
DEPARTAMENTO DE CIENCIA DA COMPUTA<;AO

Relat6rio Tecnico

RT-MAC-2005-02

A BSP/CGM ALGORITHM FOR FINDING ALL
MAXIMAL CONTIGUOS SUBSEQUENCES OF

A SEQUENCE OF NUMBERS

C.E.R. ALl'ES, E. N. CACERES ANDS. W. SONG

Janeiro de 2005

A BSP / CG M Algorithm for Finding All
Maximal Contiguous Subsequences of a

Sequence of Numbers*

C. E. R. Alves1, E. N. Caceres2 , and S. W. Song3

1 Universidade Sao Judas Tad.eu, Sao Paulo, SP, Brazil
prof.carlos.r..alvesGusjt.br

~ Universidad.e Fed. de Mato Grosso do Sul, Campo Grande, MS, Brazil
edsonGdct.ufms.br

3 Universidad.e de Sao Paulo, Sao Paulo, Brazil
songGim.e.usp.br

Abstract. Given a sequence A of real numbers, we are interested in
finding a list of all non-overlapping contiguous subsequences of A that
are maximal. A maximal subsequence M of A has the property that
no proper subsequence of M has a greater sum of values. Furthermore,
M may not be contained properly within any subsequence of A with
this property. This problem has several applications in Computational
Biology and can be solved sequentially in linear time. We present a
BSP /CGM algorithm that solves this problem using p = O(IAl/p) pro­
cessors in O(IAl/p) time and O(jAj/p) space per processor. The algo­
rithm uses a constant number of communication rounds of size at most
O(IA\/p). Thus the algorithm achieves linear speed-up and is highly scal­
able. To our knowledge, there are no previous known parallel algorithms
to solve this problem.

1 Introduction

Given a sequence of real numbers, the maximum subsequence problem consists of
finding the contiguous subsequence with the maximum sum [3) . A more general
problem is the all maximal subsequences problem [15] where we are interested in
finding a list of all non-overlapping contiguous subsequences with maximal sum.

These two important problems arise in several contexts in Computational
Biology. Many applications are presented in [15], for example, to identify trans­
membrane domains in proteins expressed as a sequence of amino acids and to
discover CpG islands. Karlin and Brendel [10) define scores ranging from -5
to 3 to each of the 20 amino acids. For the human ,82-adrenergic receptor se­
quence, disjoint subsequences with the highest scores are obtained and these
subsequences correspond to the known transmembrane domains of the receptor.

"Partially supported by FINEP-PRONEX-SAI Proc. 76.97.1022.00, CNPq Proc.
30.0317 /02-6, 30.5218/03-4, 47.0163/03-8, 55.2028/02-9, and FUNDECT-MS Proc.
41/100117 /03.

Csuros [5] mentions other applications that require the computation of such sub­
sequences, in the analysis of protein and DNA sequences (4), determination of
isochores in DNA sequences [9, 12], and gene identification [11].

Efficient linear time sequential algorithms are known to solve both prob­
lems (2, 3, 15). Parallel solutions are known only for the basic maximum sub­
sequence problem. For a given sequence of n numbers, Wen [18, 13] presents a
EREW PRAM algorithm that takes O(logn) time using O(n/ logn) processors.
Qiu and Aki [14) developed a parallel algorithm for several interconnection net­
works such as the hypercube, star and pancake interconnection networks of size
p. It takes O(n/p + logp) time with p processors. Alves, Caceres and Song [1)
present a BSP/CGM parallel algorithm on p processors that requires O(n/p)
computing time and constant number of communication rounds.

In this paper we present a BSP /CGM algorithm that solves the all maximal
subsequences problem. To our knowledge, there a.re no previous known paral­
lel algorithms to solve this problem. Given a sequence A of real numbers, the
proposed algorithm uses p processors and finds all the maximal subsequences
in O(IAl/p) time, using O(IAl/p) space per processor, and requiring a constant
number of communication rounds. Unlike the parallel solution for the basic max­
imum subsequence problem, it is not at all intuitive that one can find a parallel
algorithm for the all maximal subsequences problem that requires only a. constant
number of communication rounds in which at most O(IAl/p) data a.re transmit­
ted. In the following we present the main ideas a.nd the approach utilized to
derive the proposed algorithm.

2 Preliminary Definitions and Results

In pa.rt of this section we present the results of [15] for completeness. To design
our parallel algorithm, we will see under which conditions the local maximal sub­
sequences are potential candidates to be merged together to form larger maximal
subsequences. Furthermore, we will present a. modified and more detailed sequen­
tial algorithm to make this text as self-contained as possible. First we present
some notation.

2.1 Notation

Consider a sequence A of real numbers. We denote the (whole) sequence of
numbers by A and its ele_ments by a,, 1 $ i $ IAI- Subsequences of A are
indicated by their limits: Af = (a;+1 , ... , ai)- Notice that the superscript indicates
the rightmost position in the subsequence, while the subscript is one less than the
leftmost position. If the subscript and the superscript are equal, the subsequence
is empty.

Sometimes a particular subsequence of A will be denoted by some other
upper-case letter, but to avoid confusion all indices will refer to sequence A.
To indicate the indices of the first (leftmost) and last (rightmost) positions of

2

a sequence X we use L (X) and R (X). For coherence with the previous para­

graph we use X = Afc':J = (aL(X)+i, ... , aR(X))- Notice that L (X) indicates one
position to the left of the actual beginning of X.

The concatenation of sequences X 1 , X2, ... Xn will be denoted by (X1 , X2 , .•• Xn).
Observe that a sequence X, may consist of a single number.

The sum of the values of a subsequence X (the score of X) will be denoted
by Score (X). If X is empty, then we define its score to be zero. As the sum of

prefixes of A is very important in this paper, we use PS (j) to denote Score (Ai) .
We consider PS (0) = 0. Notice that Score (A{) = PS (j) - PS (i). For a sub­

sequence X = A{, the minimum and the maximum among all values of PS (k),
for i :S k :S j, will be denoted by Min (X) and Max (X), respectively.

i 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22
Oi 5 -3 -1 5 -9 0 3 3 7 -9 3 -6 3 -1 0 3 -3 0 7 -4 0 -6

Fig. I. Example sequence to be used throughout the text.

2.2 Coarse Grained Multicomputer

For our parallel computation model, we use a simpler version of the BSP model [8,
17], referred to as the Coarse Grained Multicomputer (CGM} model [6, 7]. It is
comprised of a set of p processors each O(N/p) local memory, where N de­
notes the input size of the problem, and an arbitrary communication network. A
CGM algorithm consists of alternating local computation and global ccmmuni­
cation rounds. In each communication round, each processor sends O(N/p) data
and receives O(N/p) data. Finding an optimal algorithm in the CGM model is
equivalent to minimizing the number of communication rounds as well as the
total local computation time. Furthermore, it has been shown that this leads to
improved portability across different parallel architectures [8, 17]).

2.3 Problem Definition

In this paper we only consider contiguous subsequences of a main sequence. We
will omit the adjective for simplicity.

A maximum scoring subsequence of X is one whose score is the largest among
all scores of subsequences of X. When ties occur, we choose the subsequence of
minimum length and if a tie persists the choice of the particular subsequence
is irrelevant. If there is no positive number in X, we consider that there is no
maximum sccring subsequence.

With this definition, it is easy to see that prefixes and suffixes of a maximum
subsequence always have positive scores, because the deletion of a prefix or suffix
with non-positive sccre would lead to a better subsequence.

3

Considering that the empty sequence is a subsequence of any other sequence,
notice that the score of a sequence with property Prl must be positive. Subse­
quences of A that have property Prl will be called Prl-subsequences.

