
ScienceDirect

Available online at www.sciencedirect.com

Transportation Research Procedia 48 (2020) 3090–3106

2352-1465 © 2020 The Authors. Published by Elsevier B.V.
This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/)
Peer-review under responsibility of the scientific committee of the World Conference on Transport Research – WCTR 2019
10.1016/j.trpro.2020.08.179

10.1016/j.trpro.2020.08.179 2352-1465

© 2020 The Authors. Published by Elsevier B.V.
This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/)
Peer-review under responsibility of the scientific committee of the World Conference on Transport Research – WCTR 2019

 

Available online at www.sciencedirect.com 

ScienceDirect 

Transportation Research Procedia 00 (2019) 000–000  
www.elsevier.com/locate/procedia 

 

2352-1465 © 2020 The Authors. Published by Elsevier B.V. 
This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/)  
Peer-review under responsibility of the scientific committee of the World Conference on Transport Research – WCTR 2019  

World Conference on Transport Research – WCTR 2019, Mumbai, 26-30 May 2019 

Framework for logistics performance index construction using 
DEA: an application for soybean haulage in Brazil 

Isotilia Costa Meloa*, Thiago Guilherme Pérab, Paulo Nocera Alves Júniorb, Daisy 
Aparecida do Nascimento Rebelattoa, José Vicente Caixeta-Filhob† 

aSão Carlos Engineering School (EESC), University of São Paulo (USP), Av. Trabalhador Sancarlense, 400, São Carlos – SP, 13566-590, Brazil 
beLuiz de Queiroz College of Agriculture (ESALQ), University of São Paulo (USP), Avenida Pádua Dias, 11 –  Piracicaba –SP, 13418-900, 

Brazil 

Abstract 

Freight transportation is vital to a nation’s long-term development and its performance needs to be carefully evaluated 
to ensure the effectiveness, efficiency, and equity of haulage infrastructure decisions. The previous attempts at 
benchmarking the transportation corridors and route efficiency through Data Envelopment Analysis (DEA) models 
violated homogeneity assumptions or did not provide an appropriate robustness analysis. The present paper integrates 
index creation and general DEA guidelines, and proposes a framework for the creation of a long-distance cargo 
haulage performance index, advancing towards the limitations of the previous efforts. The methodology is applied to 
the context of soybean transportation, one of the relevant Brazilian exporting products, during the harvest of 
2015/2016, from the main mid-sized producing regions to the key exporting ports, by land transportation. The 
proposed approach and findings can provide insights into public and private long-term investment strategies and 
infrastructure policies in Brazil and other developing countries in a similar context. 
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1. Introduction 

The transportation of cargo is one of the main pillars to a nation’s long-term development and its performance 
needs to be carefully evaluated to ensure the efficiency and equity of haulage infrastructure decisions. The existence 
of a consolidated performance measurement methodology is a tool which provides the bases for an effective 
intervention of decision- and policy-makers in the regard of reducing national and regional inefficiencies.  

 
In any system investigation, it is crucial to have an understanding of the whole process. For reducing subjectivity, 

a clear specification of the target to be investigated (based on previous literature and specialists’ guidelines) is the 
principal point of discussion to guide the right choice and classification of the variables, besides the appropriate choice 
of the DEA model and its orientation, as consolidated by Cook, Tone and Zhu (2014). The previous applications of 
DEA for a context of freight efficiency investigation is scarce and thus far the literature on the topic does not appear 
to be consolidated, the known exceptions are Melo et al. (2018) and Oliveira and Cicolin (2016).  

 
Melo et al. (2018) applied a type of DEA model, named slack-based model (SBM), for 102 soybean haulage routes 

(technically, each route is called decision-making unit, or simply DMU) in Brazil and in the USA, using 9 variables, 
based on data availability and literature review, and classified into inputs, outputs, undesirable outputs, and 
uncontrollable variables. The authors also integrated the SBM model with the tie-breaking method of the composite 
index for the final performance index generation. Though this paper may have extrapolated the assumption of 
homogeneity among DMUs, jointly comparing two different countries and water, rail and road routes. It would be 
recommended to use a non-homogeneous DEA model for such wide benchmark. In this regard, the current paper is 
focused on one unique country (Brazil) and one unique mode of transportation (road).  

 
The same authors compared the result of their proposed model with technical international reports to demonstrate 

the most efficient DMUs pointed by SBM model are also pointed by the literature. Greco et al. (2018), focused on 
examining the variety of existing methodological approaches for composite indexes, emphasized the importance of a 
robustness test after the index creation. In this regard, the present paper integrates the sensitivity analysis for verifying 
the robustness of the results.  

 
Aside from the application for the Brazilian context of road soybean haulage, this paper aims to provide guidelines 

for a logistics performance index (using DEA), in the format of a framework, that can be replicated in other contexts 
and can be used for directing infrastructural investment focus to those characteristics and units that are mostly 
impacting in inefficiency. 

2. Background 

2.1 The grain’s profile logistics in Brazil 
 
According to the Planning and Logistics Company (EPL, 2018), in Brazil, transportation infrastructure offers 1.563 

million kilometers of roads (only 13.5% are paved), 30 thousand kilometers of railways (only one third in commercial 
operation), 41.6 thousand kilometers of navigable waterways (22 thousand kilometers of economically navigable 
routes). Specifically, for solid agricultural bulk, the estimated transport matrix is 60% road, 30% rail and 10% 
waterway.  

 
In line with National Land Transportation Agency (ANTT, 2018), in 2010, grain production in Brazil reached 124.7 

million tons, while railroad grain traffic was around 22.3 million tons - equivalent to 17.9% and the movement in the 
waterway was around 4.3 million tons - equivalent to 3.5% of the production. In 2017, the grain production increased 
to 211.8 million tons, grain movement in the railroad increased to 42.2 million tons (19.9% of production) and 
waterway to 16.9 million tons (8.0% of the production). 
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2.2 Index creation and the DEA literature 
 
According to Greco et al. (2018), approaches for index construction may permit the subjectivity of letting the weight 

attributions to the decision-makers or may apply statistical methods - Data Envelopment Analysis (DEA), Principal 
Component Analysis (PCA), Factor Analysis (FA) -  that automatically attribute weights, allegedly reducing 
arbitrariness. The goal of the current paper is the construction of an index without human weight attributions, and 
DEA is the only listed method exclusively focused on efficiency measurement.  

