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ABSTRACT

For an irreducible affine variety X over an algebraically closed field of
characteristic zero we define two new classes of modules over the Lie al-
gebra of vector fields on X—gauge modules and Rudakov modules, which
admit a compatible action of the algebra of functions. Gauge modules
are generalizations of modules of tensor densities whose construction was
inspired by non-abelian gauge theory. Rudakov modules are generaliza-
tions of a family of induced modules over the Lie algebra of derivations of
a polynomial ring studied by Rudakov [23]. We prove general simplicity
theorems for these two types of modules and establish a pairing between
them.
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Introduction

Classification of complex simple finite-dimensional Lie algebras by Killing (1889),
[15] and Cartan (1894) [8] shaped the development of Lie theory in the first
half of the 20th century. Since Sophus Lie, the Lie groups and corresponding
Lie algebras (as infinitesimal transformations) were related to the symmetries
of geometric structures which need not be finite-dimensional. Later infinite-
dimensional Lie groups and algebras were connected with the symmetries of
systems which have an infinite number of independent degrees of freedom, for
example in Conformal Field Theory, e.g., [1], [28]. The discovery of the first
four classes of simple infinite-dimensional Lie algebras goes back to Sophus Lie
who introduced certain pseudogroups of transformations in small dimensions.
This work was completed by Cartan who showed that corresponding simple
Lie algebras are of type W,,, S,, H, and K, [9]. These four classes of Cartan
type algebras were the first examples of simple infinite-dimensional Lie algebras.
The general theory of simple infinite-dimensional Lie algebras at large is still
undeveloped, in particular their representation theory.

The first Witt algebra W, is the Lie algebra of polynomial vector fields on
a circle whose universal central extension is the famous Virasoro algebra which
plays a crucial role in quantum field theory. Mathieu [19] classified irreducible
modules with finite-dimensional weight spaces for the first Witt algebra W;.
Higher rank Witt algebras W, are simple Lie algebras of polynomial vector
fields on an n-dimensional torus. Significant efforts were required to generalize
the results of Mathieu for an arbitrary n: [26], [17], [11], [12], [3], [20], [4], [5],
resulting in the classification of simple weight modules with finite-dimensional
weight spaces in [5]. We note that an understanding of the representations of W,
is also important for the representation theory of toroidal Lie algebras [2].

The first Witt algebra can be realized as the algebra of meromorphic vector
fields on the Riemann sphere P!(C) which are holomorphic outside of 0 and oco.
This realization has a natural generalization to the case of general Riemann
surfaces. With a compact Riemann surface ¥ and a finite subset S of ¥ one
can associate the Krichever-Novikov type vector field Lie algebra [16] of those
meromorphic vector fields on ¥ which are holomorphic outside of S. The genus
zero case and S = {0, 00} corresponds to the first Witt algebra. For the theory
of Krichever—Novikov Lie algebras we refer to [24].
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For an arbitrary irreducible affine variety X C A} over an algebraically closed
field k of characteristic 0, the Lie algebra Vx of polynomial vector fields was
studied in [13], [14], [27] (see also [6]). It can be identified with the derivation
algebra of the coordinate ring of X. This algebra is not simple in general. In
fact, Vx is simple if and only if X is a smooth variety. In this paper we begin a
systematic study of representations of the Lie algebras Vx for arbitrary smooth
affine varieties X aiming to generalize successful representation theory of Witt
algebras. Note that the general case is significantly more complicated since
the standard tools of Lie theory, like Cartan subalgebras, root decompositions
etc., do not apply in this case. Even in the case when X is an affine elliptic
curve, the Lie algebra Vx does not contain non-zero semisimple or nilpotent
elements [6]. As a result it was not even clear how to approach the problem of
classifying or at least constructing simple modules over Vx for a general smooth
variety X, since techniques of the classical representation theory of simple finite-
dimensional Lie algebras cannot be used. Representations of Vx when X is an
affine space A} were studied by Rudakov [23] but the classification problem of
simple modules is still open (cf. [18], [22], [10]). The case of a sphere X = S?
was treated in [7] (see also [6]). A new class of modules (tensor modules) was
constructed, these are modules of tensor fields on a sphere. The main idea of
[7] which goes back to [12] suggests that as a first step one needs to study the
category of representations for the Lie algebra Vx which admit a compatible
action of the algebra Ax of polynomial functions on the variety X. This idea
was successfully implemented in [5] in the case of an n-dimensional torus and
led to the classification of simple weight modules with finite-dimensional weight
spaces.

