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a b s t r a c t

We analyse the phase diagram of a quantum mean spherical model in terms of the
temperature T , a quantum parameter g , and the ratio p = −J2/J1, where J1 > 0 refers
to ferromagnetic interactions between first-neighbour sites along the d directions of a
hypercubic lattice, and J2 < 0 is associated with competing antiferromagnetic interactions
between second neighbours alongm ≤ d directions. We regain a number of known results
for the classical version of thismodel, including the topology of the critical line in the g = 0
space, with a Lifshitz point at p = 1/4, for d > 2, and closed-form expressions for the decay
of the pair correlations in one dimension. In the T = 0 phase diagram, there is a critical
border, gc = gc (p) for d ≥ 2, with a singularity at the Lifshitz point if d < (m + 4)/2.
We also establish upper and lower critical dimensions, and analyse the quantum critical
behavior in the neighborhood of p = 1/4.

© 2012 Elsevier B.V. All rights reserved.

1. Introduction

The sphericalmodel ofmagnetismhas been used as an excellent laboratory to test ideas and concepts of phase transitions
and critical phenomena [1–3]. There are several versions of the original model, including proposals of a quantum spherical
model to correct some of the unphysical results at low temperatures [4–7]. The effects of frustration [8,9], random fields [10],
and of disordered exchange interactions [11,12], have also been analysed in the context of quantum spherical models. With
a view to describe the crossover between classical and quantum critical behaviour, Vojta [6] used a standard scheme of
canonical quantization to analyse a quantum version of the ferromagnetic mean spherical model. We were then motivated
to revisit this problem, with the addition of competing ferro and antiferromagnetic interactions, and the perspective to
analyse a quantum Lifshitz point.

The mean spherical model, which has been originally proposed by Lewis and Wannier [2], is given by the partition
function

Zcl =


−→
l


+∞

−∞

dS−→
l

 exp

−β H

S−→

l


− βµ


−→
l

S2−→
l

 , (1)

where β = 1/ (kBT ) , T is the temperature and kB is the Boltzmann constant,µ is a suitable chemical potential,
−→
l is a lattice

vector, and

S−→

l


is a set of continuous spin variables running over the Nd sites of a d-dimensional hypercubic lattice. The

model Hamiltonian is written as

H = −



−→
k ,

−→
l
 J−→k ,

−→
l S−→

k S−→
l − H


−→
l

S−→
l , (2)
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where

−→
k ,

−→
l


labels a pair of lattice sites, the exchange parameter J−→k ,
−→
l = J

−→k −
−→
l
 depends on the distance

between sites
−→
k and

−→
l , and H is an external field. In this formulation, the chemical potential µ comes from the mean

spherical condition,
−→
l

S2−→
l


= −

1
β

∂

∂µ
ln Zcl = Nd, (3)

and it iswell known that exact solutions for the thermodynamic functions can be obtained from the standard diagonalization
of a quadratic form [3].

In a quantum version of this mean spherical model [4,6], the spin variable S−→
l becomes a position operator at lattice site

−→
l , canonically conjugate to a momentum operator P−→

l , with the commutation relations

[S−→
l , S−→

k ] = 0, [P−→
l , P−→

k ] = 0, [S−→
l , P−→

k ] = iδ−→
l ,

−→
k , (4)

where δ−→
l ,

−→
k is a Kronecker delta andwe assume that h̄ = 1.We then add a term of kinetic energy, depending on a quantum

parameter g , and write the quantum quadratic form

H =
1
2
g

−→
l

P2
−→
l

−



−→
k ,

−→
l
 J−→k ,

−→
l S−→

k S−→
l − H


−→
l

S−→
l + µ


−→
l

S2−→
l
, (5)

which can be diagonalised by a canonical method [6], leading to a solution of the problem for a general ferromagnetic pair
interaction. At finite temperatures, the critical behaviour is essentially unchanged with respect to the classical spherical
model. At zero temperature, depending on the parameter g , there is a quantum phase transition characterised by new
(quantum) critical exponents. Also, the introduction of quantum fluctuations leads to a correction of the unphysical
behaviour of the entropy at low temperatures.

