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ABSTRACT

For an irreducible affine variety X over an algebraically closed field of

characteristic zero we define two new classes of modules over the Lie al-

gebra of vector fields on X—gauge modules and Rudakov modules, which

admit a compatible action of the algebra of functions. Gauge modules

are generalizations of modules of tensor densities whose construction was

inspired by non-abelian gauge theory. Rudakov modules are generaliza-

tions of a family of induced modules over the Lie algebra of derivations of

a polynomial ring studied by Rudakov [23]. We prove general simplicity

theorems for these two types of modules and establish a pairing between

them.
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Introduction

Classification of complex simple finite-dimensional Lie algebras by Killing(1889),

[15] and Cartan (1894) [8] shaped the development of Lie theory in the first

half of the 20th century. Since Sophus Lie, the Lie groups and corresponding

Lie algebras (as infinitesimal transformations) were related to the symmetries

of geometric structures which need not be finite-dimensional. Later infinite-

dimensional Lie groups and algebras were connected with the symmetries of

systems which have an infinite number of independent degrees of freedom, for

example in Conformal Field Theory, e.g., [1], [28]. The discovery of the first

four classes of simple infinite-dimensional Lie algebras goes back to Sophus Lie

who introduced certain pseudogroups of transformations in small dimensions.

This work was completed by Cartan who showed that corresponding simple

Lie algebras are of type Wn, Sn, Hn and Kn [9]. These four classes of Cartan

type algebras were the first examples of simple infinite-dimensional Lie algebras.

The general theory of simple infinite-dimensional Lie algebras at large is still

undeveloped, in particular their representation theory.

The first Witt algebra W1 is the Lie algebra of polynomial vector fields on

a circle whose universal central extension is the famous Virasoro algebra which

plays a crucial role in quantum field theory. Mathieu [19] classified irreducible

modules with finite-dimensional weight spaces for the first Witt algebra W1.

Higher rank Witt algebras Wn are simple Lie algebras of polynomial vector

fields on an n-dimensional torus. Significant efforts were required to generalize

the results of Mathieu for an arbitrary n: [26], [17], [11], [12], [3], [20], [4], [5],

resulting in the classification of simple weight modules with finite-dimensional

weight spaces in [5]. We note that an understanding of the representations ofWn

is also important for the representation theory of toroidal Lie algebras [2].

The first Witt algebra can be realized as the algebra of meromorphic vector

fields on the Riemann sphere P1(C) which are holomorphic outside of 0 and ∞.

This realization has a natural generalization to the case of general Riemann

surfaces. With a compact Riemann surface Σ and a finite subset S of Σ one

can associate the Krichever–Novikov type vector field Lie algebra [16] of those

meromorphic vector fields on Σ which are holomorphic outside of S. The genus

zero case and S = {0,∞} corresponds to the first Witt algebra. For the theory

of Krichever–Novikov Lie algebras we refer to [24].
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For an arbitrary irreducible affine varietyX ⊂ An
k over an algebraically closed

field k of characteristic 0, the Lie algebra VX of polynomial vector fields was

studied in [13], [14], [27] (see also [6]). It can be identified with the derivation

algebra of the coordinate ring of X . This algebra is not simple in general. In

fact, VX is simple if and only if X is a smooth variety. In this paper we begin a

systematic study of representations of the Lie algebras VX for arbitrary smooth

affine varieties X aiming to generalize successful representation theory of Witt

algebras. Note that the general case is significantly more complicated since

the standard tools of Lie theory, like Cartan subalgebras, root decompositions

etc., do not apply in this case. Even in the case when X is an affine elliptic

curve, the Lie algebra VX does not contain non-zero semisimple or nilpotent

elements [6]. As a result it was not even clear how to approach the problem of

classifying or at least constructing simple modules over VX for a general smooth

varietyX , since techniques of the classical representation theory of simple finite-

dimensional Lie algebras cannot be used. Representations of VX when X is an

affine space An
k were studied by Rudakov [23] but the classification problem of

simple modules is still open (cf. [18], [22], [10]). The case of a sphere X = S2

was treated in [7] (see also [6]). A new class of modules (tensor modules) was

constructed, these are modules of tensor fields on a sphere. The main idea of

[7] which goes back to [12] suggests that as a first step one needs to study the

category of representations for the Lie algebra VX which admit a compatible

action of the algebra AX of polynomial functions on the variety X . This idea

was successfully implemented in [5] in the case of an n-dimensional torus and

led to the classification of simple weight modules with finite-dimensional weight

spaces.

Developing ideas of [7] we introduce a category AV-Mod of VX -modules with

a compatible action of AX for an arbitrary irreducible affine variety X . The

main goal of the paper is the construction of two families of simple objects in

AV-Mod: gauge modules and Rudakov modules.

Rudakov modules Rp(U) are generalizations of certain induced modules over

the Lie algebra of derivations of a polynomial ring studied by Rudakov [23].

