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Abstract
We perform exact statistical mechanics calculations for a system of elongated objects (hard needles) that are restricted to 
translate along a line and rotate within a plane, and that interact via both excluded-volume steric repulsion and harmonic 
elastic forces between neighbors. This system represents a one-dimensional model of a liquid crystal elastomer, and has a 
zero-tension critical point that we describe using the transfer-matrix method. In the absence of elastic interactions, we build 
on previous results by Kantor and Kardar, and find that the nematic order parameter Q decays linearly with tension � . In 
the presence of elastic interactions, the system exhibits a standard universal scaling form, with Q∕|�| being a function of 
the rescaled elastic energy constant k∕|�|𝚫 , where � is a critical exponent equal to 2 for this model. At zero tension, simple 
scaling arguments lead to the asymptotic behavior Q ∼ k1∕𝚫 , which does not depend on the equilibrium distance of the 
springs in this model.

Keywords  Exact solvable models · Elastomers · Rigid rotors · Liquid crystals

1  Introduction

One-dimensional models have often been invoked to illus-
trate diverse subtleties regarding statistical features of sys-
tems in physical dimensions [1]. Even though strong fluctua-
tions usually prevent the emergence of long-range ordered 
phases at finite temperature [2], these models have the major 
advantage that they can often be solved exactly, and they are 
amenable to approaches as the renormalization group [3], 
leading to the description of far-reaching universal scaling 

features. Unsurprisingly, these models provide valuable tools 
to describe the rich criticality of systems such as strongly 
correlated quantum systems, where theoretical progress in 
dimension higher than one is hindered by formidable ana-
lytical and numerical challenges.

A few years ago, Kantor and Kardar have used analytical 
and numerical calculations to describe the statistical prop-
erties of a one-dimension gas of hard anisotropic bodies 
(ellipsoids, needles, rectangles, etc.) with excluded volume 
interactions [4, 5] (see also ref. [6]). The glassy dynamics of 
a class of similar models was investigated by Arenzon and 
colleagues [7], and a two-dimensional gas of hard needles 
was simulated by Vink [8]. Also, a more recent analysis 
for a lattice model of hard rotors was carried out by Saryal 
and Dhar [9, 10]. In this manuscript, we revisit the work by 
Kantor and Kardar, with the addition of elastic degrees of 
freedom. For Ising systems, the incorporation of compress-
ibility through the addition of harmonic elastic interactions 
can change the critical behavior and give rise to multicritical 
points [11, 12]. In turn, here we make contact with liquid 
crystal elastomers [13], where the coupling between elastic 
and orientational degrees of freedom leads to a highly ver-
satile material combining the properties of both rubber and 
liquid crystals.

Liquid crystal elastomers have attracted much attention 
since de Gennes’ pioneering paper  [14]. Previous theo-
retical approaches to describe the intriguing properties of 
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these anisotropic polymer networks include Warner and 
Terentjev neo-classical theory of elasticity [13], the lat-
tice version of the Warner-Terentjev model proposed by 
Selinger and Ratna [15] and the minimal models consid-
ered by Ye and Lubensky [16]. In previous publications, 
some of us have used a mean-field (infinite-range) lattice 
model (akin to Selinger and Ratna’s model) to describe the 
nematic-isotropic, the poli- to mono-domain as well as soft 
transitions [17–20].

A chain of hard needles is illustrated in Fig. 1. We consider 
a system of N elongated objects of size 2� and zero width 
(needles), which can rotate within the plane and translate 
along a straight line. Each needle is described by a positional 
xi and an orientational variable �i ∈ [−�∕2,�∕2] . In the orig-
inal approach by Kantor and Kardar [4], the needles interact 
via excluded-volume repulsions only. In the present work, we 
consider the effects of harmonic elastic interactions as well 
(represented by blue springs in the figure).

In Sec. 2, we describe our one-dimensional elastic model 
of hard needles and formulate the statistical problem in the 
pressure (stress) ensemble. In Sec. 3, we regain the known 
results by Kantor and Kardar [4] and describe the critical 
behavior of the nematic order parameter (which was not 
considered in ref. [4]). In Sec. 4, we obtain a number of 
properties of this novel one-dimensional nematic elastomer. 
Some final considerations and possible extensions of the 
calculations are given in the conclusions.