Developing ideas of [7] we introduce a category AV-Mod of Vx-modules with
a compatible action of Ax for an arbitrary irreducible affine variety X. The
main goal of the paper is the construction of two families of simple objects in
AV-Mod: gauge modules and Rudakov modules.

Rudakov modules R, (U) are generalizations of certain induced modules over
the Lie algebra of derivations of a polynomial ring studied by Rudakov [23].
These modules are associated with a point p € X and a finite-dimensional
representation U of the Lie algebra £ of vector fields of non-negative degree
on an affine space. Modules studied by Rudakov in [23] correspond to X = A",
p = 0 and simple modules U.
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Gauge modules are generalizations of modules of tensor densities (or simply
tensor modules) whose construction was inspired by non-abelian gauge theory.
Tensor modules were the key objects in the classification theory for W,, (modules
of intermediate series in the case of Wi) [5]. The algebra of functions Ax, the
algebra of vector fields Vx, and the space of 1-forms are natural examples of
tensor modules. Let h be a standard minor (non-zero r X r-minor, where r is the
rank of the matrix) of the Jacobian matrix of the defining ideal of X. Denote
by A(y) the localization of A by h. We define gauge AV-modules as submodules
of Ay ®@U for each chart, where U is a finite-dimensional £, -module, and the
action of Vx involves gauge fields {B;}. We will say that such gauge modules
are associated with U. The tensor modules defined in [7] are examples of gauge
modules where the functions B; are all zero. In particular, we obtain classical
modules of tensor densities when X is the torus and W, is the derivation algebra
of Laurent polynomials.

We expect a family of gauge modules to be quite large as indicated in the
following conjecture.

CONJECTURE 1: Every AVx-module that is finitely generated over Ax is a
gauge module.

Our main result is the following

MAIN THEOREM: Let k be an algebraically closed field of characteristic 0,
X C A} an irreducible affine variety of dimension s, and U a finite-dimensional
simple gl (k)-module. Then
e The Rudakov module R,(U) is a simple AV-module for any non-singular
point p € X.
e [f X is smooth, then any gauge AV-module associated with U is simple.

This result allows us to construct new families of simple AV-modules. We note
that the question of simplicity of restrictions of Rudakov and gauge modules to
the Lie algebra Vx remains open. We are going to address this question in a
subsequent paper.
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Preliminaries

FUNCTIONS AND VECTOR FIELDS ON ALGEBRAIC VARIETIES. Our general setup
follows the papers [6] and [7] where more details can be found. We reiterate the
basics of the setup here.

Let X C A" be an irreducible affine algebraic variety over an algebraically
closed field k of characteristic zero, and let Ix = (g1,...,gm) be the ideal of
all functions that vanish on X. Let Ax := k[x1,...,2,]/Ix be the algebra of
polynomial functions on X. Denote by Vx := Derx(Ax) the Lie algebra of
polynomial vector fields on X. We shall often drop the subscripts and write
just A and V for Ax and Vx. Note that V is an A-module and that A is a left
V-module. We can give a more explicit description of the Lie algebra V using
Lie algebra W, of vector fields on A", W,, := Der(k[z1,...,2,]). It was shown
in [6] that there is an isomorphism of Lie algebras:

Voe{peW, | ulx)CIx}/{pe W, | uklz,...,z.]) C Ix}.

Alternatively, we can consider V as a subalgebra of
i 0
A
9g;

If we define a matrix J = (azj )i,; and consider it as a map J : A®" — AP
then 37, fi,0 €V if and only if (f1,..., fn) € Ker J [6].

Let r:=rankp J where F is the field of fractions of A, and let {h;} be the non-
zero rxr-minors of J. Define charts N(h;):={p€ X |h;(p)#0}. If X is smooth,
these charts cover X and we call this set of charts the standard atlas for X.

