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Abstract. Given a sequence A of real numbers, we are interested in 
finding a list of all non-overlapping contiguous subsequences of A that 
are maximal. A maximal subsequence M of A has the property that 
no proper subsequence of M has a greater sum of values. Furthermore, 
M may not be contained properly within any subsequence of A with 
this property. This problem has several applications in Computational 
Biology and can be solved sequentially in linear time. We present a 
BSP /CGM algorithm that solves this problem using p = O(IAl/p) pro­
cessors in O(IAl/p) time and O(jAj/p) space per processor. The algo­
rithm uses a constant number of communication rounds of size at most 
O(IA\/p). Thus the algorithm achieves linear speed-up and is highly scal­
able. To our knowledge, there are no previous known parallel algorithms 
to solve this problem. 

1 Introduction 

Given a sequence of real numbers, the maximum subsequence problem consists of 
finding the contiguous subsequence with the maximum sum [3) . A more general 
problem is the all maximal subsequences problem [15] where we are interested in 
finding a list of all non-overlapping contiguous subsequences with maximal sum. 

These two important problems arise in several contexts in Computational 
Biology. Many applications are presented in [15], for example, to identify trans­
membrane domains in proteins expressed as a sequence of amino acids and to 
discover CpG islands. Karlin and Brendel [10) define scores ranging from -5 
to 3 to each of the 20 amino acids. For the human ,82-adrenergic receptor se­
quence, disjoint subsequences with the highest scores are obtained and these 
subsequences correspond to the known transmembrane domains of the receptor. 
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Csuros [5] mentions other applications that require the computation of such sub­
sequences, in the analysis of protein and DNA sequences (4), determination of 
isochores in DNA sequences [9, 12], and gene identification [11]. 

Efficient linear time sequential algorithms are known to solve both prob­
lems (2, 3, 15). Parallel solutions are known only for the basic maximum sub­
sequence problem. For a given sequence of n numbers, Wen [18, 13] presents a 
EREW PRAM algorithm that takes O(logn) time using O(n/ logn) processors. 
Qiu and Aki [14) developed a parallel algorithm for several interconnection net­
works such as the hypercube, star and pancake interconnection networks of size 
p. It takes O(n/p + logp) time with p processors. Alves, Caceres and Song [1) 
present a BSP/CGM parallel algorithm on p processors that requires O(n/p) 
computing time and constant number of communication rounds. 

In this paper we present a BSP /CGM algorithm that solves the all maximal 
subsequences problem. To our knowledge, there a.re no previous known paral­
lel algorithms to solve this problem. Given a sequence A of real numbers, the 
proposed algorithm uses p processors and finds all the maximal subsequences 
in O(IAl/p) time, using O(IAl/p) space per processor, and requiring a constant 
number of communication rounds. Unlike the parallel solution for the basic max­
imum subsequence problem, it is not at all intuitive that one can find a parallel 
algorithm for the all maximal subsequences problem that requires only a. constant 
number of communication rounds in which at most O(IAl/p) data a.re transmit­
ted. In the following we present the main ideas a.nd the approach utilized to 
derive the proposed algorithm. 

2 Preliminary Definitions and Results 

In pa.rt of this section we present the results of [15] for completeness. To design 
our parallel algorithm, we will see under which conditions the local maximal sub­
sequences are potential candidates to be merged together to form larger maximal 
subsequences. Furthermore, we will present a. modified and more detailed sequen­
tial algorithm to make this text as self-contained as possible. First we present 
some notation. 

2.1 Notation 

Consider a sequence A of real numbers. We denote the (whole) sequence of 
numbers by A and its ele_ments by a,, 1 $ i $ IAI- Subsequences of A are 
indicated by their limits: Af = (a;+1 , ... , ai)- Notice that the superscript indicates 
the rightmost position in the subsequence, while the subscript is one less than the 
leftmost position. If the subscript and the superscript are equal, the subsequence 
is empty. 

Sometimes a particular subsequence of A will be denoted by some other 
upper-case letter, but to avoid confusion all indices will refer to sequence A. 
To indicate the indices of the first (leftmost) and last (rightmost) positions of 
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a sequence X we use L (X) and R (X). For coherence with the previous para­

graph we use X = Afc':J = (aL(X)+i, ... , aR(X))- Notice that L (X) indicates one 
position to the left of the actual beginning of X. 

The concatenation of sequences X 1 , X2, ... Xn will be denoted by (X1 , X2 , .•• Xn). 
Observe that a sequence X, may consist of a single number. 

The sum of the values of a subsequence X (the score of X) will be denoted 
by Score (X). If X is empty, then we define its score to be zero. As the sum of 

prefixes of A is very important in this paper, we use PS (j) to denote Score (Ai) . 
We consider PS (0) = 0. Notice that Score ( A{) = PS (j) - PS (i). For a sub­

sequence X = A{, the minimum and the maximum among all values of PS (k), 
for i :S k :S j, will be denoted by Min (X) and Max (X), respectively. 

i 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 
Oi 5 -3 -1 5 -9 0 3 3 7 -9 3 -6 3 -1 0 3 -3 0 7 -4 0 -6 

Fig. I. Example sequence to be used throughout the text. 

2.2 Coarse Grained Multicomputer 

For our parallel computation model, we use a simpler version of the BSP model [8, 
17], referred to as the Coarse Grained Multicomputer (CGM} model [6, 7]. It is 
comprised of a set of p processors each O(N/p) local memory, where N de­
notes the input size of the problem, and an arbitrary communication network. A 
CGM algorithm consists of alternating local computation and global ccmmuni­
cation rounds. In each communication round, each processor sends O(N/p) data 
and receives O(N/p) data. Finding an optimal algorithm in the CGM model is 
equivalent to minimizing the number of communication rounds as well as the 
total local computation time. Furthermore, it has been shown that this leads to 
improved portability across different parallel architectures [8, 17]). 

2.3 Problem Definition 

In this paper we only consider contiguous subsequences of a main sequence. We 
will omit the adjective for simplicity. 

