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Abstract
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We investigate the statistical properties of eigenvalues of pseudo-Hermitian random matrices
whose eigenvalues are real or complex conjugate. It is shown that when the spectrum splits into
separated sets of real and complex conjugate eigenvalues, the real ones show characteristics of an
intermediate incomplete spectrum, that is, of a so-called thinned ensemble. On the other hand,
the complex ones show repulsion compatible with cubic-order repulsion of non-normal matrices
for the real matrices, but higher order repulsion for the complex and quaternion matrices.

Keywords: random matrix theory, pseudo-Hermitian quantum mechanics, P7 -symmetry

(Some figures may appear in colour only in the online journal)

1. Introduction

It can be shown that a complex non-Hermitian Hamiltonian
invariant under the combined parity (P) and time reversal (7)
transformations have eigenvalues which are real or complex
conjugate. A Hamiltonian with this so-called P7 -symmetry
is, for instance,

H=p* — (ix) ey

whose properties have been analyzed in a seminal paper [1]. It
was found that, as a function of the parameter +, for v > 2,
eigenvalues are real and, progressively, as v decreases they
move into the complex plane in conjugate pairs. This can be
seen as a phase transition in which the system goes from a
PT -symmetric phase to a phase in which this symmetry is
broken. However, while the P7 -symmetry of the Hamilto-
nian itself does not change along the transition, the behavior
of the states does.

Considering operators whose eigenvalues are real or
complex conjugate, one can assume that their adjoints are
connected to them by a similarity transformation

AT = nAn~, @)
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in which 7 is a Hermitian operator. Operators satisfying this
condition have been defined as belonging to the class of
pseudo-Hermitian operators [2]. This follows from the fact
that using the operator 7 as a metric, the internal product can
be redefined such that quantum mechanics relations can be
extended to the case of P7 -symmetric Hamiltonians [3-5].

If the matrix nl/ % such that 771/ 2771/ 2 = pand its inverse
exist, and are Hermitian, then the matrix

K = ,,71/2A,'771/2 — nfl/znAnflnl/Z — KT (3)

is Hermitian and, therefore, shares with A the same set of
eigenvalues. In this case, all of its eigenvalues are real and we
have a P7 -symmetric operator in the unbroken phase.

Since the beginning of the studies of P7 -symmetric
systems there was an interest in investigating random matrix
ensembles to model properties of this kind of Hamiltonians.
This comes naturally as symmetries, such as time reversal and
rotational, plays an important role in RMT. Several ensembles
already have been proposed [6-9] but here we focus on the
recently introduced ensemble of pseudo-Hermitian Gaussian
matrices [10, 11] described in the next section.

It is well known that spectral statistics plays a central role
in RMT studies. As a matter of fact, one reason for the suc-
cess of random matrix models comes from the impact the
properties of their spectra had in the characterization of the

© 2019 IOP Publishing Ltd  Printed in the UK
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manifestations of chaos in quantum mechanics [12]. This
poses the question if specific spectral properties can be
associated to the P7 -symmetry or more generally to the
pseudo-Hermitian class of operators. Considering the case of
unbroken symmetry, equation (3) shows that Hermitian and
non-Hermitian matrices share the same set of eigenvalues.
This suggests that pseudo-Hermiticity or equivalently
PT -symmetry does not seem to induce, in this case, any
specific spectral property. On the other hand, when the system
is such that it can undergo the phase transition, some uni-
versality behavior may be present.

As the transition proceeds, the spectrum splits in eigen-
values that remain in the real axis while others, in conjugate
pairs, evaporate into the complex plane. Repulsion among
eigenvalues in the complex plane has already been matter of
studies in the case of the eigenvalues of the Ginibre ensemble
[13, 14] and of non-Hermitian normal matrices [15, 16].
Furthermore, it has been reported an universal cubic repulsion
between complex eigenvalues of normal matrices. So, here
we are extending those investigations to the case of complex
eigenvalues of pseudo-Hermitian operators.

