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the indecomposable modules over algebras with radical square zero and so called
path algebras is reduced to the classification of the so called quiver representsation
([8], [11]). As we show below, this fact has an astonishing analogue for matrix
Jordan algebras.

Among other things, in this paper we describe the finite dimensional Jordan
algebras § = £ @ Rad J such that

(1) 3/Radd (~ L) is a semisimple matrix Jordan algebra.
(2) Rad’d=0.
(3) The associative algebra S(4) is of finite or tame representation type.

The main technical difficulty in applying classification results from the theory
of associative algebras to algebras of the form S(J) is the following: Almost all
criterions of finiteness or tameness for associative algebras are formulated in terms
of the basic (i.e. Morita reduced) algebras, represented as a quiver with relations.
But the algebras S(J) are not usually Morita reduced. Hence, to be able to apply
a classification result from the representation theory of associative algebras to S(g)
one should find an idempotent e € S(J) such that the algebra eS(J)e is basic and
Morita equivalent to S(J).

1.2. Overview of the contents. In Section 2 we recall briefly the definition of
Jordan bimodules and some necessary properties of special universal and universal
multiplication envelopes of a Jordan algebra.

In Section 3 we collect the necessary general facts from the theory of represen-
tations of finite dimensional associative algebras. In particular, we introduce here
the representation of an associative algebra as a quiver with relations and describe
an explicit construction of the Morita reduced algebra for an algebra, given by
generators and relations (Lemma 3.3), which we apply later. We also give some
conditions, under which an involution, defined on a basic algebra A can be lifted to
an Morita equivalent algebra A (Corollary 3.1). In particular, if A is a basic algebra
Morita equivalent to A = $(J), then it gives a technically important presentation
A as subalgebra in a matrix algebra over A.

In section 4 we introduce the notion of the diagram of a Jordan bimodule and
Jordan algebra. These notions are the direct analogue of that of the quiver of an
associative algebra. These notions have turned out to be very useful and effective
(see subsection 3.4). We also describe the simple modules over the semisimple
matrix algebras in a convenient form.

In Sections 5 we investigate the category of Jordan algebras over a fixed Jordan
algebra L. The source of our inspiration is the analogy with associative algebra
and the categorical meaning of corresponding constructions.

We would like to draw attention to the notion of the tensor algebre A(V) of a
bimodule (in the sense of MacLane {6]) B over algebra A over k. One may define it
as a free object in a convenient category, or construct it as a factor algebra of the
free k-linear algebra F' = F[A @ B] of the corresponding class, generated by A® B
modulo the ideal, generated by the relations

{a1) * [a2] — [a1 0 a2], a1, a3 € A,

M [b]*[a} - [b- a].[a] x o] — [a- b],.a € A,b€ B,
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where [z] means a generator of F, corresponding to z € A® B, « means the product
in F, o the product in A and - the action of A on B.! We hope, that for Jordan
algebras our paper showed the value of this notion, for both comprehension and as
a technical tool.

We investigate the interaction of the notions introduced above with the opera-
tions over Jordan algebras and some functors, such as special universal and universal
multiplication envelopes. An interesting, although perhaps expected result is some
commuting of the functor of the tensor algebra with the functor of the special uni-
versal envelope (Theorem 5.1). Namely, if L is a Jordan algebra, V' a bimodule
over £, then S(L(V]) ~ S(L)(V) for some S$(L)-bimodule V. The Jordan nature of
the bimodule V' is explained in 6.

As in the case of associative algebras every finite dimensional Jordan algebra J
with a Levi subalgebra £ can be covered by a unique tensor algebra « : L[V]—],
such that 7| = id and 7|y is a monomorphism.

Let J be a Jordan algebra over its Levi subalgebra. For the goals of representation
theory it seems to be useful represent J by a set of generators of Kerw, where
71 L[V]—J, V = RadJ/(Rad’J + LRad®J). In this case the simple Lemmas
5.9 and 5.10 (together with Lemma 3.2, (2) give an algorithm of construction of an
associative algebra A, represented as a quiver with relations, such that A is Morita
equivalent to S(g).

Section 6 contains a description of the matrix Jordan algebras as the algebras
of symmetric elements in their special universal envelopes and generalized classical
results for semi-simple algebras. This theorem in the case of a Jordan algebra with
a simple Levi subalgebra goes back to Jacobson ([7, Sect. III.5]). We come back to
this topic in the section 8. As a corollary (Corollary 6.1) we obtain the reflexivity
of tensor algebra L[V], where £ is a matrix semisimple Jordan algebra and V is a
unital L-bimodule.

Section 7 is devoted to the description of the mapping Qui, which transforms a
Jordan diagram I of a matrix Jordan algebra g into the quiver Q of the associative
algebra with involution S(g). One can consider Qui as an algorithmic realization of
the functor V — V. Note, that the Jordan algebras (even finite dimensional), which
diagrams belongs to the domain of Qui form more wide class, as matrix Jordan
algebras. The arising class of Jordan algebras we will call almost matrix Jordan
algebras. Nevertheless, we can apply methods we develop in this new situation.

In the last Section 8 we apply the developed methods and results for investiga-
tion of special representation type of almost matrix Jordan algebras. An immediate
corollary of the developed techniques is Theorem 8.3, which for a Jordan algebra
4 construct “in principle” a basic algebra A, presented as a quiver with relations
(Q, R), such that A Morita equivalent to S(J). Further we describes quivers with
relations (Q, R), which can be obtained in such way (Theorem 8.2). In subsection
8.3 in terms of the Jordan diagrams and transformation Qui we proof a criterions
of special representation finiteness and tameness of almost matrix Jordan tensor
algebras and algebras with radical square equals 0 (Theorem 8.4). As in the case
of associative algebras the answer is formulated in terms of celebrated Dynkin dia-
grams. Later we discuss the notion of special Morita equivalence of Jordan algebras
and propose an algorithm of construction of Jordan algebras with prescribed asso-
ciative envelope and calculate some examples.

IThe trivial split extension A @ B is an obvious factor of A{V).



4 IRYNA KASHUBA, SERGE OVSIENKO, AND [VAN SHESTAKOV

1.3. Some notations. We work over the algebraically closed field k of character-
istic # 2,3. All associative algebras we will consider are finite dimensional with
unity. Unless otherwise stated, the word “module” means “left module”. The word
“algebra” without the adjective “Jordan” means “associative algebra”. We use M,
to denote the associative algebra n x n-matrices over the field k.

The notation “z o y” denotes a product in a Jordan algebra, “z - 3" denotes the
action of an element of an algebra on an element of a (bi)module. We use the same
notation Rad for the Jacobson radical for associative and Jordan algebras.

2. SPECIAL UNIVERSAL ENVELOPES

2.1. Jordan bimodules. Recall, that a Jordan algebra over the field k is an alge-
bra J with a unique binary operation " o, satisfying the following relations

(2) aob="boa
(3) ((@ca)ob)oa=(ava)o(boa).
for any a,be §.

Let 3 be a Jordan algebra over k, M be a vector space over k and suppose we
have a pair of linear mappings [ : @ M—M, (a®m)—a-m,r: M xJ— M,
(m,a) — m-a, a € 3, m € M. Define on the vector space 2 = J®M a k— bilinear
product *: 2 x Q—Q by

(a14+m) *(az + m2) = ay 0az+ a1 - ma +m;y - a3

for a1,a2 €3, mi,mz € M, which turns  into an algebra, where § is a subalgebra
and M is an ideal such that M2 = 0. Then we will say that M endowed with two
bilinear compositions r,! is a Jordan bimodule over J if ? = J® M is a Jordan
algebra with respect to “+”. In this case § is called the null extension of § by
the bimodule M.

Since a-m =m-a, a Jordan bimodule can be considered as {a Jordan) right or
left module. The Jordan bimodules over J form an abelian category J — Mod, where
2 morphism of J-bimodules f : M—N is a k-linear mapping such that f(a-m) =
a-f(m),a € 3,m € M. Since the left and right modules' structures coincide we wiil
use the words “Jordan module” and “Jordan bimodule” synonymously, preferring
the term “bimodule” in arder to emphasize the existence of both structures.

By 3 — mod we denote the category of finite dimensional J-modules.

2.2. Universal multiplication envelope. Following (7], [6] the action of a Jordan
algebra g on a module can be rewritten as an action of an associative algebra U(J)
called the universal multiplication envelope for the representations (modules). Let
F(3) be the free associative k-algebra generated by the vector space J and let
I C F(J) be the ideal, generated by elements:

(4) 2aba+bo(aca)—2a(boa)-blaca), alaca)—(aca)as, a,be .

Set U(J) = F(J)/I. The mapping i : 3— U(3),a — a + I is an injection of

vector spaces, hence one can consider J as a subspace in U(J). We endow every

U(J)-module M with the canonical structure of an J-module through a - m L2

(a+I)m, m € M, a € J. This defines the isomorphism of categories J — Mod and
U(J) — Mod.
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We note also that U(J) has an involution * : U(J)— U(d),z — z*, ie. * is k-
linear, 1* = 1, (zy)* = y*z*, 2,y € U(J). This involution is called the fundamental
involution on U(J) and is characterized by the property that for ¢ € J, a = a*
holds.

If dimy J < o0, then dimy U(J) < co. The construction U(J) splits the problem
of classification of representations of J into two parts:

{1) defining the structure of U = U(J);
.(2) investigating the representation for the associative algebra U.

2.3. Special universal and unital universal multiplication envelopes. Let
J be a Jordan algebra and let M be a vector space, endowed with a composition
InM— Ma®mr—a-m,a€j,me M such that for any a),a3 € me M
holds

2(@10a2) -m=a;-(a2-m)+az-(a;-m).

If we set m-a = a-m, then the mappings (a,m) — im-a, (a,m) — La-m endow
M with the structure of a Jordan module for J. A module of this type will be
called special. The category of special bimodules will be denoted J — sMod.

The full subcategory § —sMod C § —Mod can also be described as a category of
modules over an associative algebra, namely the so called special universal envelope.
This is defined to be the algebra S(J) = F(J)/Rs, where Rg is the ideal of F(g)
generated by the elements of the form

(5) a®b+b®a—~2a0ba,be].