A maximum scoring subsequence of X is one whose score is the largest among 
all scores of subsequences of X. When ties occur, we choose the subsequence of 
minimum length and if a tie persists the choice of the particular subsequence 
is irrelevant. If there is no positive number in X, we consider that there is no 
maximum sccring subsequence. 

With this definition, it is easy to see that prefixes and suffixes of a maximum 
subsequence always have positive scores, because the deletion of a prefix or suffix 
with non-positive sccre would lead to a better subsequence. 
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Considering that the empty sequence is a subsequence of any other sequence, 
notice that the score of a sequence with property Prl must be positive. Subse­
quences of A that have property Prl will be called Prl-subsequences. 

We can restate the definition of a maximal subsequence in terms of these 
properties. We will use this new definition throughout the paper. The previous 
(equivalent) definition was presented because it is more natural when the appli­
cations are considered, while t~e new definition is better for understanding the 
linear algorithm of Ruzzo and Tompa and our parallel algorithm. 

Definition 2. List of maximal subsequences of a sequence A. Given 
a sequence A of real numbers, the list of maximal subsequences of A, denoted 
MList (A), is the list of all subsequences that have Properties Pr1 and Pr2, or­
dered with respect to L (.). Thi& list is indexed starting at 1 with the leftmost 
subsequence. 

Property Prl can also be stated in terms of prefix sums. 

Lemma 1. A subsequence A{ is Prl-subsequence iff for all m, i < m < j, 
PS (i) < PS (m) < PS (j). 

Proof. If A{ is a Prl-subsequence, Score ( A1) > Score (Af'). Therefore PS (j)­

PS (i) > PS (m) - PS (i) and PS (j) > PS (m). Also Score ( A1) > Score (A!,.) 
which leads to PS (i) < PS (m) . 

If PS (i) < PS (m) < PS (j) for all m, i < m < j, any A[ that is a proper 
subsequence of A{ has score Score (Ar) = PS (r) - PS (l) < PS (j) - PS (i) = 
Score (A{) . 

A graphical representation is useful here. We will plot the function PS(.), 
so that positive (negative) values in the example sequence will be represented 
by ascending (descending) line segments (see Figure 2). A Prl-subsequence X 
will be indicated by a rectangular box with (L (X), PS (L (X))) and (R (X), 
PS (R (X))) as lower-left and upper-right corners, respectively. The plotted curve 
touches the box only in these corners. Notice that the first three Prl-subsequences 
in Figure 2 are maximal subsequences of A, but the last three are not (they are 
subsequences of the same A-maximal, namely Ag). 

We say that A{, i < j, is a Prl-prefix if PS (i) < Min (Af+i) and it is a 

Prl-suffixif Max (A{- 1
) < PS (j) . A Prl-subsequence is both a Prl-prefix and 

a Prl-suffix. 

Corollary 1. If P is a Prl-prefir and Sis a Pr1-suffix, (P, S) is a Prl-subsequence 
iff Min (P) < Min (S) and Max (P) < Max (S). 

2.4 Some Results About Maximal Subsequences 

We give some results that will be useful in the description of the sequential and 
the parallel algorithms that follow. First we present some lemmas from [15]. 
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Lemma 2. Any Prl-subsequence of a sequence A is contained in a maximal 
,ubsequence of A (maybe not properly). 

Proof. Suppose the affirmation is not true. Let X be the largest Prl-subsequence 
of A not contained in any maximal subsequence. Then X is not maximal, has 
not property Pr2 and therefore it must be contained in a larger Prl-subsequence 
of A, which leads to a contradiction. 

Lemma 3. Given a sequence A, any two distinct maximal subsequences of A 
do not overlap or touch each other. 

Proof Suppose this assertion is not true. Let A!' and A) be two distinct maximal 
subsequences that violate the assertion. One maximal subsequence cannot be 
properly contained in another (property Pr2) so without loss of generality we 
may consider i < j :S k < l. By Lemma 1 applied to At we have PS (i) < PS (j) 
and the same lemma applied to both subsequences shows that PS (i) < PS (m) 
for all m, i < m < l. Similarly, we can prove that PS (m) < PS (l) for all m, 
i < m < l. Applying Lemma 1 in the other direction we conclude that ~ is a 
Prl-subsequence, so A~ and A~ do not have property Pr2, a contradiction. 

Both the sequential algorithm and the new parallel algorithm are based on 
finding lists of maximal subsequences in segments of the original sequence A. 
Consider a subsequence X of A. We will say that a subsequence is an X -marimal 
subsequence, or just an X-marimal, if it is maximal in X, that is, it is a Prl­
subsequence and has no proper supersequence that is a Prl-subsequence of X . 
We want to find the set of all A-maximals. 

Based on the previous lemma, we will say that an A-maximal is to the left 
of another if its L(.) is smaller. 

We will apply the previous lemmas to any subsequence of A, not only to A 
itself. 

Lemma 4. Let Z = (X, Y} for some non-empty X and Y. Then there i, at 
most one Z-maximal M that overlaps both X and Y. If there is such M, it has 
an X -maximal as a prefix and a Y -maximal as a auffix. The X -marimala to the 
left of M and the ¥-maximals to the right of M are also Z-maximals. 

Proof. By applying Lemma 3 to Z, it is obvious that no more than one Z­
maximal overlaps X and Y. Let us suppose that there is such a Z-maximal M. 
X = A{, Y = Aj and M = A;::! for some O $ i $ m1 < j < m2 $ k $ IAI. 
We now prove the affirmations concerning X. The affirmations concerning Y are 
proved analogously. 

PS ( m1) is the minimum prefix sum in M. If n is the smallest value in )m1, 11 
such that PS (n) is maximum, then A::,, is a Prl-subsequence of X. By Lemma 2, 
A::,

1 
must be contained in an X-maximal. This X-maximal is a Prl-subsequence 

of Z, so it must be contained in a Z-maximal, which can only be M. For this 
reason and the choice of n, we see that A::,, is an X-maximal that is a prefix of 
M. 
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Any X-ma.ximal that is to the left of M is a Prl-subsequence. If it is not 
a Z-maximal, then there is a Prl-subsequence of Z that contains it, and the 
maximality in X forbids this larger Prl-subsequence to be contained in X. So 
this Prl-subsequence overlaps X and Y, contradicting the uniqueness of M. 