 
The DEA is a non-parametric tool, created by Charnes, Cooper and Rhodes (1978), that compares decision-making 

units (DMUs), building a frontier of efficiency (best-practice frontier), based on a group of chosen variables (that 
represent the criteria of investigation interest and may be classified, at least, into inputs and outputs). The first DEA 
model was named CCR, an acronym of its creators’ family names, Charnes, Cooper and Rhodes (1978). The CCR 
model was constant to scale. In sequence, the BCC model was created by Banker et al. (1989), with variable scale. In 
both models, it is mandatory to choose an orientation: input minimization or output maximization. The additive DEA 
models permit simultaneous orientation. Among these kinds of models, the slack-based model (SBM), proposed by 
Tone (2001), returns directly to an efficiency rank, facilitating the interpretation. The SBM can have constant or 
variable to scale, depending on the interest of the analysis. 

 
The DEA is based on the assumption of the homogeneity of the DMUs, i.e., the DMUs must be minimally 

homogeneous to be compared. The limits acceptable heterogeneity in a population still remain as a theme of debate. 
Although this research topic is beyond the scope of the present paper, one viable solution for the problem may be the 
adoption of a non-homogeneous DEA model, as proposed by Li et al. (2016).  

 
One of the DEA pitfalls is the misjudgment of efficiency when inputs and outputs simultaneously deal with ratio 

and raw data. Cook, Tone and Zhu (2014) state the coexistence of the two types of data in the same DEA model is 
permissible under certain circumstances. In this way, the current paper does not assume this restriction as a condition 
for the index construction.  

 
It is well known that the number of variables compared to the number of DMUs may also reduce the discrimination 

power of the DEA analysis. Banker et al. (1989) recommend that the number of DMUs may be, at least, three times 
the number of variables, independently on the type of DEA model. However, this rule is neither imperative nor based 
on a statistical evaluation, though accepted by convenience. In the effort for reducing the number of variables in DEA 
models, other techniques were incorporated to DEA, such as PCA proposed by Adler and Golany (2007). Cook, Tone 
and Zhu (2014) state that it is not mandatory to limit the number of variables, though the current paper assumed “1/3 
of the number of DMUs = number of variables” as a desirable target for the index construction.  

 
According to the same authors, DEA can be viewed as a tool for multi-criteria evaluation problem where DMUs 

are alternatives and each DMU performance is attributed by variables classified into, at least, inputs and outputs. In 
this regard, the concept of input and output may slightly differ from the first interpretation of a reader familiar to other 
statistical tools, such as linear regressions.  

 
When DEA applied for benchmarking, the inputs are normally understood as the criteria desired to be minimized 

to improve efficiency. On the other hand, the outputs are the criteria desired to be maximized in the benefit of 
efficiency. In this way, there may be no implicit or explicit relationship of cause and consequence between inputs and 
outputs of a system.  

 
According to (Greco et al. 2018), the criticism on DEA application remains on the fact that, although the weights 

are not attributed by the decision-makers, the choice of variables remains on the subjectivity of those who designed 
the index. For reducing the subjectivity of categorization in DEA, one of the first proposed approaches was the use of 
correlation, as stated by Golany and Roll (1989). Inputs might be strongly correlated to outputs and weakly correlated 
with each other. Highly correlated inputs may imply in redundant variables. The same logic might be applied to 

4 Author name / Transportation Research Procedia 00 (2019) 000–000 

outputs. It is important to remember that this argumentation is valid only if the correlation presents an accepted level 
of significance, otherwise, nothing can be stated. In parallel, correlation is also one of the tools pointed by Greco et 
al. (2018) for selecting variables in an index creation (independently on the chosen index creation method). 

 
In addition, there are variables that can be classified as undesirable outputs, e.g., pollutions. The discussion about 

the possibility of treatments for those variables by DEA models goes beyond the scope of the present paper (an 
interested reader may consult Liu et al. (2010), Hua and Bian (2007), and Seiford and Zhu (2002)). For this context, 
it is relevant to mention that undesirable outputs may be inserted as inputs (for the benefit of minimization) or their 
inverse may be inserted as outputs (in this way that their maximization represents an actual value reduction).  

 
There are also variables that affect the system and must be counted for efficiency, though they can be hardly 

changed by an intentional human effort (for example, the distance between two cities). These variables are called non-
discretionary or non-controllable. The way of incorporation of this kind of a variable to a DEA model may differ 
depending to the analyzed case. Melo et al. (2018) incorporated the concepts of non-discretion of Saen (2005) to the 
SBM model proposed by Tone (2001). The present paper adopted the same approach, explicit in topic 3. Methodology. 
The current paper contributes to the advance of literature adding a sensitivity analysis to the approach, and showing 
an explicit framework for the logistics performance index construction. 

3. Methodology 

Schema 1 shows the proposed framework for the construction of a freight corridor performance index, combining 
jointly the recommendation of Greco et al. (2018) for composite indicators in general and the guidelines for DEA 
application of Cook, Tone and Zhu (2014). The criterion for continuing on the loop of analysis or tiebreaking, depends 
on the system under analysis, the goals of the analysis, the literature review and/or the opinion of the specialists. The 
present paper adopted that the best desired DEA result analysis was represented by a model with the maximum 
incorporated characteristics (to be presented in subtopic 3.2 Data analysis) and a rank of efficiency with the minimal 
number of ties.  

Schema 1 The proposed framework for a logistics performance index construction applying DEA. 
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present paper adopted that the best desired DEA result analysis was represented by a model with the maximum 
incorporated characteristics (to be presented in subtopic 3.2 Data analysis) and a rank of efficiency with the minimal 
number of ties.  

Schema 1 The proposed framework for a logistics performance index construction applying DEA. 
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3.1 Data compilation and DMUs definition 
 
The data of the harvest of 2015/2016 were supplied by ESALQ-LOG (2018), the official agricultural logistics 

database for Brazil. There were routes with exclusive road transportation alternatives and routes by waterway and 
railway haulage. Due to the assumption of homogeneity of DEA, only DMUs with exclusively road transportation 
were analyzed, once this mode is the most frequent case in Brazil. For simplification, the present paper considers 
route, corridors, and DMUs as synonymous. 
  