2 � The Model

We consider the model Hamiltonian

where Hs represents the hard-core steric repulsion between 
needle-like objects,

(1)H = Hs +He,

(2)Hs =

N∑

i=1

Vi−1,i,

and where Vi−1,i is the excluded-volume hard repulsion term,

with

The local elastic interactions are given by

where we have introduced the elastic energy constant k > 0 , 
and the equilibrium spacing a� , where a is a dimensionless 
quantity and � is half the length of the needle (see Fig. 1). 
Note that our model reduces to a one-dimensional lattice of 
hard rotors in the limit of infinite k. The statistical properties 
of orientable objects in one-dimensional lattices have been 
investigated in diverse contexts, for several forms of hard- 
[21] and soft-core [22] potentials, as well as for other types 
of anisotropic shapes [23].

Figure 2 shows a derivation of Eq.  (4) for a particular 
case with 𝜙1 > 𝜙2 . When 𝜙1,𝜙2 > 0 , one can infer from 
Fig.  2a that the distance of closest approach is given by 
d1,2∕� = sin�1 − cos�1 tan�2 = sin(�1 − �2)∕ cos�2

 . Similar 

(3)Vi−1,i =

{
0, if xi − xi−1 > � di−1,i,

∞, otherwise,

(4)di−1,i =
sin ||�i − �i−1

||
max

(
cos�i, cos�i−1

) .

(5)He =
k

2

N∑

i=2

(
xi − xi−1 − a�

)2
,

Fig. 1   Sketch of a set of hard 
needles with steric repulsions 
and harmonic elastic interac-
tions

(a) (b)

(c)

Fig. 2   Geometry of two adjacent needles at the distance of closest 
approach for 𝜙1 > 𝜙2 . a, b, and c correspond to the cases for which 
𝜙1,𝜙2 > 0 , 𝜙1 > 0 but 𝜙2 < 0 , and 𝜙1,𝜙2 < 0 , respectively
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calculations can be made to show that Eq. (4) also applies to the 
cases in which 𝜙1 > 0 and 𝜙2 < 0 (b), and 𝜙1,𝜙2 < 0 (c), as well 
as the cases with 𝜙1 < 𝜙2.

We now turn to the pressure (stress) ensemble. In this 
case, we have 0 < x1 < x2 < ⋯ < xN−1 < xN ≡ L < ∞ , 
where L is the system size, which is not fixed. We also con-
sider free boundary conditions, so that the first and the last 
particles only interact with particles at their right and left, 
respectively, and also V0,1 = VN,N+1 = 0 . The configurational 
contribution to the partition function can be written as

where � is the inverse temperature and Dx = �
−N

∏N

i=1
dxi 

and D� =
∏N

i=1
d�i are measures in the positional 1 and ori-

entational variables. The last term in the argument of the 
exponential in (6) is the usual “pressure” term, where � is a 
uniaxial tension.

3 � Hard‑Needle Gas

We now recover previous results for a gas of hard needles 
without elastic interactions (in other words, with the elastic 
energy parameter k = 0 ). The configurational contribution 
to the partition function is now given by

This model has been proposed and solved in ref. [4]. 
Interactions can be decoupled with a simple linear 
transformation,

so that,

and the partition function is given by

(6)Y =Y(�, �,N) = ∫ DxD� exp
[
−�

(
H + � xN

)]
,

(7)Y = ∫ DxD� exp

[
−�

(
N∑

i=1

Vi−1,i + � xN

)]
.

(8)si ≡ xi − xi−1,

(9)
N∑

i=1

si = xN = L,
�
(
x1,⋯ , xN

)

�
(
s1,⋯ , sN

) = 1,

Now, we can integrate (10) over the s variables in order to 
obtain

Note that our boundary conditions require that d0,1 = 0.
In order to integrate over the angle variables, we consider a 

discrete set of angles and use the transfer matrix method to evalu-
ate the sum over states. Let us partition the interval [−�∕2,�∕2] 
into M equal parts, so that the angle variable can be written as

Here we focus on values of M that are large enough to 
be compatible with the case of continuous orientations; see 
refs. [24, 25] for detailed analyses of this model and some 
variants at small M. We then define a finite-dimensional 
M ×M transfer matrix D = ((D� �)) , with

where d is the minimum distance between nearest neighbors 
defined in (4), and we have introduced the dimensionless tension

Also,

which leads to

(10)

Y =𝓁−N ∫
x2

0

dx1 ∫
x3

x1

dx2 ⋯∫
∞

xN−1

dxN ∫ D�

× exp

[
−�

(
N∑

i=1

Vi−1,i + � xN

)]

=𝓁−N ∫
∞

0

ds1 ∫
∞

0

ds2 ⋯∫
∞

0

dsN ∫ D�

× exp

[
−�

N∑

i=1

(
Vi−1,i + � si

)
]
.

