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Abstract
The textile industry is one of the most pollutants in the world. It is estimated that only 20% of the textiles that become solid 
waste are recycled. In this way, to reduce impacts, the textile industry must include the circular economy in its processing, 
that is, thinking about textile manufacturing in a closed circuit, which minimizes the consumption of virgin raw materi-
als. The characterization and classification of textile wastes in the industry are done manually, resulting in high costs for 
the classification of large volumes of textiles. Attenuated total reflected in conjunction with Fourier transformed infrared 
spectroscopy (ATR-FTIR) can differentiate fibers into plant, animal, and synthetic, being eligible for automated industrial 
classification. However, this method is limited taking into account the differentiation among cellulosic fibers. This study 
aimed to evaluate ATR-FTIR spectra obtained from plant origin samples (cotton, kapok, hemp, non-bleached flax, bleached 
flax, jute, tucum, and tururi) without chemical treatments and observe the potential of multivariate principal component 
analysis (PCA) and linear discriminant analysis (LDA) on these data. The FTIR “fingerprint” data results values, from 400 
to 1800 nm, were employed. To improve the precision of multivariate statistics, these data were previously and individually 
treated with three types of noise reduction normalization (mean, standardization, and logarithm), and their effects in the 
final results were analyzed. This database has been normalized with multivariate data analysis PCA (principal component 
analysis) and LDA (linear discriminant analysis). Employing PCA, tucum, tururi, kapok, jute, and hemp fibers were suc-
cessfully separated into five different groups, except cotton, non-bleached flax, and bleached flax. For LDA, all fibers were 
successfully separated, except non-bleached flax and bleached flax. Thus, these results suggest that PCA is a powerful tool 
in studying textiles with a relatively simple structure, while objects with a more complex or very similar composition, for 
example, LDA statistics, are more advantageous.
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Introduction

The paradigm of the current linear economy concept has 
been questioned as it is not sustainable, since resources 
are limited and, on the other hand, demands are increasing 
(Saccani et al. 2023). Circular economy opposes the current 
model and proposes to rethink production methods, aiming 
to mitigate environmental impacts and maximize the useful 
life of generated products, reinserting material components 
into the manufacturing process, providing more efficient 
management of natural resources (Gaustad et al. 2018; de 
Oliveira Neto et al. 2022; Chowdhury et al. 2023). The 
industry and different sectors have been making efforts to 
implement measures that encompass the circular economy, 
which has been observed in a variety of industrial activities, 
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such as packaging, agriculture, and the food industry 
(Navarro et al. 2018; Haque et al. 2023).

Due to the massive use of water, electricity, and chemical 
products, the textile and clothing sector is one of the most 
polluting and resource-intensive industries, negatively and 
directly impacting the environment. Brazil produced a total 
of 5.14 billion clothing units in 2022, with a large part of 
the textile materials ending up in urban landfills, resulting 
in a cycle that cannot be sustained (Abit 2023). Due to this 
non-sustainability of recycling as a result of this chain that 
does not close, the textile industry is linked to one of the 
types of consumption that causes the most damage to the 
environment (Krystofik et al. 2018; Sousa-Zomer et al. 2018; 
de Oliveira Neto et al. 2022).

As global production of textile fibers has more than dou-
bled since the 2000s, to around 120 million tons in 2018, 
this topic of textile recycling become timely (Palacios-Mateo 
et al. 2021). The increase in the production and consumption 
of textiles is correlated with a reduction in the average time 
used for clothing; therefore, the amount of textile waste is 
expected to increase, driven mainly by the fast fashion cul-
ture (Saccani et al. 2023; Chowdhury et al. 2023).

Textile recycling is the stage in which textile waste is 
reprocessed to be used in new products, whether textile or 
non-textile. Fabric recycling routes can be mechanical (pre-
treatment), chemical (depolymerization of polymeric fibers 
or dissolution of natural fibers), or thermal (conversion of 
PET pellets, chips, or flakes into fibers by melt extrusion) 
(Sandin and Peters 2018). The recycling of post-consump-
tion clothing, which is subsequently chemically treated and 
processed into regenerated cellulose, allows the transforma-
tion of waste into new fiber products with better mechanical 
properties, consequently leading to destinations other than 
landfills. As a result, recycling cellulose fibers makes the 
industry less dependent on primary fiber production and 
helps fill the gap created by the growing demand for regen-
erated textile fibers (Nayak et al. 2012; Hospodarova et al. 
2018).

