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This opinion paper discusses how ultrasound can be used to
modify the structure of plant-based beverages (juices and ‘milk’)
and proteins, achieving new functionalities. Both positive (such as
increasing the nutrient and bioactive compound bioaccessibility,
improving protein solubility, and modifying its digestibility) and
negative (such as degradation of nutrient and bioactive
compounds by exposing them to the environment, or the limited
microbial inactivation) aspects are discussed. It is clear that
ultrasound technology can be used as a valuable tool to improve
plant-based beverage properties, helping to achieve clean label
products and positively impacting well-being. Its scale-up to
industry, however, is still a concern that needs both scientific
studies and technological development.
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Introduction and contextualization

Fruits and vegetables are important parts of the human
diet as sources of nutrients and bioactive compounds,
such as carotenoids, phenolics (or polyphenols), flavo-
noids, and vitamins and minerals, being juices, a prac-
tical and relevant way to ingest those plant components.

Check for

Furthermore, there is a rising demand for plant-based
products (such as milk analogs) and ingredients (such as
proteins). The expansion of the plant-based market is a
worldwide trend and is related to several reasons, such as
the growth of the vegan, vegetarian and ‘flexi-vegans’
public, the concern with the environmental impact of
food production, sustainability, and animal welfare, in
addition to the health aspect (e.g. allergenicity of milk
proteins).

Therefore, this paper describes the current research on
using ultrasound processing to enhance the functionality
of plant-based beverages, considering the three most
representative  examples in the context: (i) fruit and
vegetable juices, produced from top-down (i.e. by dis-
assembling the plant organism toward a smaller scale); (ii)
plant-based ‘milk’, produced from top-down or bottom-up
(i.e. by assembling a new product from ingredients), then
using (iii) vegetable proteins. In those products, the main
objectives of using ultrasound are preserving nutrients and
bioactive compounds, increasing their digestibility and
accessibility to the human body, improving physical sta-
bility, rheology, and interaction with water, thus achieving
desirable sensorial impact, better healthy aspects, and
promoting well-being.

More information about using ultrasound technology in
food products, ingredients, and processing can be ob-
tained in the recent review articles of [1-6].

Ultrasound processing of fruit and vegetable
juices

Fruit and vegetable juices are particulate solid-liquid
systems, constituted by a suspension of cells and their
fragments, including fibers and cell walls, in the serum
(water + soluble material). Ultrasound processing modi-
fies this structure in different stages, as described by
Rojas, Leite, Cristianini, Alvim, and Augusto [7], im-
pacting their physical, chemical, sensorial, and nutri-
tional modifications — as recently detailed by Rojas,
Kubo, Caetano-Silva, and Augusto [4ee]. Table 1 pre-
sents recent studies in ultrasound-processed juices,
where the main results are discussed.

"The cell disruption and reductions in particle size promote
new particle—particle and particle—serum interactions that
allow increasing of cloudiness, suspension stability, and
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2 Food Engineering & Processing

Table 1

Ultrasound processing and main reported impact on fruit and vegetable juices, regarding physical modifications, compound content, and

quality: [ncrease or Improvement. Decrease or Negative effect,» and No variation, compared with untreated or
fresh juices.[13°°-15,19,21,22,24-26,28]

Juice source

Processing

conditions

Main results of ultrasound processing

TS [30 kHz; 60 °C;

Physical stability,

Spinach [8¢] 20 mir51;02/0(()j-€;00 W:  rheological properties, Particle size
% dc
Vs [100 mL] bioactive compounds
Colour, cloudiness,
TS [30-70 °C; 5-12 _ . _ _
Apple [9] min; 525-1125 W] Physical stability, Particle size
Vs [200 mL] rheological properties
US [20 kHz; ~ 4 °C; C .
oo ’ olour, cloudiness,
Kiwifruit [10] 4-16 min; 400 W; _ _ Pectin
50% dc] rheological properties
Vs [100 mL]

Carrot [11]

US [20 kHz; 30 °C;
10 min; 2s on-2s off;
221 - 321 W]
Vs [25mL]

