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1. Introdugao

Sejam B e R dlgebras de Artin, onde R ¢ uma élgebra local, 3 Mp um bimédulo, que é
finitamente gerado como B-modulo & esquerda e R-mddulo a direita.

O anel triangular A = (B "M") ¢ chamado uma extensdo local de B.
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Exemplos importantes de extensoes locais de anéis artinianos sao os seguintes: A é uma

extensdo por um ponto de uma dlgebra B de dimensio finita sobre um corpo &, onde R = k
(ver (10]); se A ¢ uma dlgebra cujos ideais idempotentes sio médulos projetivos, entdo A
é uma extensdo local de uma dlgebra B, satisfazendo também que todos os seus ideais
idempotentes sio projetivos (ver [3, 9]).

Para as extensoes locais A, estudamos a categoria mods, dos A-médulos & esquerda,
finitamente gerados, e certas subcategorias de mod,, bem como suas relagées com modpg.
Entre os principais resultados estdo os relacionados com o tipo de representacdo de A, no
caso em que A é uma extensao de uma dlgebra B, bédsica, indecomponivel, de dimensao finita
sobre um corpo algebricamente fechado. Sdo eles.

Proposigio 1. Se A é de tipo manso e gMp # 0, entdo R = k[t]/("), para algumr > 1.
Neste caso, dizemos que A é uma extensio por um lago de B.

As formas quadréticas, como é bem conhecido, foram uma ferramenta Gtil, em teoria de
representagoes de dlgebras, para o estudo e classificagao das dlgebras hereditdrias, segundo
seu tipo de representagao (ver [1, 10]). Elas também tém sido utilizadas na determinagao do
tipo de representagio das dlgebras que sio quociente de uma dlgebra hereditdria (ver [8, 10]).

Para as extensoes por um lago (que néio sdo quociente de algebras hereditdrias) definimos
uma forma quadrética g4 e obtivemaos o scguinte

Teorema 1. Seja A uma extensio por um lago de uma k-dlgebra bdsica B.
(a) Se A ¢ de tipo finito, entio q € fracamente posiliva;
(b) Se A € de tipo manso, entio q4 ¢ fracamente ndo negaliva.

2. A categoria mod, de uma extensdo local

B pMpg

Seja A uma extensio local da algebra B da forma A = ( 0 R ), onde R é uma
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dlgebra local e ypMp é um B — R-bim6dulo finitamente gerado. Sejam ep = (O 0 )

00, e
€ep = 0 1 idempotentes de A. Cada A-médulo X é identificado com uma terna
(BX’, RX", ¢,), onde X' = egX é um B-médulo & esquerda, pX” = egX é um R-médulo

Nesta exposicio apresentaremos parte dos resultados obtidos pelos autores acima (em [6])



a esquerda e ¢, : M ®p X" — X' é um B-morfismo dado' pela Igultip}lica(;éo.’ Com esiia
identificagdo um A-morfismo entre X = (X', p X", ex)eY = (gY", pY" ». ) é um palf de
morfismos (f', "), com [: X' — V' e f": X" —y Y tal que flop, =, ?1M ®I(1‘ I g
As vezes, ¢ conveniente identificar mod, com a categoria cujos objetos sido .(nz\ o rX",
@y ), onde @ X" —3 Homp(M, X') ¢ a aplicacdo correspondente (t @, por adjungao. '
Observamos que mody <> mod,, pela identificacdo de cada X em modp pela terna
(X, 0,0x) em mod 4. o ‘
As identificagoes acima permite-nog explicitar os A-médulos projetivos (injetivos) in-
decomponiveis, os morfismos pogo (fonte) em mod 4, chegando (resp. saindo) nos (dos)
projetivos (resp. injetivos) indecomponfveis. Além disso, permitem também descrever as
seqiiéncias de Auslander-Reiten em mod 4, que tém infcio ou término em modp (ver [7, 6]).
Assumindo que B ¢ R sio dlgebras bésicas e fixando um conjunto completo {e;, ey, ..., €n }
de idempotentes ortogonais primitivos de B, entio e = 2ie) €, como elemento de A.
Assim ¢ fécil verificar que os A-médulos projetivos indecomponiveis sio da forma P, =
(sM, R,id: M®p R — M) ¢ P, = (Be,, 0, 0), para i =1,2,..,n. Se I = E(top Be,), para
i=1,2,..,n, s30 as envolventes injetivas em mody dos médulos simples, entdo os represen-
tantes dos A-médulos injetivos indecomponiveis sio os da forma Iy = (I, Homg(M, I?), m:),
onde n;: M ®p Homp(M, 9 — I? ¢ a fungio avaliagio e I, = (0, E, 0), onde E ¢ a en-
volvente injetiva em modg do tnico R-médulo simples.