We denote the coset a+ Rg of a € S(3) by ag. The isomorphism of the categories
d — sMod and S(J) — Mod is settled by the following correspondence: if a — S,
is a special representation of J, then ag +» 25, defines a representation of the
associative algebra S and vice versa.

Now suppose that 3 is a Jordan algebra with an identity element e. A module
M for § will be called unital if ¢-m = m for all m € M. The corresponding
associative algebra will be called the unital universal multiplication envelope. This is
the algebra U;(J), that is the factor of U(d) by the ideal generated by the elements
ae +ea — 2a, a € J. Analogously we can introduce the special unital universal
envelope S'(J).

The following theorem shows the role of the algebras S(3) and Uy(3).

Theorem 2.1. ([6],11.11.15) Let J be a Jordan algebra with identity element e and
let U=U(J) be the universal multiplication envelope of §. Put Ey = (e~1)(2e—1),
Ey=e(2e—1), Eyjp = —4e(e —1). Then

(1) E; are central orthogonal idempotent in U, Eg + E1+ Eyp = 1 hence
U =Up x Uysg x Uy where U; = UE; is an ideal.

(2) Moreover, if z; denotes the component of £ € U in U; then Uy and
a — a3 is o universal unital multiplication envelope U1(d), and Up @ Uy 2
and ¢ — 2(ag + a1/2) i a special universal envelope for J.

This theorem evidently splits the category J — mod in the direct sum of the full
subcategories § — mody, § — mody, J — mody.



6 IRYNA KASHUBA, SERGE OVSIENKO, AND IVAN SHESTAKOV

3. PRELIMINARIES ABOUT FINITE DIMENSIONAL ALGEBRAS

3.1. Representation type of algebra. We refer the reader to [4], [5] or {13] for
the details.

Unless otherwise stated, in this section all algebras are finite dimensional algebras
with 1 over k and modules are left. A — mod denotes the category of left finite
dimensional A-modules over the algebra A. Assume A is & localization of the
polynomial algebra k{z] by 0 # f € k[z| and M is an A— A bimodule free as a right
A-module. Then the one-parameter family of A-modules F' = F(A, M) consists of
modules of the form M ®, U, where U is a one-dimensional A-module. Then A
has

(1) & finite (type) if there are finitely many isomorphism classes of indecom-
posable A-modules.

(2) a teme (type) if for each dimension d there exists finitely many finitely
many one-parameter families F1, ..., Fn,(N = N(d)) every indecomposable
module of dimension d is isomorphic to the module from some F;.

(3) a wild (type) if there exists an A —k({z,y)-bimodule M, finitely generated
free as a k{z,y)-module such that the functor M ®k(z,y) _ keeps indecom-
posability and isomorphism classes.

Due to this definition the algebra of finite type is a tame algebra. The dividing
line between these notions are given by the following theorem.

Theorem 3.1. (1) (14]) A finite dimensional algebra A is either tame or wild
(but not time and wild simultaneously).
(2) (11]) Let A be a finite dimensional algebra of tame type. Then either A is of
finite type or there exists ¢ dimension, coniaining infinitely many isoclasses
of indecomposable modules.

Let § be a finite dimensional Jordan algebra over k. Then all its universal
envelopes U(J), U1(d), S(J) and S'(J) are finite-dimensional algebras. Moreover
the category of J-modules is isomorphic to the direct sum U(J)—mod, U;(g) —mod
and S(J) — mod. It motivates the following definitions.

Definition 3.1. A finite dimensional Jordan algebra J is of (has) finite, tame or
wild type (for special representations, for a unital representation) provided that it
is true for U(d) (for S(3) and for Uy(3) correspondingly).

The representation type for all representations of § we define as for the universal

algebra U(3).

3.2. Morita equivalence. The algebras A and A’ are called Morita equivalent,
if the categories A — mod and A’ — mod are equivalent. An algebra A is called
basic or Morita reduced, provided that A/Rad A ~ k™, n > 1. In every class of
Morita equivalence there exists a unique basic algebra up to isomorphism. The
problem of classification of the indecomposable representations of an algebra A
can be simplified by passing to a basic algebra B Morita equivalent to A.

A direct summand of A, as a left A-module has a form Ae, where e € A is an
idempotent. If Ae is indecomposable then it is called a principal indecomposable
A-module and e is called primitive.

Let P be a left ideal of A such that P =P, @--- @ P,, where {P,...,P,} is
a set representative of all isomorphic classes of principal indecomposable modules.
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Such a P is unique up to isomorphism and the algebra B = End,(P) will be
basic and by [13] Proposition 9.6 A and B are Morita equivalent. Moreover (see
[13] Proposition 6.4.a and Corollary 6.4.a), there exists an idempotent e € A such
that P = Ae and B = Ends(eA) ~ eAe. More precisely

n ki
Lemma 3.1. Let A be an algebra and 1 = Z Ze,—_,- i3 the decomposition of unity
=1 j=1
into @ sum of orthogonal primitive idempotents such that Aey; ~ Aeyy if and only
ifi=1i". For any integers ly,...,l,, such that 1 < L < ks, i=1,...,7n the algebra
B =eAe, wheree=ey, +--- + ©n1,,, is basic and Morita equivalent to A.

Let A be a (not necessarily finite dimensional) algebra with a decomposition of
1 into a sum of orthogonal idempotents 1 = e;+ ---+ e, and k = (k1,-.., k) be
an integral vector with non-negative integral components. Then by Ay we denote
the subalgebra in M (k), k = k; + - -- + k,, formed by the block matrices

Mg, xky (e14€1) Mg, xp(€1de2) ... My, xk, (€14ey)
©) My, xki{€24€1)  Mi,xk, (€24e2) ... Mg, x&., (e2dey,)
Mi, xk; (ender) Mg, cky(endea) ... Mg, xk. (endey)

with the natural multiplication. Then Ay, is Morita equivalent to A and if A is basic,

then in this way we obtain all (up to isomorphism) algebras Morita equivalent to

A. The entries in such matrices are naturally indexed by the pair ((81,%1), (82,12)),
8;-1

1 < 81,83, 1 S i1 < Ksyy 1 < 42 < Kyt it corresponds to the entry () ks + 11,
=t

83—1

D ki +i3). The corresponding unit matrix is denoted by By, 4,),(sg.ia)-

=1

3.3. Quivers and relations. An oriented graph or quiver Q is defined by its set of
vertices of points Qy and set of arrows Q together with two maps s,e : Q; — Qos
which send an arrow to its start and end vertex correspondingly. We say that
the arrow z € Q leads from the vertex s(z) to the arrow e(x). Let us denote by
QAs the category of (possibly infinite) quivers, where the morphism F from Q =
(QD!Ql,sve) to QI = (QIOaQ,li 8,6) is a pair of maps Fp : QO"“’Q{], £ Q]—"’Qllv
such that sFy = Fys, eFy = Fge.

Let § = 8y x---x S, where S; is a matrix algebra. We denote by V; a simple left
S;-module. Any finitely generated S-bimodule V (equivalently any 5°®jy S-module)

is isomorphic to the S-bimodule @ (V; ®x V,-")"‘f for some k;; > 0, where V* is
4,j=1

dual to the V; space with the natural structure of a right S;-module. The diagram

of bimodule V is the quiver Q = Q(V), Qu = {1,...,n} and from the vertex i to

the vertex j, 1 < 4,5 < n lead k;; arrows. Conversely, any (finite) quiver Q defines

uniquely up to isomorphism a bimodule V' = Vg, such that Q = Q(V).

Remark 3.1. Let V1,V be S-bimodules. then Q(Vi © Va)1 = Q(V1) L Q(Va) with
the same 3 and e.
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Let A be an algebra and § = A/Rad A ~ S = §; x --- x S, is as above. Then
the quiver (the diagram, scheme) Q(A) of the algebra A is called the diagram of the
S-bimodule Rad A/ Rad® A. Q(A) is an invariant of the class of Morita equivalence.

We need some standard facts about algebras ({5], [13]). Let A be an algebra
and W be an A-bimodule, then by A(W) (see 1.2) we denote the tensor algebra
(not necessarily finite dimensional) of the bimodule V over A, endowed with the
canonical A-structure, i.e. a homomorphism 3 = 345y : A—A(W). It is well
known, that in the case of associative algebras

(7 AWY=A® éW““'. y(a) = a,a € A.

i=1
A{W) is a graded algebra: deg A = 0,degW® =i,i > 1.

Lemma 8.2. Denote by S C A a Levi subalgebra in A (i.e. A=S54RadA) and
by V the S-bimodule Rad A/ Rad? A.

(1) Let p : Rad A—V be the canonical projection, s : V—Rad A be a S-
bimodule splitting of p, S(V) be the tensor algebra of V over S. Then the
algebra homomorphism 7w : S(V)— A, which is identical on S and x|y = s,
is an epimorphism and Kerx C Z Ve,

i22

(2) Assume for o S-bimodule W that there exists an epimorphism w :
S(W)——A, identical on § and such that Kerx C Y 5, W& Then
VW,

If A is basic and 1 = e; + - - - + ey, is the decomposition of its unit in the sum of
orthogonal primitive idempotents, then k;; = dimy e;(Rad A/ Rad® A)e;.

With a quiver Q, [ Q, | € o is associated with the (not necessarily finite dimen-
sionall) path algebra k[Q) of the quiver Q. This algebra is isomorphic to the tensor
algebra over the semisimple algebra k% of the kQo-bimodule V. The standard
basis of k|Q] forms oriented paths in Q, i.e. sequences z; ... %k, Z; € Q;, such that
8(z;) = e(;41),1 =1,...,k—1, provided that k > 1 and the vertices start from Qg
if k = 0. We set s(w) = s(zx), e(w) = e(z,) and k is called the length of the path.
The product pypz of paths py =z;...zx and po =y1 ...y equals zy ... Ty ... Y1,
if s(zx) = e(y1) and 0 otherwise. The unit element of k[Q] is Z P.

PeQy

Let A be a basic algebra, Q = Q(A). Following Lemma 3.2 there exists an
epimorphism 7 : k[Q]-—A. Fix a set R C k[Q] of generators of the ideal Ker.
We call the pair (Q, R) a quiver with relstions, which represents the algebra A.