These modules are associated with a point p ∈ X and a finite-dimensional

representation U of the Lie algebra L+ of vector fields of non-negative degree

on an affine space. Modules studied by Rudakov in [23] correspond to X = An,

p = 0 and simple modules U .
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Gauge modules are generalizations of modules of tensor densities (or simply

tensor modules) whose construction was inspired by non-abelian gauge theory.

Tensor modules were the key objects in the classification theory forWn (modules

of intermediate series in the case of W1) [5]. The algebra of functions AX , the

algebra of vector fields VX , and the space of 1-forms are natural examples of

tensor modules. Let h be a standard minor (non-zero r×r-minor, where r is the

rank of the matrix) of the Jacobian matrix of the defining ideal of X . Denote

by A(h) the localization of A by h. We define gauge AV-modules as submodules

of A(h) ⊗U for each chart, where U is a finite-dimensional L+-module, and the

action of VX involves gauge fields {Bi}. We will say that such gauge modules

are associated with U . The tensor modules defined in [7] are examples of gauge

modules where the functions Bi are all zero. In particular, we obtain classical

modules of tensor densities when X is the torus andWn is the derivation algebra

of Laurent polynomials.

We expect a family of gauge modules to be quite large as indicated in the

following conjecture.

Conjecture 1: Every AVX -module that is finitely generated over AX is a

gauge module.

Our main result is the following

Main Theorem: Let k be an algebraically closed field of characteristic 0,

X ⊂ An
k an irreducible affine variety of dimension s, and U a finite-dimensional

simple gls(k)-module. Then

• The Rudakov module Rp(U) is a simple AV-module for any non-singular

point p ∈ X .

• If X is smooth, then any gauge AV-module associated with U is simple.

This result allows us to construct new families of simple AV-modules. We note

that the question of simplicity of restrictions of Rudakov and gauge modules to

the Lie algebra VX remains open. We are going to address this question in a

subsequent paper.
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Preliminaries

Functions and vector fields on algebraic varieties. Our general setup

follows the papers [6] and [7] where more details can be found. We reiterate the

basics of the setup here.

Let X ⊂ A
n be an irreducible affine algebraic variety over an algebraically

closed field k of characteristic zero, and let IX = 〈g1, . . . , gm〉 be the ideal of

all functions that vanish on X . Let AX := k[x1, . . . , xn]/IX be the algebra of

polynomial functions on X . Denote by VX := Derk(AX) the Lie algebra of

polynomial vector fields on X . We shall often drop the subscripts and write

just A and V for AX and VX . Note that V is an A-module and that A is a left

V-module. We can give a more explicit description of the Lie algebra V using

Lie algebra Wn of vector fields on An, Wn := Der(k[x1, . . . , xn]). It was shown

in [6] that there is an isomorphism of Lie algebras:

V � {μ ∈ Wn | μ(IX) ⊂ IX}/{μ ∈ Wn | μ(k[x1, . . . , xn]) ⊂ IX}.
Alternatively, we can consider V as a subalgebra of

n⊕
i=1

A
∂

∂xi
.

If we define a matrix J = ( ∂gi
∂xj

)i,j and consider it as a map J : A⊕n → A⊕m,

then
∑n

i=1 fi
∂

∂xi
∈ V if and only if (f1, . . . , fn) ∈ Ker J [6].

Let r :=rankF J where F is the field of fractions of A, and let {hi} be the non-

zero r×r-minors of J . Define charts N(hi) :={p∈X |hi(p) 
=0}. If X is smooth,

these charts cover X and we call this set of charts the standard atlas for X .

Recall from [7] that t1, . . . , ts ∈ A are called chart parameters in the

chart N(h) if the following conditions hold:

• t1, . . . , ts are algebraically independent over k, so that k[t1, . . . , ts] ⊂ A.

• Every f ∈ A is algebraic over k[t1, . . . , ts].

• The derivation ∂
∂ti

of k[t1, . . . , ts] extends uniquely to a derivation of

the localized algebra A(h).
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From these conditions it also follows that s = dimX and that

Der(A(h)) =

s⊕
i=1

A(h)
∂

∂ti
;

see [7] for details. Since V = Der(A) ⊂ Der(A(h)), each vector field η has

a unique representation η =
∑s

i=1 fi
∂
∂ti

for some fi ∈ A(h). The standard

chart parameters in N(hi) are chosen to be the variables xk such that the

k-th column of J is not part of the minor hi.

We recall the following result from [6, Section 3].

Lemma 2: Let t1, . . . , ts be standard chart parameters in the chart N(h). Then

h ∂
∂ti

∈ V for all i.

The following result was also stated in [6].

Lemma 3: Let t1, . . . , ts be standard chart parameters in the chart N(h), and

let p ∈ N(h). Let ti = ti− ti(p). Then t1 . . . , ts are local parameters at p in the

classical sense of [25, Section 2.2.1].