Turning now to the real ones, it is reasonable to consider
that they form a kind of an incomplete sequence of levels with
a reduced repulsion among them. The theory of randomly
incomplete spectra [17] that emerged from the theory of
missing levels [18], recently, has attracted much attention
[19-22]. In [17], it was indeed conjectured that a situation in
which levels move away from the real axis would be a rea-
lization of a randomly thinned spectra. Eigenvalues of the
pseudo-Hermitian ensemble match that hypothesis.

2. Overview of the pseudo-Hermitian Gaussian
ensemble studied

The classical Gaussian ensembles of matrices are defined by
the distribution [14]

B
2
where H is a matrix with elements that can be written as

Hyy = Hy, + iH,, + jH., + kH,, )

P(H) = Zy! exp[f tr(HTH)],

with i? = j2 = k? = jjk = —1, and is such that H is sym-
metric, Hermitian or self dual for real, complex and qua-
ternion matrices, respectively. The number of non-zero
elements in equation (4) denoted by 3 can be equal to 1, 2 or
4. Therefore, the elements are Gaussian distributed and can be
real, complex or quaternion which define, respectively, the
Gaussian orthogonal (GOE), unitary (GUE) and sympletic
(GSE) classes. Respectively, the matrices of the classical
ensembles are diagonalized by Orthogonal, Unitary and
Sympletic matrices.

From the matrices of these ensembles, an ensemble of
pseudo-Hermitian Gaussian matrices can be constructed as
[10, 11]

A = PHP + QHQ + r(PHQ — QHP), 5)

where, with P =i)(i|, we have P = ZiﬁilPi and
0= Z?’: w1 B+ It is easily verified that matrices of this form
satisfy the pseudo-Hermiticity condition, equation (2), with
the metric defined as n = P — Q.

Another matrix model has been constructed in [10, 11] as

N
A =" PHP+ > riP,HP; + Y ricos[(j — i)m]P;HP;.

k=1 j>i j<i
Q)

where s;; = 1/2 — cos[(j — i)7]/2 and r is a real positive
parameter. In this case, the metric can still be written as

n=P— Q,with P = Z,[:%I]nyl and Q = ZE.A?/:]Isz, where
[.] means integer part. In the model defined by equation (5),
the matrices are made of separated blocks while in the one
defined by equation (6) the constitutive blocks intertwine. It is
convenient to refer to the three classes of pseudo-Hermitian
matrices of the ensemble as the pHGOE, the pHGUE and the
pHGSE according to the real, complex and quaternion nature

of their elements.