 
The Brazilian Institute of Geography and Statistics (IBGE, 2018) officially classifies Brazilian intra-estate areas, 

from lowest to highest level, into micro-, meso-, and macro-regions. In this paper, the term mid-sized region is adopted 
as a synonymous of the Portuguese technical term meso-region, used by IBGE (2018). Fig. 1 shows the state borders 
with black solid lines and analyzed mid-sized regions in different colors (inside the state area).  

 
Considering the relevant mid-sized regions of the 10 main producing states - i.e., Bahia (BA), Goiás (GO), 

Maranhão (MA), Mato Grosso (MT), Mato Grosso do Sul (MS), Piauí (PI), Paraná (PR), Rio Grande do Sul (RS), 

Fig. 1. Map of Brazil with selected DMUs (from the mid-sized regions to the exporting ports). 
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Santa Catarina (SC), and Tocantins (TO) -, and six national exporting ports - i.e., Salvador (BR SSA), Santos (BR 
SSZ), São Luiz (BR SLZ), Paranaguá (BR PNG), São Francisco do Sul (BR SFS), Rio Grande (BR RIG) -, 30 routes 
(DMUs) were identified. Fig. 1 also presents an illustrative representation of the DMUs from the mid-sized regions 
of origin to the ports. 

 
3.2 Data analysis 

 
As there were 30 DMUs, the target for the total of variables of a DEA model was 10 (i.e., 1/3). First, the available 

variables were organized by the ESALQ-LOG specialists according to the main five characteristics (economic, 
operational, environmental, infrastructural, and productive). It was desirable to have at least one variable of each 
characteristic in the model. For providing conditions for results replicability, Table 1 shows variables and their 
descriptive statistics. 

Table 1. Descriptive statistics of available variables, followed by their units and ESALQ-LOG specialists’ classification.  

Characteristics Variable Obs. Mean Std. Dev. Min Max 

  Freight price (R$/t) 30 121.87 64.72 27.30 269.88 

Economic Logistic loss (t) 30 73,561.69 82,052.68 9,236.80 307,516.00 

  Fuel consumption (km/l) 30 1.91 0.13 1.77 2.15 

  Length of the route (km) 30 982.40 581.55 191.59 2,299.25 

Operational Travel time (h) 30 16.17 10.29 3.02 45.80 

  Average speed (km/h) 30 61.88 8.67 50.20 89.36 

Environmental Emissions (kg of CO2/t of transported soybean) 30 1,383.54 777.13 287.01 3,291.49 

Infrastructural 

On-farm storage capacity (%) 30 0.12 0.12 0.00 0.52 

Off-farm storage capacity (%) 30 0.58 0.39 0.15 2.16 

Total storage capacity (%) 30 0.70 0.46 0.26 2.68 

On-farm storage capacity (t) 30 
1,266,143.

00 
2,497,902.

00 0.00 
8,539,456.0

0 

Off-farm storage capacity (t) 30 
4,156,065.

00 
5,102,062.

00 381,571.00 
17,400,000.

00 

Total storage capacity (t) 30 
5,422,208.

00 
7,440,085.

00 474,300.00 
25,900,000.

00 

Port representativeness  (%) 30 0.58 0.30 0.06 1.00 

Corridor exports (t) 30 
1,010,714.

00 
1,276,207.

00 155,428.80 
6,312,151.0

0 

Port capacity (t) 30 
8,289,251.

00 
3,290,840.

00 
2,693,166.

00 
13,000,000.

00 

Port capacity related to mid-sized regional 
production (%) 30 3.91 2.75 0.28 9.42 

Productive 

Production (t) 30 
4,279,674.

00 
4,949,615.

00 490,028.00 
17,700,000.

00 

Percentage of the mid-sized regional production 
related to the state (%) 30 0.39 0.28 0.08 1.00 

Ratio between production of soybean and 
production of other grains (%) 30 0.58 0.14 0.35 0.90 
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3.3 Data categorization 
 
The software STATA was applied to build the correlation matrix with all available variables. Due to this paper 

format restrictions, Table 2 shows a matrix exclusively with those variables that present accepted significant 
correlations or were judged relevant by the specialists (i.e., corridor exportation and inverted emissions). 

 
In this context, for the first trial of the model (Model 1), freight price, logistic loss, and fuel consumption were 

considered inputs. The minimization of these variables was a goal due to economic reasons. The emissions are a sub-
product of the system, once it will be generated even by efficient DMUs, though it is desired to be the least possible, 
hence it is considered an undesirable output. Among the possible treatments, it was chosen to insert emissions, 
initially, as an input (for minimization).  

 
Theoretically, the minimal length of the route, the best for the freight (in other words, it may represent reduced 

freight price and travel time). However, the power of intervention of policy-makers in actually reducing the physical 
length of a route may be limited by the physical, economic, social, and cultural barriers. Due to this limitations, Melo 
et al. (2018) considered the length of the route as a non-discretionary variable and the present paper adopted the same 
procedure.  

 
On-farm storage capacity and production were considered outputs because Brazil presents insufficient warehousing 

infrastructure. Once the farmers have few storage options, they are pressed to the sale and transport their production 
to the exporting ports during the harvest, causing congestions and traffic problems. Given this context, it is desirable 
to maximize on-farm storage capacity. The maximization of soybean production is an economic goal. It assumed the 
greatest the production, the greatest is the haulage, once it was not possible to measure the haulage directly.  

Table 2. Correlation matrix of chosen variables due to significance and attributed relevance for the analysis.  

