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ARTICLE INFO ABSTRACT

Keywords: The genus Sarcocystis and the species Toxoplasma gondii are the most prevalent sarcocystid organisms found in
185 birds. Molecular phylogenies based on the first internal transcribed spacer of the ribosomal coding DNA (ITS1)

Genetic diversity have been widely used to identify them. Here, pectoral muscles from 400 wild birds from Brazil were screened by

151 o means of molecular methods using nested PCR, and Sanger sequencing yielded amplicons. A pan-sarcocystid
Molecular characterization ) . K . . A N X
Sarcocystis ITS1-directed nested PCR revealed 28 birds infected by Sarcocystis falcatula (ten Piciformes, eight Psittaci-

formes, five Columbiformes, two Accipitriformes, one Anseriformes, one Passeriformes and one Strigiformes);
one infected by Sarcocystis halieti (one Accipitriformes); nine infected by unknown or undescribed Sarcocystis (six
Passeriformes, one Piciformes, one Cathartiformes and one Cuculiformes); and six harboring Toxoplasma gondii
DNA (three Pelecaniformes, two Falconiformes and one Columbiformes). Samples harboring S. falcatula-related
ITS1 sequences were further characterized by means of PCR and sequencing of genetic sequences of three surface
antigen coding genes (SAGs). From this, 10 new allelic combinations of SAGs (SAG2, SAG3 and SAG4) were
identified, in addition to 11 SAG allelic combinations already found in Brazil. Samples with S. falcatula-unrelated
ITS1 sequences were further characterized by means of PCR and sequencing of cytochrome c¢ oxidase subunit I
coding sequences (CO1) and 18S ribosomal DNA gene (18S rDNA). This study was the first extensive survey of
wild birds in Brazil for Sarcocystidae species. It provides the first molecular evidence of natural S. falcatula
infection in 14 species, including in the order Piciformes, and shows the high genetic diversity of S. falcatula in
intermediate hosts in South America. Evidence of occurrence of at least three non-described species of Sarcocystis
was also presented in this study. This survey corroborated the ubiquity of T. gondii infection but revealed sur-
prisingly low prevalence of this parasite (1.5%).

Toxoplasma gondii

1. Introduction of mature sarcocysts (Dubey et al., 2015).

Birds serve as intermediate and definitive hosts for numerous Sar-

Sarcocystis is a genus of coccidian parasites characterized by an
obligate two-host life cycle. Asexual stages (sarcocysts) develop in the
muscles of the intermediate host (prey), while sexual multiplication
occurs in the small intestine of the definitive host (predator), with for-
mation of oocysts. While intermediate hosts become infected after
ingestion of sporocysts that are available in the environment, the
definitive hosts are infected exclusively through carnivorous ingestion

cocystis species, and some of these are pathogenic. More than 25 Sar-
cocystis species are known to form sarcocysts in the muscles of birds
(Dubey et al., 2015). Sarcocystis falcatula, one of the most prevalent
Sarcocystis species of birds in the Americas, can use a large variety of
bird species as intermediate hosts, including the avian orders Accipi-
triformes (Wiinschmann et al., 2010), Charadriiformes (Acosta et al.,
2021), Columbiformes (Ecco et al., 2008; Suedmeyer et al., 2001),
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Passeriformes (Box and Duszynski, 1978; Dubey et al., 2001), Peleca-
niformes (Konradt et al., 2017), Psittaciformes (Ecco et al., 2008; Godoy
et al., 2009; Hillyer et al., 1991; Siegal-Willott et al., 2005; Verma et al.,
2018; Villar et al., 2008), Sphenisciformes (Acosta et al., 2018), and
Strigiformes (Wiinschmann et al., 2009).

Two genetic lineages of S. falcatula have been described in the
Americas. One of them has been described in a few samples from North
America (Tanhauser et al., 1999; Marsh et al., 1999) and the other,
apparently much more frequently, has been found in birds on all
American continents (Acosta et al., 2018; Origlia et al., 2022; Verma
etal., 2018). For this reason, S. falcatula have been considered a complex
of species since its original description and further reports have assigned
the term Sarcocystis falcatula-like to those organisms that fit to the mo-
lecular and morphological shape of S. falcatula (Gondim et al., 2021).

S. falcatula is endemic in the Americas, because the definitive hosts
for this parasite are opossums of the genus Didelphis, which is exclusive
to the Americas. In Brazil, the opossum species Didelphis albiventris,
D. marsupialis and D. aurita have been implicated as definitive hosts of
S. falcatula, S. neurona, S. speeri and S. lindsayi (Dubey et al., 1999,
2000a, 2000b, 2000c, 2001b, 2001c, 2001d; Gallo et al., 2018). In
contrast, only one species of opossum found in North America (Didelphis
virginiana) is the final host of S. falcatula, S. neurona and S. speeri (Dubey
et al., 2000d; Elsheikha et al., 2004; Fenger et al., 1995).