Recycling rates for post-consumption textile waste are 
currently low. Most materials used, whether natural or syn-
thetic, are discarded as waste rather than being processed 
for reuse or recycling. The main cause of this is the lack 
of a specific method of collecting post-consumption textile 
waste, the difficulty of distinguishing between various dis-
carded textile materials, and the costs associated with sort-
ing significant volumes (Peets et al. 2017; Palacios-Mateo 
et al. 2021). Textiles are currently classified mainly manu-
ally. However, there are disadvantages to the manual sorting 
style problems including high cost, low speed of operation, 
and the inability to completely automate the processing of 
large quantities of materials. Commercially available sort-
ing machines operate on conventional sorting methods and 
systems and generally cannot sort different textile materials 

or require the help of skilled operators. These devices are 
largely time-consuming to operate or very expensive to 
maintain (Peets et al. 2017, 2019). Attenuated total reflected 
in conjunction with Fourier transformed infrared spectros-
copy (ATR-FTIR) can differentiate fibers into plant, animal, 
and synthetic.

In industrial-level screening automation, the use of 
ATR-FTIR characterization can be useful because it works 
without sample pretreatment, and the implementation of 
this technique is quick and easy data collection in terms of 
speed of data acquisition. On the other hand, FTIR analysis 
produces spectral data that are usually difficult to interpret 
due to the large amount of information it can provide due 
to the compounds present in different samples and also due 
to the very similar chemical composition, which generates 
very similar FTIR spectra, which does not happen with other 
polymeric fibers (Riba et al. 2020).

Because of this, multivariate classification algorithms to 
deal with this considerable number of information are nec-
essary. They can be supervised or unsupervised and help to 
reduce the dimensionality of the data obtained in the analy-
sis to better concentrate the relevant analytical information 
from the entire data set into a few latent variables.

This procedure also allows the removal of most of the 
noise present in the original spectral data. Therefore, multi-
variate analyses using computational algorithms have cur-
rently been used, and consistent results are being obtained 
(Mäkelä et al. 2021; Quintero Balbas et al. 2022). Despite 
silk and wool, both fibers of animal origin are successfully 
differentiated, the distinction between fibers of cellulosic 
origin (cotton, flax, and viscose) employing ATR-FTIR-
spectral data and principal component analysis (PCA) treat-
ment was not always possible (Peets et al. 2017).

The objective of this study is to present the improvement 
performed in the differentiation and classification of cellu-
losic textile fibers through the modeling of IR spectrum data 
employing multivariate methods. The analysis uses an open 
programming language Python (Python Software Foun-
dation) with the improvement of model robustness when 
analyzing a large number of fabric samples of plant origin. 
The novelty of the suggested procedure is the use of ATR-
FTIR spectra obtained from samples only from plant origin 
without chemical treatments and observing the potential of 
principal component analysis (PCA) and linear discriminant 
analysis (LDA) on these data.

Multivariate Data Analysis

Supervised mathematical models applied to spectra data 
analysis are very useful due to the large number of wavenum-
bers in FTIR spectra. The model can show the differences 
between materials with very similar chemical composition, 



Materials Circular Economy            (2024) 6:13 	 Page 3 of 14     13 

such as plant fibers, with the potential to separate and high-
light the differences between molecules, classifying only 
strongly correlated materials in the same group. Therefore, 
it is a relatively large database constituted of 3550 wavenum-
bers (relative to the range from 4000 to 600 cm−1) that con-
stitute the variables measured for each ATR-FTIR spectrum 
of each textile sample. Considering an industrial approach, 
it is necessary to use appropriate feature extraction and 
reduction. In this way, the spectra were reduced to the so-
called “fingerprint” region, from 1800 to 600 cm−1, which 
is effectively correlated to the peaks of target molecules. To 
improve the precision of multivariate statistics, these data 
were previously and individually treated with three types of 
noise reduction normalization (mean, standardization, and 
logarithm), and their effects in the final results were ana-
lyzed. This database has been normalized with multivari-
ate data analysis PCA (principal component analysis) and 
LDA (linear discriminant analysis). These algorithms are 
designed to reduce the number of latent variables required 
and compress the essential discriminant information present 
in untreated spectra while removing most of the noise pre-
sent in the raw spectra to maximize discrimination power. 
One of the great advantages of this proposal is the possibil-
ity of developing a fast and accurate method for direct and 
non-invasive screening and classification of different textile 
fibers by using FTIR equipment in the ATR.