  
Freight 

price 
(R$/t) 

Logisti
c loss 

(t) 

Fuel 
consumptio

n (km/l) 

On-farm 
storage 

capacity (t) 

Emissions (Eq. 
CO2/transported 

t) 

Length of 
the route 

(km) 

Produc
tion (t) 

Corridor 
exports (t) 

Inverted 
Emission

s 
  

Freight 
price 
(R$/t) 

1.0000               
    

                      

Logistic 
loss (t) 0.6020 1.0000                 

  0.0004                   

Fuel 
consumpt
ion (km/l) 

0.5766 0.2773 1.0000           
    

  0.0009 0.1379                 

On-farm 
storage 
capacity 
(t) 

0.6332 0.9339 0.3339 1.0000         

    

  0.0002 0.0000 0.0713               

Emissions 

(Eq. 
CO2/tran
sported t) 

0.9552 0.6963 0.5761 0.7081 1.0000       
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  0.0000 0.0000 0.0009 0.0000             

Length of 
the route 
(km) 

0.9513 0.6914 0.6514 0.7126 0.9946 1.0000     
    

  0.0000 0.0000 0.0001 0.0000 0.0000           

Productio
n (t) 0.6159 0.9978 0.3103 0.9482 0.7117 0.7104 1.0000       

  0.0003 0.0000 0.0951 0.0000 0.0000 0.0000         

Corridor 
exports (t) -0.0362 0.4537 0.0376 0.2365 -0.0190 -0.0029 0.4289 1.0000     

  0.8493 0.0118 0.8438 0.2084 0.9205 0.9880 0.0180       

Inverted 
Emissions -0.7653 -0.4261 -0.5403 -0.3624 -0.7873 -0.7825 -0.4342 -0.0858 1.0000   

  0.0000 0.0189 0.0021 0.0491 0.0000 0.0000 0.0165 0.6520     

 
3.4 DEA model selection, application and loop investigations 

 
The software MatLab was used to execute the SBM model and the SBM super-efficiency analysis (to be presented 

in the subtopic 3.6 Sensitivity analysis: SBM Super-efficiency). The choice of the model (SBM) was due to its 
characteristic of simultaneously maximize outputs and minimize inputs and its previous usage in similar contexts by 
Melo et al. (2018). 

 
The SBM formulation with non-discretionary variables, as proposed by Saen (2005), is linearly programmed 

according to Equations 1 and 2, and subject to restrictions represented by Equations 3, 4, 5, 6, and 7, as stated by Tone 
(2001): 

 
Minimize τ=t-( 1

m
) ∑ Si

-

xi0

m
i=1                                                                          (1) 

 
(1

s
) ∑ Sr

+

yr0

s
r=1 +t=1                                                                            (2) 

 
∑ Λk

m
i=1 xik+Si

--txi0=0 k=1,2,…, z                                                               (3) 
 

∑ Λk
m
i=1 yrk+Sr

+-tyr0=0 k=1,2,…, z                                                              (4) 
 

Si
-≤βixi0   i=1,2, …, p                                                                        (5) 

 
Sr

+≤γryr0   r=1,2, …, q                                                                        (6) 
 

Λk≥0, Si
-≥0,Sr

+≥0 and t>0                                                                     (7) 
 

 
Where: 
τ: is the efficiency. 
Si

-: is the slack of the ith input. 
Sr

+: is the slack of the rth output. 
Λk: is the contribution of the kth DMU to the analyzed DMU. 
t: is the model linearization factor.  
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xi0: is the ith input of the DMU under analysis. 
xik:is the ith input of the kth DMU. 
yrk: is the rth output of the kth DMU. 
m: is the number of inputs. 
𝑠𝑠: is the number of outputs. 
z: is the number of DMUs. 
p: is the number of non-discretionary inputs. 
q: is the number of non-discretionary outputs. 
βi:is a constant of discretion for inputs (it from 0 to infinite, 0 represents a totally non-controllable input and infinite 

represents a totally controllable input, i.e. a standard SBM model). 
γr: is a constant of discretion for outputs (it from 0 to infinite, 0 represents a totally non-controllable output and 

infinite represents a totally controllable output, i.e. a standard SBM model). 
 
As the present application requires a variable return of scale, it was necessary to add an additional restriction, 

according to the Equation 8.  
 

∑ Λk
z
k=1 =1                                                                                (8) 

 
 

The optimum solution (𝜌𝜌∗, 𝑡𝑡∗, Λ𝑘𝑘
∗ , 𝑆𝑆𝑖𝑖−∗, 𝑆𝑆𝑟𝑟+∗) is described by the conditions in Equation 9:  

 
 

ρ*=τ*, λk
*= Λk

*

t*
, si

-*= Si
-*

t*
, sr

+*= Sr
+*

t*
                                                                 (9) 

 
 

In this model, a DMU will be considered efficient when ρ*=1. 
 

According to Tone (2001) , when DMUs present null values for one or multiple variables, the resulted final ranking  
may be stabled according to the following procedure: run SBM model with all DMUs and all variables (Model A); 
then run SBM with all DMUs again, but, this time, excluding variables with null values (Model B); finally, build the 
rank considering the efficiency of Model A for those DMUs which don’t present a null value for any variable and 
the efficiency of Model B for those DMUs which present a null value for at least one variable. This procedure 
avoids issues caused by zero for xi0  andyr0 in Equations 1 and 2 (underestimation of efficiency). 

 
An adopted criterion for choosing the configuration of the model was the minimum total of ties, keeping the 

physical coherence of the model and the approval of specialists. Table 3 presents the sequence of model configuration 
trials. The use of strikethrough text (i.e., strikethrough) is to represent and to spotlight the exclusion of variable in 
comparison to the previous model. 

Table 3. Loop of model trials, followed by their variable configurations and the resulting total of ties.  

Investigation Loops Variables Total of ties 

Model 1 

INPUTS: Freight price, Logistic loss, Fuel consumption 

23 
OUTPUTS: Production, On-farm storage capacity (t) 

UNCONTROLABLE VARIABLE: Length of the route 

UNDESIRABLE OUTPUT: Emissions (treated as input) 

Model 2 
INPUTS: Freight price, Logistic loss, Fuel consumption 

4 
OUTPUTS: Production, On-farm storage capacity (t) 



 Isotilia Costa Melo  et al. / Transportation Research Procedia 48 (2020) 3090–3106 3099 Author name / Transportation Research Procedia 00 (2019) 000–000  9 

xi0: is the ith input of the DMU under analysis. 
xik:is the ith input of the kth DMU. 
yrk: is the rth output of the kth DMU. 
m: is the number of inputs. 
𝑠𝑠: is the number of outputs. 
z: is the number of DMUs. 
p: is the number of non-discretionary inputs. 
q: is the number of non-discretionary outputs. 
βi:is a constant of discretion for inputs (it from 0 to infinite, 0 represents a totally non-controllable input and infinite 

represents a totally controllable input, i.e. a standard SBM model). 
γr: is a constant of discretion for outputs (it from 0 to infinite, 0 represents a totally non-controllable output and 

infinite represents a totally controllable output, i.e. a standard SBM model). 
 