When infected by S. falcatula, birds that are non-endemic in the
Americas tend to suffer from severe infection, with high mortality rates,
in contrast to birds that are native to these continents (Acosta et al.,
2018). Old World birds, which generally only occur in captivity in the
Americas, manifest hyperacute pulmonary and encephalic forms of
sarcocystosis, while birds of the New World seem to be resistant in most
cases to these types of infection, probably because they co-evolved
environmentally with opossums (McCormick-Rantze et al., 2003).

Currently, PCR assays and sequencing are considered to be much
more practical, accurate and reliable methods for delineation and
identification of Sarcocystis species than traditional methods based on
morphological characteristics (Gjerde, 2013; Pan et al., 2020). Most
avian Sarcocystis spp. have been characterized at three genetic loci: the
18S small subunit rDNA gene (18S rDNA); the cytochrome c oxidase
subunit 1 gene (CO1); and the internal transcribed spacer 1 gene (ITS1)
(Dubey et al., 2015). However, the 18S rDNA and CO1 genes have not
appeared to be variable enough to discriminate some Sarcocystis species
that use birds as intermediate hosts (Gjerde et al., 2018; Prakas et al.,
2018a). Conversely, the ITS1 gene has been demonstrated to be the best
marker for species delimitation within this group (Gjerde et al., 2018;
Prakas et al., 2014).

Recently, molecular characterization of S. falcatula using surface
antigen gene (SAGs) was found to show high diversity of alleles in
sporocysts and in experimentally infected birds in Brazil. Among 50
samples of sporocysts from Didelphis spp., 10 variants for SAG2, 15 for
SAG3 and 11 for SAG4 were encountered (Monteiro et al., 2013; Valadas
etal., 2016). In bioassays, budgerigars (Melopsittacus undulatus) that had
been inoculated orally with sporocysts presented four variants for SAG2,
five for SAG3, and four for SAG4, which were found in seven allelic
combinations (SAG genotypes) (Cesar et al., 2018; Gondim et al., 2017,
2019).

However, among naturally infected birds, the variability of
S. falcatula in SAGs is poorly understood. In the carcasses of 16 penguins
(Spheniscus magellanicus) rescued on the coast of Brazil, all the samples
were identical to each other for each allele (Acosta et al., 2018). In the
only known case of death attributed to S. falcatula in a bare-faced ibis
(Phimosus infuscatus) from the south of Brazil, molecular analysis
demonstrated an unprecedented combination of SAG alleles (Cesar
et al., 2018; Konradt et al., 2017). These findings of Sarcocystis falcatula
in penguins and in a bare-faced ibis in Brazil were both unprecedented
SAG genotypes.

Thus, it is relevant to know whether the high genetic diversity of
S. falcatula derived from definitive hosts so far demonstrated can be
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correlated with the diversity in the intermediate hosts. Given that
detection of Sarcocystis spp. DNA in muscle tissue of birds enables
reasonable inference about these birds’ role as intermediate hosts, this
present study was conducted with the aim of screening muscle samples
from wild birds that were naturally infected with sarcocystid organisms
in the state of Sao Paulo, Brazil. Considering that all the muscle samples
from these birds were screened by means of a pan-sarcocystid nested-
PCR technique, it became possible to screen for several sarcocystid
species, other than S. falcatula.

2. Material and methods
2.1. Ethical considerations

These experiments performed with animals were carried out under
the instructions from and approval of the Ethics Committee for Animal
Use (CEUA) of the School of Veterinary Medicine and Animal Science,
University of Sao Paulo (under permit number: 9077070416).

2.2. Sampling of wild birds

Between 2016 and 2018, a total of 400 free-living wild birds of 103
species (Table S1, in supplementary file) were screened for Sarcocystis
spp. Muscle tissues from wild birds that had died through different
causes were received from the wildlife rehabilitation center DEPAVE-3
(The Fauna Division of the Municipal Secretariat for Green and Envi-
ronment of the Municipality of Sao Paulo, SP, Brazil). The tissue samples
were kept frozen (—20 °C) until a molecular analysis was conducted.

2.3. Molecular analyses

About 25-50 mg of pectoral muscle tissue from each bird was ho-
mogenized mechanically using a mortar and pestle before total DNA
extraction using the DNeasy Blood & Tissue kit (Qiagen, Hilden, Ger-
many) following the manufacturer’s recommendations, except for final
elution of the product into 50 pL of elution buffer. The DNA samples thus
obtained were screened by using a pan-sarcocystid nested-PCR tech-
nique based on two primer pairs that flanked the complete ITS1 of the
rRNA gene (nPCR-ITS1). After amplification, the nPCR-ITS1 products
were viewed under UV light after electrophoresis on 2% agarose gel and
staining with ethidium bromide. ITS1 amplicons were excised from the
gel and were directly sequenced by means of the Sanger method, as
described previously (Hammerschmitt et al., 2020). Chromatograms
were scored and assembled with the help of phred-prap programs built
in the software Codon code Aligner v.4.2.7. After genetic sequences had
been obtained, they were subjected to Blast analysis in order to identify
the most similar sequences available in GenBank, through the tool
http://blast.ncbi.nlm.nih.gov/Blast.cgi.