Recall from [7] that t1,...,ts € A are called chart parameters in the
chart N (h) if the following conditions hold:

e t1,...,ts are algebraically independent over k, so that k[t1,...,ts] C A.

e Every f € A is algebraic over k[t1,...,1s].

e The derivation 8‘1 of k[t1,...,ts] extends uniquely to a derivation of
the localized algebra A p).
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From these conditions it also follows that s = dim X and that

. 0
Der(A(h)) = @A(h) 81&-;
i=1 v

see [7] for details. Since V = Der(A) C Der(A), each vector field 7 has
a unique representation n = Y7, f; 6?1- for some f; € A(,y. The standard
chart parameters in N(h;) are chosen to be the variables xj such that the
k-th column of J is not part of the minor h;.

We recall the following result from [6, Section 3.

LEMMA 2: Letty,...,ts be standard chart parameters in the chart N (h). Then
h) €V foralli.

The following result was also stated in [6].

LEMMA 3: Let t1,...,ts be standard chart parameters in the chart N(h), and
letp € N(h). Let t; = t; —t;(p). Thent; ...,ts are local parameters at p in the
classical sense of [25, Section 2.2.1].

Proof. We need to show that {t1,...,t.} is a basis for m,/m2. Clearly, t; € m,,.
Since s = dim X, it suffices to prove linear independence. Suppose that
Yoi_citi € m2 for some ¢; € k. Then d(};_; ¢;t;) € my, for all derivations
d € DerA. Taking d = ha‘?k we get h(p)epl(p) = 0 < ¢ = 0 for all k, which
shows that the set {t1,...,ts} is linearly independent in mp/mz%, and thus it is
a basis.

AV-MODULES. We shall study spaces M equipped with module structures over
both the commutative unital algebra A and over the Lie algebra V such that
the two actions are compatible in the following sense:

n-(f-m)=n(f)-m+f-(n-m)

foralln €V, f € A, and m € M. Equivalently, M is a module over the smash
product A#U(V); see [21] for details. For brevity we define AV := A#U(V). The
category of AV-modules is equipped with a tensor product: for AV-modules M
and N, the space M ®4 N is also an AV-module, where we have

n-(mMn):=n-mONn+men-n

as usual; see [7, Section 2] for details.
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The category of AV-modules is also equipped with duals. First of all, for

M € AV-Mod we define
M* = Homy (M, k)
to be the full dual space. Here a function f acts by (f - ¢)(m) := ¢(f - m), and
a vector field n acts by (- ¢)(m) = —p(n - m). These actions are compatible,
so M* is an AV-module. If V possesses an abelian ad-diagonalizable Cartan
subalgebra ), we may also consider the restricted dual of M; this is the
submodule
M= @ Homy (M, k)
AED*

of M*, where M) is the weight subspace of M of weight A with respect to b.

On the other hand, we also define

M?° := Homu (M, A).
We equip this space with the natural A-action (f - ¢)(m) = ¢(f - m), and we
define the action of a vector field n by
(- @)(m) = —p(n-m) +n(p(m)).
These actions are also compatible, so M° is an AV-module.

Duals and tensor products allow us to construct more AV-modules. In par-
ticular, the module of 1-forms may be defined as Q% = V5.

Example 4: Let X = S! be the circle. Here A = k[t,t~!] and V is spanned
by {ex}rez where e, = tF+! aat' For each o € k we have an AV-module §,
spanned by {vs}scz where the action is given by
thovg = Vst and e -vs = (s + ak)vgts.
In this setting we get the following relation between the different duals:

F~F o and Fo~Fia

FILTRATION OF V. Fix a standard chart N(h) with chart parameters tq, ..., s
and fix a point p in this chart. Write m,, for the maximal ideal in A consisting
of functions that vanish at p. For [ > —1, define V(1) := {n € V [ n(4) € m,}.
Then we have a filtration of subalgebras

V=V(-1)D>V0)oV(1)>D---,

with [V(1),V(k)] C V(I + k) for I+ k > —1. This also shows that for [ > 0, V(I)
is an ideal of V(0). To simplify notation we shall sometimes write V4 for V(0).
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LEMMA 5: We have V(1) = mJH!V.

Proof. 1t is clear that mLV C V(I). For the reverse inclusion, take n € V(1)

and express it as
- 0
n= z:zl fi ot,’

Then by the definition of V(1) we have hfi = hn(ty) € mit* for each k. Hence
fx € mé‘“ as h(p) # 0. Since haat,_» €V we have hny € mé‘HV.