(11)

Y =�−N ∫ D�

N∏

i=1

(

∫
∞

� di−1,i

dsi e
−� � si

)

=(� � �)−N ∫ D� exp

(
−� � �

N∑

i=1

di−1,i

)
.

(12)�(k) = −
�

2
+

k�

M
, with k = 0, 1,⋯ ,M − 1.

(13)D� � = exp
[
−� d(�(�),�(�))

]
,

(14)� = � � �.

(15)∫ d�i ≈
∑

k

[
�
(k+1)

i
− �

(k)

i

]
=

�

M

∑

k

,

∏

i

(

∫
�

2

−
�

2

d�i e
−� di−1,i

)
≈
(
�

M

)N
M−1∑

k1=0

⋯

M−1∑

kN=0

Dk1 k2

⋅ Dk2 k3
⋯DkN−1 kN

=
(
�

M

)N ∑

k1,kN

(
DN−1

)
k1 kN

.

1  We used �−N in the spatial measure so that Y is dimensionless. In 
classical statistical mechanics, it is usual to consider the measure in 
phase space d� = h−N

∏
i dxidpi , with the inclusion of Planck’s con-

stant h, where pi is the momentum of particle i. This ensures a dimen-
sionless partition function and agreement with the classical limit 
of an analogous quantum system. In our case, we could combine � 
with h so that the contribution from the momentum variables is also 
dimensionless.
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Thus,

The free energy density g = g(�) is obtained from 
Eq. (16),

This formula becomes simpler in the thermodynamic 
limit if we consider the similarity transformation

where the components of the M ×M matrix, B = ((B� �)) , 
are given by

where the vector �� ≡ (�1 � ,⋯ , �M �) is the �-th normalized 
eigenvector of D, with corresponding eigenvalue �� . Thus,

In the thermodynamic limit, the main contribution to this 
sum comes from the largest eigenvalue ��∗ , so that the free 
energy is given by

We now remark that one-point averages of a quantity Xki
 

can be directly calculated using the definition

where X in the second line denotes a one-point M ×M 
matrix,

Using the basis of eigenvectors of D, Eq. (22) can be 
rewritten in the thermodynamic limit as 2

(16)Y =
(

�

M�

)N ∑

�,�

(
DN−1

)
� �
.

(17)−�g = ln
(

�

M�

)
+

1

N
ln

[
∑

�,�

(
DN−1

)
� �

]
.

(18)B−1
⋅ D ⋅ B = diag(�1,⋯ , �M),

(19)B� � = �� � ,

(20)
∑

�,�

(
DN−1

)
� �

=

M∑

�=1

(
M∑

�=1

�� �

)2

��
N−1.

(21)g = −
1

�
ln

(
���∗

M�

)
.

(22)

⟨Xki
⟩ =

∑
k1,⋯,kN

Xki
Dk1 k2

⋯DkN−1 kN∑
k1,⋯,kN

Dk1 k2
⋯DkN−1 kN

=

∑
�,�

�
Di−1

⋅ X ⋅ DN−i
�
� �

∑
�,�

�
DN−1

�
� �

,

(23)X = ((X��)) = diag(X1,⋯ ,XM).

(24)⟨Xki
⟩ =

M�

�=1

�� �∗
2X� .

For planar orientations, the nematic order parameter Q 
is given by

which can be numerically evaluated by means of Eq. (24).
We now turn to the average distance between needles, 

which can be written as

In Fig. 3, we show the nematic order parameter Q and 
the average spacing between needles s as a function of the 
dimensionless tension � = � � � for M = 16 (blue), 32 (yel-
low), 64 (green), and 128 (red). Notice that the discrete angle 
approximation quickly converges even for modest values of 
M. As it should be anticipated, there is no long-range order 
in the absence of tension. As indicated by gray dashed lines, 
the order parameter vanishes as � , and the average spac-
ing between needles diverges as �−1 in the limit of small 
� . We remark that our results agree with both the previous 

(25)Q = ⟨cos
�
2�i

�
⟩,

(26)
s ≡ 1

N
Y−1 � DxD� xN e−�H−��xN

= −
1

N�
Y−1 �Y

��
= �

�(�g)

��
.