Proof. We need to show that {t1, . . . , ts} is a basis for mp/m
2
p. Clearly, ti ∈ mp.

Since s = dimX , it suffices to prove linear independence. Suppose that∑s
i=1 citi ∈ m2

p for some ci ∈ k. Then d(
∑s

i=1 citi) ∈ mp for all derivations

d ∈ DerA. Taking d = h ∂
∂tk

we get h(p)ck1(p) = 0 ⇔ ck = 0 for all k, which

shows that the set {t1, . . . , ts} is linearly independent in mp/m
2
p, and thus it is

a basis.

AV-modules. We shall study spaces M equipped with module structures over

both the commutative unital algebra A and over the Lie algebra V such that

the two actions are compatible in the following sense:

η · (f ·m) = η(f) ·m+ f · (η ·m)

for all η ∈ V , f ∈ A, and m ∈ M . Equivalently, M is a module over the smash

product A#U(V); see [21] for details. For brevity we define AV := A#U(V). The
category of AV-modules is equipped with a tensor product: for AV-modules M

and N , the space M ⊗A N is also an AV-module, where we have

η · (m⊗ n) := η ·m⊗ n+m⊗ η · n

as usual; see [7, Section 2] for details.
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The category of AV-modules is also equipped with duals. First of all, for

M ∈ AV-Mod we define

M∗ = Homk(M,k)

to be the full dual space. Here a function f acts by (f ·ϕ)(m) := ϕ(f ·m), and

a vector field η acts by (η · ϕ)(m) = −ϕ(η ·m). These actions are compatible,

so M∗ is an AV-module. If V possesses an abelian ad-diagonalizable Cartan

subalgebra h, we may also consider the restricted dual of M ; this is the

submodule

M
∗
:=

⊕
λ∈h∗

Homk(Mλ,k)

of M∗, where Mλ is the weight subspace of M of weight λ with respect to h.

On the other hand, we also define

M◦ := HomA(M,A).

We equip this space with the natural A-action (f · ϕ)(m) = ϕ(f · m), and we

define the action of a vector field η by

(η · ϕ)(m) := −ϕ(η ·m) + η(ϕ(m)).

These actions are also compatible, so M◦ is an AV-module.

Duals and tensor products allow us to construct more AV-modules. In par-

ticular, the module of 1-forms may be defined as Ω1
X = V◦

X .

Example 4: Let X = S1 be the circle. Here A = k[t, t−1] and V is spanned

by {ek}k∈Z where ek = tk+1 ∂
∂t . For each α ∈ k we have an AV-module Fα

spanned by {vs}s∈Z where the action is given by

tk · vs = vs+k and ek · vs = (s+ αk)vk+s.

In this setting we get the following relation between the different duals:

F◦
α � F−α and F

∗
α � F1−α.

Filtration of V. Fix a standard chart N(h) with chart parameters t1, . . . , ts

and fix a point p in this chart. Write mp for the maximal ideal in A consisting

of functions that vanish at p. For l ≥ −1, define V(l) := {η ∈ V | η(A) ∈ ml+1
p }.

Then we have a filtration of subalgebras

V = V(−1) ⊃ V(0) ⊃ V(1) ⊃ · · · ,
with [V(l),V(k)] ⊂ V(l+ k) for l+ k ≥ −1. This also shows that for l ≥ 0, V(l)
is an ideal of V(0). To simplify notation we shall sometimes write V+ for V(0).
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Lemma 5: We have V(l) = ml+1
p V .

Proof. It is clear that ml+1
p V ⊂ V(l). For the reverse inclusion, take η ∈ V(l)

and express it as

η =
s∑

i=1

fi
∂

∂ti
.

Then by the definition of V(l) we have hfk = hη(tk) ∈ ml+1
p for each k. Hence

fk ∈ ml+1
p as h(p) 
= 0. Since h ∂

∂ti
∈ V we have hη ∈ ml+1

p V .
But we also have (h− h(p))l+1η ∈ ml+1

p V . Expanding this and using the fact

that hη ∈ ml+1
p V we also get h(p)l+1η ∈ ml+1

p V . Since h(p) 
= 0 we finally have

η ∈ ml+1
p V which completes the proof.

Rudakov modules

Let p be a non-singular point of X and let {t1, . . . , ts} be the standard chart

parameters centered at p, i.e., t1(p) = · · · = ts(p) = 0. In other words, given

standard chart parameters xj1 , . . . , xjs , we take ti = xji − xji(p).

Write L for the algebra of polynomial derivations,

L =

s⊕
i=1

k[X1, . . . , Xs]
∂

∂Xi
.