But we also have (h — h(p))"*'n € m,*!'V. Expanding this and using the fact
that hn € mé‘HV we also get h(p)!Tin € mé‘HV. Since h(p) # 0 we finally have
n € mbHY which completes the proof.

Rudakov modules

Let p be a non-singular point of X and let {¢1,...,ts} be the standard chart
parameters centered at p, i.e., t1(p) = -+ = ts(p) = 0. In other words, given
standard chart parameters x;,,...,z;, , we take t; = z;, — x;, (D).

Write £ for the algebra of polynomial derivations,

- B
L=PkKXy,.... X, -
i=1 0Xi

If @ is a monomial of degree d, we define the degree of the derivation @ a?g- to
be d — 1. For I > —1, let £(I) be the subalgebra of £ consisting of derivations
with no terms of degree less than . We shall usually write £ for £(0). This
concept of degrees also extends to the Lie algebra

0
X;’

£ = Der(k[[X1,..., X,]]) = @k[[Xl, Xl

and we have filtrations
£OL,DL(1)DL2)D---
and
£DOL.DL(1)DL(2)D---.
Consider the embedding V C & with t; — X; discussed in [6, Section 3]. It

follows from Lemma 5 that in this embedding we have V(1) = £(I) N V.
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LEMMA 6: (a) For any element p € £ whose terms all have degree less than
N, there exists n € V such that

n = p+ terms of degree > N.
(b) There is an isomorphism of Lie algebras
Vi V() = £4/2(0).
(¢) In particular, we have
Ve V(1) = gl (k).

Proof. For part (a) it is sufficient to show that for every N € N there exists
n € V such that

0
= X, + terms of degree > N.
Then the claim of (a) will follow since such vector fields may be multiplied by

n

a polynomial in X1,..., X;.
To construct n we first take ha?c € V. Since h(p) # 0, the power series for h

is invertible, and we can write
h™' = gy + terms of degree > N,

with gy € k[X1,...,X] C A. Then n = qJVha?g- will have the desired form.
Part (b) is an immediate consequence of (a), and part (c) follows from the
fact that £, /£(1) ~ gl (k).

Let U be a finite-dimensional £;-module. By the discussion after [3, Lemma
2], there exists I € N such that

LU = (0),

hence U is an £;/£(l)-module. The isomorphism of Lemma 6(b) defines a
V;-module structure on U such that V(1)U = (0). We also define an A-action
on U by evaluation: f-u:= f(p)u for f € A and u € U. Note that m,U = (0).
For n € V4 we have

n-(f-u)=fm-u=f-(-u)+nf)- u

since n(f) € m,. This shows that the two actions are compatible and that U is
in fact an A#U(V;)-module.
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The Rudakov module R,(U) is defined as an induced module
RP(U) = A#U(V) ®A#U(V+) U.

Remark 7: The special case when X = A”, p =0, and U is a simple gl,,-module
was studied by Rudakov in [23]. The corresponding module Ry (U) was shown
to be simple as a W,-module whenever Ry(U) does not appear in the de Rham

complex.

THEOREM &: Let U be a finite-dimensional simple V /V(1) ~ gl (k)-module,
and let p be a non-singular point of X. Then the corresponding Rudakov module
R,(U) is a simple AVx-module.

To prove this theorem we need some preliminary results.
We define a chain of subspaces in the Rudakov module by Ry :=1® U and
Rit1:=R;+V - R;. We also let R; := (0) for ¢ < 0. This gives a filtration

Ry C Ry CRyC--- with | JR; = R,(U).
=0

LEMMA 9: We have
(a) mpRl C Rl717
(b) V(j)R: C Ry—; for all j.

Proof. We proceed to prove these claims by induction on I. We first prove (a).

For I =0, claim (a) obviously holds. For the inductive steps we note that
mylR 1 CmpRy +Vm,R, + [mp, V]Rl.

Here the two first terms on the right side lie in R;, and since [, f] = n(f) in

the algebra A#U(V), the third term also lies in AR; = (k@ m,)R; = R;. Thus

claim (a) holds by induction.

For claim (b) we first consider the base case [ = 0. Since V(1)U = 0 and
V(0)U C U, the base case is trivially true for 7 > 0. For j = —1, the base case
holds by definition of the sequence R;.

