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1. Introdução 

Sejam B e R álgebras de Artin, onde R é uma álgebra local, HMR um bimódulo, que é 
finitamente gerado como B-modulo à esquerda e R-módulo à direita. 

O anel triangular A= (8 HMR) é chamado urna extensão local de B. 
O R 

Exemplos importantes de extensões locais de anéis artinianos são os seguintes: A é uma 
extensão por um ponto de uma álgebra B de dimensão finita sobre um corpo k, onde R = k 
(ver [10]); se A é uma álgebra cujos ideais idempotentes são módulos projetivos, então A 
é uma extensão local de uma álgebra B, satisfazendo também que todos os seus ideais 
idempotentes são projetivos (ver [3, 9]). 

Para as extensões locais A, estudamos a categoria moâs, dos A-módulos à esquerda, 
finitamente gerados, e certas subcategorias de mod i, bem como suas relações com mod.«, 
Entre os principais resultados estão os relacionados com o tipo de representação de A, no 
caso em que A é uma extensão de uma álgebra B, básica, indecomponível, de dimensão finita 
sobre um corpo algebricamente fechado. São eles. 

Proposição 1. Se A é de tipo manso e RMR # O, então R = k[t]/W), para algum r::::, 1. 
Neste caso, dizemos que A é uma extensão por um laço de B. 

As formas quadráticas, como é bem conhecido, foram uma ferramenta útil, em teoria de 
representações de álgebras, para o estudo e classificação das álgebras hereditárias, segundo 
seu tipo de representação (ver [l, 10]). Elas também têm sido utilizadas na determinação do 
tipo de representação das álgebras que são quociente de uma álgebra hereditária (ver [8, 10]). 

Para as extensões por um laço ( que não são quociente de álgebras hereditárias) definimos 
uma forma quadrática qA e obtivemos o seguinte 

Teorema 1. Seja A uma extensão por um laço de uma k-álgebra básica B. 
( a) Se A é de tipo finito, então qA é fracamente positiva; 
(b) Se A é de tipo manso, então qA é fracamente não negativa. 

2. A categoria mod ; de uma extensão local 

Seja A uma extensão local da álgebra B da forma A = ( ~ R;R ) , onde R é uma 

álgebra local e RMn é um B - R-bimódulo finitamente gerado. Sejam eR = ( ~ ~ ) 

e en == ( ~ ~ ) idempotentes de A. Cada. A-módulo X é identificado com urna terna 

(11X', «X", 'f!x ), onde X'= eFJX 6 um E-módulo à esquerda, n.X" = enX é um R-rnódulo 

Nesta exposição apresentaremos parte dos resultados obtidos pelos autores acima (em [6]) 
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à esquerda e '-Px: M 0n X" -+ X' é um E-morfismo dado pela multiplicação. Com esta 
identificação um A-morfismo entre X= (RX', RX", '-Px) e Y = (RY', RY", '-{!y) é um par de 

• jw morfismos (.f', f"), com .f': X'-+ Y' e f": X"-+ Y", tal que f' o '-Px = 'f)y o lM 0n · 
Às vezes, é conveniente identificar mod ; com a categoria cujos objetos são (RX', RX", 

rp-:,_.), onde'-{!-:,_.: X"-+ Homr,(M, X') é a aplicação correspondente a '-Px por adjunção. 
Observamos que mod-; '-+ rnodA, pela identificação de cada X em modr, pela terna 

(X, O, Ox) em rnodA. 
As identificações acima permite-nos explicitar os A-módulos projetivos (injetivos) in­ 

decomponíveis, os morfismos poço (fonte) em mod s, chegando (resp. saindo) nos (dos) 
projetivos (resp. injetivos) indecomponíveis. Além disso, permitem também descrever as 
seqíiências ele Auslander-Reiten em mod i, que têm início ou término em modn (ver [7, 6]). 

Assumindo que B e R são álgebras básicas e fixando um conjunto completo { e1, e2, .... , en} 
de idempotentes ortogonais primitivos de B, então en = Lr=cl ei, corno elemento ele A. 

Assim é fácil verificar que os A-módulos projetivos indecomponíveis são ela forma Pw = 
(nM, R, id: M 0R R-+ M) e P; = (Be;, O, O), parai= l, 2, ... , n. Se If = E(top Be;), para 
i = 1, 2, ... , n, são as envolventes injetivas em mod-, dos módulos simples, então os represen­ 
tantes dos A-módulos injetivos indecomponíveis são os da forma: I; = UP, H om.

