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Abstract

We perform exact statistical mechanics calculations for a system of elongated objects (hard needles) that are restricted to
translate along a line and rotate within a plane, and that interact via both excluded-volume steric repulsion and harmonic
elastic forces between neighbors. This system represents a one-dimensional model of a liquid crystal elastomer, and has a
zero-tension critical point that we describe using the transfer-matrix method. In the absence of elastic interactions, we build
on previous results by Kantor and Kardar, and find that the nematic order parameter Q decays linearly with tension o. In
the presence of elastic interactions, the system exhibits a standard universal scaling form, with Q/|o| being a function of
the rescaled elastic energy constant k/|c|*, where A is a critical exponent equal to 2 for this model. At zero tension, simple
scaling arguments lead to the asymptotic behavior Q ~ k'/2, which does not depend on the equilibrium distance of the

springs in this model.
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1 Introduction

One-dimensional models have often been invoked to illus-
trate diverse subtleties regarding statistical features of sys-
tems in physical dimensions [1]. Even though strong fluctua-
tions usually prevent the emergence of long-range ordered
phases at finite temperature [2], these models have the major
advantage that they can often be solved exactly, and they are
amenable to approaches as the renormalization group [3],
leading to the description of far-reaching universal scaling
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features. Unsurprisingly, these models provide valuable tools
to describe the rich criticality of systems such as strongly
correlated quantum systems, where theoretical progress in
dimension higher than one is hindered by formidable ana-
lytical and numerical challenges.

A few years ago, Kantor and Kardar have used analytical
and numerical calculations to describe the statistical prop-
erties of a one-dimension gas of hard anisotropic bodies
(ellipsoids, needles, rectangles, etc.) with excluded volume
interactions [4, 5] (see also ref. [6]). The glassy dynamics of
a class of similar models was investigated by Arenzon and
colleagues [7], and a two-dimensional gas of hard needles
was simulated by Vink [8]. Also, a more recent analysis
for a lattice model of hard rotors was carried out by Saryal
and Dhar [9, 10]. In this manuscript, we revisit the work by
Kantor and Kardar, with the addition of elastic degrees of
freedom. For Ising systems, the incorporation of compress-
ibility through the addition of harmonic elastic interactions
can change the critical behavior and give rise to multicritical
points [11, 12]. In turn, here we make contact with liquid
crystal elastomers [13], where the coupling between elastic
and orientational degrees of freedom leads to a highly ver-
satile material combining the properties of both rubber and
liquid crystals.

Liquid crystal elastomers have attracted much attention
since de Gennes’ pioneering paper [14]. Previous theo-
retical approaches to describe the intriguing properties of
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Fig. 1 Sketch of a set of hard
needles with steric repulsions
and harmonic elastic interac-
tions

these anisotropic polymer networks include Warner and
Terentjev neo-classical theory of elasticity [13], the lat-
tice version of the Warner-Terentjev model proposed by
Selinger and Ratna [15] and the minimal models consid-
ered by Ye and Lubensky [16]. In previous publications,
some of us have used a mean-field (infinite-range) lattice
model (akin to Selinger and Ratna’s model) to describe the
nematic-isotropic, the poli- to mono-domain as well as soft
transitions [17-20].

A chain of hard needles is illustrated in Fig. 1. We consider
a system of N elongated objects of size 2¢ and zero width
(needles), which can rotate within the plane and translate
along a straight line. Each needle is described by a positional
x; and an orientational variable ¢; € [—x /2, z/2]. In the orig-
inal approach by Kantor and Kardar [4], the needles interact
via excluded-volume repulsions only. In the present work, we
consider the effects of harmonic elastic interactions as well
(represented by blue springs in the figure).

In Sec. 2, we describe our one-dimensional elastic model
of hard needles and formulate the statistical problem in the
pressure (stress) ensemble. In Sec. 3, we regain the known
results by Kantor and Kardar [4] and describe the critical
behavior of the nematic order parameter (which was not
considered in ref. [4]). In Sec. 4, we obtain a number of
properties of this novel one-dimensional nematic elastomer.
Some final considerations and possible extensions of the
calculations are given in the conclusions.

2 The Model

We consider the model Hamiltonian
H=H,+H, (D)

where H represents the hard-core steric repulsion between
needle-like objects,

N
H, = Z Viori (2)
i=1
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and where V,_, ; is the excluded-volume hard repulsion term,

Vo= 0, ifx;—x_;>7d_,, 3
=Li ™) o0, otherwise, S
with
sin |¢; — ¢,
d |¢l ¢l l|

“

M7 max (cos d;,cos ;)

The local elastic interactions are given by

N

z (xl-—x,»_l —af)z, Q)

=2

H =

e

N | =

where we have introduced the elastic energy constant k > 0,
and the equilibrium spacing a £, where a is a dimensionless
quantity and Z is half the length of the needle (see Fig. 1).
Note that our model reduces to a one-dimensional lattice of
hard rotors in the limit of infinite k. The statistical properties
of orientable objects in one-dimensional lattices have been
investigated in diverse contexts, for several forms of hard-
[21] and soft-core [22] potentials, as well as for other types
of anisotropic shapes [23].