Samples closely related to S. falcatula at ITS1 (>90% similarity) were
also identified through nested PCR and sequencing of surface antigen 2,
3 and 4 coding genes (nPCR-SAG2, nPCR-SAG3 and nPCR-SAG4,
respectively). Samples that were not identified as S. falcatula but were
identified within the genus Sarcocystis were further tested by means of
nested PCRs directed to 18S rRNA (nPCR-18S) and cytochrome c oxidase
subunit 1 (nPCR-CO1). Samples identified as T. gondii were not further
characterized. The oligonucleotides used to amplify genetic sequences of
Sarcocystis spp., using nested PCR, are depicted in Table S2 (supple-
mentary file).

To make phylogenetic inferences, the genetic sequences were aligned
using the program ClustalW in the BioEdit Sequence Alignment Editor
(Hall, 1999), with homologous sequences that are available in the
GenBank database (National Institutes of Health) (http://blast.ncbi.nlm.
nih.gov/Blast.cgi). The ITS1 phylogeny was reconstructed using
MEGA-X, through the maximum likelihood (ML) method and the model
for evolutionary distances, which were calculated by means of MEGA-X
and varied according to the data set (Kumar et al., 2018). The robustness
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of the ML tree was statically evaluated by means of bootstrap analysis
with 1,000 bootstrap samples. The software PopART (Population Anal-
ysis with Reticulate Trees) (Leigh and Bryant, 2015) was used to infer
evolutionary relationships for S. falcatula based on SAG loci, by using
Integer NJ networks inference method. The genetic sequences were
submitted to GenBank with accession numbers: OL335256-0OL335364
(SAG2, SAG3, SAG4 and CO1), OL323060-0OL323066 (18SrRNA) and
OL323067-0L323108 (ITS1).

3. Results

Screening of all the DNA samples using nPCR-ITS1 revealed 36 ge-
netic sequences related to S. falcatula, two ITS1 sequences related to
other species within the genus Sarcocystis (Sarcocystis halieti and Sarco-
cystis lari) and six sequences that were almost identical to T. gondii
(Table 1). The sizes of the amplicons yielded by nPCR-ITS1, from sam-
ples relating to S. falcatula, were larger than 1000 base pairs (bp); those
from samples relating to other species within the genus Sarcocystis were
around 900 bp; and those from samples identified as T. gondii were
around 500 bp (not shown).

The ITS1 amplicons were not entirely sequenced because the 5" and
3’ ends were missing in fragments larger than 1000 bp from the
S. falcatula-related samples. In some of these sequences, ambiguous
peaks in nucleotide chromatograms were typically registered after either
of the nucleotide positions 419 or 654, which had also impaired the
entire sequencing of the largest ITS1 segments. ITS1 fragments from
T. gondii were also only partially sequenced (5’ end was missing) because
they were sequenced only by using the forward primer.

The phylogenies based on ITS1 were reconstructed using the genetic
sequences detected in this study, along with the most similar sequences
obtained after Blast analysis on these sequences. Two ITS1 phylogenies
were inferred: one included 36 S. falcatula-related sequences and the
other included the two ITS1 sequences that were related to other species
within the genus.

The first ITS1 tree (Fig. 1) showed three well-supported clades: clade
A, formed by S. falcatula and S. falcatula-like parasites (28 sequences
from this study was placed in this clade); clade B, formed by seven se-
quences exclusively detected in the present study; and clade C, formed
by a single sequence detected in this study and by S. lindsayi. At CO1, the
sequences of the clades B and C were identical to each other and to se-
quences of S. speeri and S. falcatula (KT207461 and MH665257,
respectively). At the 18S locus, clades B and C differed at one SNP from
S. falcatula (MH626537) and were identical to S. speeri (KT207459).

Through SAG genotyping of the 36 S. falcatula-related samples, seven
alleles were found at SAG2, 11 alleles at SAG3 and 6 alleles at SAG4
(Fig. 2). Among these, 24 samples were genotyped by the 3 SAG locus,
and 15 SAG genotypes (SAG) were assigned to the samples (Table S3,
supplementary file). Twelve SAG genotypes corresponded to S. falcatula-
like parasites (#1 to #12), whereas genotypes #13 to #15 corresponded
to Sarcocystis sp. from clade B. Sarcocystis sp. from clade C was not fully
SAG genotyped. The Sarcocystis species from clade B were named Sar-
cocystis sp. ex Cacicus haemorrhous and the Sarcocystis species from clade
C were named Sarcocystis sp. ex Guira guira.

The second ITS1 tree showed that one of the sequences was related to
Sarcocystis halieti (#213, Sarcocystis sp. ex Accipiter striatus), whereas the
other was related to Sarcocystis lari (#471, Sarcocystis sp. ex Coragyps
atratus) (Fig. 3). Based on 18S rRNA analysis, Sarcocystis sp. ex Accipiter
striatus was 100% identical to S. halieti (MH130211, MF946587), as well
to various unnamed species of Sarcocystis from Accipiter cooperii
(KY348753, EU810398), Phalacrocorax carbo (JQ733511), Columba livia
(GQ245670) and Anser albifrons (EU502869). Concerning CO1, the
Sarcocystis sp. ex Accipiter striatus haplotype was 100% identical to
S. halieti (MH138308, MH138309, MF946583), S. corvusi (MH138314)
and S. columbae (MH138312). Regarding the 18S rRNA gene, Sarcocystis
sp. ex Coragyps atratus shared the highest similarity (99.23%) with S.
halieti (MH130211, MF946587) and various unnamed species of
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Table 1
Molecular identification of sarcocystids in muscle samples from wild birds in
Brazil, based on nPCR-ITS1 sequence analysis.