As the present application requires a variable return of scale, it was necessary to add an additional restriction, 

according to the Equation 8.  
 

∑ Λk
z
k=1 =1                                                                                (8) 

 
 

The optimum solution (𝜌𝜌∗, 𝑡𝑡∗, Λ𝑘𝑘
∗ , 𝑆𝑆𝑖𝑖−∗, 𝑆𝑆𝑟𝑟+∗) is described by the conditions in Equation 9:  

 
 

ρ*=τ*, λk
*= Λk

*

t*
, si

-*= Si
-*

t*
, sr

+*= Sr
+*

t*
                                                                 (9) 

 
 

In this model, a DMU will be considered efficient when ρ*=1. 
 

According to Tone (2001) , when DMUs present null values for one or multiple variables, the resulted final ranking  
may be stabled according to the following procedure: run SBM model with all DMUs and all variables (Model A); 
then run SBM with all DMUs again, but, this time, excluding variables with null values (Model B); finally, build the 
rank considering the efficiency of Model A for those DMUs which don’t present a null value for any variable and 
the efficiency of Model B for those DMUs which present a null value for at least one variable. This procedure 
avoids issues caused by zero for xi0  andyr0 in Equations 1 and 2 (underestimation of efficiency). 

 
An adopted criterion for choosing the configuration of the model was the minimum total of ties, keeping the 
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comparison to the previous model. 

Table 3. Loop of model trials, followed by their variable configurations and the resulting total of ties.  

Investigation Loops Variables Total of ties 

Model 1 

INPUTS: Freight price, Logistic loss, Fuel consumption 

23 
OUTPUTS: Production, On-farm storage capacity (t) 

UNCONTROLABLE VARIABLE: Length of the route 

UNDESIRABLE OUTPUT: Emissions (treated as input) 

Model 2 
INPUTS: Freight price, Logistic loss, Fuel consumption 

4 
OUTPUTS: Production, On-farm storage capacity (t) 
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UNCONTROLABLE VARIABLE: Length of the route 

UNDESIRABLE OUTPUT: Emissions (treated as input) 

Model 3 

INPUTS: Freight price, Logistic loss, Fuel consumption 

14 
OUTPUTS: Production, On-farm storage capacity (t) 

UNCONTROLABLE VARIABLE: Length of the route 

UNDESIRABLE OUTPUT: Emissions (treated as input) 

Model 4 

INPUTS: Freight price, Logistic loss, Fuel consumption 

15 
OUTPUTS: Production, On-farm storage capacity (t) 

UNCONTROLABLE VARIABLE: Length of the route 

UNDESIRABLE OUTPUT: Emissions (treated as input inverted output) 

Model 5 

INPUTS: Freight price, Logistic loss, Fuel consumption 

14 
OUTPUTS: Production, On-farm storage capacity (t) 

UNCONTROLABLE VARIABLE: Length of the route 

UNDESIRABLE OUTPUT: Emissions (treated as input inverted output) 

Model 6 

INPUTS: Freight price, Logistic loss, Fuel consumption 

10 
OUTPUTS: Production, Corridor exportation, On-farm storage capacity (t) 

UNCONTROLABLE VARIABLE: Length of the route 

UNDESIRABLE OUTPUT: Emissions (treated as input inverted output) 

Model 7 

INPUTS: Freight price, Logistic loss, Fuel consumption 

14 
OUTPUTS: Production, Corridor exportation, On-farm storage capacity (t) 

UNCONTROLABLE VARIABLE: Length of the route 

UNDESIRABLE OUTPUT: Emissions (treated as input inverted output) 

Model 8 

INPUTS: Freight price, Logistic loss, Fuel consumption 

13 
OUTPUTS: Production, Corridor exportation, On-farm storage capacity (t) 

UNCONTROLABLE VARIABLE: Length of the route 

UNDESIRABLE OUTPUT: Emissions (treated as input inverted output) 

Model 9 

INPUTS: Freight price, Logistic loss, Fuel consumption 

9 
OUTPUTS: Production, Corridor exportation, On-farm storage capacity (t) 

UNCONTROLABLE VARIABLE: Length of the route 

UNDESIRABLE OUTPUT: Emissions (treated as input inverted output) 

Model 10 

INPUTS: Freight price, Logistic loss, Fuel consumption 

21 
OUTPUTS: Production, Corridor exportation, On-farm storage capacity (t) 

INPUT UNCONTROLABLE VARIABLE: Length of the route 

UNDESIRABLE OUTPUT: Emissions (treated as input inverted output) 

 
Model 1, based on the significant correlation results, presented 23 ties. Production had a high correlation with other 

variables. Despite knowing it was desired to have a variable that represents the cargo transportation, production was 
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excluded as part of the investigation process. Model 2 (with production) presented only 4 ties. The second way of the 
investigation was the exclusion of other output, on-farm capacity instead of production (Model 3). It resulted into 14 
ties.  

 
After investigating the impact of outputs in ties, the next steps of investigation amended undesirable output and 

uncontrollable variable. Emissions is the only variable that represents an environmental characteristic. It is mandatory 
to keep it, whether it is desired to capture this aspect in the performance index. Considering this, it was chosen to 
amend the way this undesirable output is treated. Instead of being considered an input, its inverse was considered an 
output. In this way, the maximization of output (performed by the DEA model) results in better rank positions for 
those DMUs with the maximum inverted emission, i.e., minimal emissions. This approach was adopted from Model 
4 on.  

 
The exclusion of variable length of the route, in Model 4, resulted in 15 ties. The additional exclusion of the variable 

on-farm storage capacity (t), in Model 5, resulted in 15 ties. At this point in the analysis, it was clear that the most 
impacting variable (causing ties), that could be potentially exchanged or excluded, was production. The operational 
variables (travel time and average speed) were excluded from all models due to the lack of significant correlation. If 
production was also excluded, that would represent that two characteristics were excluded from the performance 
index. It is aimed to have the maximum characteristics measured and represented. In this way, it was understood that 
a non-significant correlation may represent that the analysis of correlation is invalid for classifying a variable, though 
it does not mean this variable may not be at the model at all. Exercising the DEA prerogative that the main view of 
the system has precedence over the model construction, it was accepted to exchange Production for Corridor exports 
in Model 6. This choice resulted in 10 ties.  