3. Spectral statistics

To study the spectral properties of the pseudo-Hermitian
ensembles we use the model defined by equation (5) and
restrict to the case of matrices of even size. Besides the
parameter 7 that fixes the elliptical behavior of the spectra [10]
—which will be discussed below—the size M of the smaller
block also is a parameter of the model. It more or less fixes
the number of pairs of eigenvalues that leave, on average, the
real axis. We remark that, in particular, for M = N/2 it gives
the same results using equation (6), and that this is the case
for which, as r increases, eigenvalues eventually all evaporate
into the complex plane [10]. The effect of thinning on the real
spectrum can be assessed by varying the size M or the
parameter r. In figure 1, the real and complex conjugate
eigenvalues are displayed for a sample matrix for each of the
three classes of matrices for M one third of their size. It is
clear that the way the cloud of the complex eigenvalues fills
the ellipsis is the result of the interplay between confinement
and repulsion among them and may in principle be distinct for
each case of 3, even though our choice of variance for the
elements implies that they fall on the same ellipsis. In the
following sections, we shall present numerical case studies
that confirm the distinct behavior of each of those cases.
Furthermore, in figures 2—4 the density of real eigenva-
lues of the pHGOE, pHGUE and phGSE case is presented,
normalized to the average number of real eigenvalues. The
dashed green line in those graphs is the fit for the modified
semi-circle (7), discussed in the following section, which is
performed withing the bounds for which that equation is real
and well-defined, x € [—a, +a]. For values of r close to zero,
such as r = 0.05 in figure 2, the density is beginning to
transition from the semi-circle into the new density which is
observed for higher values of r. In figure 3 we may observe
that the density rapidly plateaus even for » = 0.5. This is still
observed in figure 4. It is notable, however, that increasing the
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Figure 1. Real and complex eigenvalues for a single sample matrix of the three classes of pseudo-Hermitian Gaussian matrices for N = 360,
M =180 and r = 0.5.
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Figure 2. Density of real eigenvalues for the indicated values of the parameters fitted using the modified semi-circle for the v parameter as
indicated in the figure, calculated from a sample of 2 x 10* matrices from the pseudo-Hermitian ensembles, with N = 360, M = 180 and
r = 0.05. Mean number of real eigenvalues observed was nphgor = 195.3, nphngue = 171.2 and npygsg = 152.8.
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Figure 3. Density of real eigenvalues for the indicated values of the parameters fitted using the modified for the v parameter as indicated in
the figure, calculated from a sample of 2 x 10* matrices from the pseudo-Hermitian ensembles, with N = 360, M = 180 and r = 0.50.
Mean number of real eigenvalues observed was nphgor = 27.5, nphgue = 19.4 and nphgsg = 13.4.
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Figure 4. Density of real eigenvalues for the indicated values of the parameters fitted using the modified semi-circle for the y parameter as
indicated in the figure, calculated from a sample of 2 x 10* matrices from the pseudo-Hermitian ensembles, with N = 360, M = 180 and
r = 2.00. Mean number of real eigenvalues observed was nphgor = 7.2, nphgue = 4.8 and nypgsg = 3.1
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Figure 5. Real eigenvalue spacing for the three pseudo-Hermitian cases, for the sample of 2 x 10* matrices of size N = 360, with M = N/2.
The parameter » and corresponding ensemble are as indicated in each plot, with the blue line denoting the modified semi-circle fit, and the

dashed black line denoting the constant matrix approximation.

parameter r causes the number of remaining real eigenvalues
to drop sharply, and some border effects begin to appear.

3.1. Real eigenvalues statistics

We start by investigating the density of the fraction of
eigenvalues that remains on the real axis. We have found that
for M = N/2 this density approximately can be fitted with the
modified semi-circle

(a®> — xH/7, (7

N . o
i and C is a normalization

constant. This means that, as r increases the density goes from
the semi-circle to an uniform distribution. From this density,
the unfolded spectrum can be derived using the cumulative

where%<7<ooanda:

function

N(x) = Cf_xR dt(a® — )/

3 1
1 r(5+;) 13 x
S+ ———F—hl 5 T S S
2 aﬁr(1+;) 2y 2 a

where >F(a;, az; by; z) is the hypergeometric function.
However, as a plateau in the density shows up quickly,
that is, for relatively small values of r, by discarding eigen-
values close to the edges, the density can be better treated as
uniform. As a consequence, the average spacing is constant
and easily can be made equal to one. It is notable that for the
central region of the spectra there is a fair agreement with the
fit for the modified semi-circle, the general exception being
the phGSE in both r = 0.05 and r = 2.00 cases, and the
constant density approximation is a good descriptor—far
from the spectral edges—for all but the phGOE and phGUE
cases of r = 0.05. The difficulty in obtaining good statistics
for the real eigenvalues of the r = 2.00 is also evident,
although the constant approximation seems to be a better
descriptor for the density far from the spectral edges.
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Figure 6. Number variance calculated for the pseudo-Hermitian
ensembles, for a sample of 2 X 10* matrices, with N = 360,

M = 180 and r = 0.5, divided in 40 subgroups of 500 matrices.
Markers represent the corresponding average behavior of the sample
data, whereas the colored band depicts one standard deviation above
and below the average. The dotted line shows the fitted curve
corresponding equation (8). The equivalent missing level remaining
fraction f was found to be fohgor = 0.344(12), fongue = 0.191(04)
and fqse = —0.014(07), within the statistical uncertainty of the

Levenberg—Marquardt least square algorithm used, and the unfold-
ing was calculated using the constant approximation.