For the induction step we assume that for a fixed [ and for all j > —1 we
have V(j)R; C R;—;, and we compute

V(j)Riy1 CV(G)Ri +V(J)VR C V()R + VV(i)Ri + [V(j), VIR
VU R+ VR—j+ V([ — DR C Ry,

and claim (b) also follows by induction.
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COROLLARY 10: Both m, and V(1) act locally nilpotent on R,(U).

Remark 11: It follows from the previous Corollary that for any v € R,(U)
the space Av is finite-dimensional. Hence the Rudakov module is not finitely
generated as an A-module.

PROPOSITION 12: Let U be a finite-dimensional £, -module and let R,(U) be
the corresponding Rudakov module. For any non-zero v € R,(U) we have

Avn (1 U) % (0).

Proof. Pick [ such that v € R;. Consider the following elements of V, given by
Lemma 6(a):

n; = ~+ terms of degree > 1[.

0X;
Then {n1,...,ns} is a basis of the space V/V,. Note that for any w € R;_o
we have n;n;w = n;n;w since [n;,njJw € V(I —1)R;—o C R_1 = (0). Using the

Poincaré-Birkhoff-Witt theorem and this commutativity relation we may write

dim U

(1) U= Z R(Tllv 'anS)uiv
=1

where P;(n1,...,ns) are polynomials of degree <[, and {u;} is a basis of U.
We claim that

(2) tp-v=— Z (8?7kPi(771,...,175))ui.

Indeed, tru; = 0 and [tg,n;] = —ni(tx) = —dix + a where a € mé“ and by
Lemma 9(a) we have aR; = 0.

Now choose a polynomial P among {P;} with maximal degree d, and
let n7* -+ - %= be a monomial occurring in P with non-zero coefficient and with
>>r; = d. Then the above discussion shows that Av contains the non-zero
element

-t v el1U.

This completes the proof.

We are now ready to prove the main theorem of this section.
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PRrROOF OF THEOREM 8. To establish the simplicity of R,(U) we need to show
that every non-zero vector v € R,(U) generates R,(U) as an AV-module. By
Proposition 12, the A-submodule generated by v contains a non-zero vector
u € U. Since U is a simple V;-module, the AV-submodule generated by v
contains 1®U. By construction of the Rudakov module 1@ U generates R,(U).
This completes the proof of the theorem.

We end this section with a result on isomorphisms of Rudakov modules.

THEOREM 13: Let U,U’ be two £4-modules and p,p’ be non-singular points
on X. Rudakov modules R,(U) and R, (U’) are isomorphic as AV-modules if
andonly ifp=p' and U 2 U’.

Proof. Let us assume that R,(U) and R, (U’) are isomorphic as AV-modules.

By Corollary 10, m, acts locally nilpotently on R, (U). If p#p’, then 1em,+m,,

and m, does not act locally nilpotently on R,(U). Hence we must have p = p'.
We claim that

{ve R,(U) | mpv = (0)} =1 U.

To prove this claim we choose v € R; and, as in the proof of Proposition 12, we
expand v as in (1). Note that 9% ...nFu; with k; + ... + ks < [ are linearly
independent by the Poincaré—Birkhoff-Witt theorem and form a basis of R;.
Our claim then follows immediately from (2).

We conclude that an isomorphism map R,(U) — R,(U’) must map 1 @ U
to 1 ® U’, and this must be an isomorphism of U and U’ as £-modules.

Gauge modules

We use notation of the previous sections. Let h be a non-zero r X r-minor in the
Jacobian matrix J, where r = rankg J, and let (U, p) be a finite-dimensional
£ -module.

Definition 14: The functions B; : Ag)y @ U — Ap,y @ U, 1 <i < s, are called
gauge fields if

(i) each B;is Ap)-linear,

(ii) [Bi,p(£4)] =0,

(iii) [6‘2_ + B;, a‘?_ + B;] = 0 as operators on A @ U for all 1 <i,j < s.
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LEMMA 15: Let (U, p) be a finite-dimensional £ -module and let { B;} be gauge
fields, 1 < i < s. Then the space A,y ® U is an Ap,yDerAp,)-module with the
following action of DerA,y = @;_; Awn 6‘1 :

oF f
k9 otk

dg

(3) (faati).(g@)u) = fati®u+ngi(1®u)+ 3

keZ: \{0}

where g € Ay, w € U, and k! = []7_, k;! for k = (ky,..., k). Note that the
sum on the right is finite.