Mathematic Normalization Approach

Mean Normalization (Feature Scaling)

Standardization by mean scaling is a statistical calculation 
that aims to correct additive and multiplicative effects, gen-
erally caused by radiation scattering and noise. This nor-
malization performs the absolute sum of each observation 
for a given variable (wavenumber columns) and divides 
each observation in the column by the absolute sum of the 
respective observations, generating new data corrected by 
the normalization factor (Ferreira 2015). This operation can 
be mathematically represented by Eq. 1:

where x′ij norm is the new corrected observation, xij is 
the observation of absorbance for a wavenumber, and 
‖ki‖ =

∑J

j=1
xij corresponds to the absolute sum of absorb-

ances related to a wavenumber (Ferreira 2015).

Standardization (Gaussian)

Standardization approach involves subtracting each observa-
tion from the average of the observations and dividing this 

(1)x�ijnorm =

xij

||ki||

result by the standard deviation (as shown in Eq. 2). In this 
way, each respective column will have its absorbance values 
subtracted from the average absorbance of the respective 
column; finally, the result of the sum is divided by the stand-
ard deviation. This procedure is necessary to ensure that 
all data in a column are compatible with the average value, 
reducing sample fluctuation (Ferreira 2015).

Logarithm Normalization

The logarithm can be applied to correct for non-linear trends 
in data. The choice of the base of the logarithm is arbitrary, 
as it will not affect the interpretation of the data. The rela-
tionship between intensity and light absorbed by the sample 
follows the decay law (Eq. 3). For FTIR data generated in 
transmittance, it is possible to obtain linearization of light 
intensity and concentration. In the reflectance technique in 
which the emitted beam is reflected in the crystal instead of 
passing through the sample, as well as in the transmittance 
technique, it is possible to obtain linearization of the con-
centration with the reflectance data.

In this procedure, in each cell xij of the original database, 
the log is made in base 10, and a new database is created 
with these new values:

where A
�
 is the absorbance for a given wavenumber, a

�
 is 

the respective molar absorption coefficient, l is the optical 
path, and c is the concentration.

PCA and LDA

The most used exploratory analysis technique is principal 
component analysis (PCA), an unsupervised technique based 
on data variance. A matrix M containing spectroscopic 
data from n samples at different λ (wavenumber) variables 
may contain a large amount of noise and redundant infor-
mation. This means that the relevant information from the 
data set that makes up M can be described in a space of 
reduced dimensionality with v variables, where v ≤ λ. Math-
ematically, this concept, which is the basis of PCA, can be 
expressed in the form of the decomposition of the matrix X 
as exemplified in 4 (Bro and Smilde 2014):

where T is the score matrix and has dimensions n × v, Lt is 
the orthonormal weight matrix with dimensions v × λ, and 
E is the residual matrix.

(2)x�ij =
xij−xj

sj

(3)A
�
= a

�
lc

(4)M = TL
t
+ E
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The weights are related to the variables that cause greater 
variability in the data, whereas the PCA score matrix is 
strongly linked to the concentrations of the substances in the 
samples. The central objective of this technique is to identify 
sources of data variation, extracting information about the data 
set from the number of independent principal components 
(PCs) that best describe the information, reducing dimension-
ality without losing relevant information in the data set. How-
ever, the spectra of cellulose fabrics are so similar that PCA-
based score plots are not effective enough for discrimination 
(Peets et al. 2017, 2019).

PCA and linear discriminant analysis (LDA) are feature 
extraction methods. Due to their superior ability to distinguish 
between objects with very similar chemical compositions, 
supervised extraction and classification methods like LDA are 
more advantageous. It behaves similarly to unsupervised PCA 
in selecting the class allocations of the calibration samples and 
in allocating each sample to its corresponding class.