® phGOE, r=0.01

149 Th. ML-GOE
1] ™ PhGOE r=00s
“1 — Th. ML-GOE
10{ * PhGOE, r=0.50
--- Th. ML-GOE
. 08] ® PhGOE, r=200
W Th. ML-GOE
0.6 1
0.4
0.2
0.0

0.00 025 050 075 1.00 1.25 150 1.75 2.00
L

Figure 7. Number variance calculated for the phGOE, for a sample
of 2 x 10* matrices, with N = 360, M = 180 and r = 0.01, 0.05,
0.5 and 2.0, each divided in 40 subgroups of 500 matrices. Markers
represent the corresponding average behavior of the sample data,
whereas the colored band depicts one standard deviation above and
below the average. The solid, dashed and dotted black lines represent
parameters r = 0.05, 0.5 and 2.0. The value obtained for the fraction
fs, respectively, f = 0.638(18), 0.387(17), 0.358(14) and 0.410(24),
within the statistical uncertainty of the Levenberg—Marquardt least
square algorithm used in the unfolding was calculated using the
modified semi-circle.

Therefore, calculating the spacing has two routes, namely
using the modified semi-circle, or using the constant
approximation. In figure 5 we present the comparison
between the two approximations for the three aforementioned
cases of r = 0.05, r = 0.5 and r = 2.0. There are notable

0.8 mes ML-GOE
—— phGOE
0.6 1
w
2 0.4
0.24
0.04
0 1 2 3 4 5

S

Figure 8. Black: spacing distribution of the real eigenvalues of the
pHGOE (6 = 1) with r = 0.50, with N = 360 and M = 90; blue:
spacing distribution of Hermitian GOE spectrum with a random
fraction f = 0.31 of levels remaining. In both cases, a sample size of
2 x 10" was used.

0.8

0.6

p(s)

0.4

0.2

0.04

Figure 9. Black: spacing distribution of the real eigenvalues of the
pHGUE (5 = 2) with r = 0.50, with N = 360 and M = 90; blue:
spacing distribution of Hermitian GUE spectrum with a random
fraction f = 0.18 of levels remaining. In both cases, the same sample
of size of 2 x 10* from figure 3 was used.

differences in the phGOE and phGUE for the r = 0.05 cases,
for which the constant approximation shows a consistent
underestimation of the spacing. For the remaining cases,
however, there is considerable agreement in the calculated
spacings, although good statistics for the r = 2.00 case
proved again difficult to obtain.

This allows us to calculate in a straightforward manner,
from the eigenvalue sample, the number variance Ez(L),
defined as the variance of the number of eigenvalues in the
interval from —L/2 to L/2. For random matrices of the
classical Gaussian ensembles from which only a fraction f of
eigenvalues is left remaining, the expected behavior, from
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Figure 10. Black: spacing distribution of the real eigenvalues of the
pHGSE (8 = 4) with r = 0.50, with N = 360 and M = 90; blue:
spacing distribution of Hermitian GSE spectrum with only two
levels, chosen at random, remaining. In both cases, a sample size of
2 x 10* was used.

[18], is:
S2(L) = (1 - f)L +f22é(§), ®)

where Y2 is the number variance for the corresponding
Gaussian ensemble. This allows us to compare how the
number variance of the pseudo-Hermitian ensembles studies
here compare to the missing level theory. This is depicted in
figure 6, for which the number variance is presented and the
parameters were fitted. Using the sample of 2 x 10* matrices
with N = 360, M = 180 and r = 0.5, divided in 40 sub-
samples of 500 matrices. The number variance was obtained,
and presented with a band depicting up to one standard
deviation above and below the average observed value. While
the phGOE and phGUE were well represented by the missing
levels model, the real eigenvalues in phGSE become so
thinned that they approach the behavior expected of the
Poisson case [14, 18], rather than being compatible to the any
possible value of missing levels. Nonetheless, the fit can still
be calculated, and has therefore been included for comparison
to the other two cases.