Animal ID-
common name
(scientific name)

Positives/
total (%)

Sex” Sequenced

product (bp)

Sequence similarity
(%) to closest in
GenBank

AMPLICON SIZE > 1000 BP (N = 36)
Psittaciformes: Psittacidae

238-plain parakeet M 4/14 419 99.8% S. falcatula is.

(Brotogeris tirica) (20.5) Lorikeet
(MH626538)

189- plain parakeet M 651 99.7% S. falcatula is.

(Brotogeris tirica) Lorikeet
(MH626538)

210- plain parakeet ~ F 419 99.8% S. falcatula is.

(Brotogeris tirica) Lorikeet
(MH626538)

231- plain parakeet ~ F 419 99.8% S. falcatula is.

(Brotogeris tirica) Lorikeet
(MH626538)

206- scaly-headed M 1/2 (50) 1012 99.8% S. falcatula is.
parrot (Pionus Lorikeet
maximiliani) (MH626538)

504- turquoise- M 3/9(33.3) 1013 99.9% S. falcatula is.
fronted amazon Lorikeet
(Amazona (MH626538)
aestiva)

519- turquoise- F 1013 99.9% S. falcatula is.
fronted amazon Lorikeet
(Amazona (MH626538)
aestiva)

349- turquoise- M 652 99.7% S. falcatula is.
fronted amazon Lorikeet
(Amazona (MH626538)
aestiva)

Piciformes: Picidae

227- blond-crested F 3/9(33.3) 419 99.8% S. falcatula is.
woodpecker Lorikeet
(Celeus (MH626538)
flavescens)

387- blond-crested F 419 99.5% S. falcatula is.
woodpecker Lorikeet
(Celeus (MH626538)
flavescens)

103- blond-crested M 1013 99.9% S. falcatula is.
woodpecker Lorikeet
(Celeus (MH626538)
flavescens)

208- lineated F 1/6 (16.6) 419 99.8% S. falcatula is.
woodpecker Lorikeet
(Dryocopus (MH626538)
lineatus)

Piciformes: Ramphastidae

197- red-breasted M 6/8 (75) 419 99.8% S. falcatula is.
toucan Lorikeet
(Ramphastos (MH626538)
dicolorus)

222- red-breasted F 419 99.8% S. falcatula is.
toucan Lorikeet
(Ramphastos (MH626538)
dicolorus)

230- red-breasted F 419 99.8% S. falcatula is.
toucan Lorikeet
(Ramphastos (MH626538)
dicolorus)

233- red-breasted M 419 99.8% S. falcatula is.
toucan Lorikeet
(Ramphastos (MH626538)
dicolorus)

244- red-breasted M 419 99.8% S. falcatula is.
toucan Lorikeet
(Ramphastos (MH626538)
dicolorus)

258- red-breasted F 419 99.8% S. falcatula is.
toucan Lorikeet
(Ramphastos (MH626538)
dicolorus)

(continued on next page)
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Table 1 (continued)

Animal ID- Sex”
common name
(scientific name)

Positives/
total (%)

Sequenced
product (bp)

Sequence similarity
(%) to closest in
GenBank

Animal ID- Sex”
common name
(scientific name)

Positives/
total (%)

Sequenced
product (bp)

Sequence similarity
(%) to closest in
GenBank

138- saffron M
toucanet
(Pteroglossus
bailloni)

Columbiformes: Columbidae

181- picazuro M 2/13
pigeon (15.3)
(Patagioenas
picazuro)

262- picazuro M
pigeon
(Patagioenas
picazuro)

264- grey-fronted M
dove (Leptotila
rufaxilla)

326- eared dove F
(Zenaida
auriculata)

330- eared dove F
(Zenaida
auriculata)

Passeriformes: Vireonidae

283- rufous- F
browed
peppershrike
(Cyclarhis
gujanensis)

Passeriformes: Thraupidae

137- ruby-crowned M
tanager
(Tachyphonus
coronatus)

452- Brazilian F
tanager
(Ramphocelus
bresilius)

Passeriformes: Icteridae

431- red-rumped M
cacique (Cacicus
haemorrhous)

282- red-rumped M
cacique (Cacicus
haemorrhous)

444- red-rumped M
cacique (Cacicus
haemorrhous)

453- red-rumped F
cacique (Cacicus
haemorrhous)

Accipitriformes: Accipitridae

174- Harris’s hawk F
(Parabuteo
unicinctus)

149- roadside F
hawk (Rupornis
magnirostris)

Strigiformes: Strigidae

407- tropical M
screech-owl
(Megascops
choliba)

Anseriformes: Anatidae

425- duck (Anas M
sp.)

