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Abstract. With the advent of the multi-messenger astronomy era, neutrinos open a unique
window to the Universe allowing one to relate the most violent phenomena with the production
and origin of the highest energy cosmic rays at distances beyond the GZK horizon. Neutrinos
with £ > 0.1 EeV of all flavors can be detected with the Surface Detector array of the Pierre
Auger Observatory by means of their interaction in the atmosphere (downward-going v) or in
the Earth crust (Earth-skimming v). The Pierre Auger Collaboration has searched for neutrino
candidates in coincidence with gravitational wave events detected by LIGO/Virgo. Up to the
present moment no neutrino candidates were found in any of these searches, which allows us
to put competitive limits on the energy radiated in ultra-high energy neutrinos. The most
stringent limits to the neutrino spectral fluence arise from the binary neutron star merger event
GW170817 at a Ds ~ 40 Mpc. The non-detection of neutrinos from this event is compatible
with the predictions of a short GRB observed at a large off-axis angle.

1. Introduction

The detection of the first gravitational wave transient GW150914, by the Advanced LIGO
detectors, on September 14, 2015, at 09 : 50 : 45 UTC, marked the beginning of a new
era. Its signal matched Einstein’s predictions of General Relativity for a gravitational wave
with Egw = 3.0f8:g Mg c? produced by the merger of a binary black hole system at a
luminosity distance of Dy = 4107739 Mpc [1]. Since then, several other events were detected
by the Advanced LIGO/Virgo observatories [2, 3, 4] motivating astronomical multi-messenger
observations to detect any other counterparts of these events. Presently, the most exciting results
come from the event GW170817, detected both by the Advanced LIGO and Advanced Virgo
Observatories on August 17, 2017, at 12 : 41 : 04 UTC. It was due to a binary neutron star
inspiral in the host galaxy NGC 4993, just at Ds; = 401“%4 Mpec, which makes it the closest, most
precisely localized and brightest event detected so far [5]. Only 1.7 s after the coalescence, the
Fermi-GBM independently detected the short gamma-ray burst GRB 170817A associated to the
merger. An unprecedented broadband follow-up carried out by tens of Collaborations worldwide
resulted in the positive detection of several counterparts of the event GW170817 / GRB 170817A
across the electromagnetic spectrum ranging from the radio to X-rays [4]. Additionally, several
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models predict that ultra-high energy cosmic rays and high-energy neutrinos could be produced
in such mergers of compact objects [6, 7, 8]. If this is the case, neutrinos are the messengers
by excellence of these interactions [9, 10]. Since they are neutral particles with extremely low
cross-sections they can propagate through distances beyond the GZK horizon, while keeping
their direction unaffected by the presence of matter and magnetic fields, allowing them to point
back at their source.

Neutrinos of all flavors with & > 0.1 EeV can be detected by the Pierre Auger Observatory,
located in the Argentinian province of Mendoza at ~ 1400 m a. s. 1., (Xground = 880 g cm~2).
The Pierre Auger Observatory uses a hybrid detection technique combining a Surface Detector
(SD) array, which samples the lateral density of particles at the ground, with a Fluorescence
Detector (FD), which measures the fluorescence light produced by the excitation of the nitrogen
molecules in the atmosphere. The SD array covers an area of 3000 km? with 1600 water-
Cherenkov stations disposed in a triangular grid of 1.5 km spacing, while the FD is composed
by four buildings placed at the array periphery, housing 6 telescopes each [11].

In this paper, the results of the neutrino searches done by the Pierre Auger Observatory in
coincidence with gravitational wave events are presented.

2. Neutrino detection with the Pierre Auger Observatory

Each water-Cherenkov station of the SD array consists of a cylindrical polyethylene tank of
3.6 m diameter and 1.2 m height filled with 12 000 liters of purified water, and it is equipped
with three 9” photo-multiplier tubes (PMT) placed at the top. The signals of the PMTs are
sampled by flash analogue to digital converters (FADC) with a frequency of 40 MHz [11]. These
features make possible the detection of hadronic air showers with £ > 4 EeV with zenith angles
up to 80° [11, 12, 13].

Hadron primaries interact early in the atmosphere generating large numbers of secondary
particles which, in order to be detected by the ground detectors, need to cross a mass overburden
which grows with zenith angle as X/ cos . This makes that the shower front of showers with
6 > 60° is dominated by muons, as most of the electromagnetic component gets absorbed in the
atmosphere. Thus, inclined air showers detected by the SD array, those with 60° < 6 < 80°,
typically present very flat shower fronts and narrow time distributions. Neutrinos, on the other
hand, have much smaller cross-sections and can interact deeper, much closer to the ground.
In this case, the FADC time traces of the SD stations would present a broad time structure,
indicative of that of a ”young” shower, with a high content of electromagnetic particles [14], as
it is depicted in figure 1.
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Figure 1. Different types of inclined showers which can be detected by the SD of the Pierre
Auger Observatory [14]. 1) A common proton induced shower interacting high in the atmosphere.
2) A deep down-going neutrino shower interacting close to the ground. 3) An Earth-skimming
v; interacting in the Earth’s crust generating a shower. 4) A down-going v, crossing through
the Andes and producing a 7 which decays near the SD.
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The discrimination of the neutrino signals from the hadronic background relies on the value
of the Area over Peak (AoP) of the triggered stations, defined as the ratio of the integral of the
FADC trace to its peak value, normalized to 1 for the average signal produced by a single muon
[14].