It is also worthy of note that the three parameters studied
present very similar behavior for their number variances. In
figure 7 we present the comparison between the results of the
three parameters r considered above. It is notable that they
were all calculated within the margins of statistical error of
one another. In the limit of » — 0, we are expected to recover
similar behavior to that of the classical GOE number variance
[14], and we have therefore included the lower value of
r = 0.01, for which the behavior bears a close qualitative
resemblance to that case®. While this seems to suggest the
existence of some form of critical point for which the long-
range properties of the real eigenvalues begin to saturate, a

4 The density and spacing graphs for this case of r are available as
supplemental material. The fitted value of the -y parameter was 2.23(08), with
uncertainty given by the Levenberg—Marquardt algorithm.

complete analysis of this question is beyond the scope of the
present paper.

Therefore, we may compare directly the spacing of the
level spacing from the pseudo-Hermitian cases to that of the
missing level cases. This was the procedure followed in
figures 8—10. In these three figures, the spacing distribution of
the levels is compared with the spacing distributions of GOE,
GUE and GSE spectra in which a fraction f of levels is
removed at random. The agreement obtained in the compar-
ison show that the eigenvalues that remains in the real axis of
the phGOE and phGUE ensembles indeed behave like levels
of a randomly thinned ensemble, and agree well with the
prediction from the number variance. The phGSE, however,
does not follow the same behavior, although it still retains
qualitative similarities to the minimal case of the missing
levels model, the one in which all but two eigenvalues are
removed. Notably, it still retains the repulsion behavior near
the origin.

3.2. Complex eigenvalues statistics

Considering now the complex part of the spectra, we take as
quantity of interest the probability of having, at the bulk of the
region of the complex plane filled with the eigenvalues, an
empty disk of radius 7. More relevant is the case when one of
the eigenvalues is precisely located at the center of the empty
disk. In this case, if P(¢) is the empty disk probability then
p) = —i—f is the probability of finding another eigenvalue
at a distance ¢ of the center. Therefore, p(f) is the spacing
distribution and we have the relation

00 o d[l = P(®)]
(= [ rp@dr= [Fr ———=di

=[1 — PO 11T + f0°° P(r) dt = f0°° P(Hydt  (9)

that provides a practical way to extract the rescaled variable
s = t/(r) from the empty disk probability.

We start by calculating the equivalent in two dimensions
of the Poisson statistics as described in the appendix. The
result obtained is shown in figure 11 where the function
1 — P(s) was fitted with the regularized incomplete gamma
function

(ks)*
Pl(ks)?, p] = L exp(—1t) t*~ 1 dr, (10)
['(p) Jo
where
K= P(M)/p(m_
2
The spacing distribution associated to this function is
2 m
p(sy = SPLEDT il _ 267 oeouen
ds ()

The fitting shown in the figure 11 was obtained with p = 1.
Therefore, uncorrelated points filling the ellipsis, repel each
other as GOE levels, in one dimension, do. Of course, this
result must be considered an effect of geometry.
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Figure 11. Black dots are the spacing (left) and cumulative (right) distributions calculated filling, with N = 360 uncorrelated points, the
ellipsis with r = 0.5; the red lines are equations (11) (left) and (10) (right) with p = 1.
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green dashed line. Fit error was obtained from the Levenberg—Marquardt method.
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(blue rhombi) and pHGSE, for the same parameters (black triangles); the dotted and solid red lines are equation (11) (left) and equation (10)
(right) fitted over the phGUE and phGSE data, respectively, and also plotted are the same equations with ;¢ = 1 for the green dashed line. Fit

errors were obtained from the Levenberg—Marquardt method.

Considering, now, the complex eigenvalues of the
pseudo-Hermitian ensemble, the results for the intermediate
parameter r = 0.5are shown in figures 12 and 13. In
figure 12, it is shown that for the pHGOE class, the result can

be fitted with both equations (11) and (10), yielding a value
compatible with o = 2 which implies in a cubic repulsion. In
figure 13, it is shown that for the pHGUE and pHGSE classes,
the results also can be fitted with the same equations yielding
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Figure 14. Black and red dots are spacing for the pHGOE (left) and phUE and phGSE (right), for for N = 360, M = 180 and r = 0.05; the
dotted and solid red lines are equation (11) (left) fitted over the data, and also plotted is the same equation with p = 1 for the green dashed

line. Fit errors were obtained from the Levenberg—Marquardt method.
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Figure 15. Black and red dots are spacing for the pHGOE (left) and phUE and phGSE (right), for for N = 360, M = 180 and r = 2.0; the
dotted and solid red lines are equation (11) (left) fitted over the data, and also plotted is the same equation with . = 1 for the green dashed

line. Fit errors were obtained from the Levenberg—Marquardt method.

