREM 4.3. For a generic set of open, connected, bounded C3 -regular 
regions n C IRn, ( n ~ 2) the eigenfunctions u of (4.1) satisfy f0 u3 =/= 0. 

PROOF . 

We prove first that the property holds for any eigenfunction associated to 
eigenvalues smaller than a fixed natural number M, in a open dense set of 
Di f /3 ( n). The result then follows easily, taking intersection. The opennes 
property is, as in lemma (4.2), easy to obtain. To prove density, we again use 
the Transversality Theorem. 

Consider the application 

F : H1(n) X (0, M) X EM ---+ L2 (r!) X IR X IR 

(u,.\,h)---+ (h 0 (.6. + ,\)h*- 1u, L u2det h', L t?det h') . 

We wish to prove that the set 

{h E EM I (0, 1, O) E F(HJ.,(n) - {O}, (0, M), h)} 

is a meager set in EM and, therefore, in Di/ / 3 (0). 
We claim first that &(8.[X} ( u, ,\, h) is Fredholm, with 

ind( 8(8.[X) (u, ,\, h)) S -1 'v(u, ,\1 h) E p- 1(0, 1, 0). The proof is almost the same 
as the one in theorem (3.7). We need to prove that hypotheses (2(a:)) of the 
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Transversality Theorem is satisfied. Suppose it is not, and {u, >., in) E H}{n) x 
(0, M) x EM is a critical point, with F(u, >., io) = (0, 1, 0). Then, there exists 
(t/J, o, /3) E L2(fl) x IR x IR ortogonal to ImDF(u, ,\, io) , that is, 

0= L {,t,[(~+,\)(u-h-'vu)+>.u] 

(4.5) +a[2uu+u2div(h)] +.8[3,iu+u3div(h)]} 

V(u, >., ii) e HJ,(n) x IR x C3 (n, IR"). 
If ii= h = 0 in (4.5) then fo 1/Ju = 0. If h = ,\ = 0, then 

(4.6) L { ,p(~ + ,\)u + 2auu + 3/3u1u} = 0 Vu EH;,. 

Ifwe take u = u in (4 .6), then a,= 0 and by regularity of solutioDB in the Cauchy 
problem we conclude that t/J E H~(O) n C!(O) for all O < o < 1 and satisfies 

(~ + ,\)t/J = -3{3u2 em n. 

If now we ta.ke u = >. = 0 in (4.5) then, since<>= 0 

(4.7) 

1/h E C3 (n, !Rn). 

Now, we have 

L t/J(~ + ,\)(h • 'vu) 

= L (h ·'vu)(~+ >.)t/J + ho t/J 0~ (h. 'vu) - (h . 'vu);; 

= - L 3fJu
2 (h . 'vu)+ ho"' a~ (h . 'vu) 

= lfJ{u3div(h)-div(u3h)}+ ho "'a~(h -'ilu) 

= l fJu 3div(h) + in {1/J a~ (h • 'vu) - fJu3 (h. N)} 

Substituting in (4.7), we obtain 

(4.8) r . {) . J8n {/3us(h. N) - ,J; 8N (h . 'vu)} = 0 

for all h E C3(n, IRn) 

If Tis any vector field in C3 (n, IR") with T .L N = 0 E an, and h = gr, for 
some g E C3 (0,JR), g = 0 in 80 then 
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la{ 3· {).} 
0 = /3u (h · N) - ,f,1-(h - 'vu) 

80 oN . r a . 
= - Ian ,/J {)N (h · 'vu) 

1 { au 01J a = - 1P --+ g- (-r. 'vu) 
80 8N OT {)N 

= - r ,/J!.J.... au _ 
Ian 8N 81" 

Since -lk can be arbitraly chosen in 80 and 'vu j Owe must have 

(4.9) 

in a neighborhood of an. 
On the other hand, if h = gN , we have 

0 = hn {,au3 (h · N) - ,pa: (h . 'vu)} 

/ 3 {}g au 82u 
= 1a/3u g -,/J aN 8N -1/Jg 8N2 

= 1n (/3u3 - ,/J ::~) g. 

for a.ny g E C3(0, JR) . Therefore, we muat have 

(4.10) 
3 a2u 

f3u - ,/J BN2 = 0 on an. 
But then, it follows from (4.9) and (4.10) that u = 0 in a neighborhood of an 

and, by uniquennes in the Cauchy problem u = 0, a contradiction. The result 
is, therefore, proved. 