We can restate the definition of a maximal subsequence in terms of these
properties. We will use this new definition throughout the paper. The previous
(equivalent) definition was presented because it is more natural when the appli­
cations are considered, while t~e new definition is better for understanding the
linear algorithm of Ruzzo and Tompa and our parallel algorithm.

Definition 2. List of maximal subsequences of a sequence A. Given
a sequence A of real numbers, the list of maximal subsequences of A, denoted
MList (A), is the list of all subsequences that have Properties Pr1 and Pr2, or­
dered with respect to L (.). Thi& list is indexed starting at 1 with the leftmost
subsequence.

Property Prl can also be stated in terms of prefix sums.

Lemma 1. A subsequence A{ is Prl-subsequence iff for all m, i < m < j,
PS (i) < PS (m) < PS (j).

Proof. If A{ is a Prl-subsequence, Score (A1) > Score (Af'). Therefore PS (j)­

PS (i) > PS (m) - PS (i) and PS (j) > PS (m). Also Score (A1) > Score (A!,.)
which leads to PS (i) < PS (m) .

If PS (i) < PS (m) < PS (j) for all m, i < m < j, any A[that is a proper
subsequence of A{ has score Score (Ar) = PS (r) - PS (l) < PS (j) - PS (i) =
Score (A{) .

A graphical representation is useful here. We will plot the function PS(.),
so that positive (negative) values in the example sequence will be represented
by ascending (descending) line segments (see Figure 2). A Prl-subsequence X
will be indicated by a rectangular box with (L (X), PS (L (X))) and (R (X),
PS (R (X))) as lower-left and upper-right corners, respectively. The plotted curve
touches the box only in these corners. Notice that the first three Prl-subsequences
in Figure 2 are maximal subsequences of A, but the last three are not (they are
subsequences of the same A-maximal, namely Ag).

We say that A{, i < j, is a Prl-prefix if PS (i) < Min (Af+i) and it is a

Prl-suffixif Max (A{- 1
) < PS (j) . A Prl-subsequence is both a Prl-prefix and

a Prl-suffix.

Corollary 1. If P is a Prl-prefir and Sis a Pr1-suffix, (P, S) is a Prl-subsequence
iff Min (P) < Min (S) and Max (P) < Max (S).

2.4 Some Results About Maximal Subsequences

We give some results that will be useful in the description of the sequential and
the parallel algorithms that follow. First we present some lemmas from [15].

5

Lemma 2. Any Prl-subsequence of a sequence A is contained in a maximal
,ubsequence of A (maybe not properly).

Proof. Suppose the affirmation is not true. Let X be the largest Prl-subsequence
of A not contained in any maximal subsequence. Then X is not maximal, has
not property Pr2 and therefore it must be contained in a larger Prl-subsequence
of A, which leads to a contradiction.

Lemma 3. Given a sequence A, any two distinct maximal subsequences of A
do not overlap or touch each other.

Proof Suppose this assertion is not true. Let A!' and A) be two distinct maximal
subsequences that violate the assertion. One maximal subsequence cannot be
properly contained in another (property Pr2) so without loss of generality we
may consider i < j :S k < l. By Lemma 1 applied to At we have PS (i) < PS (j)
and the same lemma applied to both subsequences shows that PS (i) < PS (m)
for all m, i < m < l. Similarly, we can prove that PS (m) < PS (l) for all m,
i < m < l. Applying Lemma 1 in the other direction we conclude that ~ is a
Prl-subsequence, so A~ and A~ do not have property Pr2, a contradiction.

Both the sequential algorithm and the new parallel algorithm are based on
finding lists of maximal subsequences in segments of the original sequence A.
Consider a subsequence X of A. We will say that a subsequence is an X -marimal
subsequence, or just an X-marimal, if it is maximal in X, that is, it is a Prl­
subsequence and has no proper supersequence that is a Prl-subsequence of X .
We want to find the set of all A-maximals.

Based on the previous lemma, we will say that an A-maximal is to the left
of another if its L(.) is smaller.

We will apply the previous lemmas to any subsequence of A, not only to A
itself.

Lemma 4. Let Z = (X, Y} for some non-empty X and Y. Then there i, at
most one Z-maximal M that overlaps both X and Y. If there is such M, it has
an X -maximal as a prefix and a Y -maximal as a auffix. The X -marimala to the
left of M and the ¥-maximals to the right of M are also Z-maximals.

Proof. By applying Lemma 3 to Z, it is obvious that no more than one Z­
maximal overlaps X and Y. Let us suppose that there is such a Z-maximal M.
X = A{, Y = Aj and M = A;::! for some O $ i $ m1 < j < m2 $ k $ IAI.
We now prove the affirmations concerning X. The affirmations concerning Y are
proved analogously.

PS (m1) is the minimum prefix sum in M. If n is the smallest value in)m1, 11
such that PS (n) is maximum, then A::,, is a Prl-subsequence of X. By Lemma 2,
A::,

1
must be contained in an X-maximal. This X-maximal is a Prl-subsequence

of Z, so it must be contained in a Z-maximal, which can only be M. For this
reason and the choice of n, we see that A::,, is an X-maximal that is a prefix of
M.

6

Any X-ma.ximal that is to the left of M is a Prl-subsequence. If it is not
a Z-maximal, then there is a Prl-subsequence of Z that contains it, and the
maximality in X forbids this larger Prl-subsequence to be contained in X. So
this Prl-subsequence overlaps X and Y, contradicting the uniqueness of M.

The previous lemma is important for the sequential algorithm because it
shows that it is possible to build MList (A) working incrementally. Having a
prefix X of A and its maximal subsequences, we can extend this prefix to the
right, preserving some of the X-ma.ximals and eventually creating another maxi­
mal subsequence that involves the extension and the rightmost X-maximals. The
sequential algorithm appends just one number to X at each step, so \YI = 1.
We will show the details shortly.

Lemma 4 is also important for the parallel algorithm to be presented. Se­
quence A is divided into subsequences that are treated separately. Their maximal
subsequences are used later to find the A-maximals .

The parallel algorithm deals with the following subproblem: given a subse­
quence X of A and its list of maximal subsequences MList (X), find, if possible,
an X-ma.ximal that is a prefix (or suffix) of a larger A-maximal. This clearly in­
volves MList (X) and the rest of sequence A. However, some X-maximals need
not be considered as possible prefixes or suffixes of larger A-maximals, regardless
of what is outside X . The efficiency of our algorithm is based on this important
notion, so we formalize it in the following definitions and lemmas. We deal with
prefix candidates first.

Definition 3 (PList (X)). Given a subsequence X of A , ?List (X) is the or­
dered list of all X -maximals, with the exception of those X -maximals M for
which one of the two conditions below are satisfied.

1. Min (M);::: PS (R (X)) or
2. there is an X-maximal N to the right of M such that Min (M);::: Min (N).

The elements of PList (X) are indexed starting at 1 with the leftmost subse­
quence.

Informally, PList (X) gives us the list of all X-ma.ximals that are potential
candidates to be merged to the right to give larger maximals. Notice that we
excluded from ?List (X) those X-maximals (satisfying conditions 1 and 2} that
can never give larger maximals. Consider X = A54 of the example sequence
(see Figure I and Figure 2) . There are four X-maximals, namely A3, At A½A,
and Ag (indicated by the first four boxes of Figure 2). Ai does not belong to
PList (X) because of condition 1. Ai5 does not belong to PList (X) because of
both conditions 1 and 2. Thus PList (X) = (At Am.
Lemma 5. If X is a subsequence of A, P List (X) contains all X -maximals that
can be a proper prefix of an A-maximal.