Figure 2 shows a derivation of Eq. (4) for a particular
case with ¢, > ¢,. When ¢,, ¢, > 0, one can infer from
Fig. 2a that the distance of closest approach is given by
d,/¢ =sing, —cos ¢, tan ¢, = sin(¢, — ¢,)/ cos p,. Similar

Fig.2 Geometry of two adjacent needles at the distance of closest
approach for ¢, > ¢,. a, b, and ¢ correspond to the cases for which
¢1, ¢, > 0,¢, > 0but ¢, <0, and ¢, p, < 0, respectively
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calculations can be made to show that Eq. (4) also applies to the
cases in which¢, > Oand¢, < 0(b),and ¢, ¢, < 0(c), as well
as the cases with ¢, < ¢,.

We now turn to the pressure (stress) ensemble. In this
case, we have 0<x; <x, <+ <xy_; <xy=L< o0,
where L is the system size, which is not fixed. We also con-
sider free boundary conditions, so that the first and the last
particles only interact with particles at their right and left,
respectively, and also V| = Vi y.; = 0. The configurational
contribution to the partition function can be written as

Y =Y(B,0,N) = / DxDexp [—B(H + o xy)], (6)

where f is the inverse temperature and Dx = £~V Hfil dx;
and D¢ = Hf\il dd; are measures in the positional ' and ori-
entational variables. The last term in the argument of the
exponential in (6) is the usual “pressure” term, where o is a
uniaxial tension.

3 Hard-Needle Gas

We now recover previous results for a gas of hard needles
without elastic interactions (in other words, with the elastic
energy parameter k = 0). The configurational contribution
to the partition function is now given by

N
Y=/DxD¢exp —B( D Vii+oxy )| 7
i=1

This model has been proposed and solved in ref. [4].
Interactions can be decoupled with a simple linear
transformation,

8 =X =Xy, (8)
so that,
N a(xl,...,xN)

s;=xy=L, ——= =1, 9)

and the partition function is given by

! We used #7V in the spatial measure so that Y is dimensionless. In
classical statistical mechanics, it is usual to consider the measure in
phase space du = h™ [], dxdp,, with the inclusion of Planck’s con-
stant i, where p; is the momentum of particle i. This ensures a dimen-
sionless partition function and agreement with the classical limit
of an analogous quantum system. In our case, we could combine #
with £ so that the contribution from the momentum variables is also
dimensionless.

Xy X3 [+3]
Y=zf’_N/ dxl/ dxz---/ de/D¢>
0 X1 AN-1
N

xXexp | —=f Z Viitoxy

i=1
=f_N/ dsl/ ds2-~-/ dsN/Dq')
0 0 0

N
Xexp | —p Z (Vi +os;)
i=1

(10)

Now, we can integrate (10) over the s variables in order to
obtain

N

Yy =¢7N / D¢H / ds; e
i=1 Cdiy;

N 1D
=(ﬁ6f)_N/D¢ exp _ﬂal’ﬂzdi—l,i
i=1

Note that our boundary conditions require that d;, ; = 0.
In order to integrate over the angle variables, we consider a
discrete set of angles and use the transfer matrix method to evalu-
ate the sum over states. Let us partition the interval [—z /2, 7 /2]
into M equal parts, so that the angle variable can be written as
n krm

k) —
= -+ =,
¢ M

> withk=0,1, -, M—1. (12)

Here we focus on values of M that are large enough to
be compatible with the case of continuous orientations; see
refs. [24, 25] for detailed analyses of this model and some
variants at small M. We then define a finite-dimensional
M X M transfer matrix D = ((DI”)), with

D,, = exp [-td(¢™, ¢, (13)

where d is the minimum distance between nearest neighbors
defined in (4), and we have introduced the dimensionless tension

t=focf. 14)
Also,
it 3 g b 2

/ ®; Zk‘,[¢ ¢! ] Mzk: (15)

which leads to

. SN
([ ase ) ~(5)' T~ 3 o
-3 k=0  ky=0

2N

l

’ Dkl k3 " DkN*l kN

() 2 0

kl ’kN
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Thus,
N
r=() ”Z (DY), (16)

The free energy density g = g(r) is obtained from
Eq. (16),

~pg=In(57-)+ %m lz (DN‘I)”V]. amn
M,V

This formula becomes simpler in the thermodynamic
limit if we consider the similarity transformation