Apparent viscosity Colour, carotenoids

TS [40 kHz; 40 - 60

Colour, cloudiness,
_ _ Compounds
flavonoids, phenolics,

Plum [12] °C: 5 - 30 min; 2s on- _ _ degradation at T >
25 off: 0.348 Wicm”] carotenoids, ascorbic e
acid
TS [20 kHz; 37 - 52 A . .
. A scorbic acid,
Tomato [13¢] ~ “C;2-10min; 28 - Lycopene
40 W/cm?] Lycopene
Vs [150 mL]
Sweet potato TS [26 kHz; 8 min; Bioaccessibiity of B- ol
2 olour
[14] 3’: ?1\/;/(/;2'_]] carotene
Physical stability,
US [20 kHz; 25 °C; . -
Guava [15] ¢ .9 min; 15 Wiem?] bioaccessibility of Lycopene
TS [40 kHz; 25-50 i , .
Strawberry °C: 5 -15 min: 110 Ascorbic acid, pH, °Brix, titrable
16 w] anthocyanin acidit
el Vs [50 mL] i v/

Orange [17]

US [20 kHz; 10 min;
~0 °C; 300-1200 W]
Vs [10 mL]

Ascorbic acid Xylooligosaccharides

Mango [18]

US [20 kHz; ~ 0 °C;
0-40 min; 5 s on - 5s
off; 0-600 W]

Consistency and flow _ _
o Carotenoid, phenolics
behaviour index
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Table 1 (continued)

Ultrasound processing to of plant-based beverages Rojas et al. 3

Vs [100 mL]

Mandarin [19] US [19 kHz; 50 °C; - Sugar, acid
andarin . olour
36 min; 750 W] components
US [19 kHz; 37 °C;
Orange [20]. 15'153;;_; >80 Cloudiness Ascorbic acid
Vs [30 mL]
US [26 kHz; 4-16 , pH,
min; 80 W; 50%A] Lycopene, phenolics, . _
Watermelon ’ ; _ Ascorbic  °Brix,
Vs [100 mL] flavonoids,
[21] o _ acid titrable
antioxidant capacity o
acidity
. US [20 kHz; 70 °C; Fatty acids,
Acai (Euterpe 10 min; 0.9-3.6 : . pH,
) kdiem?] Bioaccessibility and Fatty o
precatoria), _ . Brix,
B . Vs [100 mL] concentration of acids, _
buriti (Mauritia . titrable
anthocyanins, Colour o
flexuosa) [22] acidity

carotenoids

Acai [23¢]

US [19 kHz; 25 °C;
2-10 min; 75.34-
272.93 W/cm?]
Vs [150 mL]

Sugar, betaine, bioaccessibiity of ascorbic acid.

Orange [24]

TS [28 kHz; 10-50
°C; 5-25 min; 180-
900 W/L]

Aroma, glycosidically bound volatiles

Berberis US [20 kHz; 10 min;
, 140 W; 70%A] :
amurensis Colour, anthocyanins

Rupr. [25]

TS [56 °C; 20 min;
Red pitaya 475 W] .
US [10 °C; 20 min; Colour, betacyanins
[26] 475 W]
Vs [60 mL]
TS [24 kHz; 23.5-

Strawberry ! ‘ _ _ .
o 56.5 °C; 3 min; 0.29 Anthocyanins, soluble solids, phenolics
[27] W/mL]

Sugar cane TS [20 kHz; 80 °C; _

Phenolics, colour
[28] 23 min; 750 W]

TS = thermosonication-processing conditions; US = ultrasound-processing conditions. Regarding processing conditions, it is presented: the fre-
quency, temperature, time, power, or acoustic density or acoustic intensity, duty cycle (dc), and amplitude (A). Vs = volume of sample.
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4 Food Engineering & Processing

variation on rheological properties [8—11,18]. The rheolo-
gical properties can be changed temporally or permanently,
depending on the ultrasound energy applied, processing
time, pulp content, and temperature [7,29]. Therefore, a
different impact on the rheological properties is expected,
and the processing conditions must be evaluated, de-
pending on the defined target.