3. Tipo de representagao e formas quadraticas

Seja k um corpo algebricamente fechado e assumamos que B = kQ /I, para um quiver finito
@ ¢ um ideal admissfvel T da dlgebra kQ (ver [4)).
Assumamos também que R ¢ uma k-dlgebra local de dimensao finita. Entao R é um
quociente de kA,, para algum s > 0, onde Ay éum “bouquet” de g lagos. Assim, a extensao
B pMpg \ p . » :
local A = 0 g ) ¢ uma dlgebra de quiver com relagoes (ver [4]), dada por um quiver

@ 4 da forma

e um ideal admissivel 1, de kQ 4.

Recordemos que uma k-dlgebra de dimensio finita de representagdo finita (ou de forma
abreviada, de tipo finito) se existe somente um nimero finito de classes de isomorfismo de
modulos indecomponiveis. A ¢ de lipo manso (ou simplesmente mansa) se, para cada d 6.N1
existe uma famflia N, Ny yN, de A — k[t]-bimédulos, livres como k[t]-mé6dulos a direita,
tal que todo A-mgdule indecomponivel X, com dim X = d, ¢ isomorfo a N; @y Sh, para
algum i=1,2,..5¢ ¢ k, onde Sy = kle}/(t = A).

Proposicio 1 Se A ¢ um

a extensdo local de tipo mansg ¢ M #0, entdo R = k[t]/(t"), para
algum r > 1,



Prova. Suponhamos que R = kA, /L, para algum s > 0 e algum ideal admissivel L de
kdg. Se s > 2, entdo existe um quociente A de A, que é a k-dlgebra dada pelo quiver e as
relagoes dadas abaixo.

“ 8___7... com a?=0=0? af=0=0a e ya=0=9p.

¢
E bem conhecido que a k-dlgebra A é de tipo selvagem e , portanto, A4 nio ¢ de tipo
manso. Esta contradicdo mostra que s < 1. L]

Defini¢ao 1 No caso em que R = k[t]/(t7), r > 1, dizemos que A é uma extensao por um
lago de B.

Uma vez que nosso objetivo é relacionar tipo de representagio de extensdes locais com
formas quadréticas, estaremos assumindo, no que segue, que A é uma extensao local como
acima e tal que R = k[{]/(t"), para r > 1, ou seja, que A é uma extensio por um laco de B.

Vamos assumir agora que @, o quiver de B, tem o conjunto {1,2,...,n} como conjunto
de vértices e vamos denotar por a o outro vértice de Q 4, que ndo é vértice de (). Sejam
Ji, Ja, ..., Jp os representantes dos R-médulos indecomponiveis e ordenados de forma que
dimygJ; scja igual a 1.

Dado X = (s X', RX", ¢,.) € mod, 0 R-médulo X" se decompde como X" = @I_, J,-”(’)
Definimos entdo o vetor coordenada de X como cdn X = (v(1),...,v(r);dimeX'(1), ...,
dimyX'(n)) € Z™".

Seja L = {p1,..., pm} um conjunto minimal de geradores de I ¢ denotamos por r(z, y)
a cardinalidade de L N I4(z,y). Entdo definimos uma forma quadrdtica q,: Z™" — @ por

a0 (yz) = Z CijY%iY; + fo - Z(Zr: Yi)zy +

% i—
1<i<j<r b#a agb i=1

+ 3" r(a, b)( Zy, Ty — Y, mrc+ Y r(bo)ma,,

b#a aFh—c byesta

: ; 1 t+7 I
onde os coeficientes sdo dados por: ¢; = — e ¢ij = —, se i < j. Observamos que a forma
i [
quadrdtica acima definida coincide com a forma de Tits (ver (1]) no caso em que R = k.
Definicdo 2 Dada uma forma quadrdtica q: Z™ — ), dizemos que ¢ € fracamente posiliva

se q(z) > 0, para todo z € IN™, z # 0. E dizemos que q ¢ fracamente nio negativa se
4(2) > 0, para todo z € IN™.

Através da forma quadrética obtida acima, obtemos o
Teorema 1 Seja A uma extensio por um lago de B.

a) Se A é de tipo finito, entdo q, € fracamente posiliva;
b) Se A ¢ de lipo manso, entdo q, ¢ fracamente nio negativa.



Antes de provar o teorema 1, daremos alguns exemplos como ilustragdo.

0 ‘ ¢ i-si s com 2
Exemplo 1. Consideremos as extensées por um lago A, da 4lgebra semi-simples
vértices dadas pelo quiver

@ Q< e a relagio o =0.

i) Primei 2= a 6 [re ao negativa, pois
(i) Primeiramente, suponhamos que o? = 0. Entio 4, ¢ [racamente nio negativa, |

1 1 1 (N (P |
@, (Y15 Y23 1, 29) = (1) — %= Eyz)2 + (22 — S0 = Eyz) + g0+ St
Mas ela ndo é fracamente positiva, uma vez que 4,,(0,2;1,1) = 0. Assim A, é de< tl[iO
manso que nao é de tipo finito. Este tltimo fato pode ser visto através da construgao do
recobrimento universal (ver [2]) F: Ay — Ay, onde A, é dado pelo quiver:

¥ @ 47) o3 . .
: —7\——7\——]\—- o eas relagoes a0 = 0, 1€ Z.
(if) Suponhamos que o® = 0. Entio 4, ¢ nao fracamente niao negativa (pois,

Uy, 0,0,2,1,1)= —% <0). Entdao Ay ¢é de tipo se]\./agmn.