1/2 (50)

1/2 (50)

2/6 (33.3)

1/1 (100)

1/1 (100)

1/1 (100)

4/6 (66.6)

174 (25)

1/5 (20)

1/9 (11.1)

1/2 (50)

Cuculiformes: Cuculidae
163- guira cuckoo M
(Guira guira)

1/2 (50)

1021

1012

1013

419

654

419

1013

1021

1021

1021

1021

1021

1021

651

1013

1013

1013

1008

AMPLICON SIZE BETWEEN 500-1000 BP (N = 2)

Accipitriformes: Accipitridae

93.39% S. falcatula is.
Lorikeet
(MH626538)

99.8% S. falcatula is.
Lorikeet
(MH626538)

99.9% S. falcatula is.
Lorikeet
(MH626538)

99.8% S. falcatula is.
Lorikeet
(MH626538)

99.5% S. falcatula is.
Lorikeet
(MH626538)

99.8% S. falcatula is.
Lorikeet
(MH626538)

99.9% S. falcatula is.
Lorikeet
(MH626538)

93.19% S. falcatula is.
Lorikeet
(MH626538)

93.39% S. falcatula is.
Lorikeet
(MH626538)

93.19% S. falcatula is.
Lorikeet
(MH626538)

93.00% S. falcatula is.
Lorikeet
(MH626538)

93.00% S. falcatula is.
Lorikeet
(MH626538)

93.00% S. falcatula is.
Lorikeet
(MH626538)

99.7% S. falcatula is.
Lorikeet
(MH626538)

99.9% S. falcatula is.
Lorikeet
(MH626538)

99.9% S. falcatula is.
Lorikeet
(MH626538)

99.9% S. falcatula is.
Lorikeet
(MH626538)

92.65% S. falcatula is.
Lorikeet
(MH626538) 93.55%
S. lindsayi
(AF387164)

213- sharp-shinned F
hawk (Accipiter

1/5 (20) 842 99.17% Sarcocystis

halieti is. Ha 1.6

striatus) (MF946589)
Cathartiformes: Cathartidae
471- American M 1/11 (9.1) 800 90.04% Sarcocystis
black vulture lari is. Ha. 1.8
(Coragyps (MF946599)
atratus)

AMPLICON SIZE ABOUT 500 BP (N = 6)
Columbiformes: Columbidae

260- picazuro M 1/13 (7.7) 411 100.00% Toxoplasma
pigeon gondii (MH793505)
(Patagioenas
picazuro)

Falconiformes: Falconidae

187- American M 2/6 (33.3) 411 100.00% Toxoplasma
kestrel (Falco gondii (MH793505)
sparverius)

493- American F 411 100.00% Toxoplasma
kestrel (Falco gondii (MH793505)
sparverius)

Pelecaniformes: Ardeidae

426- snowy egret F 2/2 (100) 411 100.00% Toxoplasma

(Egretta thula) gondii (MH793505)
293- snowy egret M 411 97.76% Toxoplasma

(Egretta thula) gondii (MH793505)
433- black- M 1/2 (50) 411 97.76% Toxoplasma

crowned night- gondii (MH793505)

heron

(Nycticorax

nycticorax)

# No significant differences in infection were found between the sexes (p =
0.873, Fisher’s test.

Sarcocystis from Accipiter cooperii (KY348753, EU810402, EU810398),
Phalacrocorax carbo (JQ733511), Columba livia (GQ245670) and Anser
albifrons (EU502869). Regarding CO1, the sequence demonstrated 100%
similarity with various sequence of S. lutrae (MT036250, MT036254,
MG273661-MG273670, MF596284-MF596285, MG372106-
MG372107, KM657808, KF601326) and S. lari (MF596283,
MF596284).

4. Discussion

In this survey, S. falcatula-like parasites were the most prevalent
species of Sarcocystis in birds, given that among the 38 samples in which
Sarcocystis spp. were molecularly identified, 28 were S. falcatula. All of
these 28 samples were closely related to S. falcatula is. Lorikeet, which
caused the death of parrots (Trichoglossus moluccanus) in a zoo in the
United States (Verma et al., 2018); and to unnamed species of Sarcocystis
that were found in naturally infected Magellanic penguins (Spheniscus
magellanicus) in Brazil (Acosta et al., 2018).

As previously pointed out, molecular studies have shown that
S. falcatula consists of a heterogeneous population formed by at least two
lineages (Cesar et al., 2018; Dubey et al., 2000c, 2001a, 2001¢c; Gondim
et al., 2017, 2019; Marsh et al., 1999; Valadas et al., 2016). In fact, all
bird-derived S. falcatula-like of the present survey belonged to the same
lineage, along with other isolates that had already been detected in
Brazil, e.g. S. falcatula-like characterized from cysts in penguins
(S. magellanicus), S. falcatula-like detected in neural tissues from natu-
rally infected ibis (P. infuscatus) and S. falcatula-like from budgerigars
(M. undulatus) that were experimentally infected with oocysts derived
from Brazilian opossums (Acosta et al., 2018; Gondim et al., 2019;
Konradt et al., 2017).