On the other hand, color variations are reported, which are
related to the decrease in particle size, extraction, and/or
degradation of main pigments. In fact, once the cell wall
is impacted, the intracellular content is exposed and some
compounds become more assessable (to the human body,
as a positive aspect, or to oxygen and the environment, as
a drawback). The variation in the content of the com-
pound (Table 1) is a balance of improved extraction
(causing an apparent increase in the quantified con-
centration) and exposition to deteriorating conditions
(decreasing their concentration). In fact, ultrasound can
modify the juice structure with potential health benefits,
which can be particularly relevant by considering food
products for special needs (Rojas et al., 2021) [4ee].

Even so, some ambiguous results are reported, such as
for lycopene and ascorbic acid, once they can be easily
degraded due to exposure to heat, light, and oxygen.
The decrease in such compounds is due to long times,
high temperatures, and/or powers of process, while at
inverse conditions, increase or no variation occur. In ei-
ther case, despite the decrease in some compounds, ul-
trasonic processing is more effective than conventional
thermal processing regarding compound preservation
[12,16,20,232] — although this comparison is always
difficult, being necessary an evaluation of process target
and conditions.

Moreover, ultrasound alone is rarely effective for the
required microbial inactivation in juices, even con-
sidering that microbial resistance to ultrasound is small
at low pH [30]. Therefore, ultrasound has been com-
bined with other technologies to improve its microbial
inactivation, such as natural antimicrobials [11,31,32],
pulsed light ([33], ozone [34], heat under pressure
[35], and, especially, the combination with a thermal
process (thermosonication) at mild temperatures) [9,27].
In fact, ultrasound can turn the microorganisms more
sensitive to thermal inactivation, such as during the
thermosonication to inactivate Neosartorya fischeri ascos-
pores [36] and Saccharomyces cerevisiae [37] in apple juice,
or Escherichia coli in apple cider [38]. Therefore, from a
microbiological perspective, the use of ultrasound in
combination with mild heating or other technologies for
industrial use is promissory, although the impact on juice
compounds must be evaluated since the combination of
unsuitable conditions can be detrimental to sensitive
compounds.

Summarizing, ultrasound can improve the functionality
of fruit and vegetable juices by improving the stability,
physical properties, and bioaccessibility of some bioac-
tive compounds. In addition, it preserves the thermo-
labile compounds or those added to the juices to increase
functionality [17]. However, some aspects should be
improved in future studies such as the calculation of the
actual ultrasound-power density in the products, the
control of the process temperature, evaluation of the
stability throughout the storage, and studies of bioac-
cessibility, bioavailability, and bioactivity.

Ultrasound processing of vegetable
alternatives to milk

There is a rising trend in producing vegetable beverages
to be similar to animal milk, concerning the main sen-
sorial and/or nutritional propertics. Those beverages,
often called plant-based ‘milks’ (and here referenced as
that, to avoid confusions with other plant-based bev-
erages, such as juices, nectars, soft drinks, etc.), are
suspensions and emulsions from sources such as soy-
bean, rice, almond, peanut, and oat, among others —
thus being physical stability an important challenge.

Ultrasound has demonstrated being useful for improving
the physical stability of almond ‘milk’ using
5min-300 W [39], coconut ‘milk’ using 13 min—-55 W/
cm? [40e], and peanut ‘milk’ using 3 min—400 W [41e],
which can be related to changes on particle size (proteins
and fats) and rheology.

These beverages are reported to present bioactive
compounds such as isoflavones, phytosterol and great
antioxidant activity [42]. However, plant-based ‘milk’
can present antinutritional factors such as phytates, sa-
ponins, and protease inhibitors [43]. In fact, ultrasound
can positively impact the nutritional and bioactive
properties of plant-based ‘milk’. For instance, it in-
creased the protein digestibility by 7.4%, reducing the
trypsin inhibitor by 52% in soybean milk — 400 W,
25kHz, 16 min [44]. However, no significant improve-
ment was found for almond milk using ultrasound
(400W, 20kHz, 16 min) [45]. Moreover, ultrasound
(400 W, 24 kHz) treatment for 20 min applied to hy-
drated soybeans produced ‘milk’ with 63-84% higher
1soflavone content than untreated beans [46].