 
In the opposite direction of the investigation, Model 7 covered the inclusion of on-farm storage capacity (based on 

Model 6 configuration). It resulted into 14 ties. Model 8 explored the possibility of keeping the two inputs (corridor 
exportation and on-farm storage capacity) and excluding the uncontrollable variable. It resulted into 13 ties. Model 9 
investigated the possibility of elimination of variables on-farm capacity and length of the route. It resulted into 9 ties, 
though, in this case, the infrastructural characteristics would be excluded from the index. Model 10, finally, examined 
the remote possibility of treating the length of the route as an input (that could be assumedly reduced by public 
investments strategies). It resulted into 21 ties. Model 6 was adopted because its configuration presented the minimal 
number of ties with the maximum representativeness of characteristics. 

 
3.5 Tie-breaking method: DEA composite index 

 
The tie-breaking method proposed by Leta et al. (2005) was applied, according to Equation 10: 
 

Ek
composite=

[Ek
standard+(1- Ek

inverted)]/2
max {[Ek

standard+(1-Ek
inverted)]/2]} 

  k=1,2,3,…, z                                                (10) 

Where: 
Ek

standard: is the standard efficiency resulted from the application of the DEA model for the kth DMU;  
Ek

inverted: is the inverted efficiency of the kth DMU, i.e., the resulted efficiency when inputs are inserted in SBM 
model as outputs and vice versa.  

 
This tie-breaking method is named composite index. It represents an arithmetic average between standard and 

inverted efficiencies standardized by the maximum composite index of the analyzed population. 
 
 

3.6 Sensitivity analysis: SBM Super-efficiency 
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According to Greco et al. (2018), the composite index construction must be followed by robustness investigation, 
especially when the indicator is intended to be used for directing political decisions; otherwise, it may lead to mistaken 
decisions. In this way, the current paper represents an advance of previous efforts of freight performance index 
construction using DEA, specifically Melo et al. (2018) and Oliveira and Cicolin (2016), which have not incorporated 
robustness tests as part of the index creation process.  

 
Among the techniques associated with DEA, there is the super-efficiency analysis. It was initially thought as a tie-

breaking method, then it was pointed as a technique for outlier’s determination and, more recently, Zhu (2001) and 
Mozaffari and Gerami (2012) stated that super-efficiency is accepted as a technique of sensitivity analysis for DEA. 
The creator of the SBM model, Tone (2001), proposed, in a subsequent paper (Tone, 2002), the super-efficiency 
analysis in the linear form for SBM, according to Equation 11:  

 
δ*= min τ= 1
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∑ xĩ
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Subject to Equations 12, 13, 14, 15, 16, and 17: 
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Where: 
δ*: is the optimized super-efficiency score. 
δ: is the super-efficiency score. 
x ̃: is the linearized average of input expansion rate for the linear problem (x ̃ = 𝑡𝑡x ̅). 
ỹ: is the average output reduction rate for the linear problem (ỹ = 𝑡𝑡y ̅). 
x ̅: is the average input expansion rate. 
y ̅: is the average output reduction rate. 
The other elements are described in Equations 1, 2, 3, 4, 5, 6, and 7. 
The optimum solution (δ*, t*, λk

*, 𝑥𝑥 ̅∗,  𝑦𝑦 ̅∗) is described by the conditions in Equation 18. 
 
 

δ*=τ*, λk
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*
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4. Results and Discussion 

Table 4 shows the resulting efficiency of the Model 6, followed by the inverted efficiency and the composite index 
rank. The 14 most efficient DMUs (routes) present origin and the destination port at the same state. Thirteen of them 
are in the Southern region of Brazil, being the only exception DMU24 in the north-eastern state of Maranhão (MA). 
That may suggest that, besides the shorter length of the routes and the lack of cross-state taxes due to transportation 
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excluded as part of the investigation process. Model 2 (with production) presented only 4 ties. The second way of the 
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to keep it, whether it is desired to capture this aspect in the performance index. Considering this, it was chosen to 
amend the way this undesirable output is treated. Instead of being considered an input, its inverse was considered an 
output. In this way, the maximization of output (performed by the DEA model) results in better rank positions for 
those DMUs with the maximum inverted emission, i.e., minimal emissions. This approach was adopted from Model 
4 on.  
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in Model 6. This choice resulted in 10 ties.  
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though, in this case, the infrastructural characteristics would be excluded from the index. Model 10, finally, examined 
the remote possibility of treating the length of the route as an input (that could be assumedly reduced by public 
investments strategies). It resulted into 21 ties. Model 6 was adopted because its configuration presented the minimal 
number of ties with the maximum representativeness of characteristics. 

 
3.5 Tie-breaking method: DEA composite index 

 
The tie-breaking method proposed by Leta et al. (2005) was applied, according to Equation 10: 
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inverted: is the inverted efficiency of the kth DMU, i.e., the resulted efficiency when inputs are inserted in SBM 
model as outputs and vice versa.  
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Mozaffari and Gerami (2012) stated that super-efficiency is accepted as a technique of sensitivity analysis for DEA. 
The creator of the SBM model, Tone (2001), proposed, in a subsequent paper (Tone, 2002), the super-efficiency 
analysis in the linear form for SBM, according to Equation 11:  
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Where: 
δ*: is the optimized super-efficiency score. 
δ: is the super-efficiency score. 
x ̃: is the linearized average of input expansion rate for the linear problem (x ̃ = 𝑡𝑡x ̅). 
ỹ: is the average output reduction rate for the linear problem (ỹ = 𝑡𝑡y ̅). 
x ̅: is the average input expansion rate. 
y ̅: is the average output reduction rate. 
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4. Results and Discussion 

Table 4 shows the resulting efficiency of the Model 6, followed by the inverted efficiency and the composite index 
rank. The 14 most efficient DMUs (routes) present origin and the destination port at the same state. Thirteen of them 
are in the Southern region of Brazil, being the only exception DMU24 in the north-eastern state of Maranhão (MA). 
That may suggest that, besides the shorter length of the routes and the lack of cross-state taxes due to transportation 
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inside the same federative unit, the states from Southern regions are more economically competitive than the other 
origins. 