The previous lemma is important for the sequential algorithm because it 
shows that it is possible to build MList (A) working incrementally. Having a 
prefix X of A and its maximal subsequences, we can extend this prefix to the 
right, preserving some of the X-ma.ximals and eventually creating another maxi­
mal subsequence that involves the extension and the rightmost X-maximals. The 
sequential algorithm appends just one number to X at each step, so \YI = 1. 
We will show the details shortly. 

Lemma 4 is also important for the parallel algorithm to be presented. Se­
quence A is divided into subsequences that are treated separately. Their maximal 
subsequences are used later to find the A-maximals . 

The parallel algorithm deals with the following subproblem: given a subse­
quence X of A and its list of maximal subsequences MList (X), find, if possible, 
an X-ma.ximal that is a prefix (or suffix) of a larger A-maximal. This clearly in­
volves MList (X) and the rest of sequence A. However, some X-maximals need 
not be considered as possible prefixes or suffixes of larger A-maximals, regardless 
of what is outside X . The efficiency of our algorithm is based on this important 
notion, so we formalize it in the following definitions and lemmas. We deal with 
prefix candidates first. 

Definition 3 (PList (X) ). Given a subsequence X of A , ?List (X) is the or­
dered list of all X -maximals, with the exception of those X -maximals M for 
which one of the two conditions below are satisfied. 

1. Min (M);::: PS (R (X)) or 
2. there is an X-maximal N to the right of M such that Min (M);::: Min (N). 

The elements of PList (X) are indexed starting at 1 with the leftmost subse­
quence. 

Informally, PList (X) gives us the list of all X-ma.ximals that are potential 
candidates to be merged to the right to give larger maximals. Notice that we 
excluded from ?List (X) those X-maximals (satisfying conditions 1 and 2} that 
can never give larger maximals. Consider X = A54 of the example sequence 
(see Figure I and Figure 2) . There are four X-maximals, namely A3, At A½A, 
and Ag (indicated by the first four boxes of Figure 2). Ai does not belong to 
PList (X) because of condition 1. Ai5 does not belong to PList (X) because of 
both conditions 1 and 2. Thus PList (X) = (At Am. 
Lemma 5. If X is a subsequence of A, P List (X) contains all X -maximals that 
can be a proper prefix of an A-maximal. 

Proof. For an X-maximal M, any of the two conditions in Definition 3 implies 
the existence of i E ]L(M),R(X)] such that PS(L(M)) '.::: PS(i), so no A­
maximal may extend from M past R (X), because it would violate property 
Prl . 
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Fig.3. Graphical representation of a sequence X, MLut(X), PList(X) and SLiat(X). 
The first (last) maximal is not a suffix (prefix) candidate because of the first condition of 
the definition. The other maximals that are not candidates fall in the second condition 
- observe the bottom of the prefix candidates and the top of the suffix candidates. The 
descending lines represent sequences of non-positive numbers. 

Therefore, all X-maximals removed from PList (X) are not proper prefixes 
of any A-maximal. 

Lemma 6. If Mis a sequence in PList (X) and i E ]L (M), R (X)] then Min (M) < 
PS (i), that is, Afl~~ is a Pr1-prefix. 

Proof. Suppose that it is possible to find an i in the specified range such that 
PS (L (M)) 2: PS (i). Pick the largest possible i. Condition 1 of Definition 3 
would forbid M in PList (X) if i == R (X), so i < R (X). The choice of i guar­
antees that PS (i + 1) > PS (i), so A!+l is a Prl-sequence and it must be con­
tained in some X-maximal N (Lemma 2). N has to be to the right of M and 
Min (M) 2: PS (i) 2: Min (N), but then Condition 2 of Definition 3 would also 
forbid Min PList (X), a contradiction. 

Lemma 7. If Mis a sequence in PList (X) and i E ]R (M), R (X)] then Max (M);?: 
PS (i). 

Proof. Suppose that it is possible to find an i in the specified range such that 
Max (M) < PS (i). Pick the smallest possible i. Pick the largest value of j such 
that L (M) :S j < i and PS (j) is minimum in the range. It is clear by Lemma 1 
that A} has property Prl, so there is an X-maximal N that contains it. As 
distinct X-maximals cannot overlap (Lemma 3), N must be to the right of M. 
By the choice of j we must have Min (N) :S Min (M), but then M should not 
be in PList (X) by condition 2 of Definition 3, a contradiction. 

A direct consequence of the previous lemmas is that PList (X) is in a non­
increasing order of Max(.) and a strictly increasing order of Min(.). Figure 3 
illustrates PList (X) (and SList (X), defined shortly). 

For the parallel algorithm we will a need similar definition for possible suffixes 
of A-maximals. The definition and associated lemmas are given now (without 
proofs, which are similar to the previous ones). Notice the exchanging roles of 
Max(.) and Min(.), "left" and "right", etc. 
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Definition 4 (SList (X) ). Given a subsequence X of A, SList (X) is an ordered 
list of all X-maximals, with the e:z:ception of those X -marimals N for which one 
of the two conditions below are satisfied. 

1. Ma:z: (N) :S PS (L (X)) or 
2. there is a X-marimal M to the left of N such that Max (N) :S Ma:z: (M). 

The elements of SList (X) are inde:z:ed starting at 1 with the rightmost subse­
quence. 

Lemma 8. J/ Xis a subsequence of A, SList (X) contains all X-marimals that 
can be a proper suffix of an A-marimal. 

Lemma 9. If N is a sequence in SList (X) and i E [L (X), R (N)[ then PS (i) < 
Ma:z: (N), that is, Af(C:] is a Prl-suffi:z:. 