If Q is a monomial of degree d, we define the degree of the derivation Q ∂
∂Xi

to

be d − 1. For l ≥ −1, let L(l) be the subalgebra of L consisting of derivations

with no terms of degree less than l. We shall usually write L+ for L(0). This

concept of degrees also extends to the Lie algebra

L̂ := Der(k[[X1, . . . , Xs]]) =

s⊕
i=1

k[[X1, . . . , Xs]]
∂

∂Xi
,

and we have filtrations

L ⊃ L+ ⊃ L(1) ⊃ L(2) ⊃ · · ·
and

L̂ ⊃ L̂+ ⊃ L̂(1) ⊃ L̂(2) ⊃ · · · .
Consider the embedding V ⊂ L̂ with ti �→ Xi discussed in [6, Section 3]. It

follows from Lemma 5 that in this embedding we have V(l) = L̂(l) ∩ V .
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Lemma 6: (a) For any element μ ∈ L whose terms all have degree less than

N , there exists η ∈ V such that

η = μ+ terms of degree ≥ N.

(b) There is an isomorphism of Lie algebras

V+/V(l) � L+/L(l).

(c) In particular, we have

V+/V(1) � gls(k).

Proof. For part (a) it is sufficient to show that for every N ∈ N there exists

η ∈ V such that

η =
∂

∂Xi
+ terms of degree ≥ N.

Then the claim of (a) will follow since such vector fields may be multiplied by

a polynomial in X1, . . . , Xs.

To construct η we first take h ∂
∂Xi

∈ V . Since h(p) 
= 0, the power series for h

is invertible, and we can write

h−1 = qN + terms of degree > N,

with qN ∈ k[X1, . . . , Xs] ⊂ A. Then η = qNh ∂
∂Xi

will have the desired form.

Part (b) is an immediate consequence of (a), and part (c) follows from the

fact that L+/L(1) � gls(k).

Let U be a finite-dimensional L+-module. By the discussion after [3, Lemma

2], there exists l ∈ N such that

L(l)U = (0),

hence U is an L+/L(l)-module. The isomorphism of Lemma 6(b) defines a

V+-module structure on U such that V(l)U = (0). We also define an A-action

on U by evaluation: f · u := f(p)u for f ∈ A and u ∈ U . Note that mpU = (0).

For η ∈ V+ we have

η · (f · u) = f(p)η · u = f · (η · u) + η(f) · u,
since η(f) ∈ mp. This shows that the two actions are compatible and that U is

in fact an A#U(V+)-module.
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The Rudakov module Rp(U) is defined as an induced module

Rp(U) := A#U(V) ⊗A#U(V+) U.

Remark 7: The special case when X = An, p = 0, and U is a simple gln-module

was studied by Rudakov in [23]. The corresponding module R0(U) was shown

to be simple as a Wn-module whenever R0(U) does not appear in the de Rham

complex.

Theorem 8: Let U be a finite-dimensional simple V+/V(1) � gls(k)-module,

and let p be a non-singular point ofX . Then the corresponding Rudakov module

Rp(U) is a simple AVX -module.

To prove this theorem we need some preliminary results.

We define a chain of subspaces in the Rudakov module by R0 := 1 ⊗ U and

Ri+1 := Ri + V · Ri. We also let Ri := (0) for i < 0. This gives a filtration

R0 ⊂ R1 ⊂ R2 ⊂ · · · with

∞⋃
i=0

Ri = Rp(U).

Lemma 9: We have

(a) mpRl ⊂ Rl−1,

(b) V(j)Rl ⊂ Rl−j for all j.

Proof. We proceed to prove these claims by induction on l. We first prove (a).

For l = 0, claim (a) obviously holds. For the inductive steps we note that

mpRl+1 ⊂ mpRl + VmpRl + [mp,V ]Rl.

Here the two first terms on the right side lie in Rl, and since [η, f ] = η(f) in

the algebra A#U(V), the third term also lies in ARl = (k⊕mp)Rl = Rl. Thus

claim (a) holds by induction.

For claim (b) we first consider the base case l = 0. Since V(1)U = 0 and

V(0)U ⊂ U , the base case is trivially true for j ≥ 0. For j = −1, the base case

holds by definition of the sequence Rl.

For the induction step we assume that for a fixed l and for all j ≥ −1 we

have V(j)Rl ⊂ Rl−j , and we compute

V(j)Rl+1 ⊂V(j)Rl + V(j)VRl ⊂ V(j)Rl + VV(j)Rl + [V(j),V ]Rl

⊂V(j)Rl + VRl−j + V(j − 1)Rl ⊂ R(l+1)−j ,

and claim (b) also follows by induction.
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Corollary 10: Both mp and V(1) act locally nilpotent on Rp(U).

Remark 11: It follows from the previous Corollary that for any v ∈ Rp(U)

the space Av is finite-dimensional. Hence the Rudakov module is not finitely

generated as an A-module.

Proposition 12: Let U be a finite-dimensional L+-module and let Rp(U) be

the corresponding Rudakov module. For any non-zero v ∈ Rp(U) we have

Av ∩ (1⊗ U) 
= (0).