Proof. For an X-maximal M, any of the two conditions in Definition 3 implies
the existence of i E]L(M),R(X)] such that PS(L(M)) '.::: PS(i), so no A­
maximal may extend from M past R (X), because it would violate property
Prl .

7

Fig.3. Graphical representation of a sequence X, MLut(X), PList(X) and SLiat(X).
The first (last) maximal is not a suffix (prefix) candidate because of the first condition of
the definition. The other maximals that are not candidates fall in the second condition
- observe the bottom of the prefix candidates and the top of the suffix candidates. The
descending lines represent sequences of non-positive numbers.

Therefore, all X-maximals removed from PList (X) are not proper prefixes
of any A-maximal.

Lemma 6. If Mis a sequence in PList (X) and i E]L (M), R (X)] then Min (M) <
PS (i), that is, Afl~~ is a Pr1-prefix.

Proof. Suppose that it is possible to find an i in the specified range such that
PS (L (M)) 2: PS (i). Pick the largest possible i. Condition 1 of Definition 3
would forbid M in PList (X) if i == R (X), so i < R (X). The choice of i guar­
antees that PS (i + 1) > PS (i), so A!+l is a Prl-sequence and it must be con­
tained in some X-maximal N (Lemma 2). N has to be to the right of M and
Min (M) 2: PS (i) 2: Min (N), but then Condition 2 of Definition 3 would also
forbid Min PList (X), a contradiction.

Lemma 7. If Mis a sequence in PList (X) and i E]R (M), R (X)] then Max (M);?:
PS (i).

Proof. Suppose that it is possible to find an i in the specified range such that
Max (M) < PS (i). Pick the smallest possible i. Pick the largest value of j such
that L (M) :S j < i and PS (j) is minimum in the range. It is clear by Lemma 1
that A} has property Prl, so there is an X-maximal N that contains it. As
distinct X-maximals cannot overlap (Lemma 3), N must be to the right of M.
By the choice of j we must have Min (N) :S Min (M), but then M should not
be in PList (X) by condition 2 of Definition 3, a contradiction.

A direct consequence of the previous lemmas is that PList (X) is in a non­
increasing order of Max(.) and a strictly increasing order of Min(.). Figure 3
illustrates PList (X) (and SList (X), defined shortly).

For the parallel algorithm we will a need similar definition for possible suffixes
of A-maximals. The definition and associated lemmas are given now (without
proofs, which are similar to the previous ones). Notice the exchanging roles of
Max(.) and Min(.), "left" and "right", etc.

8

Definition 4 (SList (X)). Given a subsequence X of A, SList (X) is an ordered
list of all X-maximals, with the e:z:ception of those X -marimals N for which one
of the two conditions below are satisfied.

1. Ma:z: (N) :S PS (L (X)) or
2. there is a X-marimal M to the left of N such that Max (N) :S Ma:z: (M).

The elements of SList (X) are inde:z:ed starting at 1 with the rightmost subse­
quence.

Lemma 8. J/ Xis a subsequence of A, SList (X) contains all X-marimals that
can be a proper suffix of an A-marimal.

Lemma 9. If N is a sequence in SList (X) and i E [L (X), R (N)[then PS (i) <
Ma:z: (N), that is, Af(C:] is a Prl-suffi:z:.

Lemma 10. If N is a sequence in SList (X) and i E [L (X), L (N)[then PS (i) 2:::
Min (N).

Notice that at most one X-maximal may belong to both PList (X) and
SList (X), namely the maximum subsequence of X. Any other element of SList (X)
must be to the left of any element of PList (X). See Figure 3 for an illustration
of PList (X) and SList (X) (when these lists are disjoint).

2.5 The Sequential Algorithm

We now present Algorithm 1, a modified version of the sequential algorithm of
Ruzzo and Tampa [15]. There are several differences of Algorithm 1 from the
original version of [15). We present the procedure in a more explicit way, making
use of arrays to facilitate the analysis and using one less level of loop nesting,
but the main ideas and the performance are the same. We present this algorithm
for completeness, as the sequential algorithm is also used in the parallel one. We
also want to make explicit the construction of PList (.), which is implicitly used
in the original algorithm of Ruzzo and Tampa as an auxiliary linked list.

The input of the algorithm is the sequence A and the output is MList (A)
(Ml for short in the algorithm) and PList (A) (Pl for short). Both lists are
implemented as arrays with first index 1 and used as stacks with index 1 referring
to the bottom. Pl will actually store indices of elements in Ml while the latter
will store the data about the A-maximals (L(.), R (.), Ma:z: (.) and Min(.)).

Theorem 2. Given a numerical sequence A, Algorithm 1 computea MList (A)
and PList (A) correctly using O(IAI) time and space.

Proof. We will prove that at the end of each iteration of the loop in line 1 Ml
and Pl represents ML1st (A~) and PList (A~), respectively. Notice that in the
beginning of the first iteration we have i = l and Ag is the empty subsequence.
Both Ml and Pl are empty, representing MList (A8) and PList (A&).

9

Algorithm 1 Maximal Subsequences (Sequential)
Require: Sequence A = (a1 , a2, .•. , a IAI)
Ensure: Arrays Ml and Pl, with nm and np elements, respectively. s keeps the prefix

sum.
1: n,.. +- 0, np +- 0, s t- 0

2: for i +- 1 to IAI do
3: s +- s + a;
4: if a; < O then
5: while np > 0 and Min (Ml[Pl[np]]) 2:'. s do
6: np +- np - 1 {Pop prefix candidates}
7: end while
8: end if
9: if a, > 0 then

10: {Push new sequence formed by a; only (partial data, may be discarded)}
11: nm +- nm + 1
12: Min (Ml[nm]) +- s - a; {Previous s}
13: L(Ml[n,..]) t- i - 1
14: Pl[np + 1] +- n,..
15: while np > 0 and Max (Ml[Pl[np]]) < a do
16: np +- np -1 {Pop prefix candidates, looking for the best to merge with a;}
17: end while
18: np +- np + 1
19: {Pl[np] is the best prefix candidate}
20: nm+- Pl[np] {Pop sequences}
21: {Complete the data of the top sequence}
22: R (Ml[nm]) +- s
23: Max(Ml[nm]) t- i
24: end if
25: end for

10

Consider X = A~-l and Z = Ab. We now show that the body of the loop
builds MList (Z) and PList (Z) based on MList (X) and PList (X). After line 1,
s = PS (R (Z)) ands - a;= PS (R (X)).

Using Lemma 4, we search for a unique Z-maximal that overlaps X and
ends in ai. If ai is non-positive, then by Lemma 1 it cannot be the suffix of any
maximal, so MList (Z) = MList (X). Based on this, PList (Z) should be the
same as PList (X), except for the X-maximals that must be removed according
to the first condition in Definition 3. So the loop in line 1 removes all Z-maximals
that have Min(.) not less than PS (R (Z)).

If ai > 0 then it must be included in some Z-maximal. Lines 1 through 1
introduce a new sequence, containing only ai, in Ml and Pl. This sequence is
not necessarily a Z-maximal. Only the data that refer to the beginning of this
sequence (L (.) and Min (.)) are introduced in Ml. Now the algorithm tries to find
the largest possible Prl-subsequence of Z that contains a,, that is, a Z-maximal.

Applying Lemmas 4 and 5 to Z, the possible prefixes for this Z-maximal
are the elements of PList (X) (or a; itself). By Lemma 6, if M is a sequence
in PList (X) then A~(if) is a Prl-prefix. The sequence formed by a; alone is

a Prl-suffix, so we may apply Corollary 1: Ai(M) is a Prl-subsequence if and
only if Min (M) < PS (i - 1) and Max (M) < PS (i). The first inequality holds
by Definition 3 (see Condition 1). The second inequality requires a search in
PList (X).