 
Before the application of the tie-breaking method, there are 10 ties (DMU6, DMU5, DMU22, DMU10, DMU9, 

DMU24, DMU11, DMU12, DMU15, and DMU20). After the tie-breaker, DMU6 is the unique considered 100% 
efficient, because it is efficient in standard DEA rank and, simultaneously, presents the best results for inverted 
efficiency. Among the 1% most efficient DMUs, there are DMU5, DMU22, DMU10, and DMU9, which also present 
a similar behavior to DMU6 for both efficiencies (standard and inverted). Among the 2% more efficient DMUs, there 
is exclusively DMU24. Among the 3% more efficient DMUs, there are DMU11 and DMU12, followed by DMU15 
and DMU20, among the 4% more efficient. 

 

Table 4. Results of DEA SBM for Model 6, considering standard and inverted efficiency, followed by composite index rank. 

DMU 
State of 
Origin Mid-sized region of Origin Destiny Port 

Efficie
ncy 

1 - Inverted 
Efficiency 

Avera
ge 

Composite 
Index (CI) 

CI 
Rank 

DMU
6 PR Centro Oriental Paranaense Paranaguá (PR) 1.0000 0.9106 0.9553 1 1 

DMU
5 RS 

Centro Ocidental Rio-
grandense Rio Grande (RS) 1.0000 0.9104 0.9552 0.9999 2 

DMU
22 RS Sudoeste Rio-grandense Rio Grande (RS) 1.0000 0.9096 0.9548 0.9995 3 

DMU
10 SC Norte Catarinense 

São Francisco do 
Sul (SC) 1.0000 0.9092 0.9546 0.9993 4 

DMU
9 RS Noroeste Rio-grandense Rio Grande (RS) 1.0000 0.9079 0.9540 0.9986 5 

DMU
24 MA Sul Maranhense São Luís (MA) 1.0000 0.8791 0.9396 0.9835 6 

DMU
11 PR Norte Central Paranaense Paranaguá (PR) 1.0000 0.8684 0.9342 0.9779 7 

DMU
12 PR Norte Pioneiro Paranaense Paranaguá (PR) 1.0000 0.8665 0.9332 0.9769 8 

DMU
15 PR Oeste Paranaense Paranaguá (PR) 1.0000 0.8516 0.9258 0.9691 9 

DMU
20 PR Sudoeste Paranaense Paranaguá (PR) 1.0000 0.8372 0.9186 0.9616 10 

DMU
4 PR 

Centro Ocidental 
Paranaense Paranaguá (PR) 0.6626 0.8637 0.7631 0.7988 11 

DMU
17 SC Serrana 

São Francisco do 
Sul (SC) 0.6471 0.8784 0.7628 0.7984 12 

DMU
14 SC Oeste Catarinense 

São Francisco do 
Sul (SC) 0.5051 0.8952 0.7002 0.7329 13 

DMU
7 BA Extremo Oeste Baiano Salvador (BA) 0.4185 0.8330 0.6258 0.6550 14 

DMU
21 PI Sudoeste Piauiense São Luís (MA) 0.2746 0.8195 0.5470 0.5726 15 

DMU
23 GO Sul Goiano Santos (SP) 0.2573 0.7422 0.4997 0.5231 16 
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DMU
8 GO Leste Goiano Santos (SP) 0.2146 0.6866 0.4506 0.4717 17 

DMU
19 MS 

Sudoeste de Mato Grosso 
do Sul Santos (SP) 0.2246 0.6434 0.4340 0.4543 18 

DMU
2 MS 

Centro Norte de Mato 
Grosso do Sul Santos (SP) 0.21000 0.6104 0.4102 0.4294 19 

DMU
3 MS 

Centro Norte de Mato 
Grosso do Sul 

São Francisco do 
Sul (SC) 0.1784 0.5991 0.3888 0.4070 20 

DMU
18 MS 

Sudoeste de Mato Grosso 
do Sul Paranaguá (PR) 0.2362 0.4170 0.3266 0.3419 21 

DMU
16 TO Oriental do Tocantins São Luís (MA) 0.2453 0.2167 0.2310 0.2418 22 

DMU
13 TO Ocidental do Tocantins São Luís (MA) 0.2542 0.0000 0.1271 0.1330 23 

DMU
28 MT Norte Mato-grossense Santos (SP) 0.2052 0.0000 0.1026 0.1074 24 

DMU
1 MS 

Centro Norte de Mato 
Grosso do Sul Paranaguá (PR) 0.1886 0.0000 0.0943 0.0987 25 

DMU
25 MT Nordeste Mato-grossense Santos (SP) 0.1684 0.0000 0.0842 0.0881 26 

DMU
29 MT Norte Mato-grossense Paranaguá (PR) 0.0939 0.0000 0.0470 0.0492 27 

DMU
30 MT Norte Mato-grossense São Luís (MA) 0.0895 0.0000 0.0448 0.0469 28 

DMU
27 MT Nordeste Mato-grossense São Luís (MA) 0.0675 0.0000 0.0337 0.0353 29 

DMU
26 MT Nordeste Mato-grossense Paranaguá (PR) 0.0637 0.0000 0.0319 0.0334 30 

 
For deeper investigation of the efficient DMUs, the super-efficiency was applied to the model. Among the 10 

previously most efficient DMUs, nine present the results above 1 for super-efficiency; in decreasing order: DMU10, 
DMU9, DMU24, DMU22, DMU6, DMU5, DMU12, DMU15, and DMU20. DMU11 is the missing one. The super- 
efficiency may be interpreted as the “room” of movement of an efficient DMU that will not result in an exclusion of 
the efficiency frontier. In other words, whether DMU11 changes slightly its data, it will be considered inefficient. On 
the other hand, a change of up to 74.76% in its best variable (emissions) will not result in inefficiency for DMU10.  It 
presents the minimal emissions of all population. DMU9 presents the greatest corridor exports. DMU6 presents 
minimal fuel consumption. DMU5, DMU22, DMU24, DMU12, DMU15, and DMU20 present a balanced 
combination of good performance for all analyzed variables.  

Table 5. Results of super-efficiency.  