We report an analysis of this version of the quantum mean spherical model in the presence of competing interactions.
We consider ferromagnetic interactions, J1 > 0, between pairs of first-neighbour sites along the d directions of a hypercubic
lattice, and antiferromagnetic interactions, J2 < 0, between second-neighbour sites along m ≤ d directions. Classical
versions of this model [13–16], as well as more elaborate mean spherical models with competing interactions [17], have
been studied by several authors. For m = 1, we regain a spherical analogue of the Axial-Next-Nearest-neighbour Ising, or
ANNNI,model [18,19], which is known to display a rich phase diagram, including a Lifshitz point, in terms of the temperature
T and a parameter p = −J2/J1 that gauges the strength of the competing interactions. We then analyse the T–p–g phase
diagram, for different values of m, in particular the T = 0 behaviour, and establish the critical dimensions and critical
exponents associated with this quantum model system. In the classical case, g = 0, we confirm a number of results,
including a singularity of the critical border at the Lifshitz point for 2 < d < (m + 6) /2. In one dimension, we derive
analytic expressions for the decay of pair correlations, and determine the region of modulated behaviour in the T–p phase
diagram.

2. The quantummean spherical model with competing interactions

This problem can be treated either by a conventional reduction to a system of coupled harmonic oscillators or by a
judicious application of the method of path integrals [5,20,21]. Let us first use the representation in terms of harmonic
oscillators. We then introduce bosonic operators aĎl and al to write

Sl ≡
1

√
2


g
2µ

1/4 
al + aĎl


(6)

and

Pl ≡ −
i

√
2


2µ
g

1/4 
al − aĎl


, (7)

where we have omitted the vector notation. We now assume periodic boundary conditions, and change to a Fourier
representation,

al =
1

Nd/2


q

aq exp(iql), (8)

where aq and aĎq are bosonic operators,

[aq, aq′ ] = 0, [aĎq, a
Ď
q′ ] = 0, [aq, a

Ď
q′ ] = δq,q′ , (9)
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and the sum is over the d-dimensional vectors q belonging to the first Brillouin zone. We then write the quantum quadratic
form (5) in the Fourier representation,

H = (2gµ)1/2

q


1 −

Ĵ(q)
4µ


aĎqaq −

1
2
(2gµ)1/2


q

Ĵ(q)
4µ


aqa−q + aĎqa

Ď
−q



−H

Nd

2

1/2  g
2µ

1/4 
a0 + aĎ0


+

Nd

2
(2gµ)1/2 , (10)

with

Ĵ(−→q ) =


−→
h

J
−→h  exp i−→q ·

−→
h


, (11)

where the sum runs over all lattice vectors. The final diagonalization of this quadratic form comes from the introduction of
new bosonic operators, cq and cĎq , according to a well-known Bogoliubov transformation. We then have

H =


q

w(q)

cĎq cq +

1
2


−

NdH2

4

µ −

Ĵ(0)
2

 , (12)

where

[w(q)]2 ≡ (2gµ)


1 −

Ĵ(q)
2µ


, (13)

which requires that the chemical potential µ should be larger than a certain limiting critical value µc ,

µ > µc = max
−→q

1
2
Ĵ(−→q ) =

1
2
Ĵ(−→q c). (14)

In analogy with a system of harmonic oscillators, we then write the partition function

ZN(β,H, µ) = exp

 βNdH2

4

µ −

Ĵ(0)
2




q


2 sinh

1
2
βw(q)

−1

, (15)

and the free energy per site,

f (β,H, µ) = −
H2

4

µ −

Ĵ(0)
2

 +
1
β

lim
N→∞

1
Nd


q

ln

2 sinh

1
2
βw(q)


, (16)

with µ > µc = Ĵ(−→q c)/2. The spherical constraint, given by Eq. (3), from which we determine the chemical potential µ, is
written as

1 =
H2

4

µ −

Ĵ(0)
2

2 + lim
N→∞

1
Nd


q

g
2w(q)

coth

1
2
βw(q)


. (17)

In the classical limit, g → 0, we regain most of the well-known results for the mean spherical model. The classical limit
of this quantum free energy, however, includes an extra term of the form ln(βg), which corrects the classical behaviour at
low temperatures. The particular limit Ĵ(q) → 0 corresponds to free quantum (spherical) rotors, with a finite energy gap,
in contrast to the usual Heisenberg–Dirac spins.