3.4. Construction of a quiver with relations. Usually the universal multipli-
cation and special universal envelopes of a finite dimensional Jordan algebra are not
basic. Lemma 3.3 below gives a method to construct Morita reduced subalgebras
as quivers with relations.

Let A be an algebra, §= M, X --- x Mz, C A a Levy subalgebra,

n ks
(8) 1= E Ze{i, where e; are diagonal matrix units in My,

s=1 ix=1
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the decomposition of the unit of A4 in the sum of primitive idempotents, V be a
n
S-bimodule such that A~ S(V)/I, I EDV®, e=Y ef;, 4 = ede. Following

2 e=1
Lemma 3.1 4 is a basic algebra, Morita equivalent to A. Moreover, A >~ A,
F= (k1o k). )
We need an implicit isomorphism &4 : A—Ap. &4 which sends a € A to the
matrix ®4(a), such that

(9) (pA(a)(ax,il),(aa,ia) = e;Iilae::p 1< 81,82 €<n,1<4 € kanl L2 < ka:-

Denote S = eSe, V = eVe. Then the canonical embeddings § <+ § and
V < V induce a homomorphism of algebras? i : S{(V)—8(V). Since § and S are
semisimple, 7 is an embedding.

We prove Im7 = eS(V)e. Evidently Imi is a graded subalgebra in eS(V)e and
in the degrees 0 and 1 they equal § and ¥V correspondingly. To finish the proof
make the step of induction in deg from n — 1 to n. Let z € eS(V)e, degz = n.
Thenz =3, y;2;, degy; < n,degz; <n. Butfory,z € S{V),degy <n,degz < n

n k, n ks
eyre=eylze=) Z ezefye =) Y (ezel;)(efye)
s=1 i=1 8=1i=1

holds. By induction, all exe?,,ef;ye € Im1, which completes the proof.
Then we have the following commutative diagram

(10) S{v) — -5V,
£ Da AE

where the horizontal arrows are isomorphisms, 7 is a canonical projection and
7 : 3(V)—A is induced by 7. Hence we obtain the following lemma.

Lemma 3.3. Let A~ S(V)/I and R C @V®‘ be a family of generators of the

22
ideal I. Then
(1) i
Mg, xk; (€1]€1) Mg, xka(e1lez) ... My, xk,(e1]es)
My, xki(€2ler) Mk, (€2des) ... My, (e2len)
Ker = . . . . s
My, xk,(enfe1) M, xk{enfea) ... Mg, xk,(enTen)

where I = Ker#@
(2) The entries of the matrices gy (r), 7 € R form a family of generstors
@s(v)(R) of the ideal Ic g(‘?)
Proof. The statement (1) is obvious. o
To prove (2) denote J C S(V) the ideal, generated by ®g(vy(R). By (1) JC I.
On the other hand &gy induces an isomorphism from Ker « to Ker 7z, so ®g(vy(R)

2Note, that i sends the unit in 5 to an idempotent in S.
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generates Ker & over 5(V)z. Hence all entries of matrices from Ker % belong to
J, that completes the proof. 0

3.5. Morita equivalence of associative algebras with involution. Let, in the
assumptions of subsection 3.4, the algebra S be endowed with an involution *, such
that (S;)* = S, and for all 4,0(i) = i is defined &(?) = £1, provided that » when
restricted to S; is either a transposition or a symplectic involution.

Corollary 3.1. Let, in assumption above, V be a bimodule with involution, *,
which induces a permutation on the set
{eh|s=1,...,mi=1,...,k},
e =eandI*=1. Then
(1) * induces an involution on A and A* = A.
(2) Let1=e;+---+e, be the decomposition of unity into the sum of minimal
orthogonal idempotents, * be an involution on A and the functions o, €

define uniquely an involution on Ay, which turns &, into an isomorphism
of algebras with involution.

Proof. The statement (1) is obvious. Since ®4 is an isomorphism, it endows A
by an involution, such that ®4 is an isomorphism of algebras with involution. We
need to prove, that this structure is uniquely defined by #| 7, o and €.

By definition ®4(ef;) is the unit matrix E(, i).(s.5) € AE By definition of the
involution *, (ef;)* = e 4 holds and @A(e,,J ) = E{w,in,(e.59)- Note that i, j', '
are defined by o and e.

Let a € A be such that e, ae®, =a. Let a* = €2, a®e’’ . . Then

i161 %Ciziy Jaja Jadr®
e;;_n = :ll:; Y (euleelu)‘ = (elu)‘e (eul)‘l
hence (efi )* = ¥, and (ef},)* = e}},. Analogously (ef?;)" = e}?,. This implies
that the diagram

(11) a= el‘ﬁaelzia (elﬁ ae!:l)E('h“) (82,42)

t3 ®a h
eJ:Jna eJin (el.n '11)E('2J=)-(hdx)

commutes. Hence the involution of A is defined by . a

4. BIMODULES OVER SEMISIMPLE MATRIX JORDAN ALGEBRAS AND THEIR
DIAGRAMS

4.1. Diagrams of Jordan bimodules and algebras. One can observe, in rep-
resentation theory of finite dimensional algebras the important role played by some
geometrical objects - both as technical tools and as new sources of intuition. We
mention only the notions of the quiver (quiver with relations) of an algebra, the
two dimensional complex associated with the Auslander-Reiten quiver of an algebra,
covering techniques ete. ([9], [10})

This inspires us to introduce the notion of the diagram of a finite dimensional
Jordan algebra. It is analogue of the notion of the quiver of an algebra. We try to
show its importance in applications to representation theory of Jordan algebras.
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Let £Ly,...,Lp, be simple Jordan algebras, L = Ly @ «-- @ L,,. Then U(L)
canonically decomposes into a product of slgebras ([6], I1.2, Theorem 5, IL11,
Theorem 16).

U(L) ~ (®UD(L )) x (f[U,}(L,-)) x
i=1

R =1

Vol UL
2) ofL) 3
( 10 Ux(L)@U% L;)) x HUI(L )
N 1€i<jign
U (&)

Hence the category U(L) —mod is the direct sum of the categories Up(L) — mod,
Uy (L) — mod, Uy (Ls) ® Uy (L) — mod and Uy (L;) — mod, where 1< i< j < n.
Then for an indecomposable U(L)-module M we say its type t(M) equals 0, Le.,
lg.ey, 1, provided it belongs to one of the categories above. All these categories
are semisimple. The algebra Up is isomorphic to k and the category Up(J) — mod
consists of modules with zero action of .

Denote by Cg, the set of isoclasses of simple L-modules. Due to the t:ype of mod-
ule, C, decomposes in the disjoint union of the subsets Cg(0), Cr((2):), Ce(1i5),
Cc(1;). We associate with every L-bimodule M some geometrical ob_]ect; which
allows us to identify the isoclass of M.

A (non-oriented)) graph I is defined by the set of its vertices 'y and the set of
its edges T'y with an incidence function v : Ty — ([g x g)/ ~, where ~ means
equivalence on Tg x g such that (i,7) ~ (j,7). We say v sends an edge to the
pair of its border vertices. Usually we will write v(z) = (4,5) instead of v(z) =
{(.9). G D)

Let C;y4 denote the set of isoclasses of simple finite dimensional Jordan algebras.
The diagram T" = I'(L) of the algebra L = £, ®... &L, is a graph with the empty
set of arrows, besides [y = {1,...,n} is endowed with a mapping c, : Fo—Cja4,
co L(i) = {L;], where [L;] means the lsoclass

Let M be a U(L)-module, M ~ @ M; is a decomposition of M in a direct sum
=1

of simple modules 3 By a diagram of M we mean the graph ' = T'(M), with the

set of vertices I'(M)o &L ['(L)o U {0} and the set of edges I'(M); = {a1,-..,a:}
endowed with the mapping ¢, : I'(M);—Cg, which sends every M, to its isoclass.
The incidence function v is defined on an edge z € Ty (M), k= 1,...,¢ as follows.

{0,0), if type of cu(z) i8 0,
(i,i), if type of C,,.(I) is lﬁn
(i,3), if type of cpu(z) is (E)L.-’
(iyj)a iftYPe ofcm(:t) is IL.-,E,,-yl €i<jsn
The diagram I'(M) defines the semisimple Jordan algebra £ and the bimodule M
up to isomorphism. Moreover, there is a bijection between the set of finite diagrams

(13) v(z) =

3Sometimes we will understan c, (i) and cm(z) as a representative of the corresponding isoclass.
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T = (T9,T'1,v,¢q,cm) and the set of isoclasses of bimodules over semisimple Jordan
algebras.

A category of Jordan diagrams JorD is defined analogously, where a morphism
F from T = (To,T'1,,Cay6m) to IY = ([, T, 9,¢4,¢m) i8 the pair Fp : To— T},
Fi: F1—*F'1, such that Focg = ¢uFp, FiCm = cmF1 and ((Fp % Fg)/ ~)v = vF.

Remark 4.1. Let Vi, Vi be two bimodules over a semisimple Jordan algebra J.
Then

I(Vi ® Vo)1 =T(V1) UL(Ve)
with the same c,,.

The diagram ['(J) of a Jordan algebra J with semisimple part L we call the
diagram of the L-bimodule Rad 4/(Rad® 4+ L Rad? 9). In particular, if Rad®J =0,
then its diagram defines the algebra J uniquely up to isomorphism (in spite of the
quiver of an algebra, see also 3.3).

Note that J is a Jordan algebra with unity if and only if I' does not contain edges
of the type ()¢, for some i. If ' contains such an arrow, then we will add a unit

to Jr. We will denote the algebra so obtained by 3.

Lemma 4.1. Let T be a diagram of a Jordan algebra 3, J be the algebra obtained
from § by adding the unit, i.e. § = ke & J, the multiplication on § C J coincide
with the multiplication in J andeca =ace=a for anya € 4, S thesetofz ey
of type (3)}, I =T(3). Then
(1) To =To L {E}, where cj(E) =k and cjl3 = c3.
(2) T'1 = ([1\S) U {y:|z € 8}, where v,c in T} restricted to (T'y \ S) coincides
with those for T and if for z € S v(z) = (i,1) holds, then v(y;) = (E,1),
¢m(y:) coincides with cpu(z) @y k.