LDA is a very well-known and useful pattern recognition 
method. It produces a linear classification structure that is 
capable of separating sample series within different classes 
based on their spectral characteristics, based on the metric of 
minimizing variations within a class and maximizing the dis-
tance between two classes, derived from the common covari-
ance matrix considered for all classes.

LDA finds a model that best discriminates the assigned 
groups in the original dataset and places samples from the 
same group as close to each other as possible. Because LDA 
requires the number of samples to be less than the number of 
variables, LDA generally follows PCA. The dimensionality 
matrix is given by Eq. 5 (Ferreira 2015; Quintero Balbas et al. 
2022):

where N represents the total number of reflectance spectra 
in the matrix (X), and i corresponds to the reflectance values 
measured in the range of 400 to 1800 cm-1.

(5)X =

⎛
⎜
⎜
⎝

x1, 1 ⋯ x1, i

⋮ ⋱ ⋮

xN, 1 ⋯ xN, i

⎞
⎟
⎟
⎠

Python Open Programming Language 
and JupyterLab

Python is a high-level, multi-paradigm, general-purpose 
language, which supports object-oriented, imperative, func-
tional, and procedural paradigms. It has dynamic typing, 
and one of its main features is that it allows easy reading 
of the code and requires few lines of code compared to the 
same program in other languages. Due to its characteristics, 
it is mainly used for text processing, scientific data, and the 
creation of CGIs for dynamic web pages. It currently has a 
community development model, open and managed by the 
non-profit organization Python Software Foundation.

The statistics calculations were performed in JupyterLab, 
which is a free software, which provides open standards, and 
web services for interactive computing across all program-
ming languages.

Methodology (Experimental)

Samples

Ninety-one (91) samples of different plant origin fibers were 
used to test the viability of ATR-FTIR analysis as described 
in Table 1. Most fibers are from Brazilian origin, except for 
hemp and flax (both from European origin), and all of them 
do not have any treatment except for bleached flax fiber. The 
samples were inspected to observe and avoid the presence of 
materials or dirt that could interfere with or lead to incorrect 
conclusions in the spectra analyses.

Analysis

In the present study, Brucker® model ALPHA device was 
employed. The ATR (attenuated total reflection) module 
system used has a Zinc Selenide crystal (ZnSe), and a 4.0 
crystal refraction index. The analyses were performed, 
with 64 scans without sample preparation in the transmis-
sion range FTIR, 4000–600 cm−1 at a resolution of 4 cm−1. 

Table 1   Cellulosic textile fibers 
analyzed by ATR-FTIR

Fiber Type fiber Scientific name Sample 
amount

Cotton seed Gossypium herbaceum 19
Kapok seed Chorisia speciosa 10
Hemp bast Cannabis sativa 9
Non-bleached flax bast Linum usitatissimum 11
Bleached flax bast Linum usitatissimum 9
Jute bast Corchorus capsularis 12
Tucum leaf (Amazon palm) Astrocaryum chambira Burret 10
Tururi leaf (Amazon palm) Manicaria saccifera Gaertn  11
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Subsequently, the spectra were reduced to the fingerprint 
region from 1800 to 600  cm−1 for better characteriza-
tion. Spectragryph 1.2 software was also used to analyze 
performance.

In the ATR-FTIR method within the wavenumber range 
from 4000 to 400 cm−1, mid-infrared electromagnetic radi-
ation has the energy required to change the rotation and 
vibration levels of molecular bonds. Due to the exceptional 
selectivity of molecular bonds for absorption of a certain 
and characteristic length of mid-infrared radiation, it is then 
possible to understand the chemical composition of matter 
through radiation absorption. This area of the spectrum is 
widely used in quantitative and qualitative analyses. The 
fingerprint range extending from 1800 to 600  cm−1 pre-
sents the highest concentration of characteristic peaks of 
the material. With two media of different refractive indi-
ces, measurements in the attenuated total reflectance (ATR) 
module use the behavior of the infrared radiation beam that 
undergoes reflections between the two media several times. 
The infrared beam entering through a transparent crystal 
in these systems has an angle of incidence greater than the 
critical angle. Only a small percentage of the beam called the 
evanescent wave passes through the crystal-sample interface 
and penetrates slightly into the sample when the beam is 
almost completely reflected. In areas of the infrared spec-
trum where the sample absorbs energy, the beam has already 
been attenuated and can promote the excitation of molecular 
vibrations. The advantage of operating the equipment in this 
module is the possibility of analyzing any sample without 
pre-treatment and in any state of matter (Stuart 2004).