Proof. Pick l such that v ∈ Rl. Consider the following elements of V , given by

Lemma 6(a):

ηi =
∂

∂Xi
+ terms of degree ≥ l.

Then {η1, . . . , ηs} is a basis of the space V/V+. Note that for any w ∈ Rl−2

we have ηiηjw = ηjηiw since [ηi, ηj ]w ∈ V(l − 1)Rl−2 ⊂ R−1 = (0). Using the

Poincaré–Birkhoff–Witt theorem and this commutativity relation we may write

(1) v =

dimU∑
i=1

Pi(η1, . . . , ηs)ui,

where Pi(η1, . . . , ηs) are polynomials of degree ≤ l, and {ui} is a basis of U .

We claim that

(2) tk · v = −
dimU∑
i=1

( ∂

∂ηk
Pi(η1, . . . , ηs)

)
ui.

Indeed, tkui = 0 and [tk, ηi] = −ηi(tk) = −δi,k + a where a ∈ ml+1
p and by

Lemma 9(a) we have aRl = 0.

Now choose a polynomial P among {Pi} with maximal degree d, and

let ηr11 · · · ηrss be a monomial occurring in P with non-zero coefficient and with∑
ri = d. Then the above discussion shows that Av contains the non-zero

element

tr11 · · · trss · v ∈ 1⊗ U.

This completes the proof.

We are now ready to prove the main theorem of this section.
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Proof of Theorem 8. To establish the simplicity of Rp(U) we need to show

that every non-zero vector v ∈ Rp(U) generates Rp(U) as an AV-module. By

Proposition 12, the A-submodule generated by v contains a non-zero vector

u ∈ U . Since U is a simple V+-module, the AV-submodule generated by v

contains 1⊗U . By construction of the Rudakov module 1⊗U generates Rp(U).

This completes the proof of the theorem.

We end this section with a result on isomorphisms of Rudakov modules.

Theorem 13: Let U,U ′ be two L+-modules and p, p′ be non-singular points

on X . Rudakov modules Rp(U) and Rp′(U ′) are isomorphic as AV-modules if

and only if p = p′ and U ∼= U ′.

Proof. Let us assume that Rp(U) and Rp′(U ′) are isomorphic as AV-modules.

By Corollary 10, mp acts locally nilpotently onRp(U). If p 
=p′, then 1∈mp+mp′

and mp′ does not act locally nilpotently on Rp(U). Hence we must have p = p′.
We claim that

{v ∈ Rp(U) | mpv = (0)} = 1⊗ U.

To prove this claim we choose v ∈ Rl and, as in the proof of Proposition 12, we

expand v as in (1). Note that ηk1
1 . . . ηks

s ui with k1 + . . . + ks ≤ l are linearly

independent by the Poincaré–Birkhoff–Witt theorem and form a basis of Rl.

Our claim then follows immediately from (2).

We conclude that an isomorphism map Rp(U) → Rp(U
′) must map 1 ⊗ U

to 1⊗ U ′, and this must be an isomorphism of U and U ′ as L+-modules.

Gauge modules

We use notation of the previous sections. Let h be a non-zero r×r-minor in the

Jacobian matrix J , where r = rankF J , and let (U, ρ) be a finite-dimensional

L+-module.

Definition 14: The functions Bi : A(h) ⊗ U → A(h) ⊗ U , 1 ≤ i ≤ s, are called

gauge fields if

(i) each Bi is A(h)-linear,

(ii) [Bi, ρ(L+)] = 0,

(iii) [ ∂
∂ti

+Bi,
∂
∂tj

+Bj ] = 0 as operators on A(h) ⊗ U for all 1 ≤ i, j ≤ s.
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Lemma 15: Let (U, ρ) be a finite-dimensional L+-module and let {Bi} be gauge

fields, 1 ≤ i ≤ s. Then the space A(h) ⊗ U is an A(h)DerA(h)-module with the

following action of DerA(h) =
⊕s

i=1 A(h)
∂
∂ti

:

(3)
(
f

∂

∂ti

)
·(g⊗u) = f

∂g

∂ti
⊗u+gfBi(1⊗u)+

∑
k∈Zs

+\{0}

1

k!
g
∂kf

∂tk
⊗ρ

(
Xk ∂

∂Xi

)
u,

where g ∈ A(h), u ∈ U , and k! =
∏s

i=1 ki! for k = (k1, . . . , ks). Note that the

sum on the right is finite.

The proof of this lemma is a direct computation and we leave it as an exercise

to the reader.

Identifying the Lie algebra vector fields V with its natural embedding into

DerA(h), we immediately obtain

Lemma 16: Together with the natural left A-action, the V-action (3) above

equips A(h) ⊗ U with the structure of an AV-module.

