
RT•MAT 2005 • 10 

Jordan algebras versus 
associ811ve a!Qebras 

lryna Kashuba, 
Serge Ovsienko and 

Ivan Shestakov 

Junho 2005 

&ta ~ uma publi~ preliminar ("preprint''). 



JORDAN ALGEBRAS VERSUS ASSOCIATIVE ALGEBRAS 

IR.YNA KASHUBA, SERGE OVSIENKO, AND IVAN SHESTAKOV 

1. INTRODUCTION 

1. 1. The problem. Our paper is devoted to the problem of classification of Jordan 
bimodules over finite dimensional Jordan algebras. One of our goals is to draw the 
attention of experts on Jordan algebras to this problem and the attention of experts 
in representation theory to a very natural and important class of finite dimensional 
algebras, namely the universal multiplication and special universal envelopes of 
finite dimensional Jordan algebras. The authors hope that the results of this paper 
help to fill the gap between these beautiful theories. 

We assume the bBSe field 1k to be algebraically closed and of characteristics 
# 2,3. Recall ([7]), that for a Jordan algebra. 8 the category 8 - bimod of k-finite 
dimensional 8-bimodules is equivalent to the category U - mod of (left) finitely 
dimensional modules over an associative algebra U = U(8), which is called the 
universal multiplication envelope of a. The algebra U is finite dimensional, provided 
that 8 is finite dimensional. It allows ill! to apply to the category 8 - bimod all the 
machinery developed in the representation theory of finite dimensional algebras. In 
particular, in accordance with the representation type of the algebra U ([41) one 
can define Jordan algebrl!B of the finite, ta.me and wild representation types. As 
in the case of associative algebra the distinction of the objects of finite and tame 
representation type is an interesting problem, especially because in these cases we 
can obtain a complete classification of finite dimensional bimodules over a. 

Recall, that the algebra U = U(8) decomposes into the product of subalgebras 

U = Uo Xu½ X U1 , 

where Uo is isomorphic to k, U0 $ U ½ is isomorphic to the so called special universal 
envelope of the Jordan algebra S(= 8(8)) and U1 is the so called universal unital 
multiplication envelope of 8. It induces for every M E U - mod the canonical 
decomposition M ~ Mo$ M1 $ M1. Moreover U - mod is equivalent to Uo -
mod $ U ½ - mod$ U 1 - mod. This splits the problem of defining the represeni.tion 
type of U into the same problem for the algebras S and U1. Both these problems 
are of independent int.erest, but in this paper we investigate the representation type 
of the algebras S. 

There is a classical result([6]), that if 8 is a semisimple Jordan algebra, then the 
algebra U(8) is a semisimple associative algebra, hence it is of finite representation 
type. The class of Jordan algebras o such that Rad2 o = 0, where Rad8 is the 
Jacobson radical of 8, is in some sense closest to the semisimple algebras. For 
associative algebras analogous to the class of algebras that were considered in the 
papers [BJ, [11] (algebras offinite type) and in [3], [12] (algebras of tame type) it wllB 
the starting point for a solution the problem of classification of associative algebras 
of finite representation type. It is interesting that the problem of classification of 
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the indecomposable modules over algebras with radical square rero and so called 
path algebras is reduced to the classification of the so called quiver representation 
([8], (11]). As we show below, this fact has an astonishing analogue for matrix 
Jordan algebras. 

Among other things, in this paper we describe the finite dimensional Jordan 
algebras 8 = C EB Rad 8 such that 

(1) 8/Rad3 (~ C) is a semisimple matrix Jordan algebra. 
(2) Rad2 a = o. 
(3) The essociative algebra S(3) is of finite or tame representation type. 

The main technical difficulty in applying classification results from the theory 
of 8880Ciative algebras to algebras of the form 8(3) is the following: Almost all 
criterions of finiteness or tameness for 8880ciative algebras are formulated in terms 
of the basic (i.e. Morita reduced) algebras, represented as a quiver with relations. 
But the algebras 8(8) are not usually Morita reduced. Hence, to be able to apply 
a classification result from the representation theory of associative algebras to 8(8) 
one should find an idempotent e E 8(3) such that the algebra e8(3)e is basic and 
Morita equivalent to 8(3). 

1.2. Overview of the contents. In Section 2 we n,call briefly the definition of 
Jordan bim.odules and some necessary properties of special universal and universal 
multiplication envelopes of a Jordan algebra. 

In Section 3 we collect the necessary general facts from the theory of represen­
tations of finite dimensional associative algebras. In particular, we introduce here 
the representation of an associative algebra as a quiver with relations and describe 
an explicit construction of the Morita reduced algebra for an algebra, given by 
generators and relations (Lemma 3.3), which we apply later. We also give some 
conditions, under which an involution, defined on a basic algebra A can be lifted to 
an Morita equivalent algebra A (Corollary 3.1). In particular, if A is a basic algebra 
Morita equivalent to A = S(8), then it gives a technically important presentation 
A as subalgebra in a matrix algebra over A. 

In section 4 we introduce the notion of the diagram of a Jordan bimodule and 
Jordan algebra. These notions are the direct analogue of that of the quiver of an 
as.sociative algebra. These notions have turned out to be very useful and effective 
(see subsection 3.4). We also describe the simple modules over the semlsimple 
matrix algebras in a convenient form. 

In Sections 5 we investigate the category of Jordan algebras over a fixed Jordan 
algebra L. The source of our inspiration is the analogy with 8B80Ciative algebra 
and the categorical meaning of corresponding constructions. 

We would like to draw attention to the notion of the tensor algebra A{V) of a 
bimodule (in the sense of MacLane [61) B over algebra A over k. One may define it 
as a free object in a convenient category, or construct it as a factor algel;>ra of the 
free k-linear algebra F = F{A e B] of the corresponding class, generated by A e B 
modulo the ideal, generated by the relations 

(1) 
[a1] * [02] - [a1 o a2], a1,a2 EA, 

[b]*[a] - (b · a], (a]* [b] - [a· b],a E A,b EB, 
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where [x) means a generator of F, corresponding to x E AE9B, * means the product 
in F, o the product in A and • the action of A on B.1 We hope, that for Jordan 
algebras our paper showed the value of this notion, for both comprehension and as 
a technical tool. 

We investigate the interaction of the notions introduced above with the opera­
tions over Jordan algebras and some functors, such as special universal a.nd universal 
multiplication envelopes. An interesting, although perhaps expected result is some 
commuting of the functor of the tensor algebra with the functor of the special uni­
versal envelope (Theorem 5.1). Namely, if£., is a Jorda.n algebra, V a bimodule 
over£.,, then S(J:.,(V]) ~ S(l:.,)(V) for some S(J:.,}-bimodule V. The Jordan nature of 
the bimodule V is explained in 6. 

As in the case of associative algebras every finite dimensional Jordan algebra a 
with a Levi subalgebra I:., can be covered by a unique tensor algebra 1r: J:.,[V]-a, 
such that 1rl.c = id and 1rlv is a monomorphism. 

Let a be a Jordan algebra over its Levi subalgebra. For the goals of representation 
theory it seems to be useful represent a by a set of generators of Ker 1r, where 
1r: .c[V)->8, V = Rad8/(Rad2 8 + J:.,Rad2 8). In this case the simple Lemmas 
5.9 and 5.10 (together with Lemma 3.2, (2) give an algorithm of construction of an 
associative algebra A, represented as a quiver with relations, such that A is Morita 
equivalent to S(8). 

Section 6 contains a description of the matrix Jordan algebras as the algebras 
of symmetric elements in their special universal envelopes and generalized classical 
results for semi-simple algebras. This theorem in the case of a Jordan algebra with 
a simple Levi subalgebra goes back to Jacobson ([7, Sect. III.51). We come back to 
this topic in the section 8. As a corollary (Corollary 6.1) we obtain the reflexivity 
of tensor algebra .C[V], where .C is a matrix semisimple Jordan algebra a.nd Vis a 
unital £.-bimodule. 

Section 7 is devoted to the description of the mapping Qui, which transforms a 
Jordan diagram r of a matrix Jordan algebra 8 into the quiver Q of the 11&.'lOciative 
algebra with involution 8(8). One can consider Qui as an algorithmic realization of 
the functor V >-+ V. Note, that the Jordan algebras (even finite dimensional), which 
diagrams belongs to the domain of Qui form more wide class, as matrix Jorda.n 
algebras. The arising class of Jordan algebras we will call almost matrix Jordan 
algebras. Nevertheless, we can apply methods we develop in this new situation. 

In the last Section 8 we apply the developed methods and results for investiga­
tion of special representation type of almost matrix Jordan algebras. An immediate 
corollary of the developed techniques is Theorem 8.3, which for a Jordan algebra 
a construct "in principle" a basic algebra A, presented as a quiver with relations 
(Q, R), such that A Morita equivalent to 8(8). Further we describes quivers with 
relations (Q, R), which can be obtained in such way (Theorem 8.2). In subsection 
8.3 in terms of the Jordan diagrams and transformation Qui we proof a criterions 
of special representation finiteness a.nd tameness of almost matrix Jorda.n tensor 
algebras and algebras with radical square equals O (Theorem 8.4). AB in the case 
of associative algebras the answer is formulated in terms of celebrated Dynkin dia­
grams. Later we discuss the notion of special Morita equivalence of Jordan algebras 
and propose an algorithm of construction of Jordan algebras with prescribed 8S&l­

ciative envelope and calculate some examples. 

1The trivial split extension A e B is an obvio\18 factor of A(V}. 
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1.3. Some notations. We work over the algebraically closed field k of character­
istic f. 2, 3. All associative algebras we will consider are finite dimensional with 
unity. Unless otherwise stated, the word "module" means "left module". The word 
"algebra" without the adjective "Jordan" means "associative algebra". We use Mn 
to denote the associative algebra n x n-matrices over the field It. 

The notation "::c o y" denotes a product in a Jordan algebra, "::c • y" denotes the 
action of an element of an algebra on an element of a (bi)module. We use the same 
notation~ for the Jacobson radical for associative and Jordan algebras. 

2. SPECIAL UNIVERSAL ENVELOPES 

2.1. Jordan bimodules. Recall, that a Jordan algebra over the field k is an alge­
bra 3 with a unique binary operation " o ", satisfying the following relations 

(2) 

(3) 

for any a, b E 3 . 

aob= boa 

((a o a) ob) o a= (a~ a) o (boa). 

Let 3 be a Jordan algebra over k, M be a vector space over k and suppose we 
have a pair of linear mappings l : 3 ®1r. M---+ M, (a® m) .,_. a· m, r : M ®tr. 3--+ M, 
(m,a) H m·a, o E 3, m EM. Define on the vector space n = 363M at- bilinear 
product • : 0 x !}--.!} by 

(a1 + m1) * (a2 + m2) = 01 o 02 + a1 · ffi2 + m1 · a2. 

for a1, a2 E 3, m1, m2 EM, which turns n into an algebra, where 3 is a subalgebra 
and M is an ideal such that M2 = 0. Then we will say that M endowed with two 
bilinear compositions r, l is a Jordan bimodule over 3 if {l = 3 EB M is a Jordan 
algebra with respect to "*". In this case n is called the null extension of 3 by 
the bimodule M. 

Since a• m = m •a, a Jordan bimodule cil.n be considered as (a Jordan) right or 
left module. The Jordan bimodules over 3 form an abelian category 3 - Mod, where 
a morphism of 3-bimodules f : M---+N is a k-linear mapping such that /(o • m) = 
a· f(m), a E 3, m E M. Since the left and right modules' structures coincide we will 
use the words "Jordan module" and "Jordan bimodule" synonymously, preferring 
the term "bimodule" in order to emphasize the existence of both structures. 

By 3 - mod we denote the category of finite dimensional 3-modules. 

2.2. Universal multiplication envelope. Following (7), (6) the action of a Jordan 
algebra 3 on a module can be rewritten as an action of an associative algebra U(3) 
called the universal multiplication envelope for the representations (modules). Let 
F(3) be the free associative k-algebra generated by the vector space 3 and let 
I c F (8) be the ideal, generated by elements: 

(4) 2aba+bo(aoa)-2a(boa)-b(aoa), a(aoa)-(aoa)a, o,bE3. 