values compatible with ;4 = 2.5 and p = 3.0, which mean
quartic and quintic repulsion for the phGUE and phGSE,
respectively. This implies that our model follows the expected
cubic repulsion only for the phGOE case, and the two
remaining cases display higher-order repulsion.

In figure 14, the same calculations are presented for
r = 0.05, and it is seen that the behavior does not match that
of the intermediary r. This is not surprising, as for low values
of r the spectra of these matrices are mostly real [10], and this
represents a transitory regimen. This idea is corroborated by
figure 15, where the same plots are presented for the higher
value of r, for which the behavior is very similar to that of the
intermediate 7.

4. Conclusion

Let us first remark that any real matrix has eigenvalues that
are real or complex conjugate. As a consequence, one should
expect that a matrix 7 must exist such that the matrix is
connected to its adjoint by equation (2). In fact, this is indeed
the case, as a matrix 1 can be constructed directly using the
eigenvectors. The importance of the pseudo-Hermitian

ensemble described in the second section is that, besides
having elements that can be real, complex or quaternion, it
has a fixed metric independent of the individual matrices.

In a recent paper [23], we have studied the spectral
properties of the ensemble analyzing the average and the
variance of its characteristic random polynomials. Here, we
are approaching the eigenvalues statistical properties from the
usual standard point of view calculating the spacing dis-
tributions of the real and the complex conjugate eigenvalues.
One important result of the analysis is that, as it was con-
jectured [17], the spectrum of the real eigenvalues behaves as
if levels have been removed, at random, from the real axis.
We also have observed the occurrence of a cubic repulsion
between complex eigenvalues of the pHGOE class. This kind
of repulsion has been reported for normal non-Hermitian
matrices, that is matrices that commute with their adjoints, a
property that the matrices of our ensemble do not have. For
the remaining cases, however, the repulsion was found to be
greater than cubic, an effect the cause of which remains an
open question.
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Appendix. Poisson distribution

In order to derive the Poisson distribution in a bidimensional
space of a given shape one fills it, at random, with uncorre-
lated points. As a consequence, the probability of having a
point inside the element of surface dS is

ds
s

where S is the total area. For the ellipsis with axis defined in
[10], elliptic coordinates (u, v) are related to the Cartesian (x,

, (AD)

y) as
)
X = NA =) coshucosv (A2)
1+ 72
and
)
y = NA=r) sinh u sin v, (A3)
1+ 72
with the element of surface given by
_ 2
ds = NAd =) )(Coshzu — cos?v)dudv. (A4)
1+ r2

Since the total area is S = wab, we find that the above
probability becomes

cosh?u — cos?v

P(u, v)dudv = dudv, (AS)

7 sinh ugcoshu
where uy = atanh (r2).
To generate a pair of values (u, v), we start using the
probability

2 cosh 2u;
sinh 214()

2T
Puy) = j(; Py, v)dv = (A6)

of u have a value u = u, disregarded of the value the other
variable v has. Then, once the value u = u; is obtained, the
value of v is extracted from the conditional probability

P(uy, v)  cosh®u; — cos?v

Puy) = A7
i) P () 7 cosh 2uy (A7)
ORCID iDs
G Marinello © https: //orcid.org/0000-0002-5856-4410