8
( M, IP), 71;), 

onde 7/;: M ®11 Hornn(M, IP)-+ IP é a função avaliação e I,v = (O, E, O), onde E é a en­ 
volvente injetiva em rnodn do único R-módulo simples. 

3. Tipo de representação e formas quadráticas 

Seja k um corpo algebricamente fechado e assumamos que B = kQ/ J, para um quiver finito 
Q e um ideal admissível Ida álgebra kQ (ver [4]). 

Assumamos também que R é uma k-álgebra local ele dimensão finita. Então R é um 
quociente de k6..,, para algum s ~ O, onde 6, é um "bouquct" de s laços. Assim, a extensão 
1 l A - ( B RMR \ , , . - . 
oca - 0 R J e uma álgebra de qurver com relaçoes (ver [4]), dada por um quiver 
QA da forma 

Q -0~- A: • a • Q ·o: 
e um ideal admissível IA de kQ A. 

Recordemos que uma k-álgebra de dimensão finita é de representação finita (ou de forma 
abreviada, de tipo finito) se existe somente um número finito de classes de isomorfismo de 
m~dulos indecomponíveis. A é de lipo manso (ou simplesmente mansa) se, para cada d EN, 
exi

st
e uma família N1, N2, ... , N, de A - k[t]-bimódulos, livres como k[t]-módulos à direita, 

tal que todo A-módulo indecomponível X, com dímkX = d é isomorfo a M ©k[tl S>,, para 
algum i == 1, 2, ... se À E k, onde S>- = k[t]/(t - >-). ' 

Proposição 1 Se A é uma. extensão local de tipo manso e M -f O, então R = k[tj/(t'), para algum r ~ l. 
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Prova. Suponhamos que R = k6.,/L, para algum s ?: O e algum ideal admissível L de 
k6.,. Se s ?: 2, então existe um quociente A de A, que é a k-álgebra dada pelo quiver e as 
relações dadas abaixo. 

É bem conhecido que a k-álgebra A é de tipo selvagem e , portanto, A não é de tipo 
manso. Esta contradição mostra que s ~ 1. llil 

Definição 1 No caso em que R = k[t]/(tr), r ?: 1, dizemos que A é uma. eüensão por urn 
laço de B. 

Uma vez que nosso objetivo é relacionar tipo de representação de extensões locais com 
formas quadráticas, estaremos assumindo, no que segue, que A é urna extensão local como 
acima e tal que R = k[t]/(t"), parar?: 1, ou seja, que A é uma extensão por um laço de B. 

Vamos assumir agora que Q, o quiver de B, tem o conjunto {1, 2, ... , n} como conjunto 
de vértices e vamos denotar por a o outro vértice de QA, que não é vértice de Q. Sejam 
.!1, ./2, ... , J; os representantes dos R-módulos indecomponíveis e ordenados de forma que 
dirn.kJ; seja igual a i. 

Dado X= (RX', RX", 'Px) E modA, o R-módulo RX" se decompõe corno X"= EJ:li=l J;"(i). 
Definimos então o vetor coordenada de X como CfÍ:IlX = (v(l), ... , v(r); dimkX'(l), ... , 
dimkX'(n)) E ;;Er+n. 

Seja L = {p1, ••• , Pm} um conjunto minimal de geradores de IA e denotamos por r(x, y) 
a cardinalidade de Ln J A (x, y ). Então definimos uma forma quadrática qA: ;;Er+n --+ IJ por 

r 

qA (y; .i-) = L C;iYiYí + L x; - L (L Y,)xb + 
19'.5:.i'.5:r b;,a a!!.b i=l 

r 

+ L r(a, b)(LYi)xb - L XbXc + L r(b, c)xbXc, 
b;<a i=l afo--tc b,c;<a 

d fi · - d l i + j . . Ob f on e os coe cientes sao ados por: e.;;=-:- e c;i = - .. -, se r « J. serva.mos que a orma 
1, . lJ 

quadrática acima definida coincide com a forma de Tits (ver [1)) no caso em que R = k. 

Definição 2 Dada uma forma quadrática q: Ujm --, IJ, dizemos que q é fraca.mente positiva 
se q(z) > O, para todo z E INm, z cJ O. E dizemos que q é fracamente não negativa se 
q(z) 2'. O, para todo z E IN"'. 