Set U(3) = F(3)/I. The mapping i : 3-+ U(3),o H o + I is an injection of 
vector spaces, hence one can consider 3 as a subspace in U(3). We endow every 

U(3}-module M with the canonical structure of an 3-module through o · m ~1= 
(o + I)m, m E M, a E 3. This defines the isomorphism of categories 3 - Mod and 
U(3)-Mod. 
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We note also that U(8) has an involution•: U(3)--+ U(3),x,.... x•, i.e. • is k­
linear, 1* = 1, (xyt = y•x• ,x, y E U(3). This involution is called the fundamental 
involution on U(8) and is characterized by the property that for a E 8, a = a• 
holds. 

If dimi. 8 < oo, then dimi. U(8) < oo. The construction U(8) splits the problem 
of classification of representations of 8 into two parts: 

,(1) defining the structure of U = U(8); 
, (2) investigating the representation for the associative algebra U. 

2.3. Special universal and unital universal multiplication envelopes. Let 
8 be a Jordan algebra and let M be a vector space, endowed with a composition 
8©t M-+ M,a®m,.... a •m,a E 8,m EM such that for any a1,a2 E 8,m EM 
holds 

2(01 o 02) · m = a1 · (a2 · m) + a2 · (a1 · m). 

If we set m •a= a-m, then the mappings (a, m) --+ ½m •a, (a, m) --+ ½a• m endow 
M with the structure of a Jordan module for 8- A module of this type will be 

called special. The category of special bintodules will be denoted 8 - sMod. 
The full subcategory 8 - sMod c 8 - Mod can also be described as a category of 

modules over an associative algebra, namely the so called special universal envelope. 
This is defined to be the algebra 8(8) = F(8)/Rs, where Rs is the ideal of F(8) 
generated by the elements of the form 

(5) a®b-t-b®a- 2aob a,b E 8. 

We denote the coset a+ Rs of a E 8(8) by as, The isomorphism of the categories 
8 - sMod and 8(8) - Mod is settled by the following correspondence: if a >-+ Sa 
is a special representation of 8 , then as ,..... 2Sa defines a representation of the 
associative algebra 8 and vice versa. 

Now suppose that 8 is a Jordan algebra with an identity element e. A module 
M for 8 will be called unital if e • m = m for all m E M. The corresponding 
associative algebra will be called the unital universal multiplication envelope. This is 
the algebra U1 (8), that is the factor of U(8) by the ideal generated by the elements 
ae + ea - 2a , a E 8. Analogously we can introduce the special unital universal 
envelope 81 (8). 

The following theorem shows the role of the algebras 8(8) and U1 (8) . 

Theorem 2.1. ({6],II.11.15) Let 8 be a Jordan algebra with identity element e and 
let U = U(8) be the universal multiplication envelope of 8. Put Eo = (e-1)(2e-1), 
E1 = e(2e - 1), E112 = -4e(e - 1). Then 

(1) E; are central orthogonal idempotent in U, Eo + E1+ E112 = 1 hence 
U = Uo x U1/2 x U1 where U; = U E; is an ideal. 

(2) Moreover, if x; denotes the component of x E U in U; then U1 and 
a-+ a1 is a universal unital multiplication envelope U1(8), and Uo EB U112 
and a---> 2(ao + a112 ) is a special universal envelope for a. 

This theorem evidently splits the category 8 - mod in the direct sum of the full 
subcategories 8 - modo, 3 - mod1, 8 - mod½. 
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3. PRELIMINARIES ABOUT FINITE DIMENSIONAL ALGEBRAS 

3.1. Representation type of algebra. We refer the reader to [4], (5] or [13] for 
the details. 

Unless otherwise stated, in this section all algebras are finite dimensional algebras 
with 1 over k and modules are left. A - mod denotes the category of left finite 
dimensional A-modules over the algebra A. Assume A is a localization of the 
polynomial algebra k[x] by O ,f. f E k[x] and M is an A- A bimodule free as a right 
A-module. Then the one-parameter family of A-modules F = F(A,M) consists of 
modules of the form M ©AU, where U is a one-dimensional A-module. Then A 
has 

(1) a finite (type) if there are finitely many isomorphism classes of indecom­
posable A-modules. 

(2) a ta~ (type.) if for each dimension d there exists finitely many finitely 
many one-parameter families F1, ... ,FN,(N = N(d)) every indecomposable 
module of dimension dis isomorphic to the module from some Fi, 

(3) a wild (type) if there exists an A -k(x, y)-bimodule M, finitely generated 
free as a k(x, y)-module such that the functor M ©t(:i:,11) _ keeps indecom­
posability and isomorphism classes. 

Due to this definition the algebra of finite type is a tame algebra. The dividing 
line between these notions are given by the following theorem. 

Theorem 3,1. (1) (14]} A finite dimensional algebra A is either tame or wild 
(but not time and wild simultaneously). 

(2) ([1 ]) Let A be a finite dimensional algebra of tame type. Then either A is of 
finite type or there exists a dimension, containing infinitely many isoclassea 
of indecomposable modulea. 

Let 8 be a finite dimensional Jordan algebra over k. Then all its universal 
envelopes U(a), U1(8), 8(8) and S1(8) are finite-dimensional algebras. Moreover 
the category of a-modules is isomorphic to the direct sum U(8)-mod, U1(8)-mod 
and S(i:1) - mod. It motivates the following definitions. 

Definition 3.1. A finite dimensional Jordan algebra 8 is of (hM} finite, tame or 
wild type (for special re1J")sentations, for a unital representation} provided that it 
is true for U(8) (for S(a) and for U1(8) rorrespondingly). 

The representation type for all representations of 8 we define as for the universal 
algebra U(a). 

3.2. Morita equivalence. The algebras A and A' are called Morita equivalent, 
if the categories A - mod and A' - mod are equivalent. An algebra A is called 
basic or Morita reduced, provided that A/ Rad A ~ kn, n ~ 1. In every class of 
Morita. equivalence there exists a unique basic algebra up to isomorphism. The 
problem of classification of the indecomposable representations of an algebra A 
can be simplified by passing to a basic algebra B Morita equivalent to A. 

A direct summand of A, as a left A-module has a form Ae, where e E A is an 
idempotent. If Ae is indecomposable then it is called a principal indecomposable 
A-module and e is called primitive. 

Let P be a left ideal of A such that P = Pi EB··· EB P,., where {Pi, ... , P,.} is 
a set representative of all isomorphic classes of principal indecomposable modules. 
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Such a P is unique up to isomorphism and the algebra B = EndA(P) will be 
basic and by (13] Proposition 9.6 A and B are Morita equivalent. Moreover (see 
[13] Proposition 6.4.a and Corollary 6.4.a), there exists an idempotent e EA such 
that P = Ae and B = EndA(eA)-:::= eAe. More precisely 

n le; 

Lemma 3.1. Let A be an algebra and 1 = LL~; is the decomposition of unity 
i=l j=l 

into a sum of orthogonal primitive idempotents such that Ae,; ~ Ae,,1, if and only 
if i = i'. For any integers 11, ... , ln, such that 1 ~ Z, ~ k,, i = 1, ... , n the algebra 
B = eAe, where e = e111 + · · · + en1,., i.lJ basic and Morita equivalent to A. 

Let A be a (not necessarily finite dimensional) a.lgebra with a decomposition of 
1 into a sum of orthogonal idempotents 1 = e1 + • • • + en and k = (k1, •.. , kn) be 
an integral vector with non-negative integral components. Then by Ar we denote 
the subalgebra in Mk(k), k = k1 + • • • + k,. formed by the block matrices 

(6) 
( 

Mk,xk1 (e1Ae1) 
M1c,x1<, (e2Aei) 

Mk,.xk1 (enAe1) 

M,1:1 xk,(etAe2) 
Mi.,xi.,(e2Ae2) 

Mk, xk,. (e1Ae,.) ) 
M1,2 xk,. ( e2Aen) 

MA:,. x k,. ( e,.Aen) 

with the natural multiplication. Then Ak is Morita equivalent to A and if A is basic, 
then in this way we obtain all (up to isomorphism) algebras Morita equivalent to 
A. The entries in such matrices are naturally indexed by the pair ((st, i1), (s2, i2)), 

•1-l 
1 ~ st,82, 1 ~ i 1 ~ k.,, 1 ~ i2 ~ k.,: it corresponds to the entry (L k; +i1, 

j=l 
•~-1 

L k; + i 2). The corresponding unit matrix is denoted by Eca,.,1),C•••••>· 
J=l 

3.3. Quivers and relations. An oriented graph or quiver Q is defined by its set of 
vertices of points Q0 and set of am;,ws Q1 together with two maps s, e: Qt-+ Q0 , 
which send an arrow to its start and end vertex correspondingly. We se.y that 
the arrow x E Q0 leads from the vertex s(x) to the arrow e(.:z:). Let us denote by 
QAs the category of (possibly infinite) quivers, where the morphism F from Q = 
(Qo,Q1,s,e) to Q' = (Q0,Q1,s,e) is a pair of maps Fo: Qo-+Qo, Fi: Q1-+Q1, 
such that sFt = Fos, eFt = Foe, 

Let S = St x • • • x Sn, where S; is a matrix a.Jgebra. We denote by V; a simple left 
S,-module. Any finitely generated S-bimodule V (equivalently any S 0 0.,S-module) 

n 

is isomorphic to the S-bimodule ffi (Vj ©k Vt)"•; for some k;; ~ 0, where v;• is 
,.;al:1 

dual to the V; space with the natural structure of a right S,-module. The diagram 
of bimodule Vis the quiver Q = Q(V), Q0 = {l, ... , n} and from the vertex i to 
the vertex j, 1 ~ i,j ~ n lead k;J arrows. Conversely, any (finite) quiver Q defines 
uniquely up to isomorphism a bimodule V = VQ, such that Q = Q(V}. 

Remark 3.1. Let Vi, V2 be S-bimodules. then Q(Vi €B ½)t = Q(Vi) U Q(½} with 
the same s and e. 



8 ffiYNA KASHUBA, SERGE OVSIENKO, AND IVAN SIIBSTAKOV 

Let A be a.n algebra and S = A/ Rad A ~ S = S1 x · · · x Sn is as above. Then 
the quiver (the diagram, ~cheme) Q(A} of the a.lgebra A is called the diagre.m of the 
S-bimodule Rad A/Ra.d2 A. Q(A) is a.n invariant of the class of Morita equivalence. 

We need some standard facts about a.lgebras ([5], {13]). Let A be an algebra 
and W be an A-bimodule, then by A(W) (see 1.2) we denote the tensor algebra 
(not necessarily finite dimensional) of the bimodule V over A, endowed with the 
canonical A-structure, I.e. a homomorphism 1 = 1A(W) : A--+A(W). It is well 
known, that in the case of associative algebras 

(7) 
00 

A(W) = AeEBW®i, i(a) = a,a EA. 
i=l 

A(W) Is a graded algebra: deg A = 0, deg W®i = i, i ;;;, 1. 

Lemma 3.2. Denote by Sc A a Levi subalgebra in A (i.e. A= S + R.adA} and 

by V the S-bimodule RadA/Rad2 A. 

( 1) Let p : Rad A--+ V be the canonical projection, s : V--+ Rad A be a S­
bimodule splitting of p, S (V) be the tenaor algebra of V mJer S. Then the 
algebra homomorphism ,r: S(V)--+A, which ia identical on Sand 1rlv = s, 

ia an epimorphism and Ker ,i- C L V®2 • 

;;;,2 
(H) Assume for a S-bimodule W that there exists an epimorphism ,r : 

S(W)--+A, identical on S and such that Kerir c :E;;;,2 W0f. Then 
V!:::::W. 

U A is basic and 1 = e1 + · · • + en is the decomposition of its unit in the sum of 
orthogonal primitive idempotents, then~;= dimte;(RadA/Rad2 A)e;. 

With a quiver Q, I Q0 I ( oo is associated with the (not necessarily finite dimen­
sional!) path algebra k(Q] of the quiver Q. This a.lgebra is isomorphic to the tensor 
algebra over the semisimple algebra kQ,, of the tQ,,-bimodule VQ. The standard 
basis of k[Q] forms oriented paths in Q, i.e. sequences x1 .•• xi,, x; E Q1 , such that 
s(x;) = e(xi+1), i = 1, ... , k-1, provided that k ;;;, 1 and the vertices start from Qo 
If k = 0. We set s(w) = s(x.t),e(w) = e(x1) and k is called the length of the path. 
The product PJ.l>'J of paths Pl = X1 .•• X,t and P2 = 111 ..• YI equals X1 ••• Xi:711 ••• 111, 
if s(x.t) = e(y1) and O otherwise. The unit element of k[Q) is L P. 