Lemma 10. If N is a sequence in SList (X) and i E [L (X), L (N)[ then PS (i) 2::: 
Min (N). 

Notice that at most one X-maximal may belong to both PList (X) and 
SList (X), namely the maximum subsequence of X. Any other element of SList (X) 
must be to the left of any element of PList (X). See Figure 3 for an illustration 
of PList (X) and SList (X) (when these lists are disjoint). 

2.5 The Sequential Algorithm 

We now present Algorithm 1, a modified version of the sequential algorithm of 
Ruzzo and Tampa [15]. There are several differences of Algorithm 1 from the 
original version of [15). We present the procedure in a more explicit way, making 
use of arrays to facilitate the analysis and using one less level of loop nesting, 
but the main ideas and the performance are the same. We present this algorithm 
for completeness, as the sequential algorithm is also used in the parallel one. We 
also want to make explicit the construction of PList (.), which is implicitly used 
in the original algorithm of Ruzzo and Tampa as an auxiliary linked list. 

The input of the algorithm is the sequence A and the output is MList (A) 
(Ml for short in the algorithm) and PList (A) (Pl for short). Both lists are 
implemented as arrays with first index 1 and used as stacks with index 1 referring 
to the bottom. Pl will actually store indices of elements in Ml while the latter 
will store the data about the A-maximals (L(.), R (.), Ma:z: (.) and Min( .)). 

Theorem 2. Given a numerical sequence A, Algorithm 1 computea MList (A) 
and PList (A) correctly using O(IAI) time and space. 

Proof. We will prove that at the end of each iteration of the loop in line 1 Ml 
and Pl represents ML1st (A~) and PList (A~), respectively. Notice that in the 
beginning of the first iteration we have i = l and Ag is the empty subsequence. 
Both Ml and Pl are empty, representing MList (A8) and PList (A&). 
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Algorithm 1 Maximal Subsequences (Sequential) 
Require: Sequence A = ( a1 , a2, .•. , a IAI) 
Ensure: Arrays Ml and Pl, with nm and np elements, respectively. s keeps the prefix 

sum. 
1: n,.. +- 0, np +- 0, s t- 0 

2: for i +- 1 to IAI do 
3: s +- s + a; 
4: if a; < O then 
5: while np > 0 and Min (Ml[Pl[np]]) 2:'. s do 
6: np +- np - 1 {Pop prefix candidates} 
7: end while 
8: end if 
9: if a, > 0 then 

10: {Push new sequence formed by a; only (partial data, may be discarded)} 
11: nm +- nm + 1 
12: Min (Ml[nm]) +- s - a; {Previous s} 
13: L(Ml[n,..]) t- i - 1 
14: Pl[np + 1] +- n,.. 
15: while np > 0 and Max (Ml[Pl[np]]) < a do 
16: np +- np -1 {Pop prefix candidates, looking for the best to merge with a;} 
17: end while 
18: np +- np + 1 
19: {Pl[np] is the best prefix candidate} 
20: nm+- Pl[np] {Pop sequences} 
21: {Complete the data of the top sequence} 
22: R (Ml[nm]) +- s 
23: Max(Ml[nm]) t- i 
24: end if 
25: end for 
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Consider X = A~-l and Z = Ab. We now show that the body of the loop 
builds MList (Z) and PList (Z) based on MList (X) and PList (X). After line 1, 
s = PS (R (Z)) ands - a;= PS (R (X)). 

Using Lemma 4, we search for a unique Z-maximal that overlaps X and 
ends in ai. If ai is non-positive, then by Lemma 1 it cannot be the suffix of any 
maximal, so MList (Z) = MList (X). Based on this, PList (Z) should be the 
same as PList (X), except for the X-maximals that must be removed according 
to the first condition in Definition 3. So the loop in line 1 removes all Z-maximals 
that have Min(.) not less than PS (R (Z)). 

If ai > 0 then it must be included in some Z-maximal. Lines 1 through 1 
introduce a new sequence, containing only ai, in Ml and Pl. This sequence is 
not necessarily a Z-maximal. Only the data that refer to the beginning of this 
sequence ( L (.) and Min (.)) are introduced in Ml. Now the algorithm tries to find 
the largest possible Prl-subsequence of Z that contains a,, that is, a Z-maximal. 

Applying Lemmas 4 and 5 to Z, the possible prefixes for this Z-maximal 
are the elements of PList (X) (or a; itself). By Lemma 6, if M is a sequence 
in PList (X) then A~(if) is a Prl-prefix. The sequence formed by a; alone is 

a Prl-suffix, so we may apply Corollary 1: Ai(M) is a Prl-subsequence if and 
only if Min (M) < PS (i - 1) and Max (M) < PS (i). The first inequality holds 
by Definition 3 (see Condition 1). The second inequality requires a search in 
PList (X). 

By Lemma 7, if an element M of PList (X) satisfies the second inequality, 
all elements to the right of M also satisfy it. We are interested in the leftmost 
element of PList (X) that satisfies the inequality, for it leads to the largest 
possible Prl-sequence. The loop in line 1 searches for this sequence. Once it 
is found, the data related to its termination (R (.) and Max(.)) is changed to 
reflect the extension of the sequence up to a; (lines 1 and 1). All sequences in 
MList (X) from M to the end of MList (X) are discarded and substituted by 
the new sequence (line 1) and the sequences to the left of M a.re maintained, in 
accordance to Lemma. 4. 

Finally, notice that the algorithm removes from Pl just the sequences that 
were absorbed by the new one, which is still in this array. By Definition 3, there 
is no reason to remove any of the other sequences, because no new sequence with 
smaller Min(.) was introduced and PS (Z) is larger than PS (X) (a; > 0), so 
we end up with Pl= PList (Z). 

Notice that the loop in line 1 may fail in the first test, indicating that no 
element of PList (X) may be a proper prefix of a Z-maxima.l. In this case, the 
sequence introduced in lines I through I is used as M in the previous paragraph. 
PList (Z) is equal to PList (X) with the inclusion of this last sequence. No other 
sequence needs to be eliminated. 