By Lemma 7, if an element M of PList (X) satisfies the second inequality,
all elements to the right of M also satisfy it. We are interested in the leftmost
element of PList (X) that satisfies the inequality, for it leads to the largest
possible Prl-sequence. The loop in line 1 searches for this sequence. Once it
is found, the data related to its termination (R (.) and Max(.)) is changed to
reflect the extension of the sequence up to a; (lines 1 and 1). All sequences in
MList (X) from M to the end of MList (X) are discarded and substituted by
the new sequence (line 1) and the sequences to the left of M a.re maintained, in
accordance to Lemma. 4.

Finally, notice that the algorithm removes from Pl just the sequences that
were absorbed by the new one, which is still in this array. By Definition 3, there
is no reason to remove any of the other sequences, because no new sequence with
smaller Min(.) was introduced and PS (Z) is larger than PS (X) (a; > 0), so
we end up with Pl= PList (Z).

Notice that the loop in line 1 may fail in the first test, indicating that no
element of PList (X) may be a proper prefix of a Z-maxima.l. In this case, the
sequence introduced in lines I through I is used as M in the previous paragraph.
PList (Z) is equal to PList (X) with the inclusion of this last sequence. No other
sequence needs to be eliminated.

We now prove that the algorithm uses only O(IAI) time and space. Ml and
Pl will have approximately IAl/2 elements in the worst case, so the linearity of
space is clear. The main loop in line 1 runs IAI iterations. Every command in this
loop clearly runs in constant time, except the loops in lines 1 and 1. But using
amortized analysis, observing that np never becomes negative. It is clear that

11

the total ·number of iterations of these . two loops (that is, the number of times
that np is decremented) is limited by the number of times np is incremented
in line 1, which is O(IAI). We conclude that the algorithm runs correctly using
O(IAI) space and time.

3 The Parallel Algorithm

We now present the CGM algorithm to find all maximal subsequences of a se­
quence A using p processors, named A, i E (l,p]. We assume that A is divided
into p subsequences, ea.ch of size l = rlAI/Pl except the last one, which may be
smaller. We call these subsequences AP; = Al~s-l).

At the beginning of the procedure, for all i E [l,p] AP; is already stored
in the local memory of processor P;. At the end, processor P; will contain the
information (position and score) ohll A-maximals that start or end within AP;.

3.1 Finding the Local Maximals

The results of Section 2.5 allow us to state the following:

Lemma 11. In O(IAI/P) time and space and using one communication round
of size O(p), each processor P; (i E [1, pl) may acquire the following information:

- its local list& of maximals (MList (AP;)), prefix candidates (PList (AP;)} and
suffix candidates (SList (AP;)).

- PS(L(AP;)), Min(AP;) andMax(AP;)foralljE(l,p].

Proof When run by processor P;, Algorithm 1 gives MList (AP;), PList (AP;)
and Score (AP;), but without the information from the other processors it has
to suppose that PS (L (AP;)) = 0. The actual value is not important for the
construction of the lists, but it must be added later to the values of the prefix
sums in these lists.

Using Definition 4, a simple scan through MList (AP;) gives SList (AP;).
This scan allows the obtention of Min (AP;) - PS (L (AP,)) and Max (AP;) -
PS (L (AP;)).

The last two values and Score (AP;) can be broadcasted to all processors
in one communication round of size O(p). All processors will have Score (AP;)
for all j E [1,p] and will be able to calculate PS(L(AP;)), Min(AP;) and
Max(AP;) for all j E [1,p]. This may seem inefficient, but under our consid­
erations it is better than parallelizing this simple operation and spending more
time in communication.

Each processor can then update the values of the prefix sums in its three lists
ofresults. It is easy to see that all the operations described here can be done in
O(IAl/p) time and space.

12

3.2 Basic Procedure for Joining Lists of Maximals

We will now see how MList (Z) may be obtained from MList (X), MList (Y),
PList (X) and SList (Y) when Z = (X, Y). The procedure shown here is the
basis for our parallel algorithm, but the reader must know that the algorithm is
not based on successive steps of pairwise joining of subsequences. Such a strategy
would lead to O(logp) rounds of communication and ultimately to a sublinear
speed-up. Later we will show how the partial data described in Section 3.1 are
used in a global joining operation.

The following lemma states the condition for two local maximal subsequences
to be merged to form a larger one.

Lemma 12. Given ME PList (X) and NE SList (Y), Af/Z~ is a Prl-subsequence
iff Min (M) < Min (N) and Max (M) < Max (N).

Proof Let m = L (M), l = R (X) = L (Y), n = R (N). Lemmas 6 and 9 establish
that A!., and Aj are respectively a Prl-prefix and a Prl-suffix. Lemmas 7 and 10,
along with Lemma 1 applied to Mand N, establish that Max (M) = Max (A!,,)
and Min (N) = Min (Aj). The lemma follows from Corollary 1 applied to A::,=­
{A;,,,Aj).

Lemmas 5 and 8 state that we may search for a Z-maximal that overlaps X
and Y using only PList (X) and SList (Y). Algorithm 2 does this. We use Pl=
PList (X) and Sl = SList (Y) for short, indexing them as stated in Definitions 3
and 4. The algorithm returns the indices of the chosen candidates for prefix and
suffix of the new Z-maximal. In this algorithm we use the elements of Pl and
Sl of actual sequences, not as indices to lists of maximals, for simplicity.

Algorithm 2 Joining Two Lists of Maximals
Require: Lists Pl and Sl, with jPll and ISll candidates, respectively.
Ensure: Flag / that indicates if a new maximal was found, indices ip and i, of the

candidates that define this maximal.
1: ip +-- 1, i, +-- 1, / +-- false
2: while ip ~ IPll and i. ~ ISII and not / do
3: if Mru: (Pl[ip]) °2'. Max (Sl[i,]) then
4: ip +-- ip + 1
5: else if Min (Pl(ip]) °2'. Min (Sl(i,]) then
6: i. +-- i. + 1
7: else
8: f +-- true
9: end if

10: end while

Lemma 13. Given Z = {X, Y}, Pl = PList (X) and SI = SList (Y), Al­
gorithm !! finds the only Z -maximal that overlaps X and Y, if it exists, in
O(IPll + jSII) time and 0(1) additional space.

13

Proof The time and space complexity of Algorithm 2 is clearly a.a stated. We
need to prove that it actually finds the Z-maximal, if it exists. Recall that, by
Lemma 4, this Z-maximal is unique.

We now prove by induction the following affirmation: at the moment the loop
test is performed, no Z-maximal exists with prefix Pl[~ with i E (1, ip[or with
suffix S[.fl with j E [1, i.[.

The affirmation is clearly true for the first test, as there is no prefix or suffix
candidates in the specified ranges. Suppose the affirmation is true for a particular
iteration. The conditional statements inside the loop will perform as follows: if
the first test results true, then there is no remaining suffix candidate in Sl with
Maz (.) greater than Max (Pl[ip]) (Lemma 9). By Lemmas 8 and 12 and the
induction hypothesis we conclude that Pl[ip] is not a proper prefix of any valid
Pd-subsequence of Z, so ip is increased and the affirmation remains true. The
analysis for the case when the second -test results true is similar.

If the loop ends with f = false then there is no new Z-maximal. If the loop
ends with f = true then Pl[ip] and Sl[i.] satisfy the conditions of Lemma 12
and thus define a Prl-subsequence of Z. The affirmation just proved shows that
there is no other Pd-subsequence that may properly contain the one defined by
Pl[ip] and Sl[i,], so this subsequence has property Pr2 and is a Z-maximal.