B™'. DB =diag(4,, -, Ay), (18)

where the components of the M X M matrix, B = ((Bﬂa)),
are given by

By = Vpos (19)

where the vector v, = (v, , V) 1S the a-th normalized
eigenvector of D, with corresponding eigenvalue A,. Thus,

X (D), = i (f‘, vﬂa> PR 20)

M,V a=1 p=1

In the thermodynamic limit, the main contribution to this
sum comes from the largest eigenvalue 4., so that the free
energy is given by

1 T A g

We now remark that one-point averages of a quantity X,
can be directly calculated using the definition

ka-u/w Xk,.Dkl kT DkN,l ky
Zkl,m,k,v Dk1 ko DkN?1 ky
Zy,v (Di—l X - DN—i)

T3, (o)

where X in the second line denotes a one-point M X M
matrix,

a*

<in> =
(22)

Hv

>

X =((X,,)) = diag(Xy, -+, X)) (23)

Using the basis of eigenvectors of D, Eq. (22) can be

rewritten in the thermodynamic limit as 2
M

Xy = 2 Vpur X (24)
p=1

2 Note that Eq. (2[;1) is valid for Bulk particles. For boundary parti-
cles, < X, >= (Zﬂ:] VI,WXI,)/(Zﬁ:1 Vo)
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Fig.3 Nematic order parameter Q and average spacing between nee-
dles s/¢ as a function of the dimensionless tension 7 = f ¢ ¢ for a gas
of hard needles without elastic interactions (i.e., with k = 0). Blue,
yellow, green, and red lines correspond to M = 16, 32, 64, and 128,
respectively. The dashed lines on the top and bottom plots correspond
to power laws with exponent 1 and —1, respectively

For planar orientations, the nematic order parameter Q
is given by

Q = (cos (2¢;)). 25)

which can be numerically evaluated by means of Eq. (24).
We now turn to the average distance between needles,
which can be written as
_1
S= —
N

y! / DxDepxy e PH—Poxy
(26)
L 0¥ _,008)

Np do ot

In Fig. 3, we show the nematic order parameter Q and
the average spacing between needles s as a function of the
dimensionless tension z = f ¢ £ for M = 16 (blue), 32 (yel-
low), 64 (green), and 128 (red). Notice that the discrete angle
approximation quickly converges even for modest values of
M. As it should be anticipated, there is no long-range order
in the absence of tension. As indicated by gray dashed lines,
the order parameter vanishes as 7, and the average spac-
ing between needles diverges as z~! in the limit of small
7. We remark that our results agree with both the previous
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publication by Kantor and Kardar [4] and with some unpub-
lished numerical simulations performed by Annunziata and
Petri.

4 Hard-Needle Elastomer

We now consider the elastic case, with k # 0. Using our pre-
vious change of variables x; — s; = x; — x;_;, we can write
the partition function in the pressure ensemble as

Y =Y(f,0,N)

=f‘N/D¢ﬂ{/f:

i—1L,i

X(s—af)z—ﬂas]},

ds exp [—%k(éi,l -1

where the Kronecker delta in the exponent ensures the free
boundary condition, i.e., there is only one spring attached
to the first particle. It is convenient to introduce another
dimensionless parameter,

A= Pkt 27

so that, with some algebra, we have
1 1 T
Y—eXP{N[zln(ﬁ”(ﬁ‘“)]}/D"’
N A . (28)
X fi —<d<_ = +—> ,
g{ercl,/z - A]}

where 7 has been defined in Eq. (14), erfc(x) is the com-
plementary error function, and we have neglected terms of
order O(1). The transfer matrix is now given by

A
D,, = erfc{ \/;[d(¢<’”, ) —a+T] } 29)

and the free energy, g(f, o) = g(r), can be obtained from

_fg=tn [”—3(,1 *)2] + r(i - a) (30)
2 2MA 2A ’

where A,. is the largest eigenvalue of D. We can use

Egs. (24) and the eigenvectors of D, given by Eq. (29), to

calculate one-point averages.