Results and Discussion

ATR‑FTIR Spectra

The FTIR spectra for textile fibers described in Table 1 
(namely, cotton, kapok, hemp, non-bleached flax, bleached 
flax, jute, tucum, and tururi) are presented in Fig. 1.

The spectra shown from Fig.  1a and b, as expected, 
exhibit very similar behaviors and patterns (as evidenced 
in Fig. 1c) since they are lignocellulosic materials, with 
very similar chemical composition. The FTIR spectra show 
characteristic absorption bands according to the functional 
groups in the molecules of the different types of fibers. The 
most characteristic bands of the chemical functional groups 
for plant fibers occur mainly in the fingerprint region (from 
1800 to 600 cm−1) as shown in Table 2.

Thus, the infrared spectrum of a molecule is considered 
to be a hallmark for each being slightly different from one 
to another, although it may be difficult to distinguish by 
visual inspection of the spectrum. Most of the molecular 
excitations for textile fibers, as mentioned, occur in the 
region called the fingerprint region (1800 to 600 cm−1). 
In this way, the database was reduced to only include the 
fingerprint range.

Database

The database generated from FTIR measurements on tex-
tile fibers has the configuration as shown in Table 3. The 
columns contain the wavenumbers and the fibers in rows. 
Each cell corresponds to an observation of absorbance 
data for a given sample and its associated wavenumber, 
generating in the present case 91 rows × 583 columns. On 
this database in this configuration, standard normalization 
followed by PCA is subsequently applied.

To apply mean normalization scaling, the transposed 
matrix of the original data is executed; now, this matrix 
evolves 583 rows × 91 columns. This procedure is neces-
sary so that the sum of the lines is related to their original 
wavenumber as observed in Table 4. After applying the 
matrix transpose, the normalization calculation is made, 
and the matrix is transposed again to return to the original 
dimension settings and then the PCA is carried out.

First Approach—PCA Preceded by Mean 
Normalization

To keep the data on the same magnitude scale, a transfor-
mation by a normalization factor was used for each absorb-
ance observation for a given fiber. In this way, a new data-
base was created with new absorbance values standardized 
by dividing each previous observation by the absolute sum 
of the values of all absorbances of a given fiber.

This normalization is, in principle, efficient for remov-
ing systematic variations that are generally associated with 
the sampling size or the impossibility of controlling the 
volume of the fiber that was being exposed to radiation, 
highlighting only information that qualitatively distin-
guishes one sample from another (Ferreira 2015).

The spectrum after this normalization (Fig. 2a) shows 
that this metric was more effective in keeping the spectrum 
scales in the same order of magnitude.
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The PCA of data normalization by dividing the absolute 
sum of the absorbance of each fiber (Fig. 2b) was more 
effective for separating the fibers. Tucum fiber, after this 
normalization, forms a group distinct from other fibers. 

The dispersion in fiber data occurs mainly for morphologi-
cal reasons, and there is material dispersed on the fiber, 
making the region of interaction of infrared radiation with 
the fiber contact area non-homogeneous.

Fig. 1   FTIR spectra from 4000 to 500  cm.−1 with absorbance val-
ues (Brucker® model ALPHA with ATR, 64 scans, Spectragryph 
1.2 software) for a cotton, kapok, hemp, and jute; b non-bleached 
flax, flax, tucum and tururi; and c summarization of all spectra with 

some common bands: bleached flax (light blue), jute (yellow), tucum 
(brown), cotton (dark green), tururi (red), flax (blue), kapok (grey), 
and hemp (purple)
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Second Approach—PCA Preceded 
by Standardization (Gaussian)

After applying the standard scaling, it was noticed that 
there is a tendency for the values referring to the tururi 
and kapok fibers to form distinct groups from the other 
fibers (Fig. 3); the spread of the kapok fiber data is due 
especially regarding morphology issues since the difficulty 
to fiber compaction in the device does not allow an exact 
reproduction of the measurement, and there is no uniform-
ity of the interaction of the IR beam with the fiber surface.