PEQ,, 
Let A be a basic algebra, Q = Q(A). Following Lemma 3.2 there exists an 

epimorphism ,r : k(Q)-+A. Fix a set R c k(Q] of generatoI'!l of the ideal Ker,r. 
We call the pair (Q,R) a quiver with relationa, which represents the algebra A. 

3.4. Construction of a quiver with relations. Usually the universal multipli­
cation and special universal envelopes of a finite dimensional Jordan algebra are not 
basic. Lemma 3.3 below gives a method to construct Morita reduced subalgebras 
as quivel'!J with relations. 

Let A be an algebra, S = Mi,, x • • • x Mi,~ c A a Levy subalgebra, 

" A:. 
(8) 1 = LL e:,, where e:; ace diagonal matrix units in M.t. 

•=1 P:::1 
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the decomposition of the unit of A in the sum of primitive idempotents, V be a 
" S-bimodule such that A~ S(V}/1, I c ffiv®i, e = Ee!1, A= eAe. Following 

i~2 ,-1 
Lemma 3.1 A is a basic algebra, Morita equivalent to A. Moreover, A ~ A,;, 
k = (k1, ... , k,.). 

We need an implicit isomorphism 'PA : A-A,. 'PA which sends a EA to the 
matrix 'P A(a}, such that 

(9) 'PA(a)c.1 ,i,),(a2 ,;2 ) = e;'.1;
1
ae:: 1 , 1 ~ s1,s2 ~ n, 1 ~ii~ k.,, 1 ~ i2 ~ k.,. 

Denote S = eSe, V = eVe. Then the canonical embeddings S <-+ S and 
V <--+ V induce a homomorphism of algebras2 i: S(V}-->S(V). Since Sand Sa.re 
semisimple, i is an embedding. 

We prove Imi = eS(V}e. Evidently Imi is a graded subalgebra in eS(V}e and 
in the degrees O and 1 they equal S and V correspondingly. To finish the proof 
make the step of induction in deg from n - 1 to n. Let x E eS (V)e, deg x = n. 
Then x = E; Y;Zi, degy; < n, degz; < n. But for y, z E S(V}, degy < n, degz < n 

n k,. n kit 

eyze = eylze =LL exe:;ue = L L(exe:i)(e1,ye) 
•=Ii=! •=li=l 

holds. By induction, all exet1, ej;ye E Im i, which completes the proof. 
Then we have the following commutative diagram 

(10) S(V} 
~S ( V) 

S(V)E' 

wl 
,tA 

l ~. 
A At 

where the horizontal snows a.re isomorphisms, 1r is a canonical projection and 
1r: S(V)--+A is induced by 1r. Hence we obtain the following lemma. 

Lemma 3.3. Let A ~ S (V) / I and R c EB V®i be a family of generators of the 
i;l,2 

ideal I. Then 

(1) 

( 

M.1:,x.1:,(e1~e1) 
M,1:2 x1,1 (e1Ie1) 

Ker1r,; = : 
M,1:,.x.1:1 (e,.fe1) 

where I = Ker fr 

Mk, xc2 (e1fe2) 
M.1:2 x.1:,(e2fe:1) 

Mi.,x1o,.(e1fe,.) ) 
M1c,x1o..t2~e,.) , 

Mi.n X kn ( e,.J e,.} 

(2) The entries of the matrices 'Ps(V)(r), r E R form a family of generotors 
'Ps(V)(R) of the ideal l c S(V). 

Proof. The statement (1) is obvious. _ _ 
To prove (2) denote Jc S(V} the ideal, generated by cf?s(V)(R). By (1) JC I. 

On the other hand cf>s(V) induces an isomorphism from Ken to Ker1i",, so cf>s(V)(R) 

2Note, that i sends the unit in S to an idempotent in S. 
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generates Keri", over S(V),. Hence all entries of matrices from Ker1t, belong to 

J, that completes the proof. □ 

3.5. Morita equivalence of associative algebras with involution. Let, in the 

assumptions of subsection 3.4, the algebra S be endowed with an involution •, such 

that (Si)"= S.,(i) and for all i,CT(i) = i is defined t:(i) = ±1, provided that• when 
restricted to S; is either a transposition or a symplectic involution. 

Corollary 3,1, Let, in assumption above, V be a bimodule with involution, •, 

which induces a permutation on the set 

{e:, I.,= 1, ... , n; i =- 1, ... , k.}, 

e• = e and r = I. Then 

(1) • induces an involution on A and J• = A. 
(£) Let 1 = e1 + • • • + e,. be the decomposition of unity into the sum of minimal 

orthogonal idempotents, • be an involution on A and the function6 CT, e 

define uniquely an involution on A,, which turns (> A. into an iaomorphum 

of algebras with involution. 

Proof. The statement (1) is obvious. Since (1,4. is an isomorphism, it endows A, 
by an involution, such that ~ A. is an isomorphism of algebras with involution. We 

need to prove, that this structure is uniquely defined by •IA, CT and e. 
By definition 4> ,4.(e:;) is the unit matrix Ec•,i),(•,J) E A,. By definition of the 

involution•, (et)"= e::;- holds and (1,4.(e::;-) = Ec•',i').(r,j')· Note that i',j',s' 
are defined by CT and e. 

Let a E A be such that e::i, ae::,. = a. Let a• = e}!;.a•e}!;,. Then 

(11) •1 •• a= e,,,,aeiaia ,tA 
( e~}, ae::1 )Ee.,,,, ),<••,i•) 

·! ! •IA 

e}!J.a•e~!;, 
,tA ( e~i• a•e~! 1 }Ect•,j•),(t,J,) 

commutes. Hence the involution of Ai is defined by •IA. □ 

4. BIMODULES OVER SEMISIMPLE MATRIX JORDAN ALGEBRAS AND THEIR 

DIAGRAMS 

4.1. Diagrams of Jordan bimodules and algebras. One can observe, in rep­

resentation theory of finite dimensional algebras the important role played by some 

geometrical objects - both as technical tools and as new sources of intuition. We 

mention only the notions of the quiver (quivex with relations) of an algebra, the 

two dimensional complex associated with the Auslander-Reiten quiver of an algebra, 
covering techniques etc. ([9], [10]) 

This Inspires us to introduce the notion of the diagrom of a finite dimensional 
Jordan algebra. It is analogue of the notion of the quiver of an algebra. We try to 
show its importance in applications to representation theory of Jordan algebras. 
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Let .C.1 1 ••• ,.C,. be simple Jordan algebras, .(, = .C.1 EB··· EB .C.11 • Then U(.c) 
canonically decomposes into a product of algebras ([6], Il.2, Theorem 5, 11.11, 
Theorem 16). 

U(.c) ~ ( {8)Uo(£-i)) X (ftu½(£,i)) X 

i=l i=l ...__, ------
(12) 

Uo(I.,) U½(I.,) 

n 

(( TI Ui(£-;)®U½(£,;)) X (flU1(£-i))). 
1~i<j~n i=1 

U,(I.,) 

Hence the category U(.(,)- mod is the direct sum of the categories U0(.c) - mod, 
U½(£,;) -mod, U½(.C.;) ® u,(.C.;) - mod and U1(.C.,) -mod, where 1 ~ i < j ~ n. 
Then for an indecomposable U(.C.)-module M we say its type t(M) equals 0, (½).r..,, 
l.c, 1.c,;, l.c,, provided it belongs to one of the categories above. All these categories 
are semisimple. The algebra U0 is isomorphic to k and the category Uo(cl) - mod 
consists of modules with zero action of iJ. 

Denote by C.c, the set of isoclasses of simple .C..modules. Due to the type of mod­
ule, C.c, decomposes in the disjoint union of the subsets C.c,(0), C.c,((½),), C.c,(1,;), 
C.c,(1;). We aBSociate with every .C.-bimodule M some geometrical object, which 
allows us to identify the isoclass of M. 

A (non-oriented)) graph r is defined by the set of its vertices r 0 and the set of 
its edges r 1 with an incidence function v : r 1 ..... (fo x fo)/ ~, where ~ means 
equivalence on ro x ro such that (i,j) ~ (j, i). We =Y v senda = edge to the 
pair of its border vertices . Usually we will write v(x) = (i,j) instead of v(x) = 
{(i,j), (j,i)}. 

Let CJA denote the set of isoclasses of simple finite dimensional Jordan algebras. 
The diagram r = r(.C.) of the algebra .C. = .C.1 EB ..• EB.Cn is a graph with the empty 
set of arrows, besides r0 = {1, ... , n} is endowed with a mapping ca : fo--+CJA, 
c0 L(i) = [£-,], where [.C.;] means the isoclass. 

t 

Let M be a U(£-)-module, M ~ Ef) M1 is a decomp06ition of M in a direct sum 
i=l 

of simple modules 3 . By a diagram of M we mean the graph r = r(M), with the 

set of vertices f(M)0 ~1= r(-C,)0 U {O} and the set of edges f{Mh = {a1, ... ,at} 
endowed with the mapping c.,.: f(M)i--+C.c,, which sends every M; to its isoclass. 
The incidence function v is defined on an edge x E r 1 ( M), k = l, ... , t as follows. 

(13) 
{ 

(0, 0), if type of em(x) is 0, 
( i, i), if type of Cm (x) is l.c,., 

v(x) = (i,i), if type ofc,,.(x) is (~).c,,, 

(i,j), if type of c,,.(x) is 1.c.,,.C;, 1 ~ i < j ~ n. 

The diagram f(M) defines the semisimple Jordan algebra .C. =d the bimodule M 
up to isomorphism. Moreover, there is a bijection between the set of finite diagrams 

3sometimee we will undenrtan c,. (i) &nd c,,. (~) as a representative of the corresponding iaoclass. 
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r = (r 0, r l, v, Co, c,,.) and the set of isoclasses of bimodules over semisimple Jordan 
algebras. 

A category of Jordan diagrams JorD is defined analogously, where a morphism 
F from r = (r0 , ri, v, c.,, c,,.) to I" = (r~, r~, v, c.,, c,,.) is the pair Fo : ro---+r~, 
F1 : r1 -+f~, such that Foe.,= c..Fo, Ficm = c,,.F1 and ((Fo x Fo)/ ~)v = vF1, 

Remark 4.1. Let Vi, V2 be two bimodules over a semisimple Jordan algebra a. 
Then 

with the same c,,.. 

The diagram r(S) of a Jordan algebra. a with semi.simple part I., we call the 
diagram of the .C.-bimodule RadS/(Ra.d2 S+t.,Ra.d2 S). In particular, if Rad2 a= o, 
then its diagram define5 the algebra. a uniquely up to isomorphism (in spite of the 
quiver of an algebra, see also 3.3). 

Note that g ia a Jordan algebra with unity if and only if r does not contain edges 
of the type (}).c., for some i. If r contains such an arrow, then we will add a unit 

to Sr. We will denote the algebra so obtained by a. 
Lemma 4.1. Let r be a diagram of a Jordan algebra 8, a be the algebra obtained 
from 8 by adding the unit, i.e. 3 = ke $ a, the multiplication on S C 3 coincide 
with the multiplication in 3 and eoa = aoe = a for any a E 3, S the aet ofx E r1 
of twe (½)}, I'= f(8). Then 

(1) I'o = ro u {E}, where c3(E) = k and c31a = ca. 
{2} f 1 = (r1 \ S) u {y,.lx ES}, wMre v,c in i\ restricted to (r1 \ S) coincides 

with thoae for r and i/ for x E S v(x) = (i, i) holds, then v(y,.) = (E, i), 
Cm (y.,) coincides with c,,. (x) ®t k. 

Proof It's obvious. 0 

As in the case of associative algebras the following obvious lemma holds. 

Lemma 4.2. r(S1 X S2) = r(a1) ur(a2), i.e. a Jordan algebra S is indecomposable 
into a direct product if and only if f(S) i., connected. 

4.2. Associative algebras with involution and Jordan matrix algebras. 
Let A= (A,•) be a unital BSBOciative algebra with an involution• and 8 = H,.(A) 
be the Jordan algebra. of n x n Hermitian matrices over A. Recall the following 
classical result ([6), Corollary V.6.2). 