In the previous section, we have shown that the domi-
nant singularity at z = 0 leads to power-law behavior of the
nematic order parameter (Q ~ 7) and of the average spacing
between needles (s ~ z~1). For nonzero k (or A), invariant
scaling behavior suggests that Q and s are not functions of =
and A independently, and we anticipate that

0 =17] QA I7|™) 3D

= 10
o
1
102}
1074
1073 1 103 10°
A/T2

Fig.4 Scaling collapse plots for the rescaled nematic order parameter
as a function of rescaled A = gk £? for a hard-needle elastomer with
a = 1, several values of 7 (different colors), and for both compression
7 > 0 (dashed curves) and dilation 7 < 0 (solid curves). The gray-dot-
ted line was inserted to indicate power-law behavior ~ x'/2 at large
A/7?

and similarly ° that s = |7]"'S(A/|7|%) where Q and S are
universal scaling functions [26], and A is a critical expo-
nent. Although critical exponents have been historically con-
sidered the paradigm of universal behavior, we emphasize
that many other quantities are universal besides the expo-
nents [3]. Notorious examples include amplitude ratios,
which often provide a better test of universality classes than
do critical exponents [27]. An interesting and open question
is the determination of what features of a “universal” scaling
function such as Q are indeed universal.

To validate the universal scaling form encapsulated by
Eq. (31), Fig. 4 shows scaling collapse plots for the rescaled
nematic order parameter Q/|z| as a function of A/|z|2, for
M =128, a=1and |z| = 10~ (blue), 1073 (yellow), 1072
(green), 107! (red), and 1 (purple). Here we consider both
positive (compression) and negative (dilation) tension, cor-
responding to dashed and solid lines, respectively. We have
varied the critical exponent A until we find that the curves
collapse into two branches (corresponding to 7 > 0 and
7 < 0) of a single universal curve when A = 2. Different
values of a do not affect the overall scaling behavior.

For very stiff systems (i.e., for large k), one expects the
overall behavior to be dominated by the value of the spring
constant, and to show only a small dependence on the
stress. This physical intuition is corroborated by our results;
at large A/7?, Fig. 4 indicates that the universal function
Q(x) ~ x'/2, so that O ~ /A independent of 7. It is worth

3 The average spacing s can be calculated from a derivative of the
free energy as s/¢ = 0(ff)/0 z. For the hard-needle elastomer, this
calculation results in s/¢ = —(1/4,.)0A,. /07 +a—t/A. The first
term yields the expected scaling behavior, whereas the last term pro-
vides important corrections when A ~ 72

@ Springer
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Fig.5 a Rescaled Q as a function of A at 7 = 0 for several values of
a (different colors). b The same as a, but with rescaled Aa®? in the
X-axis

noting that A = 1 marks a threshold above which corrections
to scaling become important (indicated by the curves peeling
off from the putative universal function at large arguments).
At small values of A/z?, compression and dilatation lead to
very different outcomes. Whereas Q ~ 7, independent of A,
for compression at low A, the system exhibits a strikingly
sharp decay for dilatation at low A.

We now turn to the system scaling behavior at the critical
value 7 = 0. An alternative expression for the scaling form given
by Eq. (31) can be obtained using a simple change of variables,

Q= |z| ATVAAYAQA |7]™)

- 2
= AVAD(|| AV, (32)

where Q(x) = x Q(x~2) is a new scaling function. Note that
Eq. (32) implies that 0 ~ A/ as t — 0.

Figure 5a shows a plot of the rescaled order parameter
Q/\_l/2 as a function of A for M = 128 and a = 1 (blue,
solid), 4 (yellow, dashed), 16 (green, dotted), and 64 (red,
dash-dotted). Notice the steep crossover to a solution with
0O =~ 0 at larger values of A. Also notice that all curves
have approximately the same shape for large a, which sug-
gests that a scaling combination of A and a may collapse
these curves. We then show in Fig. 5b a plot of rescaled
Q as a function of rescaled Aa”, with p = 2.2 chosen so
that we obtain the best scaling collapse for large a data.
Since a is ratio of two characteristic length scales of the
system, it is not surprising that invariant scaling combina-
tions involving a are present in some regimes.

5 Conclusions
We have obtained a number of analytic expressions and

numerical results describing the statistical behavior of a one-
dimensional system of hard needles with the inclusion of

@ Springer

steric repulsions and elastic interactions. Using the transfer
matrix technique, we have exactly calculated the partition
function, free energy, and order parameter for this model.
We have then discussed the system critical scaling behavior,
and described a standard universal scaling form that is con-
trolled by a putative zero-tension fixed point. The rescaled
order parameter Q/|o| can be written as a universal function
of rescaled elastic energy constant k/|c|®, with A denoting a
critical exponent that is equal to 2 for this model.

In future work, we plan to consider other forms of inter-
acting potentials, including competing terms [28] or chiral
twist terms [29], which are known to lead to modulated
phases and that would allow us to make contact with the
nematic cholesteric behavior [30]. We also plan to use the
coherent potential approximation [31, 32] to incorporate
disorder in the elastic variables, which would also be rel-
evant in the context of jamming [33] and other classes of
rigidity transitions [34]. Finally, it would be interesting to
investigate the interplay between elasticity and excluded
volume steric interactions in generalizations of the models
considered in refs. [9, 10].
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