These expressions also come from a straightforward application of the path integral formalism, which has been widely
used to treat quantum statistical problems [5,20]. It is then interesting to write the Lagrangian associatedwith this problem,

L =
1
2g


l

Ṡ2l +
1
2


k,l

Jk,lSkSl + H


l

Sl − µ


l

S2l . (18)

In the imaginary time formalism, with t → −iτ , the partition function is written as

Z =

 
l

DSl(τ )


exp

 β

0
dτ


−

1
2g


l


∂Sl(τ )

∂τ

2

+
1
2


l,l′

Jl,l′Sl(τ )Sl′(τ ) + H


l

Sl(τ ) − µ


l

S2l (τ )


, (19)
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where the first integral includes periodic conditions, Sl(0) = Sl(β). We now introduce the Fourier transformation,

Sl(τ ) =


β

N

 1
2 

q,w

exp [i(ql + τw)] Sq(w), (20)

where the vector q belongs to the first Brillouin zone, and w ≡ wn = (2nπ)/β , with integer n, is a Matsubara frequency.
We then write the partition function

Z = exp (βNµ)

 
∞

n=−∞


q

dSq(wn)


exp

 
βNd 1

2 βS0(0)H

+


q,n


−

β2w2
n

2g
+

1
2
β2 Ĵ(q) − β2µ


Sq(wn)S−q(−wn)


, (21)

where Ĵ(q) is given by Eq. (11), and we have omitted the vector notation. If we calculate the Gaussian integrals, and use the
identity

∞
n=1


1 +


wβ

nπ

2


=
sinhwβ

wβ
, (22)

it is straightforward to regain the partition function given by Eq. (15).
This general solution works for all forms of distance-dependent interactions, J−→k ,

−→
l = J

−→k −
−→
l
. We now consider

ferromagnetic interactions, J1 > 0, between pairs of first-neighbour sites along the d directions of a hypercubic lattice, and
antiferromagnetic interactions, J2 < 0, between second-neighbour sites along m ≤ d directions. The Fourier transform of
the exchange interactions is given by

Ĵ(−→q ) = 2J1
d

j=1

cos qj + 2J2
m
j=1

cos 2qj, (23)

where −→q = (q1, q2, . . . , qd) is a wave vector in suitable (dimensionless) units. The maximum of Ĵ(−→q ) depends on the ratio
p = −J2/J1. If p ≤ 1/4, themaximum is located at the critical value−→q c = 0, as in the simple ferromagnetic case. If p > 1/4,
the maximum of Ĵ(−→q ) is given by the critical vector

−→q c = (qc1, qc2, . . . , qcm, 0, . . . , 0) , (24)

where

qc1 = qc2 = · · · = qcm = cos−1 1
4p

. (25)

The special case p = 1/4 corresponds to a Lifshitz point of degreem.

3. Phase diagrams and critical behaviour

In zero field, H = 0, the paramagnetic critical boundary in the T–p–g space comes from the spherical constraint, given
by Eq. (17), supplemented by the critical limit of the chemical potential, µ = µc , given by Eq. (14). We then write

1 = lim
N→∞

1
Nd


q

g
2wc (q)

coth

1
2
βwc(q)


, (26)

where

wc(q) = g1/2

Ĵ(−→q c) − Ĵ(−→q )

1/2
. (27)

In the classical limit, g → 0, we have

1 = lim
N→∞

1
Nd


q

1

β

Ĵ(−→q c) − Ĵ(−→q )

 , (28)

from which we obtain the critical temperature as function of p, for all values of d and m,

kBTc
2J1

=
1

I (p, d,m)
, (29)
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Fig. 1. Classical T–p phase diagrams, for dimensions d = 3 and d = 4, near a Lifshitz point (p = 1/4), withm = 1. The critical line separates ordered and
disordered phases. Along the critical line, q⃗c = 0 for p ≤ 1/4, and q⃗c ≠ 0 for p > 1/4. The inset shows a magnification in order to emphasise the singular
behavior of the paramagnetic border near the Lifshitz point in three-dimensions.

with

I (p, d,m) =
1

(2π)d


ddq

1
d

j=1


1 − cos qj


− p

m
j=1


1 − cos 2qj

 , (30)

for p < 1/4, and

I (p, d,m) =
1

(2π)d


ddq

1
d

j=1


1 − cos qj


− p

m
j=1


1
p −

1
8p2

− 1 − cos 2qj
 , (31)

for p > 1/4.
There is a long history associated with the calculations of similar lattice Green functions [3,22]. From the identity

1
an

=
1

(n − 1)!