References

[1] Bender C M and Boettcher S 1998 Phys. Rev. Lett. 80 5243
[2] Mostafazadeh A 2002 J. Math. Phys. 43 205
Mostafazadeh A 2002 J. Math. Phys. 43 2814
Mostafazadeh A 2002 J. Math. Phys. 43 3944
[3] Bender C M, Boettcher S and Meisinger P N 1999 J. Math.
Phys. 40 2201
[4] Bender C M, Brody D C and Jones H F 2002 Phys. Rev. Lett.
89 270401
[5] Bender C M 2007 Rep. Prog. Phys. 70 947
[6] Bohigas O and Pato M P 2013 AIP Adv. 3 032130
[7] Jain S R 2006 Czech. J. Phys. 56 1021
[8] Srivastava S and Jain S 2012 Fortschr. Phys. 61 276
[9] Marinello G and Pato M P 2016 Physica A 444 1049
[10] Marinello G and Pato M P 2016 Phys. Rev. E 94 012147
[11] Marinello G and Pato M P 2017 Phys. Rev. E 96 012154
[12] Bohigas O, Giannoni M J and Schmit C 1984 Phys. Rev. Lett.
521
Bohigas O, Giannoni M and Schmit C 1984 J. Phys. Lett.
45 1015
[13] Ginibre J 1965 J. Math. Phys. 6 440
[14] Mehta M L 2004 Random Matrices (Pure and Applied
Mathematics vol 142) 3rd edn (New York: Academic)
Haake F 2010 Quantum Signatures of Chaos (Berlin,
Heidelberg: Springer)
[16] Oas G 1997 Phys. Rev. E 55 205-11
[17] Bohigas O and Pato M P 2006 Phys. Rev. E 74 036212
[18] Bohigas O and Pato M 2004 Phys. Lett. B 595 171
[19] Deift P 2017 Symmetry, Integrability Geom.: Methods Appl.
13 016
[20] Berggren T and Duits M 2017 Math. Phys., Anal. Geom. 20 19
[21] Grabsch A, Majumdar S N and Texier C 2017 J. Stat. Phys.
167 1452
Graefe E-M, Mudute-Ndumbe S and Taylor M 2015 J. Phys.
A: Math. Theor. 48 38FT02
[23] Marinello G and Pato M P 2018 J. Phys. A: Math. Theor. 51
375003

[15]

[22]


https://orcid.org/0000-0002-5856-4410
https://orcid.org/0000-0002-5856-4410
https://orcid.org/0000-0002-5856-4410
https://orcid.org/0000-0002-5856-4410
https://doi.org/10.1103/PhysRevLett.80.5243
https://doi.org/10.1063/1.1418246
https://doi.org/10.1063/1.1461427
https://doi.org/10.1063/1.1489072
https://doi.org/10.1063/1.532860
https://doi.org/10.1103/PhysRevLett.89.270401
https://doi.org/10.1088/0034-4885/70/6/R03
https://doi.org/10.1063/1.4796167
https://doi.org/10.1007/s10582-006-0397-7
https://doi.org/10.1002/prop.201200107
https://doi.org/10.1016/j.physa.2015.10.093
https://doi.org/10.1103/PhysRevE.94.012147
https://doi.org/10.1103/PhysRevE.96.012154
https://doi.org/10.1103/PhysRevLett.52.1
https://doi.org/10.1051/jphyslet:0198400450210101500
https://doi.org/10.1063/1.1704292
https://doi.org/10.1103/PhysRevE.55.205
https://doi.org/10.1103/PhysRevE.55.205
https://doi.org/10.1103/PhysRevE.55.205
https://doi.org/10.1103/PhysRevE.74.036212
https://doi.org/10.1016/j.physletb.2004.05.065
https://doi.org/10.3842/sigma.2017.016
https://doi.org/10.1007/s11040-017-9250-4
https://doi.org/10.1007/s10955-017-1780-4
https://doi.org/10.1088/1751-8113/48/38/38FT02
https://doi.org/10.1088/1751-8121/aad64f
https://doi.org/10.1088/1751-8121/aad64f

	1. Introduction
	2. Overview of the pseudo-Hermitian Gaussian ensemble studied
	3. Spectral statistics
	3.1. Real eigenvalues statistics
	3.2. Complex eigenvalues statistics

	4. Conclusion
	Acknowledgments
	Appendix. Poisson distribution
	References