DMU CI CI Rank Super-efficiency Super-rank 

DMU1 0.0987 25 1 10 

DMU2 0.4294 19 1 10 

DMU3 0.4070 20 1 10 

DMU4 0.7988 11 1 10 

DMU5 0.9999 2 1.0014 6 
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inside the same federative unit, the states from Southern regions are more economically competitive than the other 
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For deeper investigation of the efficient DMUs, the super-efficiency was applied to the model. Among the 10 

previously most efficient DMUs, nine present the results above 1 for super-efficiency; in decreasing order: DMU10, 
DMU9, DMU24, DMU22, DMU6, DMU5, DMU12, DMU15, and DMU20. DMU11 is the missing one. The super- 
efficiency may be interpreted as the “room” of movement of an efficient DMU that will not result in an exclusion of 
the efficiency frontier. In other words, whether DMU11 changes slightly its data, it will be considered inefficient. On 
the other hand, a change of up to 74.76% in its best variable (emissions) will not result in inefficiency for DMU10.  It 
presents the minimal emissions of all population. DMU9 presents the greatest corridor exports. DMU6 presents 
minimal fuel consumption. DMU5, DMU22, DMU24, DMU12, DMU15, and DMU20 present a balanced 
combination of good performance for all analyzed variables.  

Table 5. Results of super-efficiency.  

DMU CI CI Rank Super-efficiency Super-rank 

DMU1 0.0987 25 1 10 

DMU2 0.4294 19 1 10 

DMU3 0.4070 20 1 10 

DMU4 0.7988 11 1 10 
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DMU6 1.0000 1 1.0081 5 

DMU7 0.6550 14 1 10 

DMU8 0.4717 17 1 10 

DMU9 0.9986 5 1.6456 2 

DMU10 0.9993 4 1.7476 1 

DMU11 0.9779 7 1 10 

DMU12 0.9769 8 1.0005 7 

DMU13 0.1330 23 1 10 

DMU14 0.7329 13 1 10 

DMU15 0.9691 9 1.0005 7 

DMU16 0.2418 22 1 10 

DMU17 0.7984 12 1 10 

DMU18 0.3419 21 1 10 

DMU19 0.4543 18 1 10 

DMU20 0.9616 10 1.0003 9 

DMU21 0.5726 15 1 10 

DMU22 0.9995 3 1.0086 4 

DMU23 0.5231 16 1 10 

DMU24 0.9835 6 1.0460 3 

DMU25 0.0881 26 1 10 

DMU26 0.0334 30 1 10 

DMU27 0.0353 29 1 10 

DMU28 0.1074 24 1 10 

DMU29 0.0492 27 1 10 

DMU30 0.0469 28 1 10 

 

5. Concluding remarks 

The current paper successfully presented a framework for a freight performance index creation, using DEA models. 
The DEA is a data-driven method allegedly less subjective, once the decision-makers can not directly attribute weights 
to the index components.  

 
The framework represents an advance in the literature, once it combines recommendations of Greco et al. (2018) 

for general index creations and general DEA guidelines of Cook, Tone and Zhu (2014), to the previous efforts of 
measuring efficiency of soybean corridors in Brazil of Melo et al. (2018) and Oliveira and Cicolin (2016). 

 
After the data collection and the specialist opinions about which were the most relevant aspects to be analyzed, it 

was proposed to use the correlation as a criterion for the variable selection and categorization. The SBM with variable 
scale is argued to be the most adequate model to this application, once it does not require orientation choice. The next 
steps proposed by the framework involves DEA model trials with multiple variables configurations, focusing on the 
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desired criterion of analysis, in the current application the focus was minimizing ties, as well as guaranteeing the 
measurement of the most relevant aspects.  

 
Subsequently, the composite index of Leta et al. (2005) is applied as tie-breaking method for the final efficiency 

index construction. Finally, the robustness of the index is tested through super-efficiency analysis, as stated by Tone 
(2002). Although composite index was previously applied by Melo et al. (2018) for soybean freight efficiency 
measurement, this is the first registered effort to analyze robustness of the DEA efficiency rank for a logistics 
application. 

 
As a practical result from the current application, it was demonstrated that the Southern states of Brazil are more 

efficient in soybean transportation and should be considered as benchmarks for other regions.  In the Northeastern 
region, only Maranhão state (MA) is already a benchmarking. When considering the sensitivity analysis, MA 
(DMU24) remains among the efficient case (third position at the super-efficiency rank). A DMU from the Southern 
region (DMU11, from Paraná state) does not present evolution in the super-efficiency rank, showing that it is at the 
border of efficiency, and Paraná (PR) may be a state with diverse conditions of transportation among the mid-sized 
regions. Public decision-makers from PR are recommended to focus on equalization of transport efficiency among 
mid-sized regions, while federal public decision-makers are recommended to focus on investments for improving 
transportation efficiency from Center-Western states (MS, MT, and GO), Northern states (TO), and two Northeastern 
states (BA and PI). 

 
For further studies, it is recommended to incorporate more data collection, for example, measuring more productive 

characteristics. Whether total costs, and temporal levels of demand, reduction and inventories are available, a dynamic 
version of the allocative control DEA model, proposed by Alves Junior et al. (2018), could be used for a temporal 
index creation. This framework is recommended for the measurement of efficiency of other bulk freight 
transportations in the context of developing economies. It may also be applied for multi-modal corridors, once 
homogeneity assumptions are not violated. Based on the index result, decision-makers are expected be able to focus 
on investments in the inefficient DMUs and in the variables that are responsible for their inefficiency.  
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desired criterion of analysis, in the current application the focus was minimizing ties, as well as guaranteeing the 
measurement of the most relevant aspects.  

 
Subsequently, the composite index of Leta et al. (2005) is applied as tie-breaking method for the final efficiency 

index construction. Finally, the robustness of the index is tested through super-efficiency analysis, as stated by Tone 
(2002). Although composite index was previously applied by Melo et al. (2018) for soybean freight efficiency 
measurement, this is the first registered effort to analyze robustness of the DEA efficiency rank for a logistics 
application. 
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region, only Maranhão state (MA) is already a benchmarking. When considering the sensitivity analysis, MA 
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characteristics. Whether total costs, and temporal levels of demand, reduction and inventories are available, a dynamic 
version of the allocative control DEA model, proposed by Alves Junior et al. (2018), could be used for a temporal 
index creation. This framework is recommended for the measurement of efficiency of other bulk freight 
transportations in the context of developing economies. It may also be applied for multi-modal corridors, once 
homogeneity assumptions are not violated. Based on the index result, decision-makers are expected be able to focus 
on investments in the inefficient DMUs and in the variables that are responsible for their inefficiency.  
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