Although the seven sequences of clade B (#137, 138, 282, 431, 444,
452 and 453) showed phylogenetic relatedness to S. falcatula-like
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Fig. 1. Phylogenetic tree of Sarcocystis spp. based on ITS1 sequences. The tree was constructed through the maximum likelihood method, using the best-fit model
K2P + G. The final alignment contained 24 sequences and 389 aligned nucleotide positions. All positions containing gaps and missing data were eliminated (complete
deletion option). Numbers on branches represent bootstrap values after 1000 replicates. The black dots identify the sequences obtained in this study.
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Fig. 3. Phylogenetic tree of Sarcocystis spp. based on ITS1 sequences. The tree
was constructed through the maximum likelihood method, using the best-fit
model HKY + I. The final alignment contained 78 sequences and 661 aligned
nucleotide positions. All positions containing gaps and missing data were
eliminated (complete deletion option). Numbers on branches represent boot-
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tained in this study.

parasites, a robust evolutionary divergence was revealed between clades
A and B, which strongly suggested that the samples in the latter branch
belong to a species that has not yet been described. At the ITS1 locus, the
clade B samples, which were detected in the birds red-rumped cacique
(Cacicus haemorrhous), ruby-crowned tanager (Tachyphonus coronatus),
Brazilian tanager (Ramphocelus bresilius) and saffron toucanet (Pter-
oglossus bailloni), had less than 93.50% similarity to both S. falcatula is.
Lorikeet (MH626538) and S. falcatula is. Cornell 1 (AF098242).
Likewise, sample #163 (within clade C, which includes S. lindsayi)
probably referred to another undescribed species of Sarcocystis, given
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that the ITS1-based phylogeny also showed robust evolutionary diver-
gence from clade C to A and B. A Blast search using #163-ITS1 as the
query revealed that this sequence was 93.55% similar to S. lindsayi
(AF387164), which shows that sample #163 should not be identified as
S. lindsayi.

As expected, CO1 and 18S were well conserved to allow for differ-
entiation between samples from clades A, B and C. It is well known that
these markers do not differentiate between other closely related Sarco-
cystis species that use birds as intermediate hosts (Gjerde et al., 2018;
Prakas et al., 2018a). Nevertheless, samples from the clades B and C may
correspond to novel species through Sarcocystis related to S. falcatula.
Although our study did not focus on diagnosing sarcocystosis by histo-
pathological assessments because all the samples were frozen and/or
lysed, two pectoral muscle samples that were molecularly identified in
this study as S. falcatula and Sarcocystis sp. ex Cacicus haemorrhous were
thawed, fixed in 10% buffered formalin and stained with hematoxylin
and eosin (HE). Surprisingly, despite being frozen for about 2 years, the
morphology of the cyst remained intact (Fig. S1, and Fig. S2 in supple-
mentary file).

The allele variants of SAG2, SAG3 and SAG4 that were obtained from
samples from clades A, B, and C were compared with homologous ma-
terial that is available in GenBank. Most of them were 100% identical to
the homologous alleles described for Sarcocystis spp. that were obtained
from opossum-derived sporocysts (Monteiro et al., 2013; Valadas et al.,
2016), from isolates in bioassays with parakeets (Cesar et al., 2018;
Gondim et al., 2017) and from natural infections in wild birds (Acosta
et al., 2018; Konradt et al., 2017) in Brazil.

Nevertheless, 10 undescribed SAG alleles were detected, which
corroborates the findings of the aforementioned studies, in which it was
claimed that high diversity within S. falcatula complex exists in Brazil. In
addition, regarding the samples identified as S. falcatula-like, twelve
SAG genotypes were detected among 19 individuals, of which 10 were
unique. This raises the number of SAG genotypes so far described in
Brazil from 11 to 21. For Sarcocystis sp. ex Cacicus haemorrhous, three
genotypes were detected in five birds. It was not possible to determine
the SAG genotypes for all 36 samples for one of the following two
possible reasons: presence of a mixture of sequences (more than one
genotype in the same sample) or unsuccessful amplification. Mixed
sarcocystosis infections in birds have already been described by Dubey
et al. (2004).

Sexual recombination might be an event that shapes the genetic
structure of the S. falcatula complex population, such that the admixture
of highly variable alleles would form a plethora of SAG genotypes. In our
sample, the chances of finding infected birds with different genotypes
were high. Among the 19 S. falcatula-like that were fully SAG genotyped,
there were 12 SAG genotypes, which means that the probability that two
species selected at random would belong to different genotypes was
88.6%. Unfortunately, it was not possible to compare studies on SAG
diversity in S. falcatula complex between the southern hemisphere and
the northern hemisphere, because no studies have yet been conducted in
the northern hemisphere.