Theorem 4.1. Let ii be a finite-dimensional aimple Jordan algebra over an alge­
braically closed field k . Then we have the following possibilities for a : ( 1) a = k 
is the basic field, (2) a =kl$ V is the Jordan algebra of a nondegenemte BJlffl• 

metric bilinear form f in a finite-dimensional vector space V with dim V > 1, (9) 
a = 11,,(D, J), n;::,: 3, where (A,•) is a composition algebra of dimension 1, 2 or 
4 if n;::,: 4 and of dimension 1,2,4, 8 i/ n = 3. 

Following [7], we define a functor 1-c,. from the category (A, •)-Bimod of unital 
associative bimodules with involution over A into the category a - Modi of unital 
Jordan bimodules over a. 

Let (W, •) E (A, •) - Bimod and E = A EB W be the split null extension of 
(A,•) by (W,•). Then we let • be the linear mapping of E which extends the 
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given linear mappings• on A and W. Then {E,•) is a.n associative algebra with 
involution and identity element 1, the identity of A. We can form the Jordan matrix 
algebra K = H,.(E) which contains a as a subalgebra. Also K contains the ideal 
V = w .. n K = H,.(W) which is just the set of matrices of K whose entries are in 
the ideal (W, •) of (E, •). Then Vis a unital Jordan bimodule for a relative to the 
multiplication defined in K . We shall call V the a-bi.module associated with the 
given bimodule with involution (W,•) of (A,•) a.nd denote 

V=1t,.(W). 

Since E = A EB W we have K = a EB V. Also W2 = 0 in E implies Vl = 0 in K so 
K is the split null extension of a by its bimodule V. 

It is proved in [7, Sect. III.SJ that 1t.,. for n ?: 4 is a functor which establishes an 
isomorphism from the category (A,•) - Bimod into the category (H,.(A)) - Mod. 

In the case that n = 3, Jordan matrix algebras may have as coordinating algebras 
not only associative algebras but also alternative ones. Recall that an algebra A is 
called alternative if it satisfies the identities 

(xx)y = x(xy), (xy)y = x(yy). 

The best known example of an alternative non associative algebra is provided by the 
S-dimensional octonion algebra 0. An involution * of a (non associative) algebra 
A is called nuclear if the •-symmetric elements lie in the nucleus ( = associative 
center) of A. Now, if (A,*) is an alternative algebra with nuclear involution then 
the algebra H3(A) of 3 x 3 •-Hermitian matrices over A is Jordan, and the category 
Ha(A) - Mod is isomorphic to the category (A,*) - Bimod,111 of unital alternative 
bimodules with nuclear involution over A [7]. 

4.3. Simple Jordan bimodules over simple Jordan matrix algebras. Let 
now J be a special Jordan matrix algebra, that is, 8 = H(D,.) be an algebra 
of n x n hermitian matrices over an associative composition algebra (D, •), where 
n ?: 3. Due to the previous section, every unital simple bimodule V for a has a form 
V = 1{.,.(W), where W is a unital simple associative D-bimodule with involution 
(alternative bimodule with nuclear involution for n = 3). Therefore, it suffices to 
give the list of such bimodules. 

If W is a D-bimodule with involution then it is easy to see the.t W with the 
mapping v ...... -v• is also a D-bimodule with involution, which we will denote by 
-W. 

(1) D = k, *=id•· In this case we have two non-isomorphic bimodules 

W=Regk, W= - Regk. 

(2) D = k EB k = ke1 EB ke2, (a, b)* = (b, a). Here we have five non-isomorphic 
bimodules 

W = Reg D; W = Cay; = kv;, v; = v; = e,v;e1-;, i = 1, 2; W = - Cay;, i = 1, 2. 

(3) D = M2(k) with symplectic involution. In this case for n > 3 there are two 
non-isomorphic bimodules 

W = Reg D, W =-Reg D. 
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For n ~ 3 this algebra has also a non-associative alternative simple bimodule 
with nuclear involution. Let W be a simple left D-module. We give a blmodule 
structure on it by setting :i: • a = a:i:, a • x = ax, where a ....,. a is the involution in 
D. The obtained bimodule with the involution v• = -v we denote by Cay D, it is 
called a Cauley bimodule over D. 

To describe the non-unital bimodules over L = H(D,.) we need a modification 
of construction of 7tn- Every non-unital V is just a unital bimodule over k x L. It 
is an algebra of the form H ( A, •) for some algebra A with involution. 

On other hand, on the set of irreducible unital .C-bimodules with involution 
exists the involution W +-+ W 0 of taking an opposite bimodule together with an 
D-bimodule anti-isomorphism o: W-W 0 

W 0 = {w 0 I w E W}, (w0
)" = (w 0

)
0

• 

On the isoclasses o exchanges ±Cay;~ ±Cay2_;, Vi~ V:1-i, i = 1,2 and ill 
trivial otherwise. 

Consider the null extension of associative algebra A = (k x D) EB (W0 EB W), 
where D is the algebra from the list above and W is a simple unital D-bimodule 
with involution and k acts just by the multiplications. Endow A with the involution, 
which coincides with the canonical on k x D and (wf,w2)• = (w2,w1)- Note, that 
If -A be the algebra, constructed by the bimodule -W, then A isomorphic to A 88 
an algebra with involution. The isomorphism rp: A- -A is an identity on k x D 
and rp(wf,tl-'2) = (wf,-tl-'2)- Then \P commutes with the involution on k x D and 

(wi, tvz) .....!.+ (wi, -11'2) ~ (w2, -w1), (wi, w,) ~ (w2, w1) ...'!+ (w;, -w1). 

One can present A as the algebra with involution of matrices 

( 
k W ) "th . . l . ( >,, w1 ) • ( >,,• W2 ) wo D WI mvo ut1on w; d = (wi)o d" • 

Consider the algebra A1.n = M1,n(A)) (see 3.2) of the matrices 

( 
k M1xn(W) ) 

M..x1(W0
) M,.(D) 

with the involution induced from A. Then A1,n has the radical W1,n ~ M1xn(W) EB 
M..x1(W0

) and we denote 7t1,n(W) = 7t(W1,,.). It has an obviollll structure of a 
k x M,.(L}-bimoduJe, hence is a non-unital bimodule over M,.(;J). 

It turns out, that using construction 7-li,n we can describe all irreducible non­
unital bimodules for the simple matrix algebr88. Below we give the list of irreducible 
unital D-bimodules W, where D Is a composition algebra. from the list above and 
such that 7t1,n{W) gives an non-unital irreducible module over 7t(Mn(D), •) . In 
all examples the first multiplier k acts by multiplication on ½. 

(1) D=k, W=±RegD. 
(2) D = kEBk = ke1 EBke2, W = RegD. Then 7t1,1(W) splits in direct sum of 

two irreducible bimodules W1 EB W2, which differs by the transposition. A 
basic vector in W and W' one can choose 88 

(14) 

which are isomorphic t.o 7t1,1(±Cay1) and 7t1,1(±Cay2 ) correspondingly. 
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(3) D = M2(k) with symplectic involution. In this case for n > 3 there a.re two 
non-isomorphic bimodules 

W=±RegD. 

4.4. Simple bimodules over semisimple matrix Jordan algebras. We need 
explicit basics in simple bimodules over matrix Jordan algebras. 

A faithful simple unital module M over a semisimple Jordan algebra £, exist if 
either £., is simple or if£., is a product of two simple algebras £.,1 x .C 2. In the last case 
Mis .isomorphic to the tensor product M 1 ® M 2 , where M; is a~ module over o,, 
i = 1, 2. The interested reader we direct to [6], in particular VIl.3, Theorem 7, [7]. 
The lists of bimodules contain two parts, relating unital and non-unital modules. 

If V is a simple unita.l module over a simple matrix algebra, then we do it using 
the functor ?tn for convenient n. If £., is a simple algebra, then a unital module 
over it we will denote by capital letters M, M', N, N', R and their basics by the 
corresponding small letters with indices (m,;, m~;, etc). The range of indices i,j 
and the action are defined uniquely by the functor 1tn- R means always the regular 
module. 

If .C is simple, then we present here diagrams of its simple bimodules. The 
structure of the diagram of a finite dimensional bimodule over any semisimple £., 
we present in subsection 4.5. In a graphical representation a vertex corresponding 
to the algebra HM; i ~ 3 (the involution (1)) is depicted as a square GJ, a vertex, 
corresponding to the algebra Mt, i:;;?; 3 (the involution (2)) we will depict as a circle 
0, and a vertex corresponding to the symplectic symmetric algebra HM,s (the 
involution (3)) is depicted as a 0· 

Besides matrix semisimple Jordan algebras we need the basis in modules over 
the simple Jordan algebra a= k (see Lemma 4.1). In the graphical representation 
we will denote it by [TI, since in some aspects of theory of special representation 
it behaves similar to G, n :::: 3. 

4.4.1. l.c,-bimodules for£.,= HMn(k), n ~ 3. D = k, * = id1i:. 

(R) (N) 
R= 0, W=RegD,N= 0,W=-RegD. 

4.4.2. l.c,-bimodulesfor £., = M~,n ~ 3. D = k$k, (a,b)* = (b,a). 

(~ (M) t1') 
R= 0 ,W=RegD. M= 0 ,W=Cay1 . M' = 0 ,W=Cay2. 

t) t·~ 
N = 0 , W = - Cay1 • N' =, 0 , W = - Cay2. 

4.4.3. l.c,-bimodules for£, = HM,.8 (k),n ~ 3. D = M2(k), x• is the adjacent 
matrix, X E M2(k). 

(R) (N") 

R= 0, W=RegD, N= 0,W=-RegD. 
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4.4.4. }-bimodulu for ,C, = HM,.(k)), n ~ 3. D = k, • = lda.. 

n 
p = El, V = rl1,1(RegD). 

4.4.5. ½-bimodulea for ,C, = ~, n ~ 3. D = k.EB t, (a, W = (b, a). 

n 
P = 0 , V = 1i1,1(Cay1), 

n 
P' = @, V = 7"l1.1(Cay2). 

4.4.6. ½-bimodules for I, = HM..s(k), n ~ 3. D = M2(t), x• is the adjacent 
matrix, X E M2(k). 

n 
p = El, V = rl1,1(RegD). 

4.5. Diagrams of Jordan algebras of matrix type. We apply here the graph­
ical convention for depicting the diagram r = r(a}, where the Jordan algebra 3 
is such that ,C, = 3/Rada ~ ,C,1 X •. • X ,C,,. and all ,C,, are simple matrix Jordan 
algebras. Then r o = { 1, . .. , n} and the point i E r o is depicted by one of the 
symbols Q, 0, ◊ in oorrespondence with 4.4. 

Let V = Rad 8 / (Rad 82 + 8 Rad 82). Then we have enough to define a convention 
for the depiction of a simple direct summand of M. 

Assume first M t(M) = l.c,,,.c,1 , 1 ~ i < j ,i:;; n. Then M is Isomorphic to the 
tensor product M, ®t M; where M, (M;) is a simple bimodule over ,C,; (,C,;) and 

t(M;) = (½).c., (t(Mi) = (½).c)· Ai3 said in 4.4 both of the bi.modules M; are 
isomorphic to the bi.modules P or P'. Following 4.1 a bi.module of such a form will 
be depicted as an edge :CM between vertices i and; and c..,(M) is the ieocl888 of 
M . If M; !::! P', then we put an a.rrow on XM in i. Analogously, if M; !::! P', then 
we put arrow on XM in;. Thus we obtain 4 types of arrows XM . Note, that the 
algebras HM., i ~ 3 do not have modules P', hence in our diagrams there are no 
edges with an !l.?I'OW in the vertices [I], i ~ 3. 

If t(M) = l.c.,, then it gives in r1 the loop XM in the vertex i, cM(XM) is the 
isocl888 of L;. This loop will be depicted aa in 4.4. 

1 
If t(M) = - we depict it as in the case t(M) = l.c,,. But, since in this caae 2.c., 

the algebra 8 does not contain unity, we will change 8 to 8 as in Lemma •· 1 and 
consider instead of diagram r the diagram f'. The diagram f' oontaios a unique 
vertex, corresponding to k. There are no loops in this new vertex. It will be depicted 
as [I), since It does not have the simple module of the type P'. r is reconstructed 
by f' in the obvious way. 

For convenience in the Calle of the unital bimodule V we set 3 = 3, f' = r. 
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5. TENSOR JORDAN ALGEBRAS 

5.1. Relative Jordan algebras. The category of Jordan algebras over k we will 
denote Jord. By F : k - mod -+ Jord we denote the functor of the free Jordan 
algebra over k as left adjoint to the forgetful functor. For a k-space Mand x E M 
let [x] denote the corresponding generator of F(M). 