Definition 17: An AV-submodule of a module A(h) ⊗ U , which is finitely gen-

erated as an A-module, will be called a local gauge module.

Remark 18: Note that simple L+-modules U correspond to simple modules over

L+/L(1) � gls. In this case, the third term in (3) takes the simpler form

s∑
k=1

g
∂f

∂tk
⊗ Eki · u.

If we additionally take all Bi as zero, we recover the AV-modules studied in [7].

Definition 19: We shall say that an AV-module M is a gauge module if it is

isomorphic to a local gauge module for each chart N(h) in our standard atlas.

The conjecture from the introduction states that any module in the category

AV-Mod which is finitely generated over A is a gauge module.

Example: Gauge modules of rank one on the sphere. In this section

we prove some further results about gauge modules in the case of the sphere.

It turns out that the class of gauge modules is wider than the set of tensor

modules constructed in the paper [7].

Let X = S2 ⊂ A3 be given by the equation x2 + y2 + z2 = 1. We also

use the notations (x1, x2, x3) = (x, y, z). The Lie algebra VS2 of vector fields
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on the sphere is generated by Δ12, Δ23, and Δ31 as an A-module, where

Δij = xj
∂

∂xi
− xi

∂
∂xj

. These generators satisfy the relation

x1Δ23 + x2Δ31 + x3Δ12 = 0.

Consider the chart N(z) where t1 = x and t2 = y are chart parameters. Let

U = span(uα) be the one-dimensional gl2-module where the identity matrix acts

as α. Taking B1 = B2 = 0, we obtain an AV-module structure on the space

A(z)⊗uα. These modules coincide with those constructed in the paper [7] where

it was shown that for α ∈ Z, the space

Fz
α := z−αA⊗ uα ⊂ A(z) ⊗ uα

is a proper AV-submodule which is free of rank 1 over A.

The analogous construction goes through for the other two standard charts

N(x) and N(y) yielding the modules Fx
α and Fy

α. As discussed in [7], these

three modules are isomorphic via chart transformation maps. For example, the

isomorphism Fz
α → Fx

α is given by

f ⊗ uα �→ ( zx)
αf ⊗ uα.

We write just Fα for this chart-independent version of the module; this is what

was called a tensor module in [7].

Now, Fz
α is isomorphic to A⊗ uα as vector spaces via the map

A⊗ uα → Fα f ⊗ uα �→ z−αf ⊗ uα.

This correspondence lets us transfer the AV-module structure of Fα to A⊗ uα.

This module structure on A⊗uα in fact coincides with the local gauge module

structure on A⊗uα in the chart with h = z as defined in Lemma 16, but where

we now have B1 = Bx = −αxz−2 and B2 = By = −αyz−2. However, in this

gauge module setting, α is no longer required to be an integer, and we obtain a

larger class of gauge modules {Fα | α ∈ k}. It turns out that the action can be

expressed more simply in a chart-independent way as described in the following

theorem.

Theorem 20: For each α ∈ k we have a VS2-action on the space Fα = A⊗ uα

given by

(fΔij) · (g ⊗ uα) = fΔij(g)⊗ uα + αgΔij(f)⊗ uα.

Together with the natural A-action, Fα is a simple AV-module which is isomor-

phic to a gauge module in the sense of Lemma 16 above.
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Proof. The formula for the action is an easy computation and follows from

the discussion above. The fact that Fα is simple follows from the following

section.

Example: Gauge modules of rank one on an affine space. Let us

consider gauge modules of rank one on an affine space An. Irreducible finite-

dimensional L+-modules are just gln-modules, and 1-dimensional modules are

those where matrix A acts as multiplication by α tr(A) for some fixed α ∈ k.

Then the action of the Lie algebra of polynomial vector fields on a gauge module

M = k[x1, . . . , xn]⊗ Uα with Uα = kuα may be written as

f
∂

∂xi
(g ⊗ uα) = f

∂g

∂xi
⊗ uα + fgBi ⊗ uα + αg

∂f

∂xi
⊗ uα,

where the gauge fields B1, . . . , Bn ∈ k[x1, . . . , xn] satisfy

∂Bi

∂xj
=

∂Bj

∂xi

for all 1 ≤ i, j ≤ n. The last condition means that the differential form

B1dx1 + · · ·+Bndxn is closed, and since the de Rham cohomology of An is

trivial, there exists a function G ∈ k[x1, . . . , xn] such that Bi = ∂G
∂xi

. In this

case we can interpret M as a module M = eGk[x1, . . . , xn]⊗Uα with the action

f
∂

∂xi
(g ⊗ uα) = f

∂g

∂xi
⊗ uα + αg

∂f

∂xi
⊗ uα,

where g now is a product of a polynomial with the function eG.

Simplicity of gauge modules. Let X ⊂ An be an irreducible algebraic

variety of dimension s. Fix a chart N(h) in the standard atlas, and let t1, . . . , ts

be chart parameters.