3.3 Tagging the Local Candidates

The parallel algorithm performs a single joining step, using a constant number of
communication rounds, involving all the local maximals found in the local step.
This step is based on the simple observation that a non-local maximal must start
inside some AP; and end in some AP3 with 1 $ i < j $ p, so it must have some
sequence in PList (AP;) as prefix and some sequence in SList (APj) as suffix.

The problem is to find a relevant set of Prl-subsequences of A that cross
processor boundaries. By relevant we mean that all the A-maximals that cross
processor boundaries must be contained in this set. In a last step we just have
to choose the Pd-subsequences that are not contained in another one.

We say that a prefix candidate and a suffix candidate match if they define a
Prl-subsequence of A. The following definition states the conditions for a match.

Lemma 14. For M E PList (AP;) and N E SList (AP),, 1 $ i < j $ p, AfiZ~
(the sequence that has M as prefix, N as suffix and contains AP,., i < k < j) is
a Prl-subsequence iff Min (M) < Min (N), Mar (M) < Max (N), Min (M) <
minw,<j Min (AP,.) and Max (N) > maxw•<i Max (APk)- ·

Proof The proof is very similar to the proof of Lemma 12. The extra conditions
involving APk, i < k < j, are related to Lemma 1.

After the local step described in Section 3.1 the processors cannot determine
which candidates match because they have access only to their own lists of
candidates. However, given a particular prefix or suffix candidate, the extra
conditions exposed in Lemma 14 allow the determination of the processors where

14

a match for this candidate may be found. So, the first step in the global joining
operation is to tag ea.ch candidate with the number of the processor(s) that may
contain a match for it. We will see that each candidate receives at most one tag,
with few exceptions.

Let us consider how to tag the prefix candidates of AP; (the case for suf­
fix candidates is similar). To simplify the discussion, we will consider a list of
possible tags for these prefixes, named PTagList (i). This list is constructed as
follows. Initially, PTagList (i) will contain one element for ea.ch processor with
number greater than i . For processor j E]i,p} an element Twill contain the
following information: the number of the processor represented tag(T) = j (the
tag itself), the maximum and the minimum of the prefix sums inside the asso­
ciated subsequence of A, Max (T) = Max (AP;) and Min (T) = Min (AP;) . T
will also contain the minimum of prefix sums in all local sequences from AP i+l
to AP;-1: Min* (T) = IDllli<>:<i Min (AP,.) (oo if j = i + 1). Min• (T) will be
useful in the search for tags in accordance to Lemma 14. The whole list of tags
is eaaily built in O(p) time.

From this list we eliminate the elements that have a tag k such that there is
j, i < j < k and Max (AP;)~ Max (AP,.). This is because any suffix candidate
NE SList (APk) would have Ma:t (N) :S Max (APi,) :S Max (AP;), not being
matchable with any prefix candidate of AP; (Lemma 14) . The elimination of all
sequences in this condition takes O(p) time.

The final list is indexed in descending order according to tag, starting with
index 1. This indexing is used to make PTagList (i) similar to a list of suffix
candidates. The tagging algorithm, to be presented shortly, is very similar to
Algorithm 2.

Based on all that was stated we may claim the following:

Affirmation 1 For any i E [I,p], PTagList (i) contains all the tags that repre­
sent local sequences that may have a suffix candidate that matches some prefix
candidate of AP;. The indexing of PTagList (i) puts it in a decreasing order
of tag(.), a (strictly) tlecreasing order of Max(.) and a non-decreasing order of
Min*(.).

Let us now consider the tagging of a particular prefix candidate M.

Observation 1 When comparing M with some TE PTagList (i), the following
cases may occur:

Case 1. Max (M) ~ Max (T). This disqualifies tag(T) for M (Lemma 14). As
PTagList (i) is ordered in a decreasing order of Max(.), the following tags in
PTagList (i) are also disqualified.

Case 2. Max (M) < Max (T). This opens two subcases:

Case 2.i Min (M) ~ Min• (T). This disqualifies tag(T) for M (again by Lemma 14).
As PList (AP;) is ordered in an increasing order of Min(.) (Lemma 6}, tag(T)
is also disqualified for the following prefix candidates of AP;.

15

Fig, 4, Graphical representation of the results of the tagging procedure. We consider
the tagging of elements of PList (AP1), represented as shaded bars on the left. The
darkened bars in the right represent the data from other processors. The numbers below
the bars represent the indices in PLiat (AP;) and PTagLiat (1) (when applicable). The
first prefix candidate has no tags due to case 1 of Observation 1. The second receives
tag 8 based on case case 2.ii. The third rejects tags 6 and 8 based on case 2.i, and is
tagged 5 based on case 2.ii. The fourth receives two tags and blocks the tagging of the
fifth prefix candidate based on case 2.ii.

Case 2.ii Min (M) < Min• (T). There is a possibility of a match, so tag(T) is
a valid tag for M. Moreover, if Min (M) < Min (T) then it is assured that there
will be a match between M and a suffix candidate in APtag(T), (namel11 N with
Max (N) = Max (T)). This disqualifies all the following tags in PTagList (i)
because they would lead to sequences that cannot be maximals, since they would
overlap the Prl-subsequence that is sure to exist. Also, prefix candidates following
M in PList (AP;) will lead to sequences that cannot be A-maximals, so they do
not need to be tagged.

Figure 4 illustrates the tagging of prefix candidates and exemplifies the three
cases above. Algorithm 3 contains the tagging procedure for the prefix candidates
of PList (AP,), called Pl for short. PTagList (i) is called Tl for short and is
preprocessed in accordance to Affirmation 1.

Lemma 15. For i E [1,p] it is possible to tag all the elements of PList (AP;)
and SList (AP;) based on the values of Max (AP;) and Min (AP;) for all j E
[l,p]. Each tag indicates which processor may contain a match for a particu­
lar candidate. Each candidate is tagged at most once, with two exceptions per
processor at the most. The time required is O(IAI/P) and the space required is
O(p).

Proof. The proof is based on Algorithm 3 and Observation 1. We first prove that
Algorithm 3 tags correctly all prefix candidates by proving the following inv&ri­
ant affirmation: at the moment the loop test will be performed, all elements of
PList (AP;) with index less than i,, received all the tags it can get and allele­
ments of PTagList (i) with index less than it were used to tag all the candidates
they can.

16

The affirmation is obviously true at the first time the test is reached. Sup­
posing it is true at the beginning of an iteration of the loop, three cases may
occur:

- line 3 is executed, because Max (Pl[ip]) 2'. Max (Tl[i1]) and case 1 applies.
No more tags may be applied to Pl[ip], so ip is incremented and the invariant
remains true.

- line 3 is executed. Case 2.i applies, so Tl[it] cannot be used to tag any prefix
candidate, allowing it to be incremented.

- line 3 is executed. Case 2.ii applies and Pl[ip] is tagged with tag(Tl(it]).
Furthermore, if Min (Pl[ip]) < Min (Tl[i1]) then, still due to case 2.ii, the
loop is ended and no more tagging is done.

Algorithm 3 Tagging a List of Prefix Candidates
Require: Lists Pl and Tl, with IPll and ITlj elements, respectively.
Ensure: Tagging of the elements of Pl.

1: ip t-- 1, i1 t-- 1, / t-- false
2: while ip ~ IP11 and i, ~ ITII and not f do
3: if Max (Pl[ip]) 2: Max (Tl[i,]) then
4: ip t-- ip + 1
5: else if Min (Pl[ip]) ~ Min• (Tl[i,]) then
6: i, t-- i, + 1
7: else
8: tag Pl(ip] with tag(Tl[i,])
9: if Min (Pl[ip]) < Min (Tl[i,]) then

10: / t-- true
11: end if
12: end if
13: end while

Therefore, Algorithm 3 performs the tagging correctly. The time required
is O(IPll + ITll) = O(IAI/P + p) = O(IAl/p), including the time to build
PTagList(i). The space required is O(p), for PTagList(i). A similar procedure
can be done to SList (AP.).