Let us fix C E Ob Jord and define the category Jord.c, of relative Jordan algebras 
or Jordan algebms over C. An object of the category Jord.c is a Jordan algebra A 
endowed with a homomorphism of Jordan algebras i : C--+A. The morphism from 
i1 : C--+A1 to 12 : C--+A2 is a homomorphism f: A1 -+ A2, such that i2 = fi1-

Usually in the notations of a Jordan algebra over C i : C -+ A we will skip 
the structure homomorphism i and write simply A and (if necessary) denote corre­
sponding homomorphism IA, 

5.2. Sums and products, free objects. Consider two Jordan S-algebras i 1 : 
C-+A1 and i1 : C----->A2, F([A1] EB [A2)), its multiplication we denote by *· Then 
the product A1 *A2 (A1 *.cA2) is the factor of F([A1]EB[A2]) by the ideal, generated 
by the relations [x1] * [y1] - [x1 o Y1], x1, YI E A1, (x2] * [y2] - [x2 o Y2], x2, Y2 E A2, 
[i1(s)] - [i2 (s)], s E .C., where by o is denoted the multiplication in A.1 and A.2 

correspondingly. 

Lemma 5.1. A1 * A2 is the sum of A1 and A2 in the category Jord.c,. 

Proof We will denote the elements of A1 * A2 by their representative in the free 
algebra. There exists a canonical homomorphism i : C--+A1 * A2, defined as 
i(s) = (i1(s)] (= [i2(s)]), which makes A1 * A2 an algebra over S. The structure 
morphisms a1 : A1 -+ A1 * A2 and a2 : C2 -+ A1 * A2 ace defined analogously. 
The universal property of the sum for Ai* A2, i.e. the isomorphism of the functors 
Jord.c,--+ Sets 

HomJor<1,.(A1 *A2,A) ~ HomJord,:.(A1,A) x HomJord,:.(A2,A), J 1----+ (/a1,fa2) 

follows immediately from the definitions. D 

Remark 5.1. The product"*" endows the category of Jordan algebms over£., with 
a structure of symmetrical monoidal category with the unit C. 

5.3. Relatively free (tensor) Jordan algebras. Let e : A-:J be a morphism of 
Jordan algebr!IS. Due to the standard definitions it induces the functor of the mul­
tiplication envelopes U(e) : U(A) -+ U(:J) and U(e) induces the canonical functor 
F: : U(:J) - mod -> U(A) - mod, or, equivalently, F; : :J - mod-> A - mod. 

On other hand, for every .(, E Jord.c the structure morphism iA : .(, -+ A 
endows A with the structure of an C-bimodule, which defines a restriction functor 
R: Jord.c, _, C - mod. This functor allows left adjoint CO : C - mod-+ Jord.c, 
B_.C(B],i.e 

(15) r; Hom.c(B, F(A)) ~ HomJordc (C{B],A), BE C - mod,A E Jord.c. 

The Jordan algebra C(B] is defined as a factor of the free Jordan algebra F([.C.) EB 
[Bl) by the ideal, generated by the relations [li]*[l2]-(li ol2], l1,l2 EC, (b]*[l]-[b·l], 
[l] * (b] - (l · b), s E £.,, b EB. The algebra C(B] is canonically graded by degx = 0, 
x E .C., degb = 1, b EB. 

The following leDlDla connects two of the notions just introduced. 
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Lemma 5.2. £,f B1) • .C(B2] ~ .c(B1 ffi B2]-

Proof. It follows from the following chain of isomorphisms of the functors from 
Jord.c, to the Sets: 

HoD1Jon1,. (.C.[B1) • .c.(B2], _) ~ 

Holll,J0 n1,.(.c.(B1], _) X HomJon1,.(.C.(B2), _} ~ 

Hom.c.-mod(B1, _} X Hom.c.-moc1(B2, _) ~ 

Hom.c.-moc1(B1 (B B2, _) ~ HomJord.c. (.c.[B1 ffi B2], _). 

□ 

Lemma 5.3. Let 3 = t., €B Rad /J be a finite dimemional Jordan algebra and U(/J) 
be its multiplicative envelope. Then RadU{/J) is generated by Ra.d/J and U(3) ~ 
U(.c.) EB Rad U(iJ). 

Proof. Following (6], Chapter VI, section 2, Theorem 2 Ra.d/J generates a nilpotent 
ideal I in U{/J), hence I c Rad U(/J). On the other hand U(8) = U{.C.) + I, where 
U(.(,) is a semisimple algebra, which completes the proof. □ 

Lemma 5.4. Let /J be a finite dimensional Jordan algebra, /Jn c o an ideal, gen­
eroted by the non-associative worda in a, where at least n lettera belong11 to Ra.dA. 
Then Ra.d8 is strongly nilpotent, i.e. there exist/IN~ 1, such that 8A: = 0 for any 
k~N. 

Proof. Let n be the degree of nilpot.ency of Rad U{/J). Then in U(/J) every IIBSO­

cia.tive word, containing a.t least n letters from Rad U(/J), in pa.rticula.r from Rad3, 
equals 0. Then the equality in U(3) 

a1 · ( a3 · a2) = -a1 a2a3 - a3a2a1 + 
a1(a2 · a3) + a2(a1 · a3) + a3(a1 · a2), a1, a2, a3 E /J. 

shows, tha.t every non-associative word in .C., containing a.t least N = 2n elements 
from Ra.d8 is zero in U(8), hence zero in a. □ 

Proposition 5.1. Let a be a finite dimensional Jordan algebra, £, a Levi 1JUbalgebra, 
7r : Rad a --+ V = Rad a I {Ra.d2 a + a Ra.d2 8) be the canonical projection, and M C 
Ra.d8 be a subspace, such that 1r(M) = V. Then the ,ubalgebro in 8, generated by 
.C. and M, coincides with a. 

In particular, i/ s: v-Ra.da is at-module homomorphism, BUch that '/I'S= 

idv, then the homomorphism f : .c.(V}------>8 of Jordan algebras overt., induced by s 
is fflrjective. 

Proof. Obviously, LC 8, hence we should prove RadA C /J. Then for every a E :J,. 
there exists x E< .C, M >, such that a - x E :Jn+i• But there exists N ~ 0, such 
that /J N = 0, that completes the proof of the first statement. The second statement 
is a corolla.ry of the first. □ 

5.4. Jordan algebras with Levi decomposition and completion. Let J:., be a 
semisimple finite dimensional algebra.. Denote Jords.c, C Jord.c, the full subcategory 
of i : .C, -+ A, such that i is injective a.nd A is a direct sum of Im, a.nd Rad A, where 
RadA is the Jacobson radical of A. 

Lemma 5.5. Any two objects of Jords.c, i 1 : £., --+ A and i, : £., --+ A are isomorphic. 

.. 
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Proof. It is the Levi-Maltsev theorem for Jordan algebras. D 

In this category there exists a product 81 xi, 82 = .Cal Rad.81 EB 82 with an 
obvious composition. Has a sum we define 81 •e, 82, then the natural complement 
to L will not necessarily be a radical of 81 •e, 82 , 

Assume A E Ob Jord.c, is endowed by a descent separable filtration of Jordan 
idea.ls A = '.Jo ::, :J1 ::, . .. such that :J, o :Jj c :l;+; • The filtration defines a degree 
deg(= des..,i) on A: degx = k, provided that x E :Jk \ :Jk+l· The filtration degA 
endows the algebra U(A) with a filtration, defined degu(A) x = deg,i x,x EA. 

We denote by 3 = limA/:11t the completion of A and by 5k C A denote the 
-k 

complete ideal, generated by the image of '.11t, The Jordan algebra A is endowed 
with the topology of an inverse limit. 

We call a (not necessarily finite dimensional) Jordan algebra a complete Jordan 
algebra provided that the following holds: 

(1) a = Lal Rad 8, where L is a finite dimensional semisimple Jordan algebra. 
(2) 8 is complete and separable in the topology, defined by the chain of idea.ls 

{Rad2 ii+ 8 Rad2 3 ::::> Rad3 a::, .. ·:::> Radn 8:::, . . . }. 

H the .C.-module Q(;:J) = Rad 8 /(Rad2 8 + 8 Rad2 8) is finite dimensional, then we 
call 8 complete finitely generote.d. 

The corresponding category we denote Jorde, where the morphisms in Jorde will 
be the continuous homomorphisms of Jordan algebras. Obviously, the category 
Jorde contains Jord as a full subcategory. The category 8 - mod denotes the 
category of finite dimensional modules. The action of 3 on such a module M is 
continuous, provided that M is endowed with discrete topology. In this category a 
product is defined as a natural completion of ih •1:,, 82 • 

5.5. Complete tensor Jordan algebras. We apply this construction for A = 
L[V]. £.[V] is a graded Jordan algebra and the completion of A in the associated 
filtration {'.J,ji ~ O} we will call a completed tensor Jordan algebra and will denote 
it by £ivj. Since .C.[V] iB graded, the filtration :ln is separable, i.e. (\~o:ln = 0. 

Assume, £, is a semisimple Jordan algebra. Then the complete ideal iv C 

U(£.[V]), generated by V is the (topological) radical in U(ifvj). The following 
lemmas a.re standard. 

Lemma 5.6, (1) Let 8 be a Jordan algebra overt, 8 =£.,EB Rado and 8 be 

(16) 

complete in Rad 8-topology. Then there eriats a functorial isomorphism 

f: Hom.c,(V, 3) ~ HomJord(t[V], 3)c, 

where HomJord ( £lvl' o)c consist., of continuous homomorphisms. 
(2) A continuous homomorphism of C-algebras r.p : £.[V]--+L[V) is an iso­

morphism if and only if£.,. module induced homomorphism V--+V is an 
isomorphism. 

Lemma 5.7. Let a be a Jordan algebra over L, complete and separoble in the 
topology define.d by an ideal :JC 3, 3 = CEB:J, 71': '.l-> :J/(:Jl +£.'.12) = V the canonical 
projection and Mc '.J a subspac;e such that 11'(M) = V . Then the subalgebra in a, 
generote.d by£. and V is dense in 8, i.e . M generate.a 8 in a topological &ense. 
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In particular, for a £.-module~ a: V--+1J, 11'8 = idv, the continuou, homo­
morphism of algebraa over.(, f: .c.[8]--+1J induced by a is an epimorphiffll 
Proof. The proof is analogous to the proof of Proposition 5.1. ·□ 
5.6. Mlnlmal tensor cover of a Jordan algebra. The foll ~roposition 
shows the minimality of the construction in Proposition 5.1 and in Lenuna5.7. 
The proofs of these eta temeQi are standard. 

Let a be a Jordan algebra over the semisimple Jordan algebra .C., R be it.a (topo­
logical) r adtcala.nd 1J = t., e R hold, V = R/(R2 + R28) be finite dimensional and 
71' : R -+ V the canonical projection. Since .C. is semisimple, there exist.a a .C-billnear 
morphism T : V -+ R, such that 1rc1 = idv. 
Proposition 5.2. In the aituation above the follo1J!ing holds: 

(1) IJa is complete in R-adic topology (in pa rlsctil,f, i/8 iafinite dimemional), 
then.C.(t]: t--a is an epimorphiam. 

{!!) If 8 ia finite dimensional, then .t(t] : ,C,[B)--+8 ia an epimorphism. 
(9) Let 8 be complete in R-adic topology, B a .C-bimodule, p : .C(Bj--+8 a 

continuous epimorphillm 011er t.,_ Then there mau a continucus homomor-
phism overt., <P: iiBf-£M 8UCh that p = '/ftp. Beside,, tp induces an 
epimorphiam of 1:.-modulea B-+ V. 