∞

0
dx xn−1 exp (−ax) , (32)

where n is an integer, and a > 0, we write integral representations for I (p, d,m), which are convenient to carry out an
asymptotic analysis. For d ≤ 2, the divergence of these integrals indicate that Tc = 0 for all values of m and p ≠ 1/4. Also,
we have Tc > 0 for d > 2, and for all values ofm and p ≠ 1/4. In particular, at the Lifshitz point, Tc > 0 for d > (m + 4)/2.
We now consider the graphs of Tc = Tc(p) versus the parameter p. It is easy to write an expression for dTc/dp, for p < 1/4
and p > 1/4, and to show that there is common tangent at the Lifshitz point, p = 1/4. For example, for d = 3 and m = 1,
we have

∂

∂p


kBTc
2J1


p=1/4

= −
1

I
 1
4 , 3, 1

2I,
with

I =
1

4 (2π)3


d3q

1 − cos 2q1 11
4 − cos q1 − cos q2 − cos q3 + cos 2q1

2 . (33)

We then use the identity (32), with n = 2, towrite an integral representation fromwhich it is easy to show that the common
tangent at the Lifshitz point, p = 1/4, is infinite for (i) d < 2, and (ii) d > 2, with d < (m+6)/2, which includes the analogue
of the ANNNImodel (d = 3 andm = 1). In the numerically obtained graphs of Fig. 1, we sketch typical profiles of the critical
line Tc = Tc(p) for dimensions d = 3 and d = 4, and m = 1. Note the smooth behaviour of this paramagnetic border for
d = 4 (and m = 1). The scale of this figure, however, is not enough to show the sharp singularity at the Lifshitz point for
d = 3 (andm = 1), as pointed out in a sketch by Hornreich [23].

In the zero-temperature limit, T → 0, Eq. (26) can be written as

1 =
g1/2

2
lim

N→∞

1
Nd


q

1
Ĵ(−→q c) − Ĵ(−→q )

1/2 ,
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Fig. 2. Quantum phase diagram (T = 0) near a Lifshitz point with dimensions d = 2 and d = 3, and m = 1. Along the critical line, gc = gc(p), we have
q⃗c = 0 for p ≤ 1/4, and q⃗c ≠ 0 for p > 1/4. The inset shows a magnification of the border near p = 1/4 in two dimensions.

from which we obtain the critical quantum parameter, gc , as a function of p, for all values of d and m,

gc
2J1

=


2

IQ (p, d,m)

2
, (34)

where

IQ (p, d,m) =
1

(2π)d


ddq

1
d

j=1


1 − cos qj


− p

m
j=1


1 − cos 2qj

1/2 , (35)

for p < 1/4, and

IQ (p, d,m) =
1

(2π)d


ddq

1
d

j=1


1 − cos qj


− p

m
j=1


1
p −

1
8p2

− 1 − cos 2qj
1/2 , (36)

for p > 1/4. We now use an analytic continuation of the identity (32), for non integer values of n. From a similar analysis of
convergence of these expressions, it is easy to show that there is a quantumphase transition (gc ≠ 0) for d ≥ 2, independent
of the value of m. In particular, there is a common derivative ∂gc/∂p at the Lifshitz point, p = 1/4, with a singularity for
2 ≤ d < (m + 4)/2 (and a smooth behaviour for d = 3 and m = 1). In Fig. 2, we sketch typical profiles of this critical line
in the g − p plane for dimensions d = 2 and d = 3, and m = 1.

The critical behaviour in zero field, H = 0, comes from an asymptotic analysis of the spherical constraint in the
neighbourhood of the transition. At finite temperatures, T ≠ 0, in the limit µ → Ĵ(q)/2, we have

1
Nd


q

g
2w(q)

coth
1
2
βw(q) =

1
12

gβ +
1
Nd


q

g
βw2(q)

+ O[w2(q)]. (37)

At zero temperature, T = 0, we have

1
Nd


q

g
2w(q)

coth
1
2
βw(q) =

1
Nd


q

g
2w(q)

. (38)

We now expand Ĵ(q) as a Taylor series about −→q =
−→q c , in the classical and quantum cases. Although −→q c depends on the

parameter p, the convergence of the sums in the right-hand side of Eqs. (37) and (38) does not depend on p, for p ≠ 1/4.
For finite temperatures, T ≠ 0, the sum converges if d > 2 (which determines the lower critical dimension of the classical
case), regardless of the value ofm. At T = 0, the sum converges for d > 1, which leads to the lower critical dimension of the
quantum case.