Proposition 21: Let M be an AV-submodule of A(h)⊗U , where U is a finite-

dimensional gls-module with weight basis

{uk | k ∈ Γ}.

Then for
∑

k∈Γ gk ⊗ uk ∈ M we also have
∑

k∈Γ(hgk ⊗ Eij · uk) ∈ M for all

1 ≤ i, j ≤ S. In other words, M is invariant under the operators h ⊗ Eij on

A(h) ⊗ U .
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Proof. It suffices to prove the statement for a single term g⊗u. For each vector

field μ ∈ V and for each function f ∈ A we have

(fμ) · (g ⊗ u)− f(μ · (g ⊗ u)) ∈ M.

Taking f = ti and μ = h ∂
∂tj

we obtain the desired element in M :

(
tih

∂

∂tj

)
· (g ⊗ u)− ti

(
h

∂

∂tj
· (g ⊗ u)

)
=

s∑
q=1

hg
∂ti
∂tq

⊗ Eqj · u

=hg ⊗ Eij · u.
Note that minor h defining the chartN(h) gives rise to a filtration of A(h)⊗U :

· · · ⊂ hk+1A⊗ U ⊂ hkA⊗ U ⊂ hk−1A⊗ U ⊂ · · · .
Definition 22: Let M be an AV-submodule of A(h) ⊗ U .

• We say that M is bounded if M ⊂ hjA⊗ U for some j.

• We say that M is dense if M ⊃ hkA⊗ U for some k.

Note that M is bounded if and only ifM is finitely generated as an A-module,

since A is noetherian.

Proposition 23: Let U be a finite-dimensional simple gls-module. Then every

non-zero AV-submodule of A(h) ⊗ U is dense.

Proof. Let M ⊂ A(h) ⊗ U be a non-zero submodule. Let

I = {f ∈ A | f(A⊗ U) ⊂ M}.
Then I is an ideal of A. To show that M is dense we need to show that hN ∈ I

for some N .

Let Γ be a weight basis for U . Let v ∈ M and write this element in the

form v =
∑

k∈Γ fk ⊗ uk with fk ∈ A(h), in fact we shall assume that fk ∈ A

(otherwise just multiply v by a power of h).

Fix an index k0 such that fk0 is non-zero. The Jacobson density theorem

implies that for each k ∈ Γ there exists wk ∈ U(gls) such that wkuk0 = uk and

wkui = 0 for i 
= k0. Fix an ordering among the Eij and express wk in the

corresponding PBW-basis and let r be the highest length of terms occurring in

this expression of wk. For products in U(gls) of length t where 0 ≤ t ≤ r, define

the correspondence

Ei1j1 · · ·Eitjt �→ hr−t(h⊗ Ei1j1) · · · (h⊗ Eitjt).
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Here the right side is viewed as an element of Endk(M) in accordance with

Proposition 21. Then by construction the element corresponding to wk maps v

to hrf0 ⊗ uk. Heref0 := fk0 and r depends on k. Letting N be the maximum

of the r-values we conclude that hNf0 ⊗ uk ∈ M for all k ∈ Γ, which means

that hNf0(A⊗ U) ⊂ M and hNf0 ∈ I.

We now aim to apply Hilbert’s Nullstellensatz to the function h. Fix p∈N(h).

We need to show that there exists f ∈ I with f(p) 
= 0. We had already

found hNf0 ∈ I so if f0(p) 
= 0 we are done. Otherwise, let K be a posi-

tive integer such that hKBi(U) ⊂ A ⊗ U for all i and consider the element

h ∂
∂ti

(hN+Kf0 ⊗ uk) ∈ M . This expands as

(N +K)f0h
N+K ∂h

∂ti
⊗ uk + hN+K+1 ∂f0

∂ti
⊗ uk+hN+K+1f0Bi(uk)

+hN+Kf0

s∑
q=1

∂h

∂tq
⊗ Eqi · uk.

Now the first, third, and fourth terms lie in

hNf0(A⊗ U) ⊂ M,

so we also get hN+K+1 ∂f0
∂ti

⊗ uk ∈ M for all i. This shows that we may replace

f0 by ∂f0
∂ti

in the argument.

There is some product d of derivations with d(f0)(p) 
= 0. So acting repeatedly

with vector fields of form h ∂
∂ti

as above we eventually obtain hSd(f0) ∈ I

for some large enough S, and hSd(f0) is non-zero at p. Thus for every point

p ∈ N(h) we have found a function in I which is non-zero at p. Thus we have

shown the contrapositive of the following statement: h(p) = 0 whenever p is a

common zero for I. By Hilbert’s Nullstellensatz this implies that hN ∈ I for

some N , which in turn means that M is dense.

Corollary 24: Let A(h) ⊗ U be an AV-module as in Lemma 16, where U is

a simple gls-module. Then there exists at most one simple AV-submodule of

A(h) ⊗ U .