Different works report that ultrasound alone is rarely
effective for the required microbial inactivation in plant-
based ‘milk’. For instance, a reduction of 0.9 log (total
plate count) was obtained using a probe of 400 W for
3min on peanut ‘milk’ [41¢], while a reduction up to
1.3 log was found for Escherichia coli and Listeria mono-
¢ytogenes when ultrasound (130 W, 20 kHz) with 80% of
power and 8 min of treatment was applied to almond
‘milk’ [47]. On the other hand, some works report
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Table 2

Ultrasound processing to of plant-based beverages Rojas et al. 5

Examples of recent studies on the modification of plant proteins by ultrasound processing and the respective improvements in tech-
nofunctional properties: increasing in S: solubility; E: emulsifying; G: gelling; OA: oil-absorption capacity; WH: water holding capacity; F:

foaming.[63-66]

Improved properties

References

Type of protein

black gram protein

guamuchil seed protein isolate

hemp seed protein isolate

lupin protein isolate

Moringa oleifera seed protein

pea protein concentrate

perilla seed protein isolate

potato proteins

potato protein isolates

pumpkin-seed protein isolates

microbial inactivation similar to pasteurization processes,
which can be an alternative for this product commer-
cialization under refrigeration. For example, Campa-
niello, Bevilacqua, Speranza, Sinigaglia, and Corbo [48¢]
reported a reduction on Sa/monella enterica load up to
8log in rice ‘milk’ — although samples experienced up
to 48°C/10 min during processing, being thus relevant
the contribution of thermal energy. However, by being
low-acid products (pH close to neutrality), the main
target of vegetable ‘milk’ are bacteria spores. Therefore,
further studies are needed considering the safety and
stability aspects of microbiology, with a focus on specific
microbial targets and a combination of technologies.

Summarizing, ultrasound technology has been demon-
strated to be beneficial to process plant-based milk ob-
taining beverages with physical stability during storage
and with some nutritional enhancements. The most
used device was the ultrasonic probe of different nom-
inal power (130-400 W) and frequency (20-25 kHz), re-
porting different parameter effects as power-percentage
application (20-100%), time (1-60 min), amplitude
(50-100%), and temperature (25-60°C). In contrast, ul-
trasonic bath has not been used in the last 5 years for
plant-based milk processing. This probably occurred due
to ultrasonic probe being more powerful than the ultra-
sonic bath, leading to used shorter processing time.
Similarly to other products, more studies of processing

equipment and conditions, focusing on scale-up, are
needed. Particularly, the potential of ultrasound to im-
prove stability, physical, sensorial, and nutritional prop-
erties of vegetable ‘milk’ is just starting to be revealed,
and further studies are needed involving different
sources, processing approaches and targets, the effect in
other antinutritional factors such as saponins and phy-
tates, and how ultrasound treatment affects further
processes for elaborating analogs of cheese, yoghurt, or
ice cream.

Ultrasound processing of plant proteins

Proteins are complex biopolymers made up of amino
acids and are of great nutritional, sensory, and functional
importance. They present different functional proper-
ties, depending on factors such as their source, amino
acid composition and sequence, molecular weight,
structure, conformation, and surface hydrophobicity [49].
Among the various techno-functional properties of pro-
teins, one can highlight the properties related to solu-
bility,  thickening, water/oil  holding capacity,
emulsification, foaming, and gelation. The variety of
properties makes proteins important components in the
formulation of food products, either as constituents from
raw materials (e.g. soy proteins in soy ‘milk’) or as in-
gredients (protein concentrates or isolates). However,
vegetable proteins might present some limitations due
to the unsuitability of their properties for specific
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applications and formulations in the food industry. To
overcome these limitations, chemical, biological, and
physical methods have been employed for protein
modification, including enzymatic hydrolysis, fermenta-
tion, heat treatment, high-pressure processing, and ul-
trasound [50-53]. Comprehensive reviews on the
different approaches for the modification of plant-based
proteins can be found in the literature [54,55¢¢].