Birds of different species can be infected by the same genotype. Or-
ders such as Psittaciformes (B. tirica), Piciformes (C. flavescens), Pass-
eriformes (C. gujanensis) and Accipitriformes (P. unicinctus) share the
same genotype, thus indicating that the different S. falcatula-like SAG
genotypes are not host-specific. On the other hand, the same species of
bird can be infected by more than one genotype: three genotypes (G1,
G2, G10) were identified in toucans (R. dicolorus). This contrasts with
the observations of Acosta et al. (2018), who described only one geno-
type in 16 individuals of the Magellanic penguin species. In addition,
most of the genotypes found in the birds surveyed here had already been
described in Didelphid opossums in Brazil, demonstrating their plausible
role as the final host not only for S. falcatula complex but also for Sar-
cocystis sp. of clade B.

None of the S. falcatula-like positive-birds had combinations of SAG
alleles identical to what was described in neurologically affected bare-
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faced ibis (P. infuscatus), in which S. falcatula was incriminated as a
causal agent for their death in Brazil. It remains unknown whether any
S. falcatula-like genotype is especially pathogenic to birds, as is the case
of certain variants in S. neurona, such as genotypes I and XIII, which
were associated with high mortality among aquatic mammals (Barbosa
et al., 2015; Miller et al., 2010; Wendte et al., 2010). Further studies are
needed in order to support the hypothesis that certain genotypes of
S. falcatula might be associated with mortality among birds.

To our knowledge, this was the first report on natural infection by
S. falcatula and related species in 19 species of wild birds from Brazil.
This high number of novel species can be explained because birds of the
New World live with subclinical infection caused by this agent without
presenting symptoms, while birds of the Old World are susceptible to
this infection, which has been found to often cause outbreaks with high
mortality, when the etiological agent has been investigated.

The order that presented the largest number of bird species infected
with S. falcatula-like was Piciformes. This was the first time that
S. falcatula complex had been detected in toucans and woodpeckers. On
the other hand, in 11/25 (44%) samples, out of 146 Passeriformes
analyzed, only three birds (2%) showed S. falcatula DNA. We speculate
that the characteristic common to some species of birds, such as those of
the families Ramphastidae and Picidae, of nesting in tree holes may
favor contact with didelphid feces. Opossums frequently invade nests
during the day, in search of food (Smith, 2007).

In the present study, there was high statistical support to show that
the sequence of Sarcocystis sp. ex Accipiter striatus (#213) clustered in a
single clade together with 27 sequences of S. halieti from other parts of
the world (17 S. halieti sequences from Norway and 10 from Lithuania).
Along with them, there was a sequence derived from Sarcocystis sp. that
was detected in skuas in Chile. The S. halieti clade is a sister group of a
clade comprising sequences of S. corvusi, S. columbae and an unnamed
species of Sarcocystis that uses A. cooperii as its definitive host.

Recent molecular studies identified two species of seabirds from
Lithuania, the great cormorant (Phalacrocorax carbo) and the herring
gull (Larus argentatus) (Prakas et al., 2018b; 2020), as intermediate hosts
of S. halieti. Consequently, the findings from our study suggest that the
range of intermediate hosts available for S. halieti is much wider and can
include small species of Accipitriformes. These hosts include the
sharp-shinned hawk, which has never been reported outside of the
Americas. This species is considered to have uncertain migratory
behavior and seems to be sedentary (Bildstein and Myer, 2000; Eduardo
et al., 2007). The white-tailed eagle (Haliaeetus albicilla) from Norway
(Gjerde et al., 2018) and the Eurasian sparrow-hawk (Accipiter nisus)
from Germany (Mayr et al., 2016) have been confirmed as definitive
hosts for S. halieti, with distribution between Europe and Asia (BirdLife
International, 2016, 2020). Therefore, the definitive host for S. halieti in
the Americas must be a similar species of raptor. For the sharp-shinned
hawk, some birds of prey such as bald eagles (Haliaeetus leucocephalus)
and peregrine falcons (Falco peregrinus) have been described as preda-
tors (Bildstein and Meyer, 2000). Further studies should be conducted to
elucidate the life cycle of S. halieti in birds in the Americas.

Regarding Sarcocystis sp. ex Coragyps atratus (#471), the present
study suggested that it belongs to species that have not yet been clas-
sified, but which are closely related to S. lari. The latter has two species
of seagulls (Larus marinus and Larus argentatus) as intermediate hosts and
the white-tailed sea-eagle (Haliaeetus albicilla) as the definitive host
(Gjerde et al., 2018; Prakas et al., 2014, 2020). Numerous published
phylogenetic analyses have shown that Sarcocystis spp. generally cluster
according to their definitive hosts, and the phylogenetic placement of a
species may therefore be used to predict its most likely final host
(Gjerde, 2014). The phylogenetic relationships of Sarcocystis sp. ex
Coragyps atratus with sequences of Sarcocystis spp., using birds of prey as
proven or presumed definitive hosts, suggests that the definitive host of
this unclassified species is probably also a raptor.

In the case of Sarcocystis parasitizing vultures, few investigations
have been conducted, and these were limited to assessments of infection
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prevalence and morphological analysis on cysts by mean of optical mi-
croscopy. In the United States, Lindsay and Blagburn (1999) observed
bradyzoites in 1/2 (50%) of the black vultures (C. atratus), by means of
the acid-pepsin digestion technique. In contrast, in the same country,
sarcocysts were not detected through histological analysis on three black
vultures, although 2/2 (100%) turkey vultures (Cathartes aura) were
infected with Sarcocystis (Dohlen et al., 2019).