®p(Xka§(i)“’

The proof of this lemma is a direct computation and we leave it as an exercise
to the reader.

Identifying the Lie algebra vector fields V with its natural embedding into
DerApy, we immediately obtain

LEMMA 16: Together with the natural left A-action, the V-action (3) above
equips A,y ® U with the structure of an AV-module.

Definition 17: An AV-submodule of a module A,y ® U, which is finitely gen-
erated as an A-module, will be called a local gauge module.

Remark 18: Note that simple £-modules U correspond to simple modules over
£,/8(1) ~ gl,. In this case, the third term in (3) takes the simpler form

)
S o) @ B-u
k=1 OF
If we additionally take all B; as zero, we recover the AV-modules studied in [7].

Definition 19: We shall say that an AV-module M is a gauge module if it is
isomorphic to a local gauge module for each chart N(h) in our standard atlas.

The conjecture from the introduction states that any module in the category
AV-Mod which is finitely generated over A is a gauge module.

EXAMPLE: GAUGE MODULES OF RANK ONE ON THE SPHERE. In this section
we prove some further results about gauge modules in the case of the sphere.
It turns out that the class of gauge modules is wider than the set of tensor
modules constructed in the paper [7].

Let X = S?2 c A3 be given by the equation 22 + 3> + 22 = 1. We also
use the notations (x1,x2,x3) = (x,y,2). The Lie algebra Vsz of vector fields
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on the sphere is generated by Ajs, Aoz, and As; as an A-module, where
AVHE a?ci — a?cj . These generators satisfy the relation

21093 + 22A31 + 23712 = 0.

Consider the chart N(z) where t; = x and t3 = y are chart parameters. Let
U = span(uq) be the one-dimensional gl,-module where the identity matrix acts
as a. Taking By = Bs = 0, we obtain an AV-module structure on the space
A(2)®uq. These modules coincide with those constructed in the paper [7] where

it was shown that for o € Z, the space
So =2 “AQuq CAL) ®ug

is a proper AV-submodule which is free of rank 1 over A.

The analogous construction goes through for the other two standard charts
N(z) and N(y) yielding the modules §Z and F¥. As discussed in [7], these
three modules are isomorphic via chart transformation maps. For example, the
isomorphism §7, — §% is given by

f@ua = (2)f ®ua.

We write just §,, for this chart-independent version of the module; this is what
was called a tensor module in [7].
Now, §7Z is isomorphic to A ® u, as vector spaces via the map

AR Uy = Fa [RuUa— 27 %f ® uq.

This correspondence lets us transfer the AV-module structure of Fo to A® ug.
This module structure on A®wu,, in fact coincides with the local gauge module
structure on A ® u,, in the chart with h = z as defined in Lemma 16, but where

we now have By = B, = —azz~2 and By = By = —ayz"2.

However, in this
gauge module setting, « is no longer required to be an integer, and we obtain a
larger class of gauge modules {F, | @ € k}. It turns out that the action can be
expressed more simply in a chart-independent way as described in the following

theorem.

THEOREM 20: For each o € k we have a Vgz2-action on the space Fo = A ® uq
given by

(fAij) - (9 ®ua) = fAi;(9) @ ua + aglij(f) @ uq-
Together with the natural A-action, §, is a simple AV-module which is isomor-
phic to a gauge module in the sense of Lemma 16 above.
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Proof. The formula for the action is an easy computation and follows from
the discussion above. The fact that §, is simple follows from the following
section.

EXAMPLE: GAUGE MODULES OF RANK ONE ON AN AFFINE SPACE. Let us
consider gauge modules of rank one on an affine space A". Irreducible finite-
dimensional £;-modules are just gl,,-modules, and 1-dimensional modules are
those where matrix A acts as multiplication by atr(A) for some fixed o € k.
Then the action of the Lie algebra of polynomial vector fields on a gauge module
M =XK[zy,...,2,] ® U, with U, = ku, may be written as

7.2 goun =%

of
B.
o a$i®ua+fg 1®ua+agaxi®uaa

where the gauge fields By, ..., B, € k[x1,...,2,] satisfy
0B; 0B;

6$j afL'l

for all 1 < 4,57 < n. The last condition means that the differential form
Bydxy + - -+ + Bpdzx, is closed, and since the de Rham cohomology of A" is

trivial, there exists a function G € Kk[z1,...,2,] such that B; = 5. In this
case we can interpret M as a module M = ¢%k[z, ..., 2,]® U, with the action
0 dg of
f oy 0@U)=F o Buatag, ©ua

where g now is a product of a polynomial with the function €.