Proof. It’s obvious. o
As in the case of associative algebras the following obvious lemma holds.

Lemma 4.2. I'(3; x 33) = ['(3;)UI(32), i.e. a Jordan algebra J is indecomposable
into a direct product if and only if I'(J) is connected.

4.2. Associative algebras with involution and Jordan matrix algebras.
Let A = (A, *) be a unital associative algebra with an involution * and J = H,(A)
be the Jordan algebra of n x n Hermitian matrices over A. Recall the following
classical result ([6], Corollary V.6.2).

Theorem 4.1. Let 3 be a finite-dimensional simple Jordan algebra over an alge-
braically closed field k. Then we have the following possibilities for 3: (1) 3=k
is the basic field, (2) 3 =kl ®V is the Jordan algebra of a nondegenerate sym-
metric bilinear form f in a finite-dimensional vector space V with dimV > 1, (3)
d =H,(D,J), n >3, where (A,*) is a composition algebra of dimension 1,2 or
4 if n>4 and of dimension 1,2,4,8 if n=3.

Following [7], we define a functor H, from the category (4, *) — Bimod of unital
associative bimodules with involution over A into the category § — Mod; of unital
Jordan bimodules over J.

Let (W,*) € (A,+) — Bimod and E = A @ W be the split null extension of
(A,*) by (W,%). Then we let » be the linear mapping of E which extends the
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given linear mappings + on A and W. Then (E, #) is an associative algebra with
involution and identity element 1, the identity of A. We can form the Jordan matrix
algebra K = H,(F) which contains J as a subalgebra. Also K contains the ideal
V = W, N K = H,(W) which is just the set of matrices of X whose entries are in
the ideal (W, #) of (E, x). Then V is a unital Jordan bimodule for J relative to the
multiplication defined in K. We shall call V the J-bimodule associated with the
given bimodule with involution (W, x) of (A, *) and denote

V =Ha(W).

Since E=A@W wehave K = J @ V. Also W2 =0in E implies V2 =0 in K so
K is the split null extension of J by its bimodule V.

It is proved in (7, Sect. IIL.5] that H,, for n > 4 is a functor which establishes an
isomorphism from the category (A, +) — Bimod into the category (Hy(A4)) — Mod.

In the case that n = 3, Jordan matrix algebras may have as coordinating algebras
not only associative algebras but also alternative ones. Recall that an algebra A is
called alternative if it satisfies the identities

(z2)y = z(zy), (2v)y = z(yy).

The best known example of an alternative non associative algebra is provided by the
8-dimensional octonion algebra O. An involution * of a (non associative) algebra
A is called nuclear if the *-symimetric elements lie in the nucleus (= associative
center) of A. Now, if (A,*) is an alternative algebra with nuclear involution then
the algebra H3(A) of 3 x 3 +-Hermitian matrices over A is Jordan, and the category
H3(A) — Mod is isomorphic to the category (A, *) — Bimod 4;; of unital alternative
bimodules with nuclear involution over A [7].

4.3. Simple Jordan bimodules over simple Jordan matrix algebras. Let
now J be a special Jordan matrix algebra, that is, § = H(D,) be an algebra
of n x n hermitian matrices over an associative composition algebra (D, #), where
n 2> 3. Due to the previous section, every unital simple bimodule V for J has a form
V = H.(W), where W is a unital simple associative D-bimodule with involution
(alternative bimodule with nuclear involution for n = 3). Therefore, it suffices to
give the list of such bimodules.

If W is a D-bimodule with involution then it is easy to see that W with the
mapping v — —v" is also a D-bimodule with involution, which we will denote by
-W.

(1) D=k, * =id g. In this case we have two non-isomorphic bimodules
W =Regk, W=-Regk.

(2) D=kaok =ke; ®kes, (a,b)* = (b,a). Here we have five non-isomorphic
bimodules

W =Reg D; W = Cay; =ku;, v; =v] =evier—, i =1,2; W =—Cay,, i=1,2

(3) D = My(k) with symplectic involution. In this case for n > 3 there are two
non-isomorphic bimodules

W =Reg D, W=—-Reg D.
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For n = 3 this algebra has also a non-associative alternative simple bimodule
with nuclear involution. Let W be & simple left D-module. We give a bimodule
structure on it by setting z - a = az, a -z = &z, where a — a is the involution in
D. The obtained bimodule with the involution v* = —v we denote by Cay D, it is
called a Cayley bimodule over D.

To describe the non-unital bimodules over L = H(D,) we need a modification
of construction of H,,. Every non-unital V is just a unital bimodule over k x L. It
is an algebra of the form H(A, ) for some algebra A with involution.

On other hand, on the set of irreducible unital L-bimodules with involution
exists the involution W «— W* of taking an opposite bimodule together with an
D-bimodule anti-isomorphism o : W—W?

W= {w’|we W}, (w)" = (w")"

On the isoclasses o exchanges + Cay; «— +Cayy_;, v «— 2, i = 1,2 and is
trivial otherwise.

Consider the null extension of associative algebra A = (k x D) & (W° @ W),
where D is the algebra from the list above and W is a simple unital D-bimodule
with involution and k acts just by the multiplications. Endow A with the involution,
which coincides with the canonical on k x D and (w§,w;)* = (w3, w;). Note, that
if —A be the algebra, constructed by the bimodule —W, then A isomorphic to A as
an algebra with involution. The isomorphism ¢ : A— — A is an identity on k x D
and p(wf, wy) = (wf, —w2). Then ¢ commutes with the involution on k x D and

(W, wz) &5 (W, —wa) V= (w3, —wn),  (w3,w2) > (w§, wy) v (WG, ~wr).

One can present A as the algebra with involution of matrices

kK WY ... x w\'_ [ » uw
(W" D ) thhmvolutlon(wg d ) _((w;)" & )

Consider the algebra A; , = M; ,(A)) (see 3.2) of the matrices

(et "5 )

with the involution induced from A. Then A, ,, has the radical Wy, ~ Mjxn(W)®
M, x1{W?) and we denote H; (W) = H(W;,.). It has an obvious structure of a
k x M, (L)-bimodule, hence is a non-unital bimodule over M,(J).

It turns out, that using construction H,, we can describe all irreducible non-
unital bimodules for the simple matrix algebras. Below we give the list of irreducible
unital D-bimodules W, where D is a composition algebra from the list above and
such that H; ,(W) gives an non-unital irreducible module over H(M,,(D),*) . In
all examples the first multiplier k acts by multiplication on 3.

(1) D=k, W =+RegD.

(2) D=kak =ke; @key, W = Reg D. Then H;,1(W) splits in direct sum of
two irreducible bimodules W3 @ W5, which differs by the transposition. A
basic vector in W and W’ one can choose as

(14) (2“0’) g (32‘3)

which are isomorphic to 1,1 (+ Cay,) and H;,1(+ Cay,) correspondingly.
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(3) D = M;(k) with symplectic involution. In this case for n > 3 there are two
non-isomorphic bimodules

W = +Reg D.

4.4. Simple bimodules over semisimple matrix Jordan algebras. We need
explicit basics in simple bimodules over matrix Jordan algebras.

A faithful simple unital module M over a semisimple Jordan algebra L exist if
either £ is simple or if L is a product of two simple algebras L, x Lo. In the last case
M is isomorphic to the tensor product M; ® My, where M; is a % module over J;,
i=1,2. The interested reader we direct to [6], in particular VIL3, Theorem 7, [7).
The lists of bimodules contain two parts, relating unital and non-unital modules.

If V is & simple unital module over a simple matrix algebra, then we do it using
the functor H,, for convenient n. If L is a simple algebra, then a unital module
over it we will denote by capital letters M, M’, N, N', R and their basics by the
corresponding small letters with indices (m.;, m/;, etc). The range of indices i, j
and the action are defined uniquely by the functor H,,. R means always the regular
module.

If L is simple, then we present here diagrams of its simple bimodules. The
structure of the diagram of a finite dimensional bimodule over any semisimple £
we present in subsection 4.5. In a graphical representation a vertex corresponding
to the algebra HM; i > 3 (the involution (1)) is depicted as a square [1], a vertex,
corresponding to the algebra M}, i > 3 (the involution (2)) we will depict as a circle
@, and a vertex corresponding to the symplectic symmetric algebra HM;s (the
involution (3)) is depicted as a @

Besides matrix semisimple Jordan algebras we need the basis in modules over
the simple Jordan algebra J =k (see Lemma 4.1). In the graphical representation
we will denote it by [1], since in some aspects of theory of special representation
it behaves similar to [n], n > 3.

4.4.1. 1g-bimodules for L =HM,(k),n 2 3. D=k, x=idg.
R N.
- M
R=[n], W=RegD,N = [3],W =~RegD.
4.4.2. 1 -bimodules for L =M, n 2 3. D=k &k, (a,b)* = (b,a).

" ™ ™
R= @ JW=RegD. M= @ W =Cay,. M'= @ W = Cay,.
™ ™
N= () ,W=-Cay,. N'=, (n) ,W =—Cay,.

4.4.3. 1¢-bimodules for L = HM,g(k),n 2 3. D = My(k), X* is the adjacent
matrix, X € My(k).
) ™
R= (>, W=RegD, N = (>, W =-RegD.
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4.44. %-bimodules for L=HM,(k)),n>3. D=k, *+=1dg.

P =[],V =Hy,1(Reg D).

4.4.5. 3-bimodules for L =M ,n> 3. D=kak, (a,b)" =(ba).

M
P=(»),V="H1(Cayy),

Y
P = (n),V = M;,1(Cay,).

4.4.6. 1-bimodules for L = HM,s(k),n > 3. D = My(k), X" is the adjacent
matrix, X € Ma(k).

P= IE ,V = ‘Hm(RegD).

4.5. Diagrams of Jordan algebras of matrix type. We apply here the graph-
ical convention for depicting the diagram I' = I'(g}, where the Jordan algebra g
is such that L = J/Radj ~ L; x --- x &, and all L; are simple matrix Jordan'
algebras. Then I'y = {1,...,n} and the point i € Ty is depicted by one of the
symbols (), [], <> in correspondence with 4.4.

Let V = Rad §/(Rad 42 +J Rad 3%). Then we have enough to define a convention
for the depiction of a simple direct summand of M.