According to Fig. 3, the dispersion in the data, mainly in 
kapok fiber, is because the measured signal is a deterministic 
contribution junction, that is, the true signal with relevant 
information. Another part of the measured signal comes 
from the stochastic contribution as a source of noise that 
does not add to the true signal. The kapok fiber disperses 
the radiation and makes it difficult to reproduce the signal 
in the same region. Therefore, even though it forms a group 
distinct from other fibers, there is dispersion in the group of 
kapok fibers.

The average spectrum of the fibers shows that the spec-
trum of the fibers is highly similar due to the similar chemi-
cal composition (Fig. 4a). The accumulated variance values 
(Fig. 4b) show that with just two main components, it is 
possible to obtain approximately 85% of the explained vari-
ance, and with only four main components responding with 
95% of the data variability, only the four main components 
will be adopted.

Third Approach—PCA Preceded by Mean 
and Logarithm Normalization

It was observed that the mean normalization of the data sep-
arated a greater number of fibers into subgroups (Fig. 2b) 
than standardization (Fig. 3). So, the logarithm in base 10 

Table 2   FTIR (mid-infrared) bands for plant material constituents 
(STUART 2004; PINHEIRO et al. 2022)

Element Wavenumber (cm−1)

α -D-glucose 915, 840
β-D-glucose 915, 900
β-D-fructose 873, 869
β-D-cellulose 916, 908
Cellulose 1170–1150, 1050, 1030
Lignin 1590, 1510
Hemicellulose 1732, 1240
Pectin 1680–1600, 1260, 955

Table 3   Example database absorbance for FTIR wavenumbers (described in rows) versus samples (described in lines)
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normalization was adopted for this database to enhance this 
differentiation. The results show that the two normaliza-
tions (mean and logarithm) together achieve a more effective 
separation in PCA. Five of the eight selected fibers formed 
distinct groups; cotton and flax fibers have very similar com-
position characteristics and make separation by PCA difficult 
(Fig. 5a and b).

From Fig. 5c, it is possible to notice that when removing 
the cotton and flax fibers, all the other fibers form distinct 
clusters. In Fig. 5d, the behavior of the flax and cotton fibers 
without the other fibers is clear.

The greatest difficulty in separating and distinguishing 
between fibers by PCA occurs between cotton and flax fibers 
(Fig. 5d); both fibers have a very similar chemical composition 

Table 4   Example of FTIR database transposed matrix

Fig. 2   a Average spectrum of fibers after mean normalization; b PC1 X PC2 in mean normalization
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and proportion of cellulose, making distinguishability difficult, 
and some authors described the impossibility of distinguishing 
these fibers using only the unsupervised methodology (Peets 
et al. 2017, 2019; Riba et al. 2020; Saito et al. 2021).

LDA Preceded by Mean and Logarithm 
Normalization

To calculate the LDA model, first, the size of the datasets was 
reduced (i.e., training, testing, and real samples) (Table 5). 

In this LDA run, only the fingerprint range was employed 
(400–1700 nm reflectance spectra), and the number of PCs 
was selected based on the minimum number needed to obtain 
the minimum classification error in the LDA model to avoid 
overfitting. The best normalization that provided the most 
separation between the fibers was the normalization by mean 
and logarithmic carried out in the original database. In this 
way, the LDA was performed by taking this transform. With 
this supervised methodology, it was possible to separate all 
the fibers more efficiently (Fig. 6), although the values for 
flax fibers (both bleached and non-bleached) still coalesced 
into the same group, but the flax and cotton fiber values, 
which were the most problematic in the unsupervised meth-
odology, were properly separated by LDA.

Comparison between the present study 
and literature

Noticeably, the three normalization metrics adopted indi-
vidually for the database and previously applied to the PCA 
resulted in different results. As the third approach (mean 
and logarithm log10 normalization) was the most effectively 
associated with PCA, then this last one was the only one 
adopted for LDA. This procedure sequence is illustrated in 
the flowchart presented in Fig. 7.