Corollary 5.1. Let t., be a 1emi.simpk Jordan alg,,bra, V a finite d•~naional 
bimoduu, ,r: .C(V]--+8 be a .C-eptmorphiam, 1uch that Ken E Vo V + .C,(V o V). 
If there e:&iat, another .C.-epimorphism tp: ,C,(WJ-+8, &UCh that Ker,p E W o W + 
.t(W o W), then W ~ V a, a !.,-module. 
Proof. Let :Jn = '.ln(V) be the chain of ideals 1n 8, defined 1n Lemma 5.4. The 
statement ii! obvioWI in the case of a finite dimensional Jordan algebra. In the 
general situation there exists n ~ l, such that :Inn 1f(V) = :J,. n ,p(W) = O and we 
reduce the problem to the case of the finit.e dimensional Jordan algebra 2/'.ln. D 
5.7. Jordan bimodulea over relatively free Jordan algebras. Let t., be a 
Jordan algebra, V be an .C-module. Consider the S(l.,)-bimodule 

V = S(.c.) ®t V ®t S(l)/ I, where I is generated by (17) 
c(a, v) = 8 ® V ® 1 +I® V ® 8 - 2(1 ® 8. V ® 1), 8 Et.,, VE V. 

Vis a bimodule with involution• over the algebra with involution S(t.,) 

(s1 @V®82 +It= s; ®v©at +l, 81,82 E S(t..),v € V. 
Re~k 5.2. 

Vi e v, ~ Vi e V2. 
Then - defines a functor - : S(.C,) - mod--tS(J:.) - bimod. This functor bBB 

a universal property. If S is an algebra, then by Ass we denot.e the category of 
algebras over S. Assume A e.n algebra and A+ endowed with the structure of a 
Jordan .C.-algebre. 1: .C-A+. Then A is obviously an S(L}-e.lgebra, in particular 
it has the 1-induced structure of an S(.C.)-bimodule. 

Lemma 5.8. There e:i:ilta o functoriol isomorphum 
(18) /3: Hom.c,(V,A+) ~ Homsc.c.}-blmoo(V,A) 
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Proof. Let f : V-+A+ be any k-linear map. Then it defines uniquely an S­
bimodule morphism F: S ®t V ®ti: S--+A, such that F(l 181 v 1811) = J(v). But if f 
is an £,..module homomorphism, then 

F(c(s, v)) = i(s)f(v) + f(v)i(s) - 2/(s · v) = 2(s • J(v) - f(s • v)) = 0, 

which defines /3(!) on V. 
On the other hand, if F : V--+A is an S(.C)-bimodule homomorphism and 

j : V----+V, j(v) = 1 ® v 1811 + I, then the composition G = Fj : V--+A+ is an 
.C.-module homomorphism 

(19) 1 
G(s · v) = F(l ®s • v© 1) = 2F(s ®v© 1 + l©v®s) = 
1 
2(i(s)F(v) + F(v)i(s)) = s • G(v). 

Obviously, /3 and 13-1 are functorial and mutually inverse. □ 
Let Ass(.C.) be the category of algebras over S(.C). Then there exists a standard 

functor + : Ass(.C.) -> Jord.c. and the functor of the special universal envelope 
S: Jord.c. -1 Ass(.c)· These functors form an adjoint pair, i.e 

(20) 

Let ( A, *) be an 8880Ciative algebra with involution and o c A a Jordan sub­
algebra in A+. We call 8 c A an involutive pair, provided that 8 coincides with 
the subalgebra of symmetric elements H(A, •) in A and the canonical inclusion 
i: 8 ~ A+ induces an isomorphism S(i): S(o)--+A, i.e. (A,•) is reflexive. 

U f : 3--+A+, then the diagram below shows, that this is the same as defining 
a homomorphism S(J): S(o)-+A of a.ssociative algebras over S(.C). 

S(.C) 

-;/~' 
8(8) S(f) A 

H F : As...t ----+ A - bimod is a forgetful functor, then 

(22) -y: HomA-A(V,F(V)) ~ HomA11.4(A(V), V). 

Theorem 5.1. S(.c.(V]) ~ S(.C)(V). 

Proof Let V be an .C-module. Then there exists the following chain of functorial 
isomorphisms. 

HomA-..<'-l (S(.C[V]), A)~ (due to the ajointness (20)) 

HomJord,:,(.c[V],A+) ~ (universal property (15)) 

(23) Hom.c.(V, A+) ~ (Lemma 5.8) 

Homs(.C.)-S(.C.){V,A) ~ (universal property of tensor algebra (22)) 

HomAa,,<,,1(S(.C){V},A). 
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D 

We say, that a Jordan algebra a with a. Levi subalgebra £, is finitely represented 
overt.,, if V = Rad8/(Rad2 8 +8Rad2 8) is finitely generated overt., and the kernel 
of a projection 71': .C.[V] ....,. a is finitely generated over t.,[V]. 

Lemma 5.9, A finite dimensional Jordan algebra a is finitely represented over it., 
Leuy 8Ubalgebra £,, 

Proof. Let n be the degree of strong nil potency of Rad 8. Then the ideal '.In in t., [v] 
consisting of words with at least n letters in V is finitely generated, the Jordan 
algebra 8/'Jn is finite dimensional and this algebra covers 8, which completes the 
proof. D 

Lemma 5.10. Let i : .C.[V]---+S(.C.[V])+ be a canonical homomorphism of Jordan 
algebras and 1r : C[V]---+8 an epimorphism of algebras over L, I = Ker1r and 
(I) c S(.c.[V]) be the ideal, generated by I. Then S(8) ~ S(.c.(V])/(I). 

Proof. Obviously, the canonical epimorphism .c.(1r) : S[.C.(V]]-+8(8) factomes 
through p: S(.c.[V])-+S(.C.(V])/(I). But for any associative ~gebra A 

(24) 

holds. 

HOillJonlL (8, A+)~ 

{/ E HomJon1,. (.c.[V), A+) I f(I) = O} ~ 
{FE HomAes,,.,(S(.c.(V]}, A)jF(I) = O}""' 

HomAaS(q (S{.C.[V))/(I), A) 

□ 
Following Theorem 5.1, the i induced canonical homomorphism '11 

£,(Vj---->S(.c.)(V), sends any non-associative word w = x1 ... XN with letters from 
.C, and Vin the corresponding Jordan element into the algebra S(.C.)(V), where for 
the letters E .C., tlt(s) = s holds and for v E V '11(v) is the class of 1 ® v ® 1 in V. 

Corollary 5.2. If Ra is a system of generators of the Jordan ideal I, then tlt(Ra) 
is a system of generators of the associative (I). 

Proof. Let Ra = {r1c}, where k runs some set of indices. We should prove, that 
'11(1) belongs to ideal, generated by all '11(r1c), If x E J, then x = x1 ... Xn for some 
non-associative word x1 ... Xn, where some x; = r,.. If n = 1 then all proved, other­
wise x = (x1 ... x;) o (x;+1 .. -Xn) for some j, '11(x) = '11(x1 ... x;)'11(x;+1 • .. xn) + 
'11(x;+1 ... Xn)'11(x1 ..• x;) 8Jld induction in n completes the proof. □ 

The corollary above together with Lemma 3.3 gives us possibility to write down 
a basic algebra, which is Morita equivalent to S(J), where 8 is an algebra over .C., 
presented by generator and relations. 

6. STRUCTURE OF SPECIAL UNIVERSAL ENVELOPE OF MATRIX JORDAN ALGEBRA 

le 

Theorem 6.1. Let 8 = .C, + Rad8, .C, = E9H,..(D;), n; ~ 3, (D;, •) associative 
i=l 

composition algebras, 1 = e1+- • +en the correspondi119 decomposition of unit of8 in 
the sum of orthogonal idempotents, N = Rad'J, N = E9 N,;, N;; = e;,N,e;, 

1,;;;0,.;n 
where x, y, z for x, y, z E ;J means the Jordan triple product. Then 
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(1) 

k 

(25) S(a) = ( EBMn,(lJ;)) EB ( EB (.IV;;+ .IV;;)), 
i=l IE;i,;;j,;;n 

where (D;,*) is '!n algebra with involution, which contains an ideal (R;,•), 
such that D; = D;/R;, N;; = Hn,(R;) and .IV;;= e;N,;e;. 

{2) a= H(S(3), *), where * is the principal involution in S(3) (a• = a for any 
a E 3). In other words, (S(3), •) is reflexive. 

{S) The map 

n i--+ e;ne; 

gives 1 - I-correspondence between N;; and .IV,;. In particular 

dim N;; = dim N,; = dim NJ; 
for any i # j. 

(4) If .IV= RadS(a), then 

s(a/(N2 + aN2
) ~ s(a)/ R2

• 

In particular, if N2 = 0, then N2 = 0. 

Proof. We have 

(26) S(a) = S(,C,) + N,N = R.adS(8), 

k k k 

S(,C,) = S(EBHn,(D,)) = EBS(H..,(D;)) = EBM..,(D,), 
i=l i = l i=l 

k k 

N = EB e;Ne; = EB N;;-
i..i=l i.j=l 

Thus 
k k 

(27) S(a) = EBMn,(D;) + EB .IV,;-
i=I i.j=I 

Consider the "tetrad-eating" ideal Z48 (a) in a (see [?], [141). Evidently, for any 
Hn,(D;) we have Z4a(ffn,(D;)) # 0 (since n; ~ 3), hence all e; E Z48(3) and so 
1 E Z4s(a}, hence Z48(3) = 3. Thus, by (14], S(3) is reflexive, that is 

a= H(s(a), *), 

where • is the principal involution in S(a). Observe, that • in restriction on 
M..,(D;), coincides with a canonical involution in M..,(D;), given by (a;;)•= (a;;)­
Thus wehaveH(.N,*) = N, H(N;;,*) = N;;, H(N;;+N;;,•) = N;;- For anyn E .IV 
we have 

n;; = e;ne; +e;n*e; E H(.IV;; +.IV;;,•) = N;;, 

Now e;n;;e; = e;ne; = n;1. This proves, that .IV;; = e,N,;e;. 
Assume, that e;ne; f O for some n E: N;1. Then 0 = (e;ne;)" = e;ne;, hence 

{e;ne;} = ½n = 0. 
So, we have proved (2) and (3). Let us prove (1). Consider A = M.., +Nu C S(8). 

Evidently, A• = A, .IV;, = Rad A and Nii = N,;. 
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By associative coordinalization theorem A = M,.. (.D,), where (.b,, •) is BD 

algebra with involution, which has an ideal (.R.,•), such that D;/R. = D;, 
N;; = Mn,(.R.,•). We have 

H(A, •) = H,.,(.D;) = Hn;(D;) + Nii· 

Since for the matrix units e;1 in M,.. (D;) we have e,; = e;;, e;i = e;;, it follows 
easily, that for any r;; E .R. we have 

(L),;e,;)* = 1),;e;;, 
i,j i,j 

hence• from A in restriction to M,..(Di} coincides with the canonical involution. 
In particular, we have the known formulas 

(28) (re;; + r•e;;} o (se;1,: + s•e,.1) = (rs)e;.1: + (rs)"e1:,, r, s E D,. 

This implies 
H(N,~) = N,; o N;;. 

We start already to prove (4). Let UB prove, that the ideal (No N), generated 
in 8(8) by No N coincides with fl2. This is equivalent to (4). Clearly, we need to 
prove only, that N2 C (No N). Without loss of generality we may 1185WDe, that 
No N = 0. First of all for any r, s E .R., we have for j I-kin Mn, (.R.) 

(rs)e;i., = ((rs)e;1r + (rs}*e1,;}e1,1, E (No N)eu = 0, 
- 2 

and (rs)e;; = (rs)e;1, o e1,; = O, which prOVE6, that Nil = 0. 
Consider N,;N;k for i I- j, i I- k. It suffices to prove that N,;N;1, = 0. We have 

2n.;n;-,. = n.; o n;1, + [n.1, n;.1:] = [n.1, n;1o] = 

(e; on.;, n;1,] = [e;, n;; on;,,] + [n.;, e; o n;A:] = 0. 

It remains to prove that N,;N;; = 0. Let 
r 

e = e,,e = Lit, r ~ 3,Jd. = Otaft, 
t 

then N;; = :EeUtN,;e;} and it is sufficient to prove that for any n, me N;; 

{/rne;}{/r•me;} = O. 

If r =I- r', we may argue as before. Assume now that r = r' = 1 and denote 
n1 = {fine;}, m1 = {/1me;}, It follows from the structure of N;; as 8.,-module, 
(it is a special module over {e,8e;} = H,..(D;)), that there exists fi2 E Hn,(D,) 
such that m1 = m2 • '12, for some m2 E {hN,;e;}. Now 

[n1, m1] = [n1, m2 · /i2] = 
[n1 · m2, fol+ (n1 · fo, m2] = (n1 · fo, m2] E [{hN;;e;}, {hN,;e;}]. 