Recently, the use of ultrasound has attracted attention to
modify, improve, and modulate the functional properties
of protein concentrates and isolates from different plant
sources. Several studies have reported that the applica-
tion of high-intensity ultrasound to dispersed/suspended
proteins resulted in structural changes and thus, mod-
ifications of the functional properties of these proteins.
Some recent studies are presented in Table 2. These
changes are attributed to cavitation, shear stress, turbu-
lence effects, and localized temperature rise, which can

promote modification even at a molecular level
[6,56-58].
For example, Flores-Jiménez, Ulloa, Urias-Silvas,

Ramirez-Ramirez, Bautista-Rosales, and Gutiérrez-
Leyva [59¢] found that ultrasound altered the secondary
and tertiary structures of guamuchil-seed protein iso-
lates, which increased their surface hydrophobicity and
molecular flexibility. These structural changes led to a
significant improvement of solubility, oil-absorption ca-
pacity, emulsification, foaming, and gelation properties.
Similarly, Hussain, Qayum, Zhang, Hao, Liu, Wang,
Hussain, and Li [60] investigated the effect of high-in-
tensity ultrasound on the bioactive, functional, and
structural properties of potato protein and reported that
emulsifying ability index, emulsifying stability, foaming
ability, solubility, and digestibility were significantly
enhanced.

However, it is worth mentioning that depending on the
process parameters used, different results can be ob-
tained, and may result in an increase or decrease in
protein functionality. In general, if conditions are too
intense, especially long sonication times and very high
intensities, the (over-)processing can result in an ex-
cessive molecular aggregation, leading to the obtention
of proteins with poor functional properties [61]. For
example, Karabulut and Yemis [61] observed an increase
in solubility of hemp-seed protein isolates after ultra-
sound processing at the range of 45-65% amplitude
(6-11W/em®, 27-32 W/em?®) for 5-10 min, which was
attributed to the partial unfolding of protein molecules
and greater protein—water interaction. However, at
higher amplitudes and longer times, the protein solubi-
lity was reduced, probably due to the formation of ag-
gregates with higher molecular weights. Similarly, Tang,
Du, and Fu [62] observed that solubility, foaming
properties, and emulsifying properties of Moringa oleifera

seed protein increased or decreased, depending on the
ultrasonic power. Therefore, to achieve the desired level
of functionality, the operating parameters must be
chosen/optimized.

In summary, ultrasound processing is an interesting and
promising approach for protein modification, which may
allow the utilization of a wider variety of vegetable
proteins and the expansion of their applications in the
food industry. Nevertheless, it should be noted that the
focus has been on using sonication for modification of
isolated proteins (in suspension), but the modification of
proteins in complex food matrices and the potential in-
teraction of proteins with other components should not
be neglected.

Future developments are expected to demonstrate the
increase of functionality of plant proteins of different
sources, for different purposes (including as ingredients
for other food products and improvement of nutritional
properties of emerging sources).

Conclusions and perspectives

Ultrasound processing induces a sequence of structural
modifications in plant-based products, impacting their
properties. The modification involved different steps
from the intact tissue to cell and macromolecule spatial
changes to disruption. Consequently, different proper-
ties are altered, positively or negatively, such as im-
proving the health benefits or sensorial perception, but
also degrading compounds of interest due to exposition
to detrimental conditions. Therefore, more studies are
needed to describe how processing conditions can affect
the plant-beverage functionalities — considering dif-
ferent vegetable sources and food products for different
needs.

In particular, a persistent challenge is scaling up the
ultrasound processing at industrial levels — in special
considering that most of the studies apply the probe
reactor. Studies of reactor engineering are needed to
provide equipment able to process the volumes of the
food industry, as well as studies in material science, are
needed to develop more resistant probe tips (which wear
out by erosion).

We consider the ultrasound technology can be used as a
valuable tool to improve the properties of plant-based
beverages, helping to achieve clean label products and
positively impacting well-being. Its industrial application,
though, is close to be effective, although depending on the
next scientific studies and technological developments.
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