Fig. 3   Nematic order parameter Q and average spacing between nee-
dles s∕� as a function of the dimensionless tension � = � � � for a gas 
of hard needles without elastic interactions (i.e., with k = 0 ). Blue, 
yellow, green, and red lines correspond to M = 16 , 32, 64, and 128, 
respectively. The dashed lines on the top and bottom plots correspond 
to power laws with exponent 1 and −1 , respectively

2  Note that Eq.  (24) is valid for bulk particles. For boundary parti-
cles, < Xki

>= (
∑M

𝛽=1
𝜈𝛽 𝛼∗X𝛽 )∕(

∑M

𝛽=1
𝜈𝛽 𝛼∗ ).
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publication by Kantor and Kardar [4] and with some unpub-
lished numerical simulations performed by Annunziata and 
Petri.

4 � Hard‑Needle Elastomer

We now consider the elastic case, with k ≠ 0 . Using our pre-
vious change of variables xi → si = xi − xi−1 , we can write 
the partition function in the pressure ensemble as

where the Kronecker delta in the exponent ensures the free 
boundary condition, i.e., there is only one spring attached 
to the first particle. It is convenient to introduce another 
dimensionless parameter,

so that, with some algebra, we have

where � has been defined in Eq. (14), erfc(x) is the com-
plementary error function, and we have neglected terms of 
order O(1) . The transfer matrix is now given by

and the free energy, g(�, �) = g(�) , can be obtained from

where ��∗ is the largest eigenvalue of D. We can use 
Eqs. (24) and the eigenvectors of D, given by Eq. (29), to 
calculate one-point averages.

In the previous section, we have shown that the domi-
nant singularity at � = 0 leads to power-law behavior of the 
nematic order parameter ( Q ∼ � ) and of the average spacing 
between needles ( s ∼ �−1 ). For nonzero k (or Λ ), invariant 
scaling behavior suggests that Q and s are not functions of � 
and Λ independently, and we anticipate that

Y =Y(�, �,N)

=�−N ∫ D�

N∏

i=1

{

∫
∞

� di−1,i

ds exp

[
−
�k

2
(�i,1 − 1)

×(s − a�)2 − � � s
]}
,

(27)Λ ≡ � k �2,

(28)

Y = exp
{
N
[
1

2
ln
(

�

2Λ

)
+ �

(
�

2Λ
− a

)]}
∫ D�

×

N∏

i=2

{
erfc

[√
Λ

2

(
di−1,i − a +

�

Λ

)]}
,

(29)D� � = erfc

{√
Λ

2

[
d
(
�(�),�(�)

)
− a +

�

Λ

]}
,

(30)−�g =
1

2
ln

[
�3

2MΛ
(��∗ )

2

]
+ �

(
�

2Λ
− a

)
,

(31)Q = |�|Q(Λ |�|−Δ)

and similarly 3 that s = |�|−1S(Λ∕|�|Δ) where Q and S are 
universal scaling functions [26], and Δ is a critical expo-
nent. Although critical exponents have been historically con-
sidered the paradigm of universal behavior, we emphasize 
that many other quantities are universal besides the expo-
nents [3]. Notorious examples include amplitude ratios, 
which often provide a better test of universality classes than 
do critical exponents [27]. An interesting and open question 
is the determination of what features of a “universal” scaling 
function such as Q are indeed universal.

To validate the universal scaling form encapsulated by 
Eq. (31), Fig. 4 shows scaling collapse plots for the rescaled 
nematic order parameter Q∕|�| as a function of Λ∕|�|Δ , for 
M = 128 , a = 1 and |�| = 10−4 (blue), 10−3 (yellow), 10−2 
(green), 10−1 (red), and 1 (purple). Here we consider both 
positive (compression) and negative (dilation) tension, cor-
responding to dashed and solid lines, respectively. We have 
varied the critical exponent Δ until we find that the curves 
collapse into two branches (corresponding to 𝜏 > 0 and 
𝜏 < 0 ) of a single universal curve when Δ = 2 . Different 
values of a do not affect the overall scaling behavior.