Assume first M {(M) = 1¢,¢,,1 €1 < j < n. Then M is isomorphic to the
tensor product M; & M; where M; (M;) is a simple bimodule over L; (L;) and

t(M;) = ( );:,‘ (tH(M;) = (I)L ). As said in 4.4 both of the bimodules M; are

l.somorphlc to the blmodules P or P'. Following 4.1 a bimodule of such a form will
be depicted as an edge zp between vertices i and j and ¢,,(M) is the isoclass of
M. If M; ~ P’, then we put an arrow on 3 in i. Analogously, if M; ~ P’, then
we put arrow on :l'M in j. Thus we obtain 4 types of arrows z3s. Note, that the
algebras HM;,i > 3 do not have modules P/, hence in our diagrams there are no
edges with an a.rrowmthevertweeE},z>3

If ¢(M) = 1g,, then it gives in 'y the loop ) in the vertex i, cp(zp) is the
isoclass of L;. This loop will be depicted as in 4.4.

If t(M) = l!.‘. we depict it as in the case {(M) = 1;,. But, since in this case

the algebra J does not contain unity, we will change J to J ag in Lemma {.1 and
consider instead of diagram T the diagram I'. The diagram I' contains a unique
vertex, corresponding to k. There are no loops in this new vertex. It will be depicted
as [1], since k does not have the simple module of the type P'. T is reconstructed
by [ in the obvious way. 1 i

For convenience in the case of the unital bimodule V we setJ =3, ' =T.
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5. TENSOR JORDAN ALGEBRAS

5.1. Relative Jordan algebras. The category of Jordan algebras over k we will
denote Jord. By F : k ~ mod — Jord we denote the functor of the free Jordan
algebra over k as left adjoint to the forgetful functor. For a k-space M and z € M
let [z] denote the corresponding generator of F(M).

Let us fix L € Ob Jord and define the category Jordy, of relative Jordan algebras
or Jordan algebras over L. An object of the category Jordg is a Jordan algebra A
endowed with a homomorphism of Jordan algebras 1 : £—~—A. The morphism from
11 : L—Aj to 12 : L— A3 is & homomorphism f : A; — Ajg, such that 1, = fz;.

Usually in the notations of a Jordan algebra over £ 1 : L — A we will skip
the structure homomeorphism 2 and write simply A and (if necessary) denote corre-
sponding homomorphism 24.

5.2. Sums and products, free objects, Consider two Jordan S-algebras 1; :
L—Ay and 13 : L—A3, F(|A1] @ [A3]), its multiplication we denote by *. Then
the product A %Ag (A1%g.A2) is the factor of F([A1]6[Ajg]) by the ideal, generated
by the relations [z1]* [11] = [£1 o g1], 21,91 € Ay, [z2] * [y2] — [z2042), 22,2 € A2,
[21(8)] — [22(s)], s € L, where by o is denoted the multiplication in A, and A,
correspondingly.

Lemma 5.1. Aq x Ay is the sum of A1 and Az in the category Jordg,.

Proof. We will denote the elements of A; * As by their representative in the free
algebra. There exists a canonical homomorphism 1 : L—A; * Ao, defined as
#(8) = [11(3)] (= [12(8)]), which makes .A; * A, an algebra over S. The structure
morphisms o7 : A1 — Ay # Az and o2 : L2 — A; * Ag are defined analogously.
The universal property of the sum for A3 * Az, i.e. the isomorphism of the functors
Jordg, — Sets

Homjord, (A1 * Az, A) = Homgord, (A1, A) X Homyerd, (A2,A), f+— (fo1, faz)
follows immediately from the definitions. O

Remark 5.1. The product” *” endows the category of Jordan algebras over £ with
a structure of symmetrical monoidal category with the unit L.

5.3. Relatively free (tensor) Jordan algebras. Let ¢ : A—J be a morphism of
Jordan algebras. Due to the standard definitions it induces the functor of the mul-
tiplication envelopes U(e) : U(A) — U(J) and U(e) induces the canonical functor
F} :U(J) ~ mod — U(A) — mod, or, equivalently, Fy : J —mod — A — mod.

On other hand, for every £ € Jordg the structure morphism 24 : L — A
endows A with the structure of an L-bimodule, which defines a restriction functor
R : Jordg — L — mod. This functor allows left adjoint L[} : £ — mod — Jordg,
B s L[B], ie

(15) 7 :Homg(B, F(A)) ~ Homjorg, (LB}, A), Be L —mod,A € Jorde .

The Jordan algebra £[B] is defined as a factor of the free Jordan algebra F([L]®
[B]) by the ideal, generated by the relations [i1}x{la} - [l ola}, {1, l2 € L, [B]*[{] —[b-1],
[} %[b] — {18}, s € L, b € B. The algebra L[B] is canonically graded by degz = 0,
zel,degb=1,b€ B,

The following lemma connects two of the notions just introduced.
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Lemma 5.2. L[By] * L]|Ba] ~ L[B1 & By).

Proof. 1t follows from the following chain of isomorphisms of the functors from
Jordg to the Sets:

Homygra, (L[B1] * L[Ba], _) =~
Homyora, (L[B1], ) X Homjora, (L[Bg), _)
Homyg —moa(B1, _) x Homg _mod(Ba2, _) ~
Homg _moa(B1 @ Bz, _) =~ Homjora, (L[B1® Bal, _).
n|

Lemma 5.3. Let § = L ® RadJ be a finite dimensional Jordan algebra and U(J)
be its multiplicative envelope. Then Rad U(J) is generated by RadJ and U(J) ~
U(L) ® Rad U().

Proof. Following [6], Chapter VI, section 2, Theorem 2 Rad J generates a nilpotent
ideal I in U(J), hence I C Rad U(g). On the other hand U(J) = U(L) + I, where
U(L) is a semisimple algebra, which completes the proof. ]

Lemma 5.4. Let J be o finite dimensional Jordan algebra, J, C 3 an ideal, gen-
erated by the non-associative words in J, where at least n letters belongs to Rad A.
Then Rad 3 is strongly nilpotent, i.e. there exists N > 1, such that 3 = 0 for any
kZN.

Proof. Let n be the degree of nilpotency of Rad U(J). Then in U(J) every asso-
ciative word, containing at least n letters from Rad U(J), in particular from Rad J,
equals 0. Then the equality in U(g)

ay - (a3 - 62) = —a1a2a3 — agaza;+
ai(az - a3) + az(ay1 - a3) + az(a1 - ag), ay,e2,03 €4

shows, that every non-associative word in £, containing at least N = 2™ elements
from Rad J is zero in U(d), bence zero in J. O

Proposition 5.1. Let J be a finite dimensional Jordan algebra, L a Levi subalgebra,
x:Radd —» V = RadJ/(Rad’J + JRad®J) be the canonical projection, and M C
RadJ be a subspace, such that n{M) = V. Then the subalgebra in J, generated by
L and M, coincides with J.

In particular, if s : V— RadJ is a L-module homomorphism, such that 7s =
idy, then the homomorphism f : L{V]—3 of Jordan algebras over L induced by s
s surjective.

Proof. Obviously, L < J, hence we should prove Rad.A C J. Then for every a € J,,
there exists €< L, M >, such that @ — z € J,4;. But there exists N > 0, such
that gx = 0, that completes the proof of the first statement. The second statement
is a corollary of the first. O

5.4. Jordan algebras with Levi decomposition and completion. Let L be a
semisimple finite dimensional algebra. Denote Jordsg C Jordg the full subcategory
of 1: L — A, such that 1 is injective and A is a direct sum of Imt and Rad A, where
Rad A is the Jacobson radical of A.

Lemma 5.5. Any two objects of Jordsg, 1, : L — A and 13 : L — A are isomorphic.
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Proof. Let f : V—A* be any k-linear map. Then it defines uniquely an S-
bimodule morphism F : S ® V ® S— A4, such that F(1®v®1) = f(v). But if f
is an L-module homomorphism, then
Fle(s,v)) = 1(8)f(v) + f(v)r(s) - 2f(s - v) = 2(s- f(v) — f(s-v)) =0,

which defines 5(f) on V. _

On the other hand, if F : V—A is an S(L)-bimodule homomorphism and
J:V—V, j(v) = 1®v®1+1I, then the composition G = Fj : V—A* is an
L-module homomorphism

(19) G(a-v)=F(1®s-v®l)=%F(s®u®1+1®v®a)=.

1
§(z(s)F(v) + F(v)i(s)) = 5- G(v).
Obviously, 8 and ! are functorial and mutually inverse. ]

Let Asg(z) be the category of algebras over S(L). Then there exists a standard
functor + : Asg(yy — Jordg and the functor of the special universal envelope
S : Jordg — Asg). These functors form an adjoint pair, i.e

(20) a : Homyera, (3, AT) =~ Homa,, (S(9), A).

Let (A, *) be an associative algebra with involution and J C A a Jordan sub-
algebra in A*. We call § C A an involutive pair, provided that J coincides with
the subalgebra of symmetric elements H(A,*) in A and the canonical inclusion
i:J < At induces an isomorphism S(i) : S(3)— 4, i.e. (A, %) is reflexive.

If f: d— A7, then the diagram below shows, that this is the same as defining
a homomorphism S(f} : $(g)— A of associative algebras over S(L).

(21) L = S(L)
/ \ ﬂ(’/ &H
S(f
3 ! A+ s@) —— 24
If F : Asy — A — bimod is a forgetful functor, then
(22) v : Homy_ 4(V, F(V)) ~ Homa, , (A(V), V).

Theorem 5.1. S(L[V]) ~ S(LWV).
Proof. Let V be an L-module. Then there exists the following chain of functorial
isomorphisms.
Homagg,, (S(L[V]), A) = (due to the ajointness (20))
Homjora, (£[V], A*) = (universal property (15))
(23) Homg (V, At} ~ (Lemmsa 5.8)
Homs(g)_s(;,)(f/,A) ~ (universal property of tensor algebra (22))
HOmAs o, (SCE)(7), 4).
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B

We say, that a Jordan algebra J with a Levi subalgebra L is finitely represented
over L, if V = Rad /(Rad® + J Rad? J) is finitely generated over £ and the kernel
of a projection 7 : L[V] —» § is finitely generated aver L[V].