Exemplo 2. Consideremos a extensao por um laco A da dlgebra simples B = k (por-
tanto, com um Wnico vértice), dada pelo quiver

= O T earelacao ot =0,

1 5 15 1 3
Temos que g (w1, yo, ys, yu; 2) = (2 — W+ vty + )+ FY1Yat Tays + sy
3 ) 1 1 1 . ‘ .
;1'.1/12+Z/1y2+ 6Ul?]a+zy§+ Ey§+§y2y3 ¢ fracamente nio negativa, mas A é de tipo selvagem.
Este exemplo mostra que a condicao (b)

do teorema é condicio apenas necessaria para A
ser de tipo manso.

4. A prova do Teorema 1

Seja (v; w) € INT x IN™, Entao um A-médulo X = (X, X @y ) €Emod 4, com ¢cdn X = (v; w),
pode ser nqvarbnente identificado com um conjunto de matrizes no espago aﬁfn
f:lﬂagb Ji"(”w( X modp(w), onde modp(w) é a variedade dos B-médulos de dimensdo

w, que é uma variedade fechada do espago afim [J,, k*®w()  (ver [8]). Com efeito, b ﬁ;
mddulo X' € modp(w), o morfismo ¥x €Homp(M®, X" X'\ = i1 Homg(M ®g J;, X')

fica determinado por uma matriz ne espaco [17_, [1 , g JO%®  Com estas identificagoes 08
Q=

A-médulos de vetor coordenada (v;w) formam uma subvariedade fechada mod 4 (v; w) do

espago afim mencionado acima.

10



Além disso, 0 grupo afim é(v;u) Aut o (@] J"(’) X [Tjey GLw@(k) opera por con-
jugacdo sobre moda(v;w) de tal forma que as 6rbitas desta agdo formam as classes de
isomorfismo dos A-mddulos de vetor coordenada (v;w).

Proposigao 2 Se a dlgebra A é de tipo finito (resp. de tipo manso), entdo o diferenga
dim G(v; w) — dim mod (v; w) € positiva (resp. é nio negativa), para cada (v;w) € IN" x IN™.

Prova. Se A é de tipo finito, a demonstragao resulta da utilizagao do classico argumento
de Tits (ver [4, 1]). Para o caso manso, o resultado decorre também dos argumentos usados
em [8]. @

Para a demonstragao do teorema 1, vamos considerar alguns passos.

Passo 1. Calculamos a dim G (v; w).

Primeiramente, temos que g = (g;) € Autr(®i_, J’” ) se e somente se g;; € AutR(Jf('))
e gij € Homg(J'", Jj Y0y, Além disso, dirn Aut (J"(’)) = dimgEndp(J'Y) = v(i)%.
dimg Endg(J;) e dim Hom (I"“ , J"(’)) = = v(i)v(j)dimg Homg(J;, J;). Um simples cél-
culo mostra que um k- morﬁsmo de J; to Jj com i<j é da forma

0 ag ag -+ -+ @1 @
0 0 a a -+ G-2 i
. . . . . al az
0 0 0 cesdess Q0 " lgg
o0 0 - -+ 0 0
oo 0 . --- 0 0

Entdo dim Aut(@]_, J;") = $I_; iv(i)? + Sy ;i + §)v(i)v(h).

Passo 2. Determinamos um limitante inferior para dim r;z;d,\(v' w).
Claramente temos que mod(v; w) C M4, kwov® x modg(w), onde w, = Y 1v(i) e

as matrizes envolvidas satisfazem todas as relagoes no conjunto minimal {p1, ..., pm}. Além
disso, podemos excluir a relacio p) = o, uma vez que esta ja estd automaticamente satisfeita
pela forma com que tomamos a decomposi¢ao de X" € modp.

Entao,
dimmod 4 (v; w) > S iv(a))w(d) + ; w(b)w(c)—
a—avb i=1 a#Eb—re
-3 r(a, b)(zr:iv(i))w(b) = Y r(b,c)w(b)w(c).
b#a i=1 a#b,c

Passo 3. Seja (y;z) € IN" x IN®. Para 1<i<r, seja y; = iv(i) e para 1 <j <n, a; = w(j).
A menos de um miltiplo escalar, podemos assumir que (v;w)€ IN™ x IN™. Assim ,

aly;z)= Z?U ST (i +g)l)v()) + > w(b) (b = 3 wb)w(c)—

l(!<]<7' b#ta aFb-re
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-3 ET: w(i)w(b) + Y Zr:r(a, byiv(Dyw(b) + Y r(b, c)w(b)w(c)

By i=1 b#ai=1 a#b,c
a—r
> dim G(v; w) — dimmod 4(v; w),
logo o resultado resultado segue utilizando a proposicio 2. @A
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