2. Preliminaries 

REFERENCES 

[l] R . ABRAHAM AND J. RcBIN, '.lh,ns11eraa/ mapping, and flow,, W . A. Benjamin, 1967. 

[2] M. C. DELFOUR AND J. Z0Lt810, Veloeitv method and la/lf'Ongian formulation for the 
computation of the ,hape heuian, SIAM Control and Optimization 29 (1991), 1414-
1442. 

(3] J. HADAMARD, Mimoire aur le problem• d'analv•• -relatij a l'equilib-re de• plaque• e1a.tique• 
enca.t.-ie•, Ouvre• de J. Hadamard, vol. II, 1968, pp. 615-641. 

[4] D. B. HENRY, Perlurbation of the Boundary in Boundary Value Problem• of PDE,, 
Unpublished notes, 1982. 

(5] L. HORMANDER, Linear parlial differential operator,., Springer-Verlag, Berlin and New 
York, 1980. 



28 A L. PEREIRA - M. C. PEREIRA 

[6] T. KATO, Perturbation theory for linear operator•, Springer-Verlag, Berlin, Heidelberg, 
and New York, 1980. 

[7') A. M. MICHELJ:TTJ, Perturbozione Jello ,pectro Jell operatore de Laplace in reluions 
ad una varia.ione de/ campo, Ann. Scuola Norm. Sup. Pisa 26 (1972), 151-169. · 

[8] J. W. RAYLEIGH, The theory of aound, Dover, 1945. 
[9} J.C. S>.UT AND R. TEMAN, G. S. PBTROV., Generic propertie• of nonlinear boundary 

t1alue problem,, Commun. in PDEa (1979), 293-319. 
(10) J. SIMON, Differentiation with re1pect to the domain in boundary t1alue problem,, Numer. 

Funct. Anal. and Optirniz 2 (1980), 64~7. 
(11} J. SOKOLOWSKI, Shape aenntivit11 anal11••• of boundary optimal control problem, for 

parabolic ll/.tem,, SIAM J. Control and Optimization 26 (1988), 763-788. 
[12] K. UHLENBEOK 1 Generic propertie, of eigenfenction,, Amer. J. Math. 118 (1976), 1059-

1078, 

ANTONIO Lurz PEREIRA 
Deputamento de Matematica 
Inatituto de Matematica e Estatfatica, USP 
Rua do Matilo, 1010 
05508-900 
Sao Paulo - Bruil 

E-mail addre11: alpereirOime.uep.br 

MAROONE CORREA PEREIRA 
Departamento de Matematica Aplicada 
Inatituto de Matematica e Eetatfatica, USP 
Rua do Matio, 1010 
05508-900 
Silo Paulo - Brull 

E-mail addre.,, marconeOime.uep.br 



I. 

- TRABALHOS DO DEPARTAMENTO DE MATEMATICA 

,., TITULOS PUBLICADOS 

2001-01 " - KOSZMIDER, P. Universal Matrices and Strongly Unbounded 
Functions. 18p. 

2001-02 JUNQUEIRA, L. and KOSZMIDER, P. On Families of Lindelof and 

Related Subspaces of 2"" .30p. 
2001-03 KOSZMIDER, P. and TALL, F. D. A Lindelof Space with no 

Lindelof Subspace of Size ~ 1. 11 p. 
2001-04 COELHO, F. U. and VARGAS, RR. S. Mesh Algebras. 20p. 

2001-05 FERNANDEZ, R The equation °" +Jt,xi, ... ,x.,u.~, ... ,~) = Oand 
or ul ax. ax. 

the method of characteristics in the framework of 
generalized functions. 24p. 

2001-06 COSTA, R. and MURAKAMI, L.S.I. Some Properties of the 
Automorphisms of a Bernstein Algebra. 6p. 