Lemma 5.9, A finite dimensional Jordan algebra J is finitely represented over its
Levy subalgebra L.

Proof. Let n be the degree of strong nilpotency of Rad J. Then the ideal J, in L[v]
congisting of words with at least n letters in V is finitely generated, the Jordan
algebra J/J,, is finite dimensional and this algebra covers J, which completes the
proof. O

Lemma 5.10. Let 1 : L[V]—S8(L([V])* be a canonical homomorphism of Jordan
algebras and 7 : L[V]—3 an epimorphism of algebras over L, I = Kerrw and
(I) C S(L[V]) be the ideal, generated by I. Then S(3) ~ S(L[V])/(I).

Proof. Obviously, the canonical epimorphism L(r) : S[L[V]]——S(d) factorizes
through p : S(L[V])—S(L[V])/(I). But for any associative algebra A

Homjora, (3, A¥) =

{f € Homjora, (L[V], 4%) | (1) = 0} =

{F € Homasy,,, (S(L[V]), A)|F(I) = 0} ~
Homsg ., (S(L[V])/(1), A)

holds. 0O

(24)

Following Theorem 5.1, the : induced canonical homomorphism W
L[V]—S(L)}{V), sends any non-associative word w = & ...z x with letters from
L and V in the corresponding Jordan element into the algebra S(L)(V), where for
the letter s € L, ¥(s) = s holds and for v € V ¥(v) is the class of 1® v® 1 in V.

Corollary 5.2. If Ry is a system of generators of the Jordan ideal I, then ¥(Ry)
is a system of generators of the associative (I).

Proof. Let Ry = {ry}, where k runs some set of indices. We should prove, that
W(I) belongs to ideal, generated by all ¥(ri). If £ € I, then £ = =z, ...z, for some
non-associative word zi ... z,, where some z; = r). If n = 1 then all proved, other-
wise £ = (T1...%5) 0 (Tj41..-Zn) for some j, ¥(z) = U(z1...25)¥(Tjp1 ... Tn) +
Y(Zj41...2n)¥(x1 ... 2;) and induction in n completes the proof. ]

The corollary above together with Lemma 3.3 gives us possibility to write down

a basic aigebra, which is Morita equivalent to S(J), where J is an algebra over L,
presented by generator and relations.

6. STRUCTURE OF SPECIAL UNIVERSAL ENVELOPE OF MATRIX JORDAN ALGEBRA
k
Theorem 6.1. Let J = L + Radd, L = @HN(D;), ng = 3, (Dy,*) associative

=1
composition algebras, 1 = e1+- - -+e, the corresponding decomposition of unit of J in
the sum of orthogonal idempotents, N = Radgd, N = @ Njj, Nij = e, N, e,
1<i<G€n
where x,y, z for 2,y,z € J means the Jordan triple product. Then
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(1)
k
(25) 50) = (PMu D) D( D Fy+5y),

i=1 1€igign
where (D., *) i3 an algebra with involution, which contains an ideal {R;, %),
such that D; = D; o/ Ri, Nii = Hy,, (R;) and N,, eiNyje;.
(2) 3 =H(S(J), *), where * is the principal invelution in S(J) (a* = a for any
a € J). In other words, (S(3), «) is reflexive.
(8) The map
n+— e.-nej
gives 1 — 1-correspondence between N;; and N,vj. In particular

dim N,'j = dim N,‘j =dim Nj.‘

Jor any i # j.
(4) If N = Rad $(3), then

S(3/(N* + gN?) ~S(3)/N>.
In perticular, if N® =0, then N2 =0.
Proof. We have

(26) 8(3) = S(L) +N,N= RadS(ﬂ)
S(L) = S(@Hn,(v ) = E_BS(Hm(D )= @m (Dy),
N= @ e;Ne; = @ Ny;.
1,5=1 £,j=1
Thus
k k ~
(27) $(3) = PM..(D:) + P Ny

=1 ig=1

Consider the “tetrad-eating” ideal Z45(3) in J (see [?], [14]). Evidently, for any
H,,(D;) we have Z4(Hn, (D;)) # 0 (since n; 2 3), hence all e; € Z43(J) and so
1 € Z4g(3), hence Zys(d) = 4. Thus, by (14], S(J) is reflexive, that is

a =H(5(3), %),
where * is the principal involution in S(J). Observe, that * in restriction on
M, (D), coincides with a canonical involution in My, (D.) given by (a;)* = (aJ,)
Thus we have H(N, %) = N, H(Ny, *) = N, H(N,J +NJ,, *) = N;;. Forany fi € N
we have _ _
ny; = efie; + e;ie; € H(Ny; + Ny, #) = N,

Now e;nyje; = eifie; = ;5. This proves, that N,_., = e;Nyje;.

Assume, that e;ne; # 0 for some n € Ny;. Then 0 = (esne;)* = ejne;, hence
{einej} = in=0.

So, we have proved (2) and (3). Let us prove (1). Consider A = M, +Na ¢ S(3)-
Evidently, A* = 4, N;; = Rad A and N“ Ny.
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By associative coordinalization theorem A = M, (D;), where_(f)‘, *) is an
a_lgebra with involution, which has an ideal (Ri,*), such that D;/R; = Dj,
Nii = M,,, (R;,*). We have

H(A, #) = Ho,(Ds) = Hoy(Di) + Nis.

Since for the matrix units e;; in My, (D;) we have ej; = e, ef; = ejy, it follows

easily, that for any ry; € R; we have

*
O rises) =Y i
i Wi

hence * from A in restriction to M, (D;) coincides with the canonical involution.
In particular, we have the known formulas

(28) (reij +17eji) o (sejk + 5*exs) = (r8)eik + (78)"€ki, 7,8 € Dy
This implies
H(ﬁ:) == N.-.' o Nﬁ.

We start already to prove (4). Let us prove, that the ideal (N o N), generated
in S(J) by N o N coincides with N2, This is equivalent to (4). Clearly, we need to
prove only, that N2 C (N o N). Without loss of generality we may assume, that
N o N = 0. First of all for any r,s € R;, we have for j # k in My, (R;)

(rs)ese = ((rs)ejr + (r8)”ex;)err € (N o N)eg =0,

and (rs)e;; =_(r.9)e,—,, o eg; = 0, which proves, that 1\7.-,2 =0.
Consider N;;N;x for i # j, i # k. It suffices to prove that N;; Njr = 0. We have

254k = Nyj 0 Nk + [n45, nge] = g5, mg] =
[ei © nyj, n5x] = leg, iz 0 njx] + Inyj,es o mgp] = 0.
It remains to prove that N;; Nj; = 0. Let

e=e,e= fo,, r 23, fefa = Stsfts
i

then Nj; = 3~ {fiNy;e;} and it is sufficient to prove that for any n,m € N;;
{frne;H{frme;} = 0.

If r # r', we may argue as before. Assume now that r = r’ = 1 and denote
n = {fine;}, my = {fime;}. It follows from the structure of N;; as J,,-module,
(it is a special module over {e;de;} = Hy,(D;)), that there exists fig € Hp, (D))
such that my = ma - fi2, for some mj € {sz,'jej}. Now

[’nl, ma} = [p1,mz - frg] =

[n1 - ma, fra] + [ - fiz,ma] = [n1 - fi2,ma] € [{faNijes}, {f2Nyjes}).
In particular, we have

Alnyma) = [n,malfi =0,

which proves, that [ny,mi] € ij. Making the similar decomposition for e;, we
prove that [ny,m;] € Ny; and finally [ny,m;] =0. 0
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Corollary 6.1. Let L be a semisimple matriz Jordan algebra, V an finite dimen-
sional unitel L-module. Then the tensor algebra L[V] is reflerive.

Proof. Let cI, be the ideal of non-associative words in L£[V] containing at least n
letters in V, z € §(L[V]) is a symmetrical element. Since L[V] is graded and its
homogeneous components are *-invariant we can assume z homogeneous of degree
n. Consider a finite dimensional Jordan algebra L[V]/I?+1,

Consider the commutative diagram

L] > L{y]/H

Lo
SELIV]) —— - S(L[V]/3+)
where horizontal arrows are canonical projection and vertical are maps in its asso-
ciative envelope. Note that both m and $(7) are mono in restriction on n-th graded
component of L[V} and S(L[V]) correspondingly. Hence r is symmetrical, since
S(w)(z) is symmetric and by Theorem 6.1 z € »(L[V]/I**1). O

7. BUILDING BLOCKS FOR QUIVER SPECIAL UNIVERSAL ENVELOPE

7.1. Considered class of Jordan algebras. In this section we define the map-
ping Qui : JorD — QAs, which sends the diagram of a Jordan algebra § of matrix
type to the quiver of associative algebra S(J). The quiver from Q € Im Qui is en-
dowed with some extra structures, which reflect some features of S{J). The functor
Qui and the extra structures are defined “locally”, i.e. on the subdiagrams of [
containing one or two vertices and one edge.

We emphasize, that we consider both finite dimensional and infinite dimensional
Jordan algebras. We say a Jordan algebra J over a semisimple finite dimensional
Jordan algebra J has a diagram I, provided that there exists L-epimorphism 7 :
L[V]—3 for a finite dimensional L-bimodule V, Kermr C VoV + Lo (Vo V).
Without loss of generality we will assume, that the module V is unital, possibly
passing from the diagram I to I'. Recall also, that a bimodule V is uniquely (up
to isomorphism) defined by g (Corollary 5.1).

Definition 7.1. We call a Jordan algebra J almost matriz Jordan algebra if in its
diagram T the set Ty consists of matriz simple Jordan algebras and fields k and
there are no edge a € T'1, such that both ends of a are fields.

Let Q be a quiver. The opposite quiver Q° is defined by Qf = Qq, Qf = {z°|z €
Q,}, 5(z°) = e(z), e(z°) = s(z), = € Q. Obviously (Q°)° = Q. An involution on
the quiver Q consists of two involutive bijections * : Qu — Qg and * : Q; — Q,
such that s(z*) = (e(z))*, e(z*) = (s(z))*.