We now prove that the algorithm uses only O(IAI) time and space. Ml and 
Pl will have approximately IAl/2 elements in the worst case, so the linearity of 
space is clear. The main loop in line 1 runs IAI iterations. Every command in this 
loop clearly runs in constant time, except the loops in lines 1 and 1. But using 
amortized analysis, observing that np never becomes negative. It is clear that 
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the total ·number of iterations of these . two loops ( that is, the number of times 
that np is decremented) is limited by the number of times np is incremented 
in line 1, which is O(IAI). We conclude that the algorithm runs correctly using 
O(IAI) space and time. 

3 The Parallel Algorithm 

We now present the CGM algorithm to find all maximal subsequences of a se­
quence A using p processors, named A, i E (l,p]. We assume that A is divided 
into p subsequences, ea.ch of size l = rlAI/Pl except the last one, which may be 
smaller. We call these subsequences AP; = Al~s-l). 

At the beginning of the procedure, for all i E [l,p] AP; is already stored 
in the local memory of processor P;. At the end, processor P; will contain the 
information (position and score) ohll A-maximals that start or end within AP;. 

3.1 Finding the Local Maximals 

The results of Section 2.5 allow us to state the following: 

Lemma 11. In O(IAI/P) time and space and using one communication round 
of size O(p), each processor P; (i E [1, pl) may acquire the following information: 

- its local list& of maximals (MList (AP;)), prefix candidates (PList (AP;)} and 
suffix candidates (SList (AP;)). 

- PS(L(AP;)), Min(AP;) andMax(AP;)foralljE(l,p]. 

Proof When run by processor P;, Algorithm 1 gives MList (AP;), PList (AP;) 
and Score (AP;), but without the information from the other processors it has 
to suppose that PS (L (AP;)) = 0. The actual value is not important for the 
construction of the lists, but it must be added later to the values of the prefix 
sums in these lists. 

Using Definition 4, a simple scan through MList (AP;) gives SList (AP;). 
This scan allows the obtention of Min (AP;) - PS (L (AP,)) and Max (AP;) -
PS (L (AP;)). 

The last two values and Score (AP;) can be broadcasted to all processors 
in one communication round of size O(p). All processors will have Score (AP;) 
for all j E [1,p] and will be able to calculate PS(L(AP;)), Min(AP;) and 
Max(AP;) for all j E [1,p]. This may seem inefficient, but under our consid­
erations it is better than parallelizing this simple operation and spending more 
time in communication. 

Each processor can then update the values of the prefix sums in its three lists 
ofresults. It is easy to see that all the operations described here can be done in 
O(IAl/p) time and space. 
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3.2 Basic Procedure for Joining Lists of Maximals 

We will now see how MList (Z) may be obtained from MList (X), MList (Y), 
PList (X) and SList (Y) when Z = (X, Y). The procedure shown here is the 
basis for our parallel algorithm, but the reader must know that the algorithm is 
not based on successive steps of pairwise joining of subsequences. Such a strategy 
would lead to O(logp) rounds of communication and ultimately to a sublinear 
speed-up. Later we will show how the partial data described in Section 3.1 are 
used in a global joining operation. 

The following lemma states the condition for two local maximal subsequences 
to be merged to form a larger one. 

Lemma 12. Given ME PList (X) and NE SList (Y), Af/Z~ is a Prl-subsequence 
iff Min (M) < Min (N) and Max (M) < Max (N). 

Proof Let m = L (M), l = R (X) = L (Y), n = R (N). Lemmas 6 and 9 establish 
that A!., and Aj are respectively a Prl-prefix and a Prl-suffix. Lemmas 7 and 10, 
along with Lemma 1 applied to Mand N, establish that Max (M) = Max (A!,,) 
and Min (N) = Min (Aj). The lemma follows from Corollary 1 applied to A::,=­
{A;,,,Aj). 

Lemmas 5 and 8 state that we may search for a Z-maximal that overlaps X 
and Y using only PList (X) and SList (Y). Algorithm 2 does this. We use Pl= 
PList (X) and Sl = SList (Y) for short, indexing them as stated in Definitions 3 
and 4. The algorithm returns the indices of the chosen candidates for prefix and 
suffix of the new Z-maximal. In this algorithm we use the elements of Pl and 
Sl of actual sequences, not as indices to lists of maximals, for simplicity. 

Algorithm 2 Joining Two Lists of Maximals 
Require: Lists Pl and Sl, with jPll and ISll candidates, respectively. 
Ensure: Flag / that indicates if a new maximal was found, indices ip and i, of the 

candidates that define this maximal. 
1: ip +-- 1, i, +-- 1, / +-- false 
2: while ip ~ IPll and i. ~ ISII and not / do 
3: if Mru: (Pl[ip]) °2'. Max (Sl[i,]) then 
4: ip +-- ip + 1 
5: else if Min (Pl(ip]) °2'. Min (Sl(i,]) then 
6: i. +-- i. + 1 
7: else 
8: f +-- true 
9: end if 

10: end while 

Lemma 13. Given Z = {X, Y}, Pl = PList (X) and SI = SList (Y), Al­
gorithm !! finds the only Z -maximal that overlaps X and Y, if it exists, in 
O(IPll + jSII) time and 0(1) additional space. 
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Proof The time and space complexity of Algorithm 2 is clearly a.a stated. We 
need to prove that it actually finds the Z-maximal, if it exists. Recall that, by 
Lemma 4, this Z-maximal is unique. 

We now prove by induction the following affirmation: at the moment the loop 
test is performed, no Z-maximal exists with prefix Pl[~ with i E (1, ip[ or with 
suffix S[.fl with j E [1, i.[. 