For very stiff systems (i.e., for large k), one expects the 
overall behavior to be dominated by the value of the spring 
constant, and to show only a small dependence on the 
stress. This physical intuition is corroborated by our results; 
at large Λ∕�2 , Fig. 4 indicates that the universal function 
Q(x) ∼ x1∕2 , so that Q ∼

√
Λ independent of � . It is worth 

Fig. 4   Scaling collapse plots for the rescaled nematic order parameter 
as a function of rescaled Λ = � k �2 for a hard-needle elastomer with 
a = 1 , several values of � (different colors), and for both compression 
𝜏 > 0 (dashed curves) and dilation 𝜏 < 0 (solid curves). The gray-dot-
ted line was inserted to indicate power-law behavior ∼ x

1∕2 at large 
Λ∕�2

3  The average spacing s can be calculated from a derivative of the 
free energy as s∕� = �(�f )∕� � . For the hard-needle elastomer, this 
calculation results in s∕� = −(1∕��∗ )���∗∕� � + a − �∕Λ . The first 
term yields the expected scaling behavior, whereas the last term pro-
vides important corrections when Λ ∼ �2.
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noting that Λ ≈ 1 marks a threshold above which corrections 
to scaling become important (indicated by the curves peeling 
off from the putative universal function at large arguments). 
At small values of Λ∕�2 , compression and dilatation lead to 
very different outcomes. Whereas Q ∼ � , independent of Λ , 
for compression at low Λ , the system exhibits a strikingly 
sharp decay for dilatation at low Λ.

We now turn to the system scaling behavior at the critical 
value � = 0 . An alternative expression for the scaling form given 
by Eq. (31) can be obtained using a simple change of variables,

where Q̃(x) = xQ(x−Δ) is a new scaling function. Note that 
Eq. (32) implies that Q ∼ Λ1∕Δ as � → 0.

Figure 5a shows a plot of the rescaled order parameter 
QΛ−1∕2 as a function of Λ for M = 128 and a = 1 (blue, 
solid), 4 (yellow, dashed), 16 (green, dotted), and 64 (red, 
dash-dotted). Notice the steep crossover to a solution with 
Q ≈ 0 at larger values of Λ . Also notice that all curves 
have approximately the same shape for large a, which sug-
gests that a scaling combination of Λ and a may collapse 
these curves. We then show in Fig. 5b a plot of rescaled 
Q as a function of rescaled Λa� , with � = 2.2 chosen so 
that we obtain the best scaling collapse for large a data. 
Since a is ratio of two characteristic length scales of the 
system, it is not surprising that invariant scaling combina-
tions involving a are present in some regimes.

5 � Conclusions

We have obtained a number of analytic expressions and 
numerical results describing the statistical behavior of a one-
dimensional system of hard needles with the inclusion of 

(32)
Q = |𝜏|Λ−1∕ΔΛ1∕ΔQ(Λ |𝜏|−Δ)

= Λ1∕ΔQ̃(|𝜏|Λ−1∕Δ),

steric repulsions and elastic interactions. Using the transfer 
matrix technique, we have exactly calculated the partition 
function, free energy, and order parameter for this model. 
We have then discussed the system critical scaling behavior, 
and described a standard universal scaling form that is con-
trolled by a putative zero-tension fixed point. The rescaled 
order parameter Q∕|�| can be written as a universal function 
of rescaled elastic energy constant k∕|�|Δ , with Δ denoting a 
critical exponent that is equal to 2 for this model.

In future work, we plan to consider other forms of inter-
acting potentials, including competing terms [28] or chiral 
twist terms [29], which are known to lead to modulated 
phases and that would allow us to make contact with the 
nematic cholesteric behavior [30]. We also plan to use the 
coherent potential approximation [31, 32] to incorporate 
disorder in the elastic variables, which would also be rel-
evant in the context of jamming [33] and other classes of 
rigidity transitions [34]. Finally, it would be interesting to 
investigate the interplay between elasticity and excluded 
volume steric interactions in generalizations of the models 
considered in refs. [9, 10].
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