In particular, we have 
/i[n1,m1] = [n1,m1]/1 = 0, 

which proves, that (n1, m1] E N;;, Making the similar decomposition for e;, we 

prove that [n1, m1] E .N;1 and finally (n1, mi)= 0. □ 
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Corollary 6.1. Let£, be a semisimple matrix Joro.an algebra, V an finite dimen­
sional unital £,-module. Then the tensor algebra .C[V] is reflexive. 

Proof Let cln be the ideal of non-associative words in £,[VJ containing at least n 
letters in V, x E S(t.,[V]) is a symmetrical element. Since £,[VJ is graded and its 
homogeneous components are •-invariant we can assume x homogeneous of degree 
n. Consider a finite dimensional Jordan algebra C[V]/:.J"+l. 

Consider the commutative diagram 

where horizontal arrows are canonical projection and vertical are maps in its asso­
ciative envelope. Note that both 1r and S(1r) are mono in restriction on n-th graded 
component of £,[VJ and S(i.,[V}) correspondingly. Hence x is symmetrical, since 
S(1r)(x) is symmetric and by Theorem 6.1 x E i(.C[V]/'.Jn+l). D 

7. BUILDING BLOCKS FOR QUIVER SPECIAL UNIVERSAL ENVELOPE 

7.1. Considered class of Jordan algebras. In this section we define the map­
ping Qui : JorD --+ Q.As, which sends the diagram of a Jordan algebra 3 of matrix 
type to the quiver of associative algebra 8(3). The quiver from Q E Im Qui is en­
dowed with some extra structures, which reflect some features of S(3). The functor 
Qui and the extra structure,, ...-e defined "locally", i.e. on the subdiagrams of I" 

containing one or two vertices and one edge. 
We emphasize, that we consider both finite dimensional and infinite dimensional 

Jordan algebras. We say a Jordan algebra 3 over a semi.simple finite dimensional 
Jordan algebra /J has a diagram r, provided that there exists .C-epimorphism 1r : 
t.,[V]--+3 for a finite dimensional .C-bimodule V, Ken C Vo V + J:., o (Vo V). 
Without loss of generality we will assume, that the module V is unital, possibly 
passing from the diagram r to t . Recall also, that a bimodule V is uniquely (up 
to isomorphism) defined by 3 (Corollary 5.1). 

Definition 7 .1. We call a Jordan algebra 3 almost matrix Joro.an algebra if in it.s 
diagram t the set ro consist.s of matrix simple Jordan algebra& and field., k and 
there are no edge a E f 1, auch that both ends of a are fields. 

Let Q be a quiver. The opposite quiver Q0 is defined by Qg = Qo, Qr= {:r0 IX E 
Qi}, s(x0

) = e(:r),e(x0 ) = s(x), x E Q1 . Obviously (Q0
)

0 ~ Q. An involution on 
the quitJer Q consists of two involutive bijections * : Qo--+ Q0 and • : Q1 __, Q1, 
such that s(x*) = (e(x))*, e(:r*) = (s(:r))*. 

Let Q be a quiver of A= S(/J), a= .CEBR.ad3, .c = £1 X ... X .Cn, where all .c, are 
simples, so for r = r(iJ), r 0 = {l, ... ,n}, where i corresponds to .C,.. Analogously, 
if Rad/J/(Rad2 /J + 3 · Rad2 3) = V1 $ · · · $ VN C /J is a sum of simple modules, so 
we will identify r1 with a family {Vi, ... , VN }. 

Then Q will be endowed with the following structures. 

(1) There exists an involution • : Q--+ Q, induced by the involution on 8(3). 



26 IRYNA KASHUBA, SERGE OVSIENKO, AND IVAN SHESTAKOV 

(2) There are given maps 

(29) alg: Qo--+{ [TI,(§, §I.~}, n1, n2 ~ 3, n3 ~ 4 

(30) mod: Q1 --+{k,M,M',N,N',R}. 

If x E Q0 and e,. E A is the idempot.ent corresponding to x, then there exits 
a unique I:.,;, such that e., E S(.C,) C A and we set alg(x) t.o be the graphical 
presentation of i:.,,. On other hand, every edge a of r by construction (see ) can be 
identified with an element of some ¼, i = 1, ... , N and mod(a) equals graphical 
presentation of K Usually we will skip n1, n2, n3 (see 8.4) 

7.2. Vertices. For any matrix Jordan algebra a we have £,(S1 )(3) = S1(1:.,(8)). 
Further S1(ih EB 82) = S1(31) EB S1(82), therefore it is enough to construct Q0 (8) 
for 3 =k, M;t, HM,., HM2,.(J,). 

{31) El 8,., for 3 E {k, H, H(J,)}, 

(32) 0 

E-i• 

We writ.e the explicit basis for S1(8), for a from (1)-(3). Here by E;J we denote 
the elementary matrix with a 1 in the (i,j) entry and O's elsewhere. 
1. 3 =M! = (e;J = E;;, i,j = l, •·· ,n} then 

( 

e11e12e21 e11e12 

S1(M!) = e~~~21 e22~~e32 

e,.,.e,.1 e,.,.e,.2 

( 

eue21e12 eue21 
e22e12 e22e32e23 

e,.,.e1n e,.,.e,.2 

(33) 

e11e1n ) 
e22e2n EB 

eu::;e..1)e1n 
e22e,.2 

e,.,.~:~e..1 
2. 3 = HM,.(k,T) = (e;, = Et1, e.; = E,; + E;;, 1 ~ i,j ~ n, i < j), 

{34) S1(HM,.(k, r)) = 
( 

en 
e22e'12 

ennfln 

e11e12 · • · eu~In ) 
e22 . . . e22e2,. 
... ... . .. 

e,.,.e2n e,.,. 

3. 8 = HM2n(k, J,). Then A E HM2n(k, J,) if A E M2n and A= s-1 A .. S. We 
obtain that A has the following form: 

( ~-~-! ~-~ ::: ~~)' 
A1n Jh,. ... A,.,. 
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h A . - 1 . di al t . 2 2 A ("•; I>;;) . 2 2 . w ere "'ii , i - , ... , n JS e. e.gon me. nx x , ij = "<; d.; 18 x matnx 

with A = ( !:,;, -;.~;i) . Therefore HM2n(k, J.) = (ci = ~i-l,2i-l + E2i,2i, a;; = 
E2i-l.2j-l + E2;,2;, b;; = E21-1 ,2; - E2;-l,2i, C;; = ~i,2j-l - E2j,2i-1, d;; = 
~;,2; + E2;-1,2;-1, 1 $ i,j $ n, i < j) and 

(35) 
S1

(HM2n(k,Ja)) = 
c1a12d12 b12a12 c1a12 c1b12 c1a1n E1b1n 

C12d12 e1d12a12 c1C12 c1d12 c1C1n e1d1n 

c2d12 -E:2612 £2023~3 b2aa2a E2a2n E2bzn 
-c2C12 E2a12 C23d23 t2d12a12 c7C7n c2d2n 

endln -enbtn end2n -1onb2n cnd1nU1n bn-tndn-tn 
-cnCtn cnUtn -E,.C2n cna2n Cn-tndn-ln c,.a1,.d1n 

7.3. One-point building blocks. Let us calculate Q(S(.C, + R)), where .C, = 
H(Dn,*) is a Jordan matrix algebra and Risa simple unital .C,-bimodule and 
£, + R is the trivial split extension. By Subsection 4.2, we have R = H(W), where 
W is one of simple unital D-bimodules with involution, and the algebra £, + R is 
isomorphic to the Jordan matrix algebra H,.(D + W). Let us first exclude the case 
D = M2 , n = 3, W = Cay. Then by the Martindale theorem [7}, we have the 
isomorphism S(H .. (D + W)) f¥ Mn(D + W). Finally, the algebra M,.(D + W) is 
Morita. equivalent to D + W . ThuR we have Q(S(.C. + R)) = Q(D + W) . ln the last 
case, in order to determine the representation type of the algebra .C, + R, by the 
isomorphism of the categories£.,- mod and (D, •)Alt - bimod we have to study the 
structure of unital indecomposable alternative bimodules with nuclear involution 
over the alternative algebra with involution M2 + Cay. 

(36) M! for n 2". 3, 

0E1 + cl>(ri.z) = E1,1X + E1+n,k+nY, 

E2 <::i) x = r11e12e21, y = r11e21e12, x• = y . 

(37) M! for n 2". 3, 

E1• tli(m~) = (EA: ,J+n + E1,A:+n)x, for k =J l, 

t" 
~• cI>(mu) = EA:,n+1r.x, x = mu, x• = x. 



(38) 

(39) 

(40) 

(41) 

(42) 

(43) 
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M! for n ~ 3, 

E1• ~(m4:1) = (E1c+n,l + E1+n,1t)X, for k-/- l, 

+" E2• ~(m4:,.) = E1t+n,1tX, x = m~1 , x• = x. 

M! for n ~ 3, 

E1 • 4>(n1t1) = (E1c,1+n - E1,A:+n)x, 

tz 
~• x = n12e12, x• = -x. 

E1 • '1,(n:.i) = (E1c+n,1 - E1+n,1c)x, for k-/- l, 

!z 
E2• x = n12e21, x• = -x. 

(I A(n£1c) = (E21c-1,21e-1 - ~1e,21c)x, 
'1,A(na1c1) = (~1c-1,21-1 - E21,21,}x, 
'1,A(nb1c1) = (E21t-1,21 + E21-1,21t)x, 
(IA(nc1t1) = (E21t,21-1 + E21,21t-1}x, 
(IA(nd1t1) = (E21t,21 - ~1-1,21t-1)x, 

<I>A(91t1t) = ~lt-1,2/tX, <l>A(m,,.) = ~lt,2/t-lX, 
Mn, x = x•, x = ne1a12d12-



(44) 
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~A(r€k) = (E.i1o-1,2k-1 + E.i1o,2k)x, 
4' A(ra1,1) = (~k-1,21-1 + E2i,21,)x, 
4' A(rbkl) = (E2k-1,21 - ~-1.2k)x, 
4>A(rcki) = (~k,2l-1 - ~.2k-1)x, 
,;f>A(rdkl) = (~k,21 + ~-1,2.1:-1):z:, 

M,., x = x•, x = nE1a12d12, 

29 

7.4. TW(>-point building blocks. All the bimodules here are tensor products of 
two non-unital modules over the left and the right Jordan algebra correspondingly 
(4.5) The basic vectors for the module over the left (the right) algebra are denoted 
by p; (by qi)• 

(45) 

(46) 

(47) 

(48) 

(49) 

X .-. ---1/ 

0 - EJ 

E1• 11 -..:..... 
eu • 

E2• ..-;:-

M;. ?< Sm for n ;c:: 3, SE {k,H,H(J.)}, 

,;(>(pk® qi) = E1o,2n+IY + E2n+l,k+nZ, 

z = enPJ. © Q1, Y =PI© q1e11 , z• = 11, 

e = Eu +en, for m = 1 en = e. 

M! x Sm for n ;c:: 3, S E {k, H, H(J.)}, 

,;(>(pk® qi) = Ek+n,2n+iY + B2n+i,1:Z, 

z = enPt ©q1, 11 =p1 ®q1e11, x• = 11, 

e =Eu+ eu, form = 1 en = e. 

M! x M!,, form, n?: 3, 

M! x M;., for m,n ~ 3, 
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(50) 0---e ~ x M!,, for m,n ~ 3, 

7.5. Associative quiver of associative envelope of matrix Jordan algebra. 

Theorem 7.1. Let a be a Jordan algebra of matrix type over C.,. Then 

/3 : Q(S(8)) ~ Qui(r(a)). 

Proof. This statement is enough to prove for the tensor Jordan algebra C.,[VJ. Note, 
that on the vertices (3 is checked immediately. The proof of coincidence on arrows 
gives the following. Let r = r(V). 

Qui(r)i ~ (by Remark 4.1) 

IJ Qui(c,,.(x))i = (by construction above) 
o:er, 

LJ D(~ )I = by remll,l"k 3.1 
o:er, 

D( EB ~ h = by Remark 5.2 
zer, 

D( EB c,,.(x)h = by Theorem 5.1 

Q(S(.C[V]))i. 