Now, suppose that a prefix candidate Pl[i;] is tagged twice, based on Tl[i~]
and Tl[i~ + 1] (The fact that the tags should be consecutive is easy to prove). The
tagging occurs only at line 3. For the second tag, it is clear that Min (Plfi;]) <
Min (Tl[i~ + 1)), since the first tagging occurred because Min (Pl[i;l) < Min* (Tl[i:J) ~
Min (Tl[i; + 11). So, when a prefix candidate receives the second tag the loop
stops. Something similar may occur to a suffix candidate, ma.king for the second
exception to the "one tag only" rule.

3.4 Finding Cross-Processors Prl-subsequences

After the tagging procedure described in the previous section, each prefix/suffix
candidate may be associated with two other processors: the one which contains

17

it and the one specified in the tag. Some candidates have no tags and may be
ignored. A few candidates have two tags and have to be duplicated for the next
phase.

The next phase involves checking the existence of cr068-processors Prl-subsequences
of A, that is, Prl-subsequences· that start within AP; and ends within AP; for
some pair (i,j), 1 $ i < j $ p. This is done by checking the elements of
PList (AP;) that are tagged with j and elements of SList (APj) that are tagged
with i. These elements must be in the local memory of one single processor for
verification by Algorithm 2. The rule to choose which processor does the verifi­
cation is simple: the one whose list of candidates is larger receives the data from
the other one. In case both lists have the same size, a deterministic rule is used
to break the tie. For example, if i + j is even then P; does the job, otherwise Pj
does it.

This may be done for all pairs of processors using two communication rounds.
In the fust one, each processor P; sends for processor P; t= P; the number of tags
j that were used in PList (AP;) or SList (AP;). Each processor sends one number
for each of the other processors, so the size of the communication round is O(p).
With these data, each pair of processors agree about which one shall receive the
data from the other one. These data are sent in the next communication round.

Notice that each processor may send/receive at most the number of data
present in its own lists of prefix/suffix candidates. Therefore, this communication
round has size O(IAl/p).

Each processor then searches for Prl-subsequences that start or end within
its local subsequence of A. Let us consider the search for the Prl-subsequences
that start within AP;, i E (1,p(. For each j E]i,p), processor P; UBeB Algorithm 2
to find the largest Prl-subsequence with ends in AP; and AP; (supposing that
this processor, and not Pj, was selected to do the job). The prefix candidates
are the elements of PList (AP;) that were tagged with j (let us say there are r
of them) and the suffix candidates that were sent by processor P; (s of them).
By Lemma 13 the time taken is O(r + s). This procedure must be repeated by
processor P; for all j E)i,p), taking a. total time of O(IPList (AP,) I). A similar
procedure must be done by P; for all j E [l,i[, taking O(ISList(AP;) I) total
time. The whole procedure takes O(IAl/p) time.

When looking for Prl-subsequences that start within AP;, processor P; must
first search for sequences that end in APp and proceed going down to AP;+i­
When a Prl-subsequence is found the procedure may stop, because the next Prl­
subsequences would be contained in the first one. This means that each processor
will find at most two new Prl-subsequences, one ending and one starting in its
local subsequence of A.

Now we may state the following lemma., already proved by the discussion
above.

Lemma 16. After tagging the prefix and suffix candidates as e:rplained in Sec­
tion S.S, all cross-processors Prl-subsequences that may be A-maximals can be
found in O(IAl/p) time and space and two communication rounds of sizes O(p)
and O(IAl/p). The number of sequences is at most 2p.

18

It should be noticed that some of the new Prl-subsequences may not have
Property Pr2. The important thing here is that the procedure just described does
not miss any possible A-maximal. The next step is finding the Prl-subsequences
that are really A-maximals.

3.5 Finding the new A-maximals

In the final step, all processors broadcast the information about the new Prl­
subsequences found. This involves a fourth communication round of size O(p)
(every processor sends at most two new subsequences and receives all of them).
Every processor then eliminates the Prl-subsequence that are contained in an­
other Prl-subsequence. This may seem redundant, but it is better to make all
processors perform this computation than spend another communication round.

It should be noticed that the procedure described in the previous section
does not generate two Prl-subsequences that overlap, unless one is contained in
the other. That is because if two Prl-subsequences overlap then the union of
them (that is, the subsequence of minimum length that contains both of them)
is also a Prl-subsequence (this is easily proved using Lemma 1). This union is
larger than each of the two overlapping subsequences and so should have been
detected by the procedure described earlier .

Each Prl-subsequence is related to a different pair of processors. All that
must be verified is which pairs generated new sequences. Algorithm 4 does this
verification.

Lemma 17. Algorithm ~ finds all cross-processors A-maximals based on the
list of cross-processors Prl-subsequences cited in Lemma 16. The time and space
taken is O(p).

Proof Lines 4 to 4 build array Vin time O(p+ ILi) = O(p). V[i], i E [l,p] stores
the largest j for which there is a new Prl-subsequence that starts within AP,
and ends within APj. If there is no such Prl-subsequence, V[i1 = i.

The following lines build the list of new A-maximals N. An invariant affirma­
tion is that at line 4 all new A-maximals that start within AP; for any i E [l, k[
were already found. This is certainly true for the first time line 4 is reached. In
the loop body, if the test in line 4 results true then a new A maximal is found.
All Prl-sequences that start within AP; fork < i < V[k} are contained in this
new A-maximal and should be ignored, which is done in line 4. If the test results
false, there is no new A-maximal that starts within AP1,, so k is incremented,
keeping the invariant true.

A final step is done locally by each processor. By examining the list of new
A-maximals, processor P; may verify if there is an A-maximal that contains its
entire local subsequence AP;, which means that its own local set of maximals
MList (AP,) should be discarded. This verification can be done in time O(p). If
there is a cross-processors A-maximal that starts or ends within AP;, a final scan
of MList (AP;) may eliminate the local maximals that are contained in a larger

19

Algorithm 4 Elimination of Prl-subsequences that are not A-maximals
Require: List L (with ILi elements) of pairs of processors for which there is a cross­

processor Prl-subsequence.
Ensure: List N (with n elements) of pairs of processors for which there is a cross-

processor A-maximal.
1: for k +- 1 to p do
2: V[k] +- k
3: end for
4: fork+- 1 to ILi do
5: i +- smallest component of L[k]
6: j +- largest component of L[k]
7: if j > V[s1 then
8: V[1] +- j
9: end if

10: end for
11: n +- o, k +- 1
12: while k < p do
13: if V[k] > k then
14: n +- n + 1
15: N[n) +- (k, V[k])
16: k +- V[k]
17: else
18: k +- k + 1
19: end if
20: end while

A-maximal. This final scan may be done in time O (log(jAj/p)) if MList (APt)
is maintained in an array used as a circular buffer and ordered according to the
position of the maximals. This is in accordance with Algorithm 1.

So we may claim the following:

Theorem 3. Using a Coarse Grained Multicomputer with p processors, all max­
imal subsequences of a sequence A (already distributed in the p local memories)
may be found in time O(IAl/p), using O(IAl/p) local space and 0(1} communi­
cation round.,.

Proof Based on the results of this section, along with Lemmas 11, 13, 15 and
16. Notice that only 4 communication rounds are necessary, three of them of size
O(p) and one with size O(IAl/p).

4 Conclusion

We have presented an algorithm that finds all maximal subsequences of a se­
quence A with linear speed-up and high scalability. The size of the communi­
cation rounds is bounded by O(IAl/p), but we conjecture that if !Al » p the
average size of the communication rounds should be much lower than IAl/p. In
fact, eicperimenting with a sequence X of random numbers we conjecture that

20

the average size of PList (X) is O(log(IXI)). The running time of the whole al­
gorithm is dominated by the time of the first step (finding the local maximal
subsequences).