SIMPLICITY OF GAUGE MODULES. Let X C A™ be an irreducible algebraic
variety of dimension s. Fix a chart N(h) in the standard atlas, and let 1, ..., s
be chart parameters.

PROPOSITION 21: Let M be an AV-submodule of A,y @ U, where U is a finite-
dimensional gl -module with weight basis

{uy, | k € T).

Then for ), .1 gr ® ur, € M we also have ), (hgr ® Eij - ux) € M for all
1 <4,5 < S. In other words, M is invariant under the operators h ® E;; on
A(h) ®U.
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Proof. It suffices to prove the statement for a single term g ® u. For each vector
field g € V and for each function f € A we have

(fu) - (g@u) — f(p-(g®@u)) € M.

Taking f =t; and p=h a?- we obtain the desired element in M:
J

0 0 ® ot;
(tihatj) g@u) _ti(hat- '(g®u)) :q;hgatq 9 Bqj-u

J
=hg ® E;j - u.
Note that minor A defining the chart N (h) gives rise to a filtration of A,)®U:
- ChHARU kAU Ch AU C--- .

Definition 22: Let M be an AV-submodule of A,y ® U.

e We say that M is bounded if M C h/A ® U for some j.
e We say that M is dense if M D h*A @ U for some k.

Note that M is bounded if and only if M is finitely generated as an A-module,

since A is noetherian.

PROPOSITION 23: Let U be a finite-dimensional simple gl ,-module. Then every
non-zero AV-submodule of A,y ® U is dense.

Proof. Let M C A,y ® U be a non-zero submodule. Let
I={feA|f(AU)C M}.

Then I is an ideal of A. To show that M is dense we need to show that hN € I
for some N.

Let I be a weight basis for U. Let v € M and write this element in the
form v =}, fr ® ux with fi € Ay, in fact we shall assume that fr € A
(otherwise just multiply v by a power of h).

Fix an index ko such that fy, is non-zero. The Jacobson density theorem
implies that for each k € T' there exists wy € U(gl,) such that wgug, = u and
wru; = 0 for ¢ # kg. Fix an ordering among the E;; and express wy in the
corresponding PBW-basis and let  be the highest length of terms occurring in
this expression of wy. For products in U(gl,) of length ¢ where 0 < ¢ < r, define
the correspondence

Eijy - Eij, = W N (h@ Eyj,) - (h® Ej,j,).

1J1
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Here the right side is viewed as an element of Endg(M) in accordance with
Proposition 21. Then by construction the element corresponding to wy maps v
to h" fo ® ug. Herefy := fi, and r depends on k. Letting N be the maximum
of the r-values we conclude that h"¥ fy ® up € M for all k € I', which means
that hV fo(A®@ U) C M and RN fy € 1.

We now aim to apply Hilbert’s Nullstellensatz to the function h. Fix pe N(h).
We need to show that there exists f € I with f(p) # 0. We had already
found AN fy € I so if fo(p) # 0 we are done. Otherwise, let K be a posi-
tive integer such that h* B;(U) C A® U for all i and consider the element
ha‘zi (RNHE fo @ uy) € M. This expands as

oh 0
(N+K)f0hN+Kat ® uy, +hN+K+1 6{0 ®Uk+hN+K+lfoBi(Uk)

°. Oh
+hN+Kf0 Z ot ® Eqi c U -
qg=1 "1

Now the first, third, and fourth terms lie in
RN fo(A®U) C M,

so we also get hVHE+1 %{? ® u € M for all 1. This shows that we may replace
fo by gt‘; in the argument.

There is some product d of derivations with d(fo)(p) # 0. So acting repeatedly
with vector fields of form h Bi as above we eventually obtain h%d(fy) € I
for some large enough S, and h®d(fy) is non-zero at p. Thus for every point
p € N(h) we have found a function in I which is non-zero at p. Thus we have
shown the contrapositive of the following statement: h(p) = 0 whenever p is a
common zero for I. By Hilbert’s Nullstellensatz this implies that h"V € I for
some NN, which in turn means that M is dense.