Através da forma quadrática obtida acima, obtemos o 

Teorema 1 Seja A uma extensão por um laço de B. 
a) Se A é de tipo finito, então qA é fracamente µosil·iva; 
b) Se A é de tipo manso, então q II é fracamente não negativa. 
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Antes de provar o teorema 1, daremos alguns exemplos como ilustração. 

Exemplo 1. Consideremos as extensões por um laço Ar da álgebra semi-simples com 2 
vértices dadas pelo quiver 

ü O·( e a relação n'=O. 

(i) Primeiramente, suponhamos que n2 = O. Então qA, é fracamente não negativa, pois 

1 1 2 1 1 2 12 1 
qA,. (Y1, Y2; Xt, X2) = (x1 - 5_Y1 - ;?2) + (x2 - 2Y1 - 2Y2) + 2Y1 + 2VtY2· 

Mas ela não é fracamente positiva, uma vez que qA, (O, 2; 1, 1) = O. Assim A2 é de tipo 
manso que não é de tipo finito. Este último fato pode ser visto através da construção do 
recobrimento universal (ver [2]) F: Ã2 ~ A2, onde Ã2 é dado pelo quiver: 

/\ /\ /\ e as relações n,+iü; = O, i E DJ. 

(ii) Suponhamos que n3 = O. Então q"' é não fracamente não negativa (pois, 
qA, (O, O, 2; 1, 1) = -i < O). Então A3 é de tipo selvagem. 

Exemplo 2. Consideremos a extensão por um laço A da álgebra simples B = k (por­ 
tanto, com um único vértice), dada pelo quiver 

°' Ü- • e a relação a4=0. 

1 3 1 1 
Temos que qA (vi, Y2, Y3, y4; X) = (x - 2(Y1 + Y2 + Y3 + Y4) )2 + ;:iv1 Y4 + ;:iv2Y4 + 12'.l/3Y4 + 3 5 1 1 1 

4·yf +Y1Y2+ i?1Y:i+ ;jY~+ 12y~+3v2Y3 é fracamente não negativa, mas A é de tipo selvagem. 

Este exemplo mostra que a condição (b) do teorema é condição apenas necessária para A 
ser de tipo manso. 

4. A prova do Teorema 1 

Seja (v; w) E JW x N", Então um A-módulo X= (X', X", t.px) EmodA, com ç,fuX = (v; w), 
pode ser novamente identificado com um conjunto de matrizes no espaço afim 
ílr f1 Jv(i)w(b) ( ) , · . , . - 
i=t a!!;b , x modR w , onde modR(w) e a vanedade dos B-rnodulos de dimensao 

w, que é uma variedade fechada do espaço afim ílb--+c kw(b)w(c), (ver [8]). Com efeito, o E­ 
módulo X' EmodR(w), o morfismo ({Jx EHomR(lvl @1.,-Y", X') =©I=

1
HomR(M 0RJi, X')"(,) 

fica determinado por urna matriz no espaço n;_1 f1 " J;"(i)w(bl. Com estas identificações os 
- a--tb · _ 

A-módulos de vetor coordenada ( v; w) formam uma subvariedade fechada moâ; ( v; w) do 
espaço afim mencionado acima. 
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Além disso, o grupo afim G(v; w) = Autn(EBi=l J;"(i)) X m·=l GLw(b)(k) opera por con­ 
jugação sobre rnod;1(v; w) de tal forma que as órbitas desta ação formam as classes de 
isomorfismo dos A-módulos de vetor coordenada (v; w). 

Proposição 2 Se a álgebm A é de tipo finito (resp. de tipo manso), então a diferença 
dim G(v; w )- dim ni"õ"dA (v; w) é positiva (resp. é não negativa), para cada ( v; w) E JNr x JNn. 

Prova. Se A é de tipo finito, a demonstração resulta da utilização do clássico argumento 
de Tits (ver [4, l]). Para o caso manso, o resultado decorre também dos argumentos usados 

=~- - 
Para a demonstração do teorema 1, vamos considerar alguns passos. 