D 

Corollary 7.1. Let in assumption above A= S(.c.[VI), e E A be an idempotent, 
such e• = e and A= eAe is basic Morita equivalent to A. The mapping Qui on r 1 
coincides with the restriction of the homomorphism 4> A ; A---+Ai for convenient k. 
Proof. See Corollary 3.1. □ 

Corollary 7.2. Let Q be a quiver with involution *· Then there exists a Jordan 
diagram r, such that Qui(r) = Q if and only if for any edge a, connecting X and 
x· holds a = a•. 

8. SPECIAL REPRESENTATIONS OF MATRIX ALGEBRAS 

8.1. Criterion of finiteness (tameness) for special representation. The fol­
lowing theorem reduces the problem of classification of indecomposable quiver with 
relations to the classification of representation of a quiver with relations. 

Theorem 8.1. Let a be an almost matrix Jordan algebra, given in the fonn t.,[V]/'.1, 
where .C is a semisimple Jordan algebra of matrix type, '.1 is an ideal, generated by 
finitely many non-associative words w1 , ... , Wr in alphabet .C, LJ V, every of which 
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contains at -least 2 letters from V , Q = Qui(f(8)) and I c S(,(,[Vl), generated by 
ts(.t)(V) i'(wi), i = 1, ... , r. Then 

8(8) ~k[Q]/J. 

Proof. It follows immediately from Lemma 3.3, (2) and Corollary 5.2. □ 

8.2. Reconstruction of Jordan algebras. The statements, proved in this section 
are variations of Theorem 6.1. The main idea of this subsection is t.o work with the 
algebra with involution cl>s(.c.(V]) instead of S(.C.[V]. 

Proposition 8.1. Let .C, be a semiaimple Jordan algebra, V be finite dimensional!.­
module, such that .c.[V] is almost matrix, r = f(.t[V]) and Q = Qui{f), A= k[QJ 
be the path algebra, w = a1a2 . .. a,., n 2'. 1, a. E Q1, i = l, ... ,n an oriented 
path, leading from X to Y, X, YE Q0• Then for every admissible pair of indices 
i,j, i # j in .C[V] exists a non-associative word x = x 1 o · • · o Xn, where all x1-th 
are either matrix units from .C, or the standard basic vectors of V, cl>s(.t(Vl)(x) = 
E,iw+w• E;/ The notion of admissible pair depends on the type of Jordan algebra. 

Proof. We use induction in n. If n = 1, the diagrams from 7 proves the lemma. 
Assume for n - 1 the lemme. holds. In pe.rticule.r,. there exists y = X1 • • • Xk-1 such 
that for v = a1 ... an- l holds cl>s(.c.[V])(Y) = E;kv + v• E;k• 

Assume first, the.t the pa.th w contains an inner vertex Z # 0. Then w = wi w2 
for some pe.thes w 1 : z-Y, w2 : x-z. If both X, Y do not coincide with 0, 
then by induction assumption we ce.n assume for some Jordan words 

(51) f1sc.C[VJ)(t11) = E,1,w1 + w;E:k, cf>sc.c[v))(tl'2) = Ei.;1/2 + 11;EZ; 

and i # j, k I= i, k I, j, since all matrix algebras there are of dimension 2'. 3. 
Then Ek;E,i. = 0, since i /= j, 0 = (E,,jE,,,)• = E;kEJ;i . Note also, that for any 

considered involution holds the following: if p # q and E~ = Ertq' , then p # p'. It 
gives us E,i.Ei,; = 0, E;,,E,., = 0 and, applying involution, E1oiE;,. = 0, E;;E;1o = 0. 

Due the calculation above 

(52) 

cl>sc.qvnh11 ° 112) = cf>s(,c.[V])(Y1) 0 ct>sc.c.[v])(ll'J) = 
(E,kw1 + wi S:1c) o (E,,;w2 + w2EZ;) = 
~~=~~=~~=~~=~~=~~-~ 
E,1i:w1E1o;w2 + w2E;;wi E;k = E;;W + w• E;; , 

Assume then, that X = Y = 0, that means in (51) holds i = j = 0 and, since 
Z # 0, k I, 0. Then as in (52) we obtain 

(53) cl>s(.C.[V])(Y1 0 Y2) = Eoow + w• Eoo + E1o1oW2W1 + (w2w1)* Etk· 

Then if eo E 8, corresponding ID then X = cf>sc.qvn(eo O (Y1 ° Y2)). 
So it remains consider the ce.se, when all inner vertices of w coincide with 0 . 

Since there a.re no loops in O holds 

w = X1X2, X1: 0--->Y, X2: x-o, X "F 0, y "F 0. 

4-rhe notion of admia&ible pair depends on the type of Jordan algebra - especially in the caae 
of full matrix algebra 



32 IRYNA KASHUBA, SERGE OVSIENKO, AND IVAN SHF.sTAKOV 

Since X, Y :f. 0, in the case X :f. Y we can conclude as in (51) and in the case 
X =Yasin the case {53}. D 

Corollary 8.1. Let in assumption above L C k[Q) be a semisimple subalgebra, 
generatea by Q0 , k[Q]+ C k[Q] the ideal of pathes of length ~ 1, J(Q) c k[Q]+ the 
space, generated either by pathes w in Q, such that alg(s(w)) :f. III or alg(e(w)) :f. 
III or s(w) =/ e(w) and by the rums w + W* provided that s(w) = e(w), alg(s(w)) = 
alg(e(w)) = [I]. Then the space F C k[Q]+, generated by entries of matrices 
<I>s(.c.(Vl)(x), where x nms ,C,[V], coincide with L + J(Q). 

Proof Evidently, entries of 4isc.c.[v]J(.c} generate L. Let a = E:=1 ,\1,:w1,:, where 
,\1,: Ek and w1,: are different pathes and X = s(w1) = · · · = s(wn) and Y = e(toi) = 
• • · = e(wn)• Assume, at least one from X, Y is not [D Then by the Proposition 
8.1 there exists i :f. j and x1,: E C[VJ, sucli that 4>sc.c.[V])(x1i:) = Ei;w1c + wj.E,;. Let 
x = E~=l ,\1,x1c E l[V]. Then <I>s(J:.[V])(x) = Ei;a + a• Et;, therefore a E F. 

In the case, when X and Y are IT), then Proposition 8.1 gives us x,. E C[V), such 
that <I>s(.C[V))(X1i:) = EoxoyWk + wiEoyOx, since EoxOv = EoyOx• Putting X 88 
above, we obtain, that if X :f. Y, then w E F and for X = Y holds w+w• E F. To 
finish the proof note, that if x E C[V]oo, then 'Ps(.c.[VJ)(x1,:) is just 1 x 1 matrix over 
k[Q]. The involution on its entry is induced by the involution from k[Q], hence it 
is symmetrical in k[Q]. □ 

In such way we obtain another proof of Corollary 6.1 including the case of non­
unital bimodules. 

Corollary 8.2. Let C[V] be almost matrix Jordan algebra. Then the algebra 
S(£,[V]) ia reflexive. 

Proof. There is enough to prove reflexivity for 4>s(.C.[VJ)(S(C[V))), which is isomor­
phic to S(C[V) as an algebra with involution. But Proposition 8.1 shows, that the 
image of C[V) contains all symmetric elements from 4>s(.C[Vl)(S(C[V))). □ 

ff X1 0 X2 0 • .. 0 x,. Ea, then ca.ll the expression (and its value) 

X1 ••• x,. = ( ... ((x1 ox2) oxa) o ... ) oxn-1) oxn 

a normalized word In ;J. 

Remark 8.1. Assume in Proposition 8.1 the bimodule Vis unital. Then from the 
proof follows, that we can choose the word x normalized. 

Theorem 8.2. Let .C, be a semisimple matrix Jordan algebra, V be finite dimen­
sional .C.-module, C(V] almost matrix Jordan algebra, r = r(C[V]) and Q = Qui(r), 
A = k[Q] be the path algebra, I C E:2 k Q' an ideal in A, generated by some 
*-invariant subset S C J(C[V]), i.e. I* = I. Then there exists unique (up to 
isomorphism) Jordan algebra if with Levi subalgebra .C., such that eS(;J)e = S(;J) is 
isomorphic to A/ I as an algebra with involution. 

Proof. Let R C k[Q] be a set of generators of I. Using Corollary 8.1 we lift 
all elements of R and obtain R' c C[V). Then the set of entries of <l>s(.C[V])(R) 
coincides with RU R• = R, which generates I. Set ;J = C[V]/(R'). Uniqueness 
follows from Corollary 3.1. □ 
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8.3. An example: Jordan algebras with zero radical square and tensor 
Jordan algebras. I.et Q be a quiver. Then the (Jtliver double D(Q) of the quiver 
Q is defined as follows: 

(54) D(Q)o = { x+ ,x-1 XE Qo}, D(Qh = {ii: s(a)- -e(a)+I a E Q1}. 

Recall, that unoriented graphs from the following lists 

Dynkin diagrams Extended Dynkin diagrams 

0-0---•••-0--0 

o....,___ 
0-••• --0----0 

0/ 
' ,,.,,.--o fin ,,o-•••-o....._ 
o,, "-o 

i E6 0-0-0--0--0 

i 
E6 o-o-Lo-o 

i ET 0--0-------0-----------0-0 

Ee 0-0-0-o-Lo - i Eeo---o-0-0-0---0-0-0 

a.re called Dynkin digrams and extended Dynkin diagrams without multiply con­
nections. For short in this subsection we will call they just Dynkin diagrams. A 
Dynkin diagram (extended Dynkin diagram) we can endow with an orientation of 
edges and call obtained quiver an oriented ( extended) Dynkin disgram. 

The following results a.re classical. 

Theorem 8.3. (1) Let A= k[Q] is the path algebra of a quiver Q. Then A if 
of finite (tame) representation type if and only if Q is a disjoint union of 
oriented Dynkin diagrams ( extended Dynkin diagrams). 

(2) Let A be a finite dimensional associative algebra, such that Rad2 A = 0, 
Q its quiver. Then A is of finite (tame) representation type if and only 
if D(Q) is a disjoint union of oriented Dynkin diagram, (extended Dynkin 
diagrams). 

We can prove some analogues of these statement for matrix Jordan algebras. 

Theorem 8.4. (1) Let£, be a semisimple matrix Jordan, I' be a Jordan dia-
gram cn,er £, V = V(r) and a= £,[V]. Then tJ is of special representation 
finite (tame) type, if and only if Qui(r) is a disjoint union of oriented 
Dynkin diagrams ( extended Dynkin diagrams). 
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(2) Let 8 be a finite dimensional Jordan algebra of matrix type, Rad 82 = 0 and 
r its Jordan diagram. Then 8 is of special representation finite (tame) type, 
if and only if D(Qui(r)) is a disjoint union of oriented Dynkin diagrams 
( extended Dynkin diagrams). 

Proof. The statement (1) follows immediately from Theorem 5.1, Theorem 7.1 and 
Theorem 8.3, (1). 

In the same way, the in the case, when the bimodule V is unital, the statement 
(2), follows from Theorem 6.1, (4) and Theorem 8.3, (2). 

Let us extend the statement (2) to the genera.I case. Let .C EB V be the trivial 
split extension, ,r : ,C,(V]---+.C EB V the canonical projection. Then Ker,r C ,C,[V] 
is generated by Vo V, £., o (Vo V). But following Proposition 8.1 and Corollary 
8.1 the idea.I in k(Qui(r)], generated by entries of the matrices ~.qV](V o V) and 
~.c.1v1(.C. o (Vo V)) contains all pathes of length 2 in Qui(r). □ 

Note, that if in a diagram r is a Dynkin diagram and the vertices are matrix 
algebras, then Qui(r) is the disjoint union of two oppositely oriented copies of this 
diagram. 

Example 8.1. The examples below shows, how to work the map Qui. 

-t'\ ~-e-e e-e--e 
·x r-· 
. ·-· 

8.4. Morita equivalence for matrix Jordan algebras. The theorem above 
shows, that the class of Morita equivalence of 8(8) depends, in fact, on some ideal, 
generated by Jordan words in the quiver algebra k[Qui(r(8))]. We show, the 3 and 
8' are special Morita equivalent if they are almost matrix and Qui(8) and Qui(8') 
are isomorphic as quivers with involution, endowed with the maps alg and mod. 

In the class of special Morita equivalence Proposition 8.1 allows a rule to lift of 
associative words in a Jordan words in C[V]. Hence if a1, .•. , a,, E r 1, and a1 •.• a,, 
is a non-BBsociative word, we will consider as a lift of some 8550ciative word. 

e 

B---a_1 ___ ~ ------ ~ 
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