The affirmation is clearly true for the first test, as there is no prefix or suffix 
candidates in the specified ranges. Suppose the affirmation is true for a particular 
iteration. The conditional statements inside the loop will perform as follows: if 
the first test results true, then there is no remaining suffix candidate in Sl with 
Maz (.) greater than Max (Pl[ip]) (Lemma 9). By Lemmas 8 and 12 and the 
induction hypothesis we conclude that Pl[ip] is not a proper prefix of any valid 
Pd-subsequence of Z, so ip is increased and the affirmation remains true. The 
analysis for the case when the second -test results true is similar. 

If the loop ends with f = false then there is no new Z-maximal. If the loop 
ends with f = true then Pl[ip] and Sl[i.] satisfy the conditions of Lemma 12 
and thus define a Prl-subsequence of Z. The affirmation just proved shows that 
there is no other Pd-subsequence that may properly contain the one defined by 
Pl[ip] and Sl[i,], so this subsequence has property Pr2 and is a Z-maximal. 

3.3 Tagging the Local Candidates 

The parallel algorithm performs a single joining step, using a constant number of 
communication rounds, involving all the local maximals found in the local step. 
This step is based on the simple observation that a non-local maximal must start 
inside some AP; and end in some AP3 with 1 $ i < j $ p, so it must have some 
sequence in PList (AP;) as prefix and some sequence in SList (APj) as suffix. 

The problem is to find a relevant set of Prl-subsequences of A that cross 
processor boundaries. By relevant we mean that all the A-maximals that cross 
processor boundaries must be contained in this set. In a last step we just have 
to choose the Pd-subsequences that are not contained in another one. 

We say that a prefix candidate and a suffix candidate match if they define a 
Prl-subsequence of A. The following definition states the conditions for a match. 

Lemma 14. For M E PList (AP;) and N E SList (AP),, 1 $ i < j $ p, AfiZ~ 
(the sequence that has M as prefix, N as suffix and contains AP,., i < k < j) is 
a Prl-subsequence iff Min (M) < Min (N), Mar (M) < Max (N), Min (M) < 
minw,<j Min (AP,.) and Max (N) > maxw•<i Max (APk)- · 

Proof The proof is very similar to the proof of Lemma 12. The extra conditions 
involving APk, i < k < j, are related to Lemma 1. 

After the local step described in Section 3.1 the processors cannot determine 
which candidates match because they have access only to their own lists of 
candidates. However, given a particular prefix or suffix candidate, the extra 
conditions exposed in Lemma 14 allow the determination of the processors where 
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a match for this candidate may be found. So, the first step in the global joining 
operation is to tag ea.ch candidate with the number of the processor(s) that may 
contain a match for it. We will see that each candidate receives at most one tag, 
with few exceptions. 

Let us consider how to tag the prefix candidates of AP; (the case for suf­
fix candidates is similar). To simplify the discussion, we will consider a list of 
possible tags for these prefixes, named PTagList ( i). This list is constructed as 
follows. Initially, PTagList ( i) will contain one element for ea.ch processor with 
number greater than i . For processor j E ]i,p} an element Twill contain the 
following information: the number of the processor represented tag(T) = j (the 
tag itself), the maximum and the minimum of the prefix sums inside the asso­
ciated subsequence of A, Max (T) = Max (AP;) and Min (T) = Min (AP;) . T 
will also contain the minimum of prefix sums in all local sequences from AP i+l 
to AP;-1: Min* (T) = IDllli<>:<i Min (AP,.) (oo if j = i + 1). Min• (T) will be 
useful in the search for tags in accordance to Lemma 14. The whole list of tags 
is eaaily built in O(p) time. 

From this list we eliminate the elements that have a tag k such that there is 
j, i < j < k and Max (AP;)~ Max (AP,.). This is because any suffix candidate 
NE SList (APk) would have Ma:t (N) :S Max (APi,) :S Max (AP;), not being 
matchable with any prefix candidate of AP; (Lemma 14) . The elimination of all 
sequences in this condition takes O(p) time. 

The final list is indexed in descending order according to tag, starting with 
index 1. This indexing is used to make PTagList ( i) similar to a list of suffix 
candidates. The tagging algorithm, to be presented shortly, is very similar to 
Algorithm 2. 

Based on all that was stated we may claim the following: 

Affirmation 1 For any i E [I,p], PTagList (i) contains all the tags that repre­
sent local sequences that may have a suffix candidate that matches some prefix 
candidate of AP;. The indexing of PTagList (i) puts it in a decreasing order 
of tag(.), a (strictly) tlecreasing order of Max(.) and a non-decreasing order of 
Min*(.). 

Let us now consider the tagging of a particular prefix candidate M. 

Observation 1 When comparing M with some TE PTagList (i), the following 
cases may occur: 

Case 1. Max (M) ~ Max (T). This disqualifies tag(T) for M (Lemma 14). As 
PTagList (i) is ordered in a decreasing order of Max(.), the following tags in 
PTagList (i) are also disqualified. 

Case 2. Max (M) < Max (T). This opens two subcases: 

Case 2.i Min (M) ~ Min• (T). This disqualifies tag(T) for M (again by Lemma 14). 
As PList (AP;) is ordered in an increasing order of Min(.) (Lemma 6}, tag(T) 
is also disqualified for the following prefix candidates of AP;. 
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Fig, 4, Graphical representation of the results of the tagging procedure. We consider 
the tagging of elements of PList (AP1), represented as shaded bars on the left. The 
darkened bars in the right represent the data from other processors. The numbers below 
the bars represent the indices in PLiat (AP;) and PTagLiat (1) (when applicable). The 
first prefix candidate has no tags due to case 1 of Observation 1. The second receives 
tag 8 based on case case 2.ii. The third rejects tags 6 and 8 based on case 2.i, and is 
tagged 5 based on case 2.ii. The fourth receives two tags and blocks the tagging of the 
fifth prefix candidate based on case 2.ii. 

Case 2.ii Min (M) < Min• (T). There is a possibility of a match, so tag(T) is 
a valid tag for M. Moreover, if Min (M) < Min (T) then it is assured that there 
will be a match between M and a suffix candidate in APtag(T), (namel11 N with 
Max (N) = Max (T)). This disqualifies all the following tags in PTagList (i) 
because they would lead to sequences that cannot be maximals, since they would 
overlap the Prl-subsequence that is sure to exist. Also, prefix candidates following 
M in PList (AP;) will lead to sequences that cannot be A-maximals, so they do 
not need to be tagged. 