Sarcocystosis in raptors is being increasingly reported from North
America and Europe, and in some cases it has been associated with
clinical disease (Olson et al., 2007; Parmentier et al., 2018; Wiinsch-
mann et al., 2009, 2010). However, little is known about protozoan
infections of raptors in South America. Here, we reported two species of
Sarcocystis from birds of prey in Brazil, based on DNA investigations.
Further research on Sarcocystis epidemiology among birds of prey in
South America is needed. Our sequence analysis on three genetic loci
showed that Sarcocystis sp. ex Coragyps atratus is a species of Sarcocystis
that has not yet been described, but that Sarcocystis sp. ex Accipiter
striatus found in sharp-shinned hawks from Brazil is S. halieti.

Toxoplasma gondii DNA was detected in 1.5% (6/400) of the birds
examined. Analysis on the 411 bp effectively sequenced from the Pic-
azuro pigeon (P. picazuro), American kestrel (F. sparverius) and snowy
egret (E. thula) revealed that this sequence was 100% identical to
T. gondii (MH793505). For the black-crowned night-heron
(N. nycticorax) and snowy egret (E. thula), only one substitution of the C-
T nucleotide was detected at position 62 (taking MH793505 as refer-
ence), reaching similarity of 99.76% with T. gondii.

Studies in Brazil have reported T. gondii DNA from several species of
birds, such as the eared dove (Zenaida auriculata), crested caracara
(Caracara plancus), tropical screech-owl (Megascops choliba), roadside
hawk (Rupornis magnirostris), lineated woodpecker (Dryocopus lineatus),
campo flicker (Colaptes campestris), American kestrel (Falco sparverius)
and toco toucan (Ramphastos toco) (Barros et al., 2014; Rego et al., 2018;
Silva et al., 2018; Vitaliano et al., 2014).

The role of wild birds in the transmission of T. gondii has not yet been
fully elucidated (Lindsay et al., 1991). We found that two types of herons
(snowy egret and black-crowned night-heron) were naturally infected
with T. gondii, thus providing evidence of contamination of shallow
water with oocysts in the state of Sao Paulo. Occurrences of T. gondii
antibodies in various species of seabirds, such as the masked booby,
brown booby, red-billed tropicbird and white-tailed tropicbird, indicate
that T. gondii infection is common in waterbirds in Brazil (Gennari et al.,
2016). Moreover, among six American kestrels (birds of prey) that were
used for direct diagnosis by means of PCR, two (33.3%) were positive for
T. gondii. The fact that this species has carnivorous habits suggests that
the transmission route probably consisted of infection through ingestion
of prey that was chronically infected with T. gondii. Thus, it is possible to
infer that other wild animal species may also be infected by T. gondii,
thus increasing the number of likely T. gondii intermediate hosts. Our
study contributes towards expanding the list of birds that possibly
participate in the epidemiological chain of T. gondii. Nonetheless,
further studies are needed in this regard.

The findings reported here put a spotlight on the diversity of the
Sarcocystidae in wild birds from South America. Otherwise they might
represent an underestimation of the actual prevalence of Sarcocystidae
infection, mainly because of the small fragment of tissue examined and
to the fact that these parasites may have tropism in different organs, e.g.
the nervous system.

5. Conclusions

In summary, the present study extends the range of species of wild
birds that have DNA from Sarcocystidae and indicates that there is
widespread exposure to Sarcocystis species among various orders of wild
birds in Brazil. Interestingly, Piciformes and Psittaciformes showed the
highest numbers of birds positive for S. falcatula. Surface antigen gene
(SAG) sequences of S. falcatula from 19 bird samples revealed fairly high
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haplotype richness that coincided with the extensive diversity of SAG
allele variants of sporocysts from South American opossums. This high
genetic diversity in species of S. falcatula may be explained by processes
of gametogony in the definitive host, combined with a high transmission
rate in the wild. We also presented evidence of two species of Sarcocystis
related to S. falcatula that have not yet been described. Sarcocystis sp. ex
Cacicus haemorrhous and Sarcocystis sp. ex Guira guira were detected,
from the Passeriformes and Cuculiformes orders, respectively. SAG
analysis on one of these species confirmed that opossums can be defin-
itive hosts for new species, in addition to S. falcatula, S. neurona,
S. lindsayi and S. speeri. Further studies using methods that combine
morphological, morphometric, epidemiological and molecular charac-
terization are needed in order to better characterize these species that
have not yet been described. To the best of our knowledge, this study
provides the first report of S. halieti in a species of Accipitriformes in the
Americas. Birds of prey that act as final hosts for these Sarcocystis species
should be present in South America. Therefore, efforts to help clarify
their epidemiological cycle need to be conducted. Additionally, we
presented evidence for the existence of species of Sarcocystis that have
not yet been described, which was detected in the American black
vulture.
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