COROLLARY 24: Let A,y ® U be an AV-module as in Lemma 16, where U is
a simple gl,-module. Then there exists at most one simple AV-submodule of
A(h) ®U.

Proof. Let M and M’ be simple submodules in Ay ® U. By Proposition 23
both modules are dense, so they both contain hN A® U for sufficiently large N.
Thus M N M’ is a non-zero submodule of both M and M’ so by simplicity we
must have M = M’.
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THEOREM 25: Let X be a smooth irreducible affine algebraic variety and
let M be a gauge module which corresponds to a simple finite-dimensional
gl,-module U. Then M is a simple AV-module.

Proof. Let M’ be a non-zero submodule of M and define
I={feA|fMcM'}.

Then I is an ideal and it does not depend on the chart we use. Let {h;} be the
standard minors giving our atlas for X. Proposition 23 implies that there exist
natural numbers {k;} such that h¥* € I for all i. But since X = |J; N(h;), for
each p € X we have h;(p) # 0 for some index i. But then the set of common
zeros is empty, and Hilbert’s weak Nullstellensatz gives 1 € I [25]. In view of
the definition of I this says that M = M’.

Theorem 8 and Theorem 25 imply our Main Theorem.

Pairing between gauge modules and Rudakov modules

Let M be an AV-module which is finitely generated over A, and let p be a
non-singular point of X. Define U := M/m,M.

LEMMA 26: The space U is an A#U(V, )-module.

Proof. We first verify that m, M is a V-submodule of M. Let u € Vy, f € m,,
and m € M. Since M is an AV-module we have

p (f-m) = p(f)-m+f-(u-m).
Here pu(f) € m, by the definition of V., so the right side is clearly in m,M.

But m,M is also an A-submodule of M. Thus m,M is an A#U (V4 )-submodule
of M, and so is the quotient U = M/m,M.

Note that U is an evaluation module over A: we have f-u = f(p)u.
LEMMA 27: The module U is finite-dimensional.

Proof. Let uq,...,u; generate M over A. Then any m € M can be expressed
asm = fiu;+- -+ fruy for some f; € A. But then m = f1(p)us +-- -+ fr(p)ug
in the quotient U, which shows that the images of the u; span U.

Let U* = Homy (U, k) be the dual space of U. This is an AV;-module with
the standard dual actions of A and of V.
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Write (—, —) for the natural pairing U x U* — k where (u, ¢) = ¢(u). This
pairing satisfies the following compatibility conditions for the actions of f € A
and of n € V:

(u, f - o) =(f - u, ) = f(p)(u, v),
(u,n-p) =—(n-u,p).

Define a map 7: A#U(Vy) — A#U (V4 ) by requiring 7|4 = id and 7|y, = —id.
Then 7 extends uniquely to an anti-involution of A#U(V;). Then for
w € A#U(Vy) we have

(w-u, ) = (u, 7(w) - @).

Now consider the canonical projection w : M — U of AV, modules. This
gives rise to an AV-morphism of the duals: 7* : U* — M*. Consider the
Rudakov module corresponding to the AV,-module U*:

Ry(U") = A#UV) @ auu(vo) U™

PROPOSITION 28: The canonical AV-homomorphism 7* : U* — M* extends
uniquely to an AV-homomorphism 7* : R,(U*) — M*.

Proof. This follows by the adjunction between induction and restriction:
Hom 4y, (U*, M™) :HomAm(U*,Resﬁ%M*)
~Hom ay (Ind4y, U*, M*) ~ Homay(R(U*), M*).
We summarize the results of the present section.

THEOREM 29: Let X be an algebraic variety and let p be a non-singular point
on X. Let M be an AVx-module which is finitely generated over A. Define
U := M/m,M and let

Ry(U*) = A#UV) @ agpuv,) U™

be the corresponding Rudakov module. Then there is a natural pairing between
the modules M and R,(U*) given by

<ma ’I“) =n" (’I“) (m)’

where 7 is the canonical extension of the morphism 7 : U* — M* to R,(U*).
This pairing satisfies

(f-m,r)=(m,f-r) and (n-m,r)=—(m,n-r)
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forall fe A,neV, me M, andr € R,(U*). Equivalently, we have

(w-m,r) = (m,7(w) )

for all w € A#U(V), where T is the natural anti-involution on A#U(V).
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