Passo 1. Calculamos a dimG(v; w). 
Primeiramente, ternos que g = (.Qii) E Auln(EElí=J/il) se e somente se g;; E Autn(J;"(i)) 

e 9ij E Homn(Jtl, Jti\ Além disso, dirn Aut,1 (Jt(i)) = dirnkEndn(,J'/(i)) = v(i)2• 
dimkEndn(J;) e dim.Homll(J,"(iJ, .J'/il) = = v(i)v(j)dimkHomk(J;, Jj)- Um simples cál­ 
culo mostra que um k-morfismo de J, to Ji com ·i ~j é da forma 

o a1 ª2 ªi-1 a; 
o o a1 a2 ªi-2 ªi-1 

a1 a2 

o o o o ª1 
o o o o o 

o o o o o 
Então dim Aut(EEli=l J;"(i)) = I:;=1 i v(i)2 + Li<i(i + j)v(i)v(.j). 

Passo 2. Determinamos um limitante inferior para dim mod s ( v; w ). 
Claramente ternos que modA(v;w) e íl ~ kw0w(b) x modR(w), onde Wo = I:I=1 iv(i) e 

a~b { } ] ' as matrizes envolvidas satisfazem todas as relações no conjunto minimal P1, ... , Pm . A em 
disso, podemos excluir a relação p1 = ar, uma vez que esta já está automaticamente satisfeita 
pela forma com que tomamos a decomposição de X" E modn. 

Então, 
r 

dimmodA(v;w) 2'. 2)í:iv(i))w(b) + L w(b)w(c)- 
a.!!,b i= 1 a;,b->c 

r - L r(a, b)(Í: i v(i))w(b) - L r(b, c)w(b)w(c). 
b;,a i=l a;,b,c 

Passo 3. Seja (y; x) E JN' x JNn. Para 1 <; i ~ r, seja Y; = i v(i) e para 1 ~j ~ n, :ri = w(j). 
A menos de um múltiplo escalar, podemos assumir que (v; w) E JNr x INn. Assim, 

r 

qA(Y; x) = L iv(i)2 + 
i=-1 

L (i + j)v(i:)v(.i) + L w(b)2 - L w(b)w(c)- 
!<;i<i<;r b;,a a;ib->c 
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- L t iv(i)w(b) + L t r(a, b)iv(i)w(b) + L r(b, c)w(b)w(c) 
~ i= l b,'a i= l a,'b,c a-tb 

~ dimG(v; w) - dimmodA(v; w), 
Jogo o resultado resultado segue utilizando a proposição 2. 

Referências 

[1] K. Bongartz, Algebras and qua.dratic forms, J. London Math. Soe. 28(2), (1983), 461- 
469. 

[2] K. Bongartz, P. Gabriel, Covering spaces in representation theory, Invent. Math., 65 
(1982), 331-378. 

[3] F. Coelho, E. Marcos, H. Merklen, M. I. Platzeck, Modules oj iufini!« projective dimeti­ 
sion over algebras whose idempotent idea.ls are projective, Tsukuba .Journal Maths., to 
appear. 

[4] P. Gabriel, Unzerlegba.re Darstellungen I, Manuscr. Math. 6 (1972) 71-103. 

[5] G. Gabriel, A. Roiter, Representa.tion of finíte dimensional Alqebra. Álgebra VTIT, En­ 
cyclopaedia of Math. Se. 73, Springer, 1992. 

[6] Ma. I. R. Martins, .J. A. de Ia Pefia, On local exlensions of algebro.s, preprint, 1996. 

[7] H. Merklen, On Austander-Reiten sequences of lria.n_qular matriz a.lgebras, Canad. Math. 
Soe., Conf. Proc. 11 (l!J91), 231-247. 

[8] J. A. de la Pena, Ou the dimension of module uarieiies for tame and wild alqebras, 
Commun. Álgebra 19(6), (1991 ), 1795-1807. 

[9] M. I. PJatzeck, Artin rings with all idempotenl ideais projeciiue; Commun. Algebra 24(8) 
(1996), 2515-2523. 

[10] C. M. Ringel, Ta.me algebras and integral quadratic Jorms, Lect. Notes Math. 1099, Springer, 1984. 

Maria Izabel Ramalho Martins 
Departamento de Matemática, TME 
Universidade de São Paulo 
CEP 05317-970, São Paulo, SP, Brasil 
E-mail beHlíme. usp , br 

José Antonio de la Peiía 
Instituto de Matematicas 
Universi<lad Nacional Autonoma de Mexico 
Ciudad Universitaria, C.P. 04510 
Mexico, DF, Mexico 
E-mail j ap©penelope. matem. unam. mx 

12 