2001-07 BEKKERT, V., MARCOS, E.N. and MERKLEN, H. A. 
Indecomposables in derived categories of skewed-gentle 
algebras. 35p. 

2001-08.0 GORODSK.I, C. A class of complete embedded minimal submanifolds 
in noncompact symmetric spaces. 6p. 

2001-08 MARCOS, E.N., MERKLEN, H.A., sAENz, C. Standardly Stratified 
Split and Lower Triangular Algebras. 1 lp. 

2001-09 FURTA, S. and PICCIONE, P. Global Existence of Periodic 
Travelling Waves of an Infinite Non-Linearly Supported 

Beam I. Continuous Model. l 4p. 
2001-10 BARONE-NETTO, A. and FURTA, S. Stability of Trivial 

Equilibrium Position of two Non-Linearly Coupled 
Oscillators. 36p. 

2001-11 BORSARI, L.D. and GONCALVES, D.L. Obstruction theory and 
minimal number of coincidences for maps from a complex 
into a manifold. l 7p. 

2001-12 DOKUCHAEV, M.A. and GONCALVES, J.Z. Identities on Units of 
Algebraic Algebras. 9p. 

2001-13 GALVAO, M.E.E.L. and OOES, C.C. Constant Mean Curvature 
Surfaces in Half Space Models. 26p. 

2002-01 COELHO, F. U. and LANZILOTA, M. A. On non-semiregular 
components containing paths from injective to projective 
modules. 13p. 



2002-02 

2002-03 

2002-04 

2002-05 

2002-06 

2002-07 
2002-08 

2002-09 

2002-10 
2002-11 

2002-12 

2002-13 

2002-14 

2002-15 

2002-16 

COELHO, F. U., LANZILOTTA, M. A. and SA VIOLI, A. M. P. D. 
On the Hochschild cohomology of algebras with small 
homological dimensions. 11 p. 

COELHO, F. U., HAPPEL, D. and UNGER, L. Tilting up algebras 
of small homological dimensions. 20p. 

SHESTAKOV, LP. and UMIRBAEV. U.U. Possion brackets and 
two-generated subalgebras of rings of polynomials. l 9p. 

SHESTAKOV, I.P. and UMIRBAEV. U.U. The tame and the wild 
automorphisms of polynomial rings in three variables. 34p. 

ALENCAR, R and LOURENC:O, M.L. On the Gelbaum-de 
Lamadrid's result. l 6p. 

GRISHKOV, A. Lie algebras with triality. 28p. 
GRISHKOV, A. N. and GUERREIRO, M. Simple classical Lie 

algebras in characteristic 2 and their gradations, I. 21 p. 
MELO, S. T., NEST, R. and SCHROHE, E. K-Theory of Boutet de 

Monvel's algebra Sp. 
POJIDAEV, A. P. Enveloping algebras of Filippov algebras. l 7p. 
GORODSKI, C. and THORBERGSSON, G. The classification of 

taut irreducible representations. 47p. 
BORRELLI, V. and GORODSKI, C. Minimal Legendrian 

submanifolds of s2n+1 and absolutely area-minimizing 
cones. 13p. 

CHALOM, G. and TREPODE, S. Representation type of one point 
extensions of quasitilted algebras. 16p. 

GORODSKI, C. and THORBERGSSON, G. Variationally complete 
actions on compact symmetric spaces. Sp. 

GRISHKOV, A .N. and GUERREIRO, M. Simple classical Lie 
algebras in characteristic 2 and their gradations, II. 15p. 

PEREIRA, Antonio Luiz and PEREIRA, Marcone Correa. A Generic 
Property for the Eigenfunctions of the Laplacian. 28p. 

Nota: Os titulos publicados nos Relat6rios Tecnicos dos anos de 1980 a 2000 cstio l disposicio no 
Departamento de Matematica do JME.USP. 
Cidade Univemtaria "Armando de Salles Oliveira" 
Rua do Malio, 1010 - Cidadc Universitaria 
Caixa Postal 66281 - CEP 0S315-970 