Let Q be a quiver of A = S(3),§ = LdRadJ, L = L1 X -- x Ly, where all L; are
simples, 8o for I' = I'(J), T'p = {1....,n}, where i corresponds to L;. Analogously,
if Radd/(Rad*3 + 3-Rad’J) = Vi ®--- @ Viy C J is a sum of simple modules, so
we will identify T'; with a family {V4,...,Vn}.

Then Q will be endowed with the following structures.

(1) There exists an involution » : Q —» Q, induced by the involution on 5(3).
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(2) There are given maps

(29) dg:%ﬁ{mt@1@9®}a n;,n223,n324
(30) mod : Q; —{k, M, M’, N, N', R}.

If z € Q, and e, € A is the idempotent corresponding to z, then there exits
a unique £, such that e, € 5(L;) C A and we set alg(z) to be the graphical
presentation of L;. On other hand, every edge a of T by construction (see ) can be
identified with an element of some V;, i = 1,..., N and mod(a) equals graphical
presentation of V;. Usually we will skip nj, na, n3 (see 8.4)

7.2. Vertices. For any matrix Jordan aigebra J we have L(S!)(J) = SI(L(Z))

Further S'(J; ® J2) = S1(41) & $'(J2) , therefore it is enough to construct Qo(J)
for § =k, M}, HM,, HMgn(J) -

(31) 7] dn, for J € {k,H,H(J,)},
ene s'(9) =
(32) ® a=M;,
Eje S'(9) = M, My
Ese

We write the explicit basis for S*(J), for 3 from (1)-(3). Here by E;; we denote
the elementary matrix with a 1 in the (3,7} entry and 0’s elsewhere.
1. 3=M} = (e;y = Eyj, 4,j =1,--- ,n) then

€11€12€2]1 €13€12 vee €11€1n
Sor-| = mmtn e g
(33) Enn€nl Ennfn2 ---  Eantnlfin
€11€21€12 €11€21 are €11€n1
€22€12 €22€32€23 ... €22€52
Enn€in €nnénl ses Epp€iptpl
2. 3=HMﬂ(k,T) = (C“=Eﬁ, é.'j =E,'J'+Ej,'. 1<£4,58n, ‘i<j),
enn enéia ... ent_?_m
(34) M, r)) = | B2 em - emfn
enﬂéln e‘nnéQn e €nn

3. d =HMan(k,J,). Then A € HMa,(k,J,) if A€ M, and A = S~1A7S. We
obtain that A has the following form:

An A ... Al
Az Az ... Az

Ain Azn ... Anpa
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where A;;, 1 =1,...,n is a diagonal matrix 2x2, Ay = (2:: :‘;) is 2x 2 matrix
Wit}l A = (_d:::j ;E;’) . Therefore HMgn(k, J,) = (E,’ = E2|'—1,2i—1 + Eg",z", a,~j =

Eoi-1.25-1 + Eajai, by = Eni125 = Egj1,2, & = Faigj1 — Epjoicy, diy =
Egio5 + Eoj_12i-1, 1 <4, <n, i<j} and

(35)
1
) 5 (HMza(k, Js)) =

€1a12d12  braayp €112 eh ... £1G1n €1b1n

ciodis  €1d12012  E1012 eidig ... €1€1n e1d1n

€adiz —e2bia  €2apados  bogars ... £20a2n Eabon

—E2C12  €2012 coades  Eadiaaiz ... E2C2n €adon

Endin —Enbin Endan —€pban ... Endin@in  bn—tndn—in

—€nCin Enldin —EnC2n Enl2n e C-n—lndn—ln Enaln.dln

7.3. One-point building blocks. Let us calculate Q(S(L + R)), where L =
H(D,,*) is a Jordan matrix algebra and R is a simple unital L-bimodule and
L 4+ R is the trivial split extension. By Subsection 4.2, we have R = H(W), where
W is one of simple unital D-bimodules with involution, and the algebra £ + R is
isomorphic to the Jordan matrix algebra H,(D + W). Let us first exclude the case
D =Mz, n =3, W= Cay. Then by the Martindale theorem {7}, we have the
isomorphism S(Hn(D + W)) & M, (D + W). Finally, the algebra M,(D + W) is
Morita equivalent to D + W. Thus we have Q(S(L + R)) = Q(D + W). In the last
case, in order to determine the representation type of the algebra L + R, by the
isomorphism of the categories L — mod and (D, *) 41 — bimod we have to study the
structure of unital indecomposable alternative bimodules with nuclear involution
over the alternative algebra with involution My + Cay.

(36) ® M2 for n>3,
@El " ®(ri1) = Extz + Etyn ktnls

By« y) z=ruenen, y=ruenen, 2" =y.

(37) ™ MZ  for n>3,
Eie  ®(mu) = (Exien + Eigin)z, for k#1,

Eqe ®(mix) = Ex n4k®, T=my, T* =1T.
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)
(38) O M2 for n2>3,
Eye  ®(m,) = (Ergnt + Eipni)z, for k#1,
Ege ®(m},) = Epynpr, z=mi;, 2° =1z
™
(39) O M2 for n>3,
Eye  ®(nu} = (Ertin = Eikin)s,

}e

Eye z =nze12, T*

= —Z.

™
(40) ) M2 for n>3,

Ere  ®(niy) = (Bignt — Eiyng)x, for k#1,

Eqe T =Nz, T* = —~1I.
N.
(M
(41) (=] Mn, ®{fixt) = (B - Eu)z,
O
€11® z = fije€12, z* = -—=z.
™
(42) [=] M,, @Fu) =(Eu+En)z, £k,
O
ene O(Fir) = Epis, = =181, z° =2z,

® a(nex) = (Eak—1,26-1 — Fak,2),
" B a(nan) = (Bgk-1,21-1 — B 2k)2,
D a(nbrr) = (Ezx—1,21 + E21-1,2)7,
®a(new) = (Bar20-1 + Ea2-1)2,
P a(ndu) = (Eox,2t — Eai—1,26-1)%,
Da(gre) = Bak—1,2k%,  Pa(ghr) = Far2x—17,
M,, z=2z%, z=nea12d1a.

-~
-

(43)

O ®

®

-

=

*
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S a(rer) = (Fok—1,2k—1 + Eag 21)x,

P D alrar) = (Fax-1,21-1 + Ea 1)z,
(44) <,> @ A(Tbrt) = (Eak-1.21 — Bar—1,24)2,
@ a(rent) = (Eako1-1 — Bar—1 )z,
z D4(rdu) = (Eak21 + Egi—1,24-1)7,
O Mn, r= .’l.", r= ﬂ£1a12d12.
e

7.4. Two-point building blocks. All the bimodules here are tensor products of
two non-unital modules over the left and the right Jordan algebra correspondingly
(4.5) The basic vectors for the module over the left (the right) algebra are denoted
by p; (by g;)-

(45) E @ Sp X8y, with S € {k, H,H{(J,)},
x
e O(pr @ @) = Ex14n + Epginls
v
z= e%lpl @, y=nm ®q1€{1, * = id.
(46) ®—Mm M2 x S, forn>3, Se{kHHUJ)}
Eye _ O(pk ® @1) = Bk 2nt1y + Eong,k4nT,
€11 & r=enm ®q, y=m O qen, z* =y,
By V¥ e=Ejte;, form=1 e;=e.
(47) @ ~—1m M2 x Sy, forn >3, Se {kHH(J,)}
Eie _y (i @ gt) = Ergn,2ntty + FBanyiat,
€n ® T=enn1 @G, y=p1®qen, =y,
Epe™ 7 e=E;ten, form=1 e;=ce.
(48) ®—‘-@ M,z,x Mf,,, for m,n > 3,
E}e oE} B(pk ® @) = Entk2n 1T + Ezntmi k¥
z
Efe °E} z=Elp®q, y=El;p®q, z* =y.
(49) @—-——*@ M?,x M?.,,, for m,n > 3,
E%. (__ll_ .E% ¢(Pl: ® QI) = En+k,2n+m+l$ + E2n+l.ky1

E}e ———» oE} t=Ep®q, y=Elp®@q, ¢* =y.
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(50) @*——*@ Mf,x M,’n, for m,n > 3,
Ele v oEj B(px ® @) = Bk 2ntm+T + Eonilkinls
Efe oE3 z=Ei;p®q, y=Eimpoaq, 1*=y.

7.5. Associative quiver of associative envelope of matrix Jordan algebra.

Theorem 7.1. Let 3 be a Jordan algebra of matriz type over L. Then
B : Q(S(3)) ~ Qui(T'(3)).

Proof. This statement is enough to prove for the tensor Jordan algebra L[V]. Note,
that on the vertices 3 is checked immediately. The proof of coincidence on arrows
gives the following. Let I' =['(V).

Qui(T); ~ (by Remark 4.1)

LI Qui(cm ()1 = (by construction above)
z€ly

L) D(em(z))1 = by remark 3.1
z€M

D(ED cm(x))1 = by Remark 5.2
zel

D(@ ¢m(z))1 = by Theorem 5.1
zelM

Q(S(LIV-
a

Corollary 7.1. Let in assumption above A = S(L[V]), e € A be an idempotent,
such " = e and A = eAe is basic Morita equivalent to A. The mapping Qui on 'y
coincides with the restriction of the homomorphism & 4 : A——JE for convenient k.

Proof. See Corollary 3.1. O

Corollary 7.2. Let Q be a quiver with involution . Then there exists a Jordan
diagram T, such that Qui(T") = Q if and only if for any edge a, connecting X and
X* holds a = a*.

8. SPECIAL REPRESENTATIONS OF MATRIX ALGEBRAS

8.1. Criterion of finiteness (tameness) for special representation. The fol-
lowing theorem reduces the problem of classification of indecomposable quiver with
relations to the classification of representation of a quiver with relations.

Theorem 8.1. Let 3 be an almost matriz Jordan algebra, given in the form L[V]/J,
where L is a semisimple Jordan algebra of matriz type, J i an ideal, generated by
finitely many non-assoctative words wy, ..., w, in alphabet L LV, every of which
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contains at-least 2 letters from V, Q = Qui(I'(9)) and I C S(L{V]), generated by
@S(L)(‘})‘I’(ﬂh), i= 1,. oy T Then

8(3) ~k[Q)/1I.
Proof. 1t follows immediately from Lemma 3.3, (2) and Corollary 5.2, D

8.2. Reconstruction of Jordan algebras. The statements, proved in this section
are variations of Theorem 6.1. The main idea of this subsection is to work with the
algebra with involution g4y instead of S(L[V].