It is not trivial to derive this parallel O(IAI/P) time and O(IAI/P) space
per processor algorithm, and not intuitive that a parallel algorithm requiring a
constant number of communication rounds can be found . We had to explore the
properties of those local maximals that are potential candidates to be merged
together to form larger maximals, as well as an efficient merge process to join
candidate local maximals. This is the reason why we required many auxiliary
lemmas.

Some adaptations may be done to this algorithm. For example, it is easy to
make it work with a circular sequence of numbers, which may be important when
dealing with cucular cha.ins of nucleotides. Also, if only the best k maximals are
needed, a parallel selection algorithm [16] may be used to find the k-th best
maximal in O(IAl/p) time and O(logp) communication rounds.

References

1. C. E. R. Alves, E. N. Caceres, and S. W. Song. BSP/CGM algorithms for maxi­
mum subsequence and maximum subarray. In Proceedings Euro PVM/MPI fW0-4
• 11th European PVM/MPI Users' Group Meeting, volume 3241 of Lecture Note&
in Computer Science, pages 13~146. Springer Verlag, 2004.

2. J. L. Bates and R. L. Constable. Proofs as programs. ACM Tran.mctions on
Programming Languages and S118tem1, 7(1):113-136, January 1985.

3. J. Bentley. Programming Pearla. Addison-Wesley, 1986.
4. J. V. Braun and H. G. Miiller. Statistical methods for DNA sequence segmentation.

Statist. Sci., 13:142-162, 1998.
5. M. Csuros. Algorithms for finding maximal-scoring segment sets. In Proceeding•

WAB/2004 - 4th Workahop on Algorithms in Bioinformatica, Lecture Notes in
Computer Science. Springer Verlag, 2004.

6. F. Dehne, X. Deng, P. Dymond, A. Fabri, and A. A. Kokhar. A randomized
parallel 3d convex hull algorithm for coarse grained multicomputers. In Proceedings
SPAA '95 - ACM Sympoaium on Parallel Algorithm• and Architectures, pages 27-
33. ACM Press, 1995.

7. F. Dehne, A. Fabri, and A. Rau-Chaplin. Scalable parallel geometric algorithms
for coarse grained multicomputers. In Proc. ACM 9th Annual Computational Ge­
ometry, pages 298--307, 1993.

8. L. G. Valiant et al. General purpose parallel architectures. In J. van
Leeuwen, editor, Handbook of Theoretical Computer Science, pages 943--972. MIT
Press/Elsevier, 1990.

9. Y. X. Fu and R . N. Cwnow. Maximum likelihood estimation of multiple change
points. Biometrika, 77:563--573, 1990.

10. S. Karlin and V. Brendel. Chance and significance in protein and dna sequence
analysis. Science, 257:39--49, 1992.

11. R. J . Klein, Z. Misulovin, and S. R. Eddy. Noncoding RNA genes identified in
AT-rich hyperthermophiles. Proc . Natl. Acad. Sci. USA, 99(11):7542-7547, 2002.

12. W. Li, P. Bernaola-Galvan, F . Haghighi, and I. Grosse. Applications of recursive
segmentation to the analysis of DNA sequences. Comput. Chem., 26:491-510, 2002.

21

13. K. Perumalla and N. Deo. Parallel algorithms for mmmum subsequence and
maximum subarray. Parallel ProceHing Letter~, 5(3):367- 373, 1995.

14. K. Qiu and S. G. A.kl. Parallel maximum sum algorithms on interconnection
networks. Technical report, Queen's Unversity, Department of Computer and In­
formation Science, 1999. No. 99-431.

15. W. L. Ruzzo and M. Tom pa. A linear time algorithm for finding all maximal
scoring subsequences. In Proceeding& of the Seventh International Conference on
Intelligent S11atema for Molecular Biology, pages 234-241. AAAI Press, August
1999.

16. E. L. G. Sauk.as and S. W. Song. A note on parallel selection on coarse grained
multicomputers. Algorithmica, 24:371-380, 1999.

17. L. Valiant. A bridging model for parallel computation. Communication of the
ACM, 33(8):103-111, 1990.

18. Zhaofang Wen. Fast parallel algorithm for the maximum sum problem. Pamllel
Computing, 21:461-466, 1995.

22

RELAT6RIOSTECNICOS

DEPARTAMENTO DE CffiNCIA DA COMPUTACAO
lnstituto de Matematica e Estatfstica da USP

A listagem contendo os relat6rios t&:nicos anteriores a 2000 podera ser consultada ou
solicitada a Secretaria do Departamento, pessoalmente, por carta ou e-mail
(mac@ime.usp.br).

Douglas Moreto and Markus Endler
EVALUATING COMPOS/IE EVENTS USING SHARED IREES
RT-MAC-2001-01, janeiro 2001, 26 pp.

Vera Nagamura and Markus Endler
COORDINATING MOBILE AGENTS THROUGH THE BROADCAST CHANNEL
RT-MAC-2001-02,janeiro 2001, 21 pp.

Julio Michael Stem
THE FULLY BAYESIAN SIGNIFICANCE JEST FOR THE COV AR!ANCE PROBLEM
RT-MAC-2001-03, fevereiro 2001, 15 pp.

Marcelo Finger and Renata Wassermann
TABLEAUX FOR APPROX/MAJE REASONING
RT-MAC-2001-04, mari;:o 2001, 22 pp.

Julio Michael Stern
FULL BAYESIAN SIGNIFICANCE JESTS FOR MULTIVARIAIE NORMAL
STRUCTURE MODELS
RT-MAC-2001-05,junho 2001, 20 pp.

Paulo Sergio Naddeo Dias Lopes and Heman Astudillo
VIEWPOINTS IN REQUIREMENTS ENGINEERING
RT-MAC-2001-06,julho 2001, 19 pp.

Fabio Kon
0 SOFIWARE ABERTO EA QUEST.AO SOCIAL
RT- MAC-2001-07, setembro 2001, 15 pp.

Isabel Cristina Italiano, Joiio Eduardo Ferreira and Osvaldo Kotaro Takai
ASPECTOS CONCEITUAIS FM DATA WAREHOUSE
RT-MAC-2001-08, setembro 2001, 65 pp.

Marcelo Queiroz , Carlos Humes Junior and Joaquim Judice
ON FINDING GLOBAL OPTIMA FOR THE HINGE FIITING PROBLEM
RT-MAC-2001-09, novembro 2001, 39 pp.

Marcelo Queiroz , Joaquim Judice and Carlos Humes Junior
11/E SYMMEl'RIC EIGENVALUE COMPLFMENTARIIY PROBLEM
RT- MAC-2001-10, novembro 2001, 33 pp.

Marcelo Finger, and Fernando Antonio Mac Crackoo Cez.ar
BANCO DE DADOS OBSOIESCENIES E UMA PROPOSTA DE IMPLFMENTA(:AO.
RT- MAC - 2001-11- novembro 2001, 90 pp.

Flavio Soares Correa da Silva
WWARDS A LOGIC OF PERISHABLE PROPOSITIONS
RT- MAC- 2001-12 - novembro 2001, 15 pp.

Alan M. Durham
0 DESENVOLVIMENTO DE UM INTERPRETADOR ORIENTADO A OB.JEWS PARA
ENS/NO DE llNGUAGENS
RT-MAC-2001-13 - dezembro 2001, 21 pp.

Alan M. Durham
A CONNECTIONLESS PROTOCOL FOR MOBILE AGENTS
RT-MAC-2001-14 - dezembro 2001, 12 pp.