Let us consider some special situations.
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3.1. Critical behaviour at finite temperatures and p ≠ 1/4

In zero field, H = 0, at finite temperatures, T ≠ 0, and for p ≠ 1/4, we use Eq. (37) and perform a Taylor expansion
about T = Tc and µ = µc . We then have the asymptotic expression

0 ≈
(T − Tc)

2


ddq

1

µc −
Ĵ(q)
2

− (µ − µc) Tc


ddq

1
µc −

Ĵ(q)
2

2 . (39)

We now expand the integrands about −→q =
−→q c , and obtain

(µ − µc) ∼


τ , for d > 4
τ

ln τ
, for d = 4

τ 2, for d = 3,

(40)

where τ = (T − Tc)/Tc gives the distance from the classical critical point. From these equations, supplemented by standard
scaling considerations, it is possible to calculate the usual critical exponents associated with the classical spherical model.
Although −→q c assumes different values for p < 1/4 and p > 1/4, the asymptotic behaviour is the same, regardless of the
value ofm.

3.2. Critical behaviour at T = 0 and p ≠ 1/4

In analogy with the calculations for finite temperatures, we write

0 ≈ (g − gc)


ddq
1

µc −
Ĵ(q)

2

1/2 − (µ − µc)gc


ddq

1
µc −

Ĵ(q)

2

3/2 . (41)

From an expansion about −→q =
−→q c , we obtain the asymptotic behaviour

(µ − µc) ∼


δ, for d > 3
δ

ln δ
, for d = 3

δ2, for d = 2,

(42)

where δ = (g − gc)/gc gives the distance from the quantum critical point. As in the case of finite temperatures, Eq. (42)
holds for p ≠ 1/4 and any value of m ≤ d. It is easy to use scaling arguments in order to obtain the (quantum) critical
exponents for p ≠ 1/4. With the necessary reinterpretations, and although critical dimensions are different, these values
are in agreement with results of Vojta for the quantum ferromagnetic case [6].

3.3. Critical behaviour for p = 1/4

At the Lifshitz point, p = 1/4, the maximum ofJ −→q  is still given by −→q c = (0, 0, 0, . . . , 0), but the second derivative
vanishes along the direction of competition. We then have to consider the quartic term in the expansion ofJ −→q  about
−→q =

−→q c .
For T ≠ 0, the first and second integrals of Eq. (39) exist for d > (m+4)/2 and for d > (m+8)/2, respectively. We then

have

(µ − µc) ∼


τ , d > (m + 8)/2,
τ/ ln τ , d = (m + 8)/2,
τ 3/2, d = (m + 7)/2,
τ 2, d = (m + 6)/2,
τ 5/2, d = (m + 5)/2,

(43)

where τ = (T − Tc)/Tc . From these asymptotic results, it is possible to obtain all the classical critical exponents.
At T = 0, the first integral in Eq. (41) exists for d > (m+ 2)/2, and the second integral for d > (m+ 6)/2. We then have

(µ − µc) ∼


δ, d > (m + 6)/2,

δ/ ln δ, d = (m + 6)/2,
δ3/2, d = (m + 5)/2,
δ2, d = (m + 4)/2,

δ5/2, d = (m + 3)/2,

(44)



6406 P.F. Bienzobaz, S.R. Salinas / Physica A 391 (2012) 6399–6408

where δ = (g − gc)/gc . In conclusion, we have the same values for either classical or quantum exponents. As in the case
of p ≠ 1/4, the only difference is the critical dimension. According to an old conjecture about quantum critical behaviour,
the quantum values of the critical exponents are given by the corresponding values of the classical version of the system in
d+ z dimensions, where z is a dynamical critical exponent. Form < d the dynamical critical exponent is z = 1 (anisotropic
case); for m = d, it assumes the value z = 2 (isotropic case). It should be mentioned that Hamiltonian formulations of the
mean spherical model have been considered by some authors [24].