Proof. Let M and M ′ be simple submodules in A(h) ⊗ U . By Proposition 23

both modules are dense, so they both contain hNA⊗U for sufficiently large N .

Thus M ∩M ′ is a non-zero submodule of both M and M ′ so by simplicity we

must have M = M ′.
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Theorem 25: Let X be a smooth irreducible affine algebraic variety and

let M be a gauge module which corresponds to a simple finite-dimensional

gls-module U . Then M is a simple AV-module.

Proof. Let M ′ be a non-zero submodule of M and define

I = {f ∈ A | fM ⊂ M ′}.
Then I is an ideal and it does not depend on the chart we use. Let {hi} be the

standard minors giving our atlas for X . Proposition 23 implies that there exist

natural numbers {ki} such that hki

i ∈ I for all i. But since X =
⋃

iN(hi), for

each p ∈ X we have hi(p) 
= 0 for some index i. But then the set of common

zeros is empty, and Hilbert’s weak Nullstellensatz gives 1 ∈ I [25]. In view of

the definition of I this says that M = M ′.

Theorem 8 and Theorem 25 imply our Main Theorem.

Pairing between gauge modules and Rudakov modules

Let M be an AV-module which is finitely generated over A, and let p be a

non-singular point of X . Define U := M/mpM .

Lemma 26: The space U is an A#U(V+)-module.

Proof. We first verify that mpM is a V+-submodule of M . Let μ ∈ V+, f ∈ mp,

and m ∈ M . Since M is an AV-module we have

μ · (f ·m) = μ(f) ·m+ f · (μ ·m).

Here μ(f) ∈ mp by the definition of V+, so the right side is clearly in mpM .

But mpM is also an A-submodule of M . Thus mpM is an A#U(V+)-submodule

of M , and so is the quotient U = M/mpM .

Note that U is an evaluation module over A: we have f · u = f(p)u.

Lemma 27: The module U is finite-dimensional.

Proof. Let u1, . . . , uk generate M over A. Then any m ∈ M can be expressed

as m = f1u1+ · · ·+fkuk for some fi ∈ A. But then m = f1(p)u1+ · · ·+fk(p)uk

in the quotient U , which shows that the images of the ui span U .

Let U∗ = Homk(U,k) be the dual space of U . This is an AV+-module with

the standard dual actions of A and of V+.
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Write 〈−,−〉 for the natural pairing U × U∗ → k where 〈u, ϕ〉 = ϕ(u). This

pairing satisfies the following compatibility conditions for the actions of f ∈ A

and of η ∈ V+:

〈u, f · ϕ〉 =〈f · u, ϕ〉 = f(p)〈u, ϕ〉,
〈u, η · ϕ〉 =− 〈η · u, ϕ〉.

Define a map τ :A#U(V+)→A#U(V+) by requiring τ |A = id and τ |V+ = −id.

Then τ extends uniquely to an anti-involution of A#U(V+). Then for

w ∈ A#U(V+) we have

〈w · u, ϕ〉 = 〈u, τ(w) · ϕ〉.
Now consider the canonical projection π : M → U of AV+ modules. This

gives rise to an AV+-morphism of the duals: π∗ : U∗ → M∗. Consider the

Rudakov module corresponding to the AV+-module U∗:

Rp(U
∗) = A#U(V)⊗A#U(V+) U

∗.

Proposition 28: The canonical AV+-homomorphism π∗ : U∗ → M∗ extends

uniquely to an AV-homomorphism π∗ : Rp(U
∗) → M∗.

Proof. This follows by the adjunction between induction and restriction:

HomAV+(U
∗,M∗) �HomAV+(U

∗,ResAV
AV+

M∗)

�HomAV(IndAV
AV+

U∗,M∗) � HomAV(R(U∗),M∗).

We summarize the results of the present section.

Theorem 29: Let X be an algebraic variety and let p be a non-singular point

on X . Let M be an AVX -module which is finitely generated over A. Define

U := M/mpM and let

Rp(U
∗) = A#U(V)⊗A#U(V+) U

∗

be the corresponding Rudakov module. Then there is a natural pairing between

the modules M and Rp(U
∗) given by

〈m, r〉 = π∗(r)(m),

where π∗ is the canonical extension of the morphism π∗ : U∗ → M∗ to Rp(U
∗).

This pairing satisfies

〈f ·m, r〉 = 〈m, f · r〉 and 〈η ·m, r〉 = −〈m, η · r〉



20 Y. BILLIG, V. FUTORNY AND J. NILSSON Isr. J. Math.

for all f ∈ A, η ∈ V , m ∈ M , and r ∈ Rp(U
∗). Equivalently, we have

〈w ·m, r〉 = 〈m, τ(w) · r〉
for all w ∈ A#U(V), where τ is the natural anti-involution on A#U(V).
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