Figure 4 illustrates the tagging of prefix candidates and exemplifies the three 
cases above. Algorithm 3 contains the tagging procedure for the prefix candidates 
of PList (AP,), called Pl for short. PTagList (i) is called Tl for short and is 
preprocessed in accordance to Affirmation 1. 

Lemma 15. For i E [1,p] it is possible to tag all the elements of PList (AP;) 
and SList (AP;) based on the values of Max (AP;) and Min (AP;) for all j E 
[l,p]. Each tag indicates which processor may contain a match for a particu­
lar candidate. Each candidate is tagged at most once, with two exceptions per 
processor at the most. The time required is O(IAI/P) and the space required is 
O(p). 

Proof. The proof is based on Algorithm 3 and Observation 1. We first prove that 
Algorithm 3 tags correctly all prefix candidates by proving the following inv&ri­
ant affirmation: at the moment the loop test will be performed, all elements of 
PList (AP;) with index less than i,, received all the tags it can get and allele­
ments of PTagList (i) with index less than it were used to tag all the candidates 
they can. 
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The affirmation is obviously true at the first time the test is reached. Sup­
posing it is true at the beginning of an iteration of the loop, three cases may 
occur: 

- line 3 is executed, because Max (Pl[ip]) 2'. Max (Tl[i1]) and case 1 applies. 
No more tags may be applied to Pl[ip], so ip is incremented and the invariant 
remains true. 

- line 3 is executed. Case 2.i applies, so Tl[it] cannot be used to tag any prefix 
candidate, allowing it to be incremented. 

- line 3 is executed. Case 2.ii applies and Pl[ip] is tagged with tag(Tl(it]). 
Furthermore, if Min (Pl[ip]) < Min (Tl[i1]) then, still due to case 2.ii, the 
loop is ended and no more tagging is done. 

Algorithm 3 Tagging a List of Prefix Candidates 
Require: Lists Pl and Tl, with IPll and ITlj elements, respectively. 
Ensure: Tagging of the elements of Pl. 

1: ip t-- 1, i1 t-- 1, / t-- false 
2: while ip ~ IP11 and i, ~ ITII and not f do 
3: if Max (Pl[ip]) 2: Max (Tl[i,]) then 
4: ip t-- ip + 1 
5: else if Min (Pl[ip]) ~ Min• (Tl[i,]) then 
6: i, t-- i, + 1 
7: else 
8: tag Pl(ip] with tag(Tl[i,]) 
9: if Min (Pl[ip]) < Min (Tl[i,]) then 

10: / t-- true 
11: end if 
12: end if 
13: end while 

Therefore, Algorithm 3 performs the tagging correctly. The time required 
is O(IPll + ITll) = O(IAI/P + p) = O(IAl/p), including the time to build 
PTagList(i). The space required is O(p), for PTagList(i). A similar procedure 
can be done to SList (AP.). 

Now, suppose that a prefix candidate Pl[i;] is tagged twice, based on Tl[i~] 
and Tl[i~ + 1] (The fact that the tags should be consecutive is easy to prove). The 
tagging occurs only at line 3. For the second tag, it is clear that Min (Plfi;]) < 
Min (Tl[i~ + 1)), since the first tagging occurred because Min (Pl[i;l) < Min* (Tl[i:J) ~ 
Min (Tl[i; + 11). So, when a prefix candidate receives the second tag the loop 
stops. Something similar may occur to a suffix candidate, ma.king for the second 
exception to the "one tag only" rule. 

3.4 Finding Cross-Processors Prl-subsequences 

After the tagging procedure described in the previous section, each prefix/suffix 
candidate may be associated with two other processors: the one which contains 
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it and the one specified in the tag. Some candidates have no tags and may be 
ignored. A few candidates have two tags and have to be duplicated for the next 
phase. 

The next phase involves checking the existence of cr068-processors Prl-subsequences 
of A, that is, Prl-subsequences· that start within AP; and ends within AP; for 
some pair (i,j), 1 $ i < j $ p. This is done by checking the elements of 
PList (AP;) that are tagged with j and elements of SList (APj) that are tagged 
with i. These elements must be in the local memory of one single processor for 
verification by Algorithm 2. The rule to choose which processor does the verifi­
cation is simple: the one whose list of candidates is larger receives the data from 
the other one. In case both lists have the same size, a deterministic rule is used 
to break the tie. For example, if i + j is even then P; does the job, otherwise Pj 
does it. 

This may be done for all pairs of processors using two communication rounds. 
In the fust one, each processor P; sends for processor P; t= P; the number of tags 
j that were used in PList (AP;) or SList (AP;). Each processor sends one number 
for each of the other processors, so the size of the communication round is O(p). 
With these data, each pair of processors agree about which one shall receive the 
data from the other one. These data are sent in the next communication round. 

Notice that each processor may send/receive at most the number of data 
present in its own lists of prefix/suffix candidates. Therefore, this communication 
round has size O(IAl/p). 

Each processor then searches for Prl-subsequences that start or end within 
its local subsequence of A. Let us consider the search for the Prl-subsequences 
that start within AP;, i E (1,p(. For each j E ]i,p), processor P; UBeB Algorithm 2 
to find the largest Prl-subsequence with ends in AP; and AP; (supposing that 
this processor, and not Pj, was selected to do the job). The prefix candidates 
are the elements of PList (AP;) that were tagged with j (let us say there are r 
of them) and the suffix candidates that were sent by processor P; (s of them). 
By Lemma 13 the time taken is O(r + s). This procedure must be repeated by 
processor P; for all j E )i,p), taking a. total time of O(IPList (AP,) I). A similar 
procedure must be done by P; for all j E [l,i[, taking O(ISList(AP;) I) total 
time. The whole procedure takes O(IAl/p) time. 