Eug&io Akihiro Nassu e Marcelo Finger
0 SIGNIFICADO DE "AQW" FM SISTFMAS TRANSACIONAIS M6VEJS
RT-MAC-2001-15 - dezembro 2001, 22 pp.

Carlos Humes Junior, Paulo J. S. Silva e Benar F. Svaiter
SOME INEXACT HYBRID PROXIMAL AUGMENTED LAGRANGIAN ALGORl11IMS
RT-MAC-2002-01 - Janeiro 2002, 17 pp.

Roberto Speicys Cardoso e Fabio Kon
APIJCA<;AO DE AGENTF,S M6VEIS FM AMBIENTF,S DE COMPUTACi.O UBiQUA.
RT-MAC-2002-02- Fevereiro 2002, 26 pp.

Julio Stern and Zacks
TE.STING 11/E INDEPENDENCE OF POISSON VARIATES UNDER 11/E HOLGATE
BIV ARZATE DISTRJBU'nON: TilE POWER OF A NEW EVIDENCE TEST.
RT-MAC-2002-03-Abril 2002, 18 pp.

E. N. Caceres, S. W. Song and J. L. Szwarcfiter
A PARALLEL ALGORI11IM FOR TRANSITWE CLOSURE
RT-MAC - 2002-04 - Abril 2002, 11 pp.

Regina S. Burachik, Suz.ana Scheimberg, and Paulo J. S. Silva
A NO'FE ON THE EXISTENCE OF ZEROES OF CONVEXLY REGULARIZED SUMS
OF MAXIMAL MONOTONE OPERATORS
RT- MAC 2002-05 - Maio 2002, 14 pp.

C.E.R Alves, E.N. Caceres, F. Dehne and S. W. Song
A PARAMETERIZED PARALLEL ALGORITHM FOR EFFICIENT BIOLOGICAL
SEQUENCE COMP ARJSON
RT-MAC-2002-06 - Agosto 2002, I I pp.

Julio Micbael Stem
SIGNIFICANCE 'TESTS, BELIEF CALCULI, AND BURDEN OF PROOF IN LEGAL
AND SCIENTIFIC DISCOURSE
RT- MAC - 2002-07 - Setembro 2002, 20pp.

Andrei Goldchleger, Fabio Kon, Alfredo Goldman vel Lejbman, Marcelo Finger and Siang
Wun Song.
INTEGRADE: RUMO A UM SISTEMA DE COMPUTA<;AO EM GRADE PARA
APROVEITAMENTO DE RECURSOS OCIOSOS FM MAQUINAS
COMPAR11LHADAS.
RT-MAC - 2002-08 - Outubro 2002, 27pp.

Flavio Protasio Ribeiro
011ERL/B -A C IJBRARY FOR THEOREM PROVING
RT- MAC-2002-09-Dezembrn 2002, 28pp.

Cristina G. Fernandes, Edward L. Green and Arnaldo Mandel
FROM MONOMIALS TO WORDS TO GRAPHS
RT-MAC-2003-01- fevereiro 2003, 33pp.

Andrei Goldchleger, Marcio Rodrigo de Freitas Carneiro e Fabio Kon
GRADE: UM PADRAO ARQU/TETURAL
RT-MAC-2003-02 -mary0 2003, l9pp.

C. E. R Alves, E. N. Caceres and S. W. Song
SEQUENTIAL AND PARALLEL ALGORITHMS FOR THE ALL-SUBSTRINGS
WNGESTCOMMON SUBSEQUENCE PROBLFM
RT- MAC - 2003-03 - abril 2003, 53 pp.

Said Sadique Adi and Carlos Eduardo Ferreira
A GENE PREDIC110N ALGORITHM USING THE SPIJCED AIJGNMENT PROBLEM
RT- MAC - 2003-04 - maio 2003, I 7pp.

Eduardo Laber, Renato Carmo, and Yoshiharu Kohayakawa
QUERYING PRICED INFORMA110N IN DATABASES: 11IE CONJUNTIVE CASE
RT-MAC - 2003-05 -julho 2003, 19pp.

E. N. Caceres, F. Dehne, H. Mongelli, S. W. Song and J.L. Szwarcfiter
A COARSE-GRAINED PARALLEL ALGORIIHM FOR SPANNING TREE AND
CONNECTED COMPONENTS
RT-MAC-2003-06-agosto 2003, 15pp.

E. N. Caceres, S. W. Song and J.L. Szwarcfiter
PARALLEL ALGORJ1MS FOR MAXIMAL CLJQUF,S IN CIRCLE GRAPHS AND
UNJIBS1RICTED DEPTH SEARCH
RT-MAC - 2003-07 - agosto 2003, 24pp.

Julio Michael Stem
PARA CONSISTENT SENSITIVITY ANALYSIS FOR BAYESIAN SIGNIFICANCE JESTS
RT-MAC - 2003-08 - dezembro 2003, 15pp.

Lourival Paulino da Silva e Flavio Soares Correa da Silva
A FORMAL MODEL FOR UIE FIFTH DISCIPLINE
RT-MAC-2003-09 - dezembro 2003, 75pp.

S. Zacks and J. M. Stem
SEQUEN11AL F,S11MA110N OF RA110S, WITH APPLICA110N TO BAYESIAN
ANALYSIS
RT-MAC -2003-10 - dezembro 2003, 17pp.

Alfredo Goldman, Fabio Kon, Paulo J. S. Silva and Joe Yoder
BEING EXTREME IN mE CLASSROOM· EXPERIENCF,S TF.ACHING XP
RT-MAC-2004-01-janeiro 2004, 18pp.

Cristina Gomes Fernandes
MUL11LENGTH SINGLE PAIR SHORTEST DIS.JOINT PATHS
RT-MAC 2004-02 - fevereiro 2004, l Spp.

Luciana Brasil Rebelo
ARVORE GENEAL6GICA DAS ONTOWGIAS
RT- MAC 2004-03 - fevereiro 2004, 22pp.

Marcelo Finger
TOWARDS POLYNOMIAL APPROXIMA110NS OF FULL PROPOS/110NAL LOGIC
RT- MAC 2004-04- abril 2004, 15pp.

Renato Carmo, Tomas Feder, Yoshiharu Kohayakawa, Eduardo Laber, Rajeev Motwani,
Liadan O' Callaghan. Rina Panigrahy, Dilys Thomas
A TWO-PLAYER GAME ON GRAPH FACTORS
RT-MAC 2004-05 -Julho 2004

Paulo J. S. Silva, Carlos Humes Jr.
RESCALED PROXIMAL MElliODS FOR UNEARLY CONSTRAINED CONVEX
PROBLEMS
RT-MAC 2004-06-setembro 2004

Julio M. Stem
A CONSIRUC11VIST EPISTEMOLOGY FOR SHARP STATIS11CAL HYPOTHESES IN
SCIENTIFIC RESEARCH
RT-MAC 2004-07- outubro 2004

Arlindo Flavio da Concei~ao, Fabio Kon
0 USODOMECANISMODEPARESDEPACO1ESSOBREREDES/EEE802.llb
RT-MAC 2004-08-outubro 2004

Carlos H. Cardonha, Marcel K. de Carli Silva e Cristina G. Fernandes
COMPUTAr;AO QUANTICA: COMPLEX/DADE E ALGORI1MOS
RT- MAC 2005-01 -janeiro 2005

C.E.R. Alves, E . N. Caceres and S. W. Song
A BSPICGM ALGORITHM FOR FINDING ALL MAXIMAL CONTIGUOS
SUBSEQUENCES OF A SEQUENCE OF NUMBERS
RT- MAC- 2005-02-Janeiro 2005