3.4. Decay of pair correlations

Let us consider the system in a site-dependent field,

H = −



−→
k ,

−→
l
 J−→k ,

−→
l S−→

k S−→
l −


−→
l

H−→
l S−→

l , (45)

and write the partition function

ZN(β,H, µ) =


q

exp

βNdH (q)H (−q)

4

µ −

Ĵ(q)
2


2 sinh

1
2
βw(q)

−1

, (46)

whereH(q) is the Fourier transform of H−→
l , and we are omitting the vector notation. We then have


SqS−q


N =

4
βNd

2 δ2 ln Z

δH (q) δH (−q)

H(q)=H(−q)=0
=

2g
βNd

1
[w(q)]2

, (47)

from which we obtain the pair correlations in real space,

⟨SrSr+h⟩N =
1

βNd


q

exp(iqh)

2µ − Ĵ(q)
. (48)

As discussed by Pisani and collaborators [16], the analysis of ⟨SrSr+h⟩, for d ≥ 3, below the critical temperature, leads to the
introduction of a modulated order parameter, with characteristic oscillations for p > 1/4. A detailed analysis of the long-
range correlations at Lifshitz point has been published by Frachebourg and Henkel [25]. There are also some investigations
of the interplay between competing interactions and the decay of correlations [26].

We now show that these oscillations of the pair correlations in terms of distance are already present in themuch simpler
one-dimensional case. In the thermodynamic limit, Eq. (48) can be written as

⟨SrSr+h⟩ =
1

2πβ

 π

−π

dq
exp(iqh)

[µ − cos q + p cos 2q]
, (49)

with the spherical condition

1 =
1

2πβ

 π

−π

dq
1

[µ − cos q + p cos 2q]
, (50)

where p > 0, µ and β are written in units of J1 > 0, with the requirement that µ > µc . Therefore, µ > (1− p) for p < 1/4,
and µ > [1/(8p) + p] for p > 1/4. Eq. (49) can be rewritten as

⟨Sr , Sr+h⟩ =
1

πβip


C
dw

wh+1

w4 −
1
pw

3 +
2µ
p w2 −

1
pw + 1

, (51)

where the contour C is the unit circle andwe assuming that h > 0. The fourth-order polynomial in the denominator is easily
factorised, with two roots, w1 and w2, inside the unit circle. After some straightforward algebra, we have

⟨SrSr+h⟩ =
cos [hθ1 + (θ1 − α)]

cos (θ1 − α)
exp [h ln |w1|] , (52)

where α is a real phase depending on p and µ, and

w1 = |w1| exp (iθ1) =
1
4p

(1 − A − 2B), (53)

with

A =


8p2 − 8pµ + 1; B =


1
2

− 2p (p − µ) −
1
2
A, (54)
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Fig. 3. Regions of the T–p plane of the one-dimensional model with simple exponential decay (θ1 = 0) and oscillatory exponential decay (θ1 ≠ 0) of the
pair correlations.

so that |w1| < 1, which leads to the well-known exponential decay. The spherical condition (50) can be used to
parametrically eliminate the chemical potential µ, and write the correlations in terms of T and p. In particular, oscillations
are suppressed by θ1 = 0, which is equivalent to

kBT
2J1

=
1
8p

− 2p, (55)

with the asymptotic value T = 0 for p = 1/4. In Fig. 3, we draw this border, and indicate the region with oscillating
correlations (θ1 ≠ 0) in the T–p plane. From Eq. (52), we can write expressions for a modulation length, LD = 2π/θ1,
and the correlation length, ξ = −1/ ln |w1|, in terms of temperature and the competition parameter p, which is a useful
information to investigate the growth of modulated domains [26]. A similar behaviour has been found by Stephenson [27]
in a calculation for the ANNNI chain.

4. Conclusions

We report an analysis of the phase diagram of a quantum mean spherical model in terms of temperature T , a quantum
parameter g , and the ratio p = −J2/J1, where J1 > 0 is a ferromagnetic interaction between first-neighbour sites along
the d directions of a hypercubic lattice, and J2 < 0 is associated with competing antiferromagnetic interactions between
secondneighbours alongm ≤ ddirections.We regain a number of results for the classical version of thismodel, including the
topology of the critical line in the g = 0 space,with a singular behaviour at the Lifshitz point, p = 1/4, for 2 < d < (m+6)/2,
which includes the case of the usual analogue of the Axial-Next-Nearest-neighbour Ising, or ANNNI, model. We consider in
particular the T = 0 phase diagram, which displays a quantum Lifshitz point, at p = 1/4. In the g − p phase diagram, there
is a critical border, gc = gc(p) for d ≥ 2, with a singularity at the Lifshitz point if d < (m + 4)/2. We establish upper and
lower critical dimensions and analyse the critical behaviour in the neighbourhood of the Lifshitz point. In one dimension,
we derive analytic expressions for the decay of pair correlations, and determine the region of modulated behaviour in the
T–p phase diagrams.
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