When looking for Prl-subsequences that start within AP;, processor P; must 
first search for sequences that end in APp and proceed going down to AP;+i­
When a Prl-subsequence is found the procedure may stop, because the next Prl­
subsequences would be contained in the first one. This means that each processor 
will find at most two new Prl-subsequences, one ending and one starting in its 
local subsequence of A. 

Now we may state the following lemma., already proved by the discussion 
above. 

Lemma 16. After tagging the prefix and suffix candidates as e:rplained in Sec­
tion S.S, all cross-processors Prl-subsequences that may be A-maximals can be 
found in O(IAl/p) time and space and two communication rounds of sizes O(p) 
and O(IAl/p). The number of sequences is at most 2p. 

18 



It should be noticed that some of the new Prl-subsequences may not have 
Property Pr2. The important thing here is that the procedure just described does 
not miss any possible A-maximal. The next step is finding the Prl-subsequences 
that are really A-maximals. 

3.5 Finding the new A-maximals 

In the final step, all processors broadcast the information about the new Prl­
subsequences found. This involves a fourth communication round of size O(p) 
( every processor sends at most two new subsequences and receives all of them). 
Every processor then eliminates the Prl-subsequence that are contained in an­
other Prl-subsequence. This may seem redundant, but it is better to make all 
processors perform this computation than spend another communication round. 

It should be noticed that the procedure described in the previous section 
does not generate two Prl-subsequences that overlap, unless one is contained in 
the other. That is because if two Prl-subsequences overlap then the union of 
them (that is, the subsequence of minimum length that contains both of them) 
is also a Prl-subsequence (this is easily proved using Lemma 1). This union is 
larger than each of the two overlapping subsequences and so should have been 
detected by the procedure described earlier . 

Each Prl-subsequence is related to a different pair of processors. All that 
must be verified is which pairs generated new sequences. Algorithm 4 does this 
verification. 

Lemma 17. Algorithm ~ finds all cross-processors A-maximals based on the 
list of cross-processors Prl-subsequences cited in Lemma 16. The time and space 
taken is O(p). 

Proof Lines 4 to 4 build array Vin time O(p+ ILi) = O(p). V[i], i E [l,p] stores 
the largest j for which there is a new Prl-subsequence that starts within AP, 
and ends within APj. If there is no such Prl-subsequence, V[i1 = i. 

The following lines build the list of new A-maximals N. An invariant affirma­
tion is that at line 4 all new A-maximals that start within AP; for any i E [l, k[ 
were already found. This is certainly true for the first time line 4 is reached. In 
the loop body, if the test in line 4 results true then a new A maximal is found. 
All Prl-sequences that start within AP; fork < i < V[k} are contained in this 
new A-maximal and should be ignored, which is done in line 4. If the test results 
false, there is no new A-maximal that starts within AP1,, so k is incremented, 
keeping the invariant true. 

A final step is done locally by each processor. By examining the list of new 
A-maximals, processor P; may verify if there is an A-maximal that contains its 
entire local subsequence AP;, which means that its own local set of maximals 
MList (AP,) should be discarded. This verification can be done in time O(p). If 
there is a cross-processors A-maximal that starts or ends within AP;, a final scan 
of MList (AP;) may eliminate the local maximals that are contained in a larger 
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Algorithm 4 Elimination of Prl-subsequences that are not A-maximals 
Require: List L (with ILi elements) of pairs of processors for which there is a cross­

processor Prl-subsequence. 
Ensure: List N (with n elements) of pairs of processors for which there is a cross-

processor A-maximal. 
1: for k +- 1 to p do 
2: V[k] +- k 
3: end for 
4: fork+- 1 to ILi do 
5: i +- smallest component of L[k] 
6: j +- largest component of L[k] 
7: if j > V[s1 then 
8: V[1] +- j 
9: end if 

10: end for 
11: n +- o, k +- 1 
12: while k < p do 
13: if V[k] > k then 
14: n +- n + 1 
15: N[n) +- (k, V[k]) 
16: k +- V[k] 
17: else 
18: k +- k + 1 
19: end if 
20: end while 

A-maximal. This final scan may be done in time O (log(jAj/p)) if MList (APt) 
is maintained in an array used as a circular buffer and ordered according to the 
position of the maximals. This is in accordance with Algorithm 1. 

So we may claim the following: 

Theorem 3. Using a Coarse Grained Multicomputer with p processors, all max­
imal subsequences of a sequence A ( already distributed in the p local memories) 
may be found in time O(IAl/p), using O(IAl/p) local space and 0(1} communi­
cation round.,. 

Proof Based on the results of this section, along with Lemmas 11, 13, 15 and 
16. Notice that only 4 communication rounds are necessary, three of them of size 
O(p) and one with size O(IAl/p). 

4 Conclusion 

We have presented an algorithm that finds all maximal subsequences of a se­
quence A with linear speed-up and high scalability. The size of the communi­
cation rounds is bounded by O(IAl/p), but we conjecture that if !Al » p the 
average size of the communication rounds should be much lower than IAl/p. In 
fact, eicperimenting with a sequence X of random numbers we conjecture that 
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the average size of PList (X) is O(log(IXI)). The running time of the whole al­
gorithm is dominated by the time of the first step (finding the local maximal 
subsequences). 

It is not trivial to derive this parallel O(IAI/P) time and O(IAI/P) space 
per processor algorithm, and not intuitive that a parallel algorithm requiring a 
constant number of communication rounds can be found . We had to explore the 
properties of those local maximals that are potential candidates to be merged 
together to form larger maximals, as well as an efficient merge process to join 
candidate local maximals. This is the reason why we required many auxiliary 
lemmas. 

Some adaptations may be done to this algorithm. For example, it is easy to 
make it work with a circular sequence of numbers, which may be important when 
dealing with cucular cha.ins of nucleotides. Also, if only the best k maximals are 
needed, a parallel selection algorithm [16] may be used to find the k-th best 
maximal in O(IAl/p) time and O(logp) communication rounds. 
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