Proposition 8.1. Let L be a semisimple Jordan algebra, V be finite dimensional L-
module, such that L[V] is almost matriz, T = [(L[V]) and Q = Qui(T"), 4 = k[Q]
be the path algebra, w = aja3...a0, n > 1, a; € Q;, i = 1,...,n an oriented
path, leading from X to Y, X,Y € Q. Then for every admissible pair of indices
1,4, i # j in L[V] ezists a non-associative word z = 2y 0 -+ 0 z,,, where all z;-th
are either matriz units from L or the standard basic vectors of V, Pgopvp(z) =
E;jw+w'E{i A The notion of admissible pair depends on the type of Jordan algebra.

Proof. We use induction in n. If n = 1, the diagrams from 7 proves the lemma.
Assume for n. — 1 the lemma holds. In particular,. there exists y = z; ...zg_; such
that for v = ay...an_1 holds ®go(v))(y) = Eigv + v*E}.

Assume first, that the path w contains an inner vertex Z # 0. Then w = wyw,
for some pathes wy : Z—Y, wy : X—Z. If both X,Y do not coincide with 0,
then by induction assumption we can assume for some Jordan words

(51) Psevy (1) = Eaws + wiE], bsevp(we) = Exsye + 13 EL,

and i # j, k # 1, k # j, since all matrix algebras there are of dimension > 3.
Then Ey;Ej =0, since i # j, 0 = (Ex;jEq)* = Ej Eg;. Note also, that for any

considered involution holds the following: if p # q and Ej, = Ep, thenp # 9. It

gives us BBy, =0, Ej Ey; = 0 and, applying involution, Eg;E}, = 0, EL;Ei =0.
Due the calculation above

B vt 0 y2) = Bsre v () © Bsevy(tr) =

(Biwr + wiEG) o (Exjws + wiEp;) =

Ey;Eje = EjpEy; = ExEy; = E}Eyj = EgjEj = Ef;Ey = 0)
Egw Exjws + w;E,:jw;Ei"k = Eyw + w'Ei‘J-.

(52)

Assume then, that X =Y = 0, that means in (51) holds i = j = 0 and, since
Z #0, k#0. Then as in (52) we obtain
(58) Dgcvp (1 © ¥2) = Eoow + w* Egg + Exxwaw: + (wown)* Ef;.
Then if eg € J, corresponding [1], then z = $g(g(vy)(eo © (¥1 © ¥a))-

So it remains consider the case, when all inner vertices of w coincide with 0.
Since there are no loops in 0 holds

w=112, T1:0—Y, £3: X—0, X #£0, Y #0.

4The notion of admissible pair depends on the type of Jordan algebra - especially in the case
of full matrix algebra
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Since X,Y # 0, in the case X # Y we can conclude as in (51) and in the case
X =Y as in the case (53). O

Corollary 8.1. Let in assumption above L C k[Q] be a semisimple subalgebra,
generates by Qqu, k[Q]t C k[Q| the ideal of pathes of length > 1, J(Q) C k[Q]* the
space, generated either by pathes w in Q, such that alg(s(w)) # [1] or alg(e(w)) #
[1] or s(w) # e(w) and by the sums w + w+ provided that 5(1w) = e(w), alg(s(w)) =
alg(e(w)) = [1] Then the space F C k[Q]t, generated by entries of matrices
Bg((v))(x), where z runs L[V], coincide with L + J(Q).

Proof. Evidently, entries of ®gcpvy)(L) generate L. Let 6 = Y p_; Acwi, where
Ak € k and wy, are different pathes and X = s(wy) = --- = s{w,) and Y = e(un) =
«++ = e(wy). Assume, at least one from X,Y is not Then by the Proposition
8.1 there exists i # j and zx € L{V], such that Bg(epvy () = Eijwe + wiE};. Let
z =Y., Mz € L[V]. Then ®5(cv})(z) = Eija+ a*E};, therefore a € F.

In the case, when X and Y are[1], then Proposition 8.1 gives us 4 € L[V], such
that QS(LM)(zk) = Foyo, Wk + wiFEo, 0y, since Eaxl)y = Egyo0,. Putting z as
above, we obtain, that if X # Y, then w € F and for X =Y holds w+w* € F. To
finish the proof note, that if = € L[V]oo, then ®g(c(vy)(zk) is just 1 x 1 matrix over
k[Q]. The involution on its entry is induced by the involution from k[Q)], hence it
is symmetrical in k{Q)]. 0

In such way we obtain another proof of Corollary 6.1 including the case of non-
unital bimodules.

Corollary 8.2, Let L|V] be almost matriz Jordan algebra. Then the algebra
S(L[V]) is reflezive.

Proof. There is enough to prove reflexivity for ®gev)(S(L[V])), which is isomor-
phic to S(L[V] as an algebra with involution. But Proposition 8.1 shows, that the
image of L[V] contains all symmetric elements from ®g(ev)) (S(L[V])). (]

Ifzy0zz20:.. 02, €], then call the expression (and its value)
Z1...Zn=(...((z1022) 023)0...) 02pn_1) 020
a normalized word in J.

Remark 8.1. Assume in Proposition 8.1 the bimodule V is unital. Then from the
proof follows, that we can choose the word T normalized.

Theorem 8.2. Let L be a semisimple matriz Jordan algebra, V be finite dimen-
sional L-module, L[V] almost matriz Jordan algebra, T' = T'(L[V]) and Q = Qui(T"),
A = k[Q] be the path algebrn, I C Ef:sz‘ an ideal in A, generated by some
*-invariant subset S C J(L[V]), i.e. I* = I. Then there exists unique (up to
isomorphism) Jordan algebra § with Levi subalgebra L, such that eS(d)e = S(7) is
isomorphic to A/I as an algebra with involution.

Proof. Let R C k|Q] be a set of generators of I. Using Corollary 8.1 we lift
all elements of R and obtain R’ C L[V]. Then the set of entries of ®g(c(v))(R)
coincides with R U R* = R, which generates I. Set § = L[V]/(R'). Uniqueness
follows from Corollary 3.1. 0
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8.3. An example: Jordan algebras with zero radical square and tensor

Jordan algebras. Let Q be a quiver. Then the gquiver double D(Q) of the quiver
Q is defined as follows:

(64)  D(Qo={X",X"|X € Q}, D(Qh = {&: s(a)"—e(a)*]a € Q,}.
Recall, that unoriented graphs from the following lists

Dynkin diagrams Extended Dynkin diagrams
A, 0—0—ie—0—o¢ A /O
" n o_o_..ko
o o
~ - N
D, o/o— —0—o0 Dn O/o—--—o .

i
Eg o—o——I—o———o Eq o~—-o—I—o—o
| _ i

E'r oO— 00— O o6 o0o——0 ET O O O —— O —— O ——O

Eg 0—0—0—0—0—0—0 Ego—0—0—0——0—0—"0—0

are called Dynkin digrams and extended Dynkin disgrams without multiply con-
nections. For short in this subsection we will call they just Dynkin diagrams. A
Dynkin diagram {extended Dynkin diagram) we can endow with an orientation of
edges and call obtained quiver an oriented (extended) Dynkin diagram.

The following results are classical.

Theorem 8.3. (1) Let A =Kk[Q] is the path algebra of a quiver Q. Then A if
of finite (tame) representation type if and only if Q is a disjoint union of
oriented Dynkin diagrams (extended Dynkin diagrams).

(2) Let A be a finite dimensional associative algebra, such that Rad® A = 0,
Q its quiver. Then A is of finite (tame) representation type if and only
if D(Q) is a disjoint union of oriented Dynkin diagrams (extended Dynkin
diagrams).

We can prove some analogues of these statement for matrix Jordan algebras.

Theorem 8.4. (1) Let L be a semisimple matriz Jordan, T’ be a Jordan dia-
gram over L, V =V(T') and 3 = L[V]. Then J is of special representation
finite (tame) type, if and only if Qui(T) is o disjoint union of oriented
Dynkin diagrams (estended Dynkin diagrams).
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(2) Let § be a finite dimensional Jordan algebra of matriz type, Rad 3° = 0 and
T its Jordan diagram. Then J is of special representation finite (tame) type,
if and only if D(Qui(T')) is o disjoint union of oriented Dynkin diagrams
(extended Dynkin diagrams).

Proof. The statement (1) follows immediately from Theorem 5.1, Theorem 7.1 and
Theorem 8.3, (1).

In the same way, the in the case, when the bimodule V is unital, the statement
(2), follows from Theorem 6.1, (4) and Theorem 8.3, (2).

Let us extend the statement (2) to the general case. Let L @ V be the trivial
split extension, 7 : L[V]—L @ V the canonical projection. Then Kern C L[V]
is generated by VoV, L o(V o V). But following Proposition 8.1 and Corollary
8.1 the ideal in k[Qui(I")], generated by entries of the matrices ®¢y(V o V) and
&1 (L o (V o V)) contains all pathes of length 2 in Qui(T’).

Note, that if in a diagram I' is a Dynkin diagram and the vertices are matrix
algebras, then Qui(I") is the disjoint union of two oppositely oriented copies of this
diagram.

Example 8.1. The ezamples below shows, how to work the map Qui.

™y
B —@— @——®

< >

L] 0
®-—— 5

8.4. Morita equivalence for matrix Jordan algebras. The theorem above
shows, that the class of Morita equivalence of $(J) depends, in fact, on some ideal,
generated by Jordan words in the quiver algebra k[Qui(I'(d))]. We show, the 3 and
& are special Morita equivalent if they are almost matrix and Qui(J) and Qui(3’)
are isomorphic as quivers with involution, endowed with the maps alg and mod.

In the class of special Morita equivalence Proposition 8.1 allows a rule to lift of
associative words in a Jordan words in L[V]. Hence if ay,...,a, € [';,and a3 ...an
is a non-associative word, we will consider as a lift of some associative word.

€ e €2
fy = 3 e |

e;o(a1ca;) —eszo(azoa)

Ty — Y222
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