The approach of mean and logarithm normalization was 
more successful in PCA performance since these treatments 

Fig. 3   PCA preceded by standardization

Fig. 4   a Average spectrum of fibers after standardization; b accumulated variance values
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Fig. 5   a PC1 X PC2 logarithm base 10 normalization; b PC2 X PC3 logarithm base 10 normalization; c PC2 X PC3 logarithm normalization 
subgroups; d PC1 X PC2 logarithm normalization subgroups

Table 5   Train test and real 
sample prediction matrix
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directly reduce noise associated with the fiber morphology. 
This noise is a result of non-linear and unequal absorption of 
the fiber regions irradiated by infrared. The normalization, 
by logarithm transform in particular, implies a linear rela-
tionship between reflectance and molar concentration, reduc-
ing signal multiplicative effects generated by the optical path 

when insufficient fiber quantity or poor filling is present, 
which absorbs the radiation in an inhomogeneous way.

The applied multivariate analysis procedures in this study 
and the main results expressed by the success in the separa-
tion of fibers are shown in Fig. 7, which are compared with 
the literature (Table 6).

Some authors have attempted to characterize and differ-
entiate lignocellulosic fibers (Table 6), using spectroscopy 
in the mid-infrared region and with PCA algorithms (Peets 
et al. 2017, 2019), without success in differentiating very 
similar textile fibers such as cotton and flax. FTIR spec-
troscopy with PCA alone appears not to be sufficient to dif-
ferentiate mixtures, but it easily separates and groups other 
textile species (Zhou et al. 2018, 2019) which corroborates 
this article regarding the difficulty in differentiating flax and 
cotton by PCA.

Separation of flax and cotton fibers with a 100% accu-
racy rate was achieved only using supervised along unsu-
pervised methods (Riba et al. 2020). In this present work, 
it was only possible to effectively separate flax fibers using 
the supervised LDA method, which shows that for these 
cellulosic fibers with very similar chemical composition, 
separation using supervised classification methods is more 
effective.

Fig. 6   LDA Classification for all studied fibers (cotton, kapok, hemp, 
non-bleached flax, bleached flax, jute, tucum, and tururi)

Multivariate analysis
Unsupervised Analysis Supervised Analysis

PCA LDA

Associated with Previous 

Normalization Approach

Associated with Previous 

Normalization Approach

Mean normalization Standardization 

(Gaussian) 

Mean and logarithm 

normalization

Mean and logarithm 

normalization

Only kapok and tururi 

fibers were successfully 

separated into 2 different 

groups.

Tucum, tururi, and kapok 

fibers were successfully 

separated into 3 different 

groups.

Tucum, tururi, kapok, 

jute, and hemp fibers 

were successfully 

separated into 5 different 

groups, except cotton, 

non-bleached flax, and 

bleached flax. 

All fibers were 

successfully separated, 

except non-bleached 

flax, and bleached flax.

Fig. 7   Multivariate analysis procedures and main results
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Conclusions

This study highlighted the advantages and disadvantages 
of two exploration or classification techniques (PCA and 
LDA) for the non-invasive classification of textile fibers 
(cotton, kapok, hemp, non-bleached flax, bleached flax, jute, 
tucum, and tururi) employing FTIR “fingerprint” database 
(400–1800 cm−1). Despite the known applicability of these 
techniques in industry as well as statistical modeling, a lim-
ited number of publications report this methodology for the 
identification of textile fibers from a recycling perspective. 
The present PCA and LDA approach showed good perfor-
mance for both techniques when analyzing individual fibers. 
However, flax (both non-bleached and bleached) and cotton 
fiber values without other types of pre-processing such as 
application of filters or derivatives are ineffective via PCA, 
whereas LDA showed the best performance.

The results suggest that PCA is a powerful tool in studying 
textiles with a relatively simple structure, while objects with 
a more complex or very similar composition, for example, 
LDA statistics, are more advantageous. Despite this good 
performance in the samples of this model, the study must 
continue and investigate the separation in textiles found in 
recycling scenarios, that is, textiles of different compositions, 
different industrial processing processes, and degree of deg-
radability, and assess whether these conditions change sig-
nificantly in the results of supervised multivariate statistics.
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