Neutrino searches can be performed either in the Downward Going (DG), or in the Earth-
skimming (ES) channels. The DG channel is subdivided into two regimes, the Downward Going
Low (DGL), which is used for events with zenith angles between 60° and 75°, and the Downward
Going High (DGH) for 75° < # < 90°. In the DG channels the neutrino searches use a Fisher
discriminant which combines up to 10 variables using the AoP of 4 (4 or 5) early (central)
stations in the DGH (DGL) selections as described in detail in [15]. Finally, the ES channel
applies for events in the zenith angle range 90° < 6 < 95°, and it dominates the exposure of the
Pierre Auger Observatory to neutrinos. The ES selection requires a minimum of three stations,
a high eccentricity of the elliptic shape of the triggered area on the ground and an apparent
speed of the trigger times between station pairs with an average value very close to ¢ with a
small spread [15]. This channel is only sensitive to tau neutrinos, and it is the one which presents
the highest selection efficiency, as it is demonstrated in figure 2.
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Figure 2. Left: Neutrino discrimination for the Earth-skimming channel. The cut in (AoP)
(dashed line) ensures that there is less than one background event in 50 years of observation
time. The selection efficiency for the Earth-skimming channel is 95% [15]. Right: Total exposure
(black solid line) as a function of the neutrino energy and contributions of the ES (dashed red),
DGH (blue dotted line) and DGL (chained magenta line) channels assuming equal fluxes for all
neutrino flavors [16].

2.1. Point-like sources
The arrival directions of the events detected by the SD are calculated by the relative arrival
time of the shower front to the triggered stations. The angular resolution of inclined events with
0 < 80° is better than 2.5°, and improves with the number of triggered stations and the energy
of the shower [12].

At the latitude of Auger, A = —35.2°, a source with equatorial coordinates (a, d) observed at
a given sidereal time ¢ is described, for a given zenith angle 6 (¢), by

cosf (t) =sinAsind + cos Acosdsin (27w t/T — «), (1)

where T is the duration of the sidereal day. Hence, the study of point-like neutrino sources is
only possible within certain declination ranges, as it is illustrated in figure 3.
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Figure 3. Upper limits at 90% C.L. for the sensitivity of the several neutrino channels as a
function of the declination, namely: ES (red dashed line), DGH (blue dashed line), DGL (green
dashed line), and the total exposure (black solid line) [16].

For the ES channel, the sky coverage of the Auger array ranges from —54.5° to 59.5° in
declination, while for the DG channels, it is possible to increase the declination range in the
southern sky to —84.5°.

3. Neutrino searches in coincidence with gravitational wave events

The Pierre Auger Observatory participates in several multi-messenger studies, among which
is the neutrino follow-ups of gravitational wave events. Currently Auger has participated in
the neutrino searches in temporal and spatial coincidence of the gravitational wave events
GW150914, the candidate event LVT151012, GW151226, and the GW170817 / GRB 170817A
[17, 18]. A brief description of these events is summarized in table 1.

Table 1. List of gravitational wave events followed-up by the Pierre Auger Observatory.
SNR represents the signal-to-noise ratio of the gravitational wave events [3, 4]. BBH stands
for Binary Black Hole merger and BNS stands for Binary Neutron Star inspiral.

Event Date and time of detection Ds/Mpc  Egw/Moc®? SNR  Category
GW150914  Sep. 14, 2015, 09 : 50 : 45 UTC 410718 3.0702 23.7 BBH
LVT151012 Oct. 12, 2015, 09 : 54 : 43UTC  1000*2%) 1.5753 9.7 BBH
GW151226  Dec. 26, 2015, 03: 38 : 53 UTC 4407150  1.0733 13.0 BBH
GW170817  Aug. 17, 2017, 12:41: 04 UTC 4015, > 0.025 32.4 BNS

The neutrino searches were performed in the energy range of [0.1 EeV,25 EeV], a
complementary energy region to the searches done by IceCube/ANTARES [19]. Two time
windows were used: one of 500 s around the time of the merger, to look for neutrinos coming
from the prompt phase of gamma-ray bursts [20, 21], and an extended one of 1 day (14 days)
after the merger of binary black hole (binary neutron star) systems, to search for longer lived
processes [21].
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Since the ES channel dominates the exposure of the Auger SD array to neutrinos while
presenting the lowest background, it is desirable that the source position at the time of the
merger lies in this region. From all the events followed by Auger, the event GW170817/GRB
170817A was the best located one since the source could be observed during the whole +500 s
time window in this channel, one reason more to highlight this event in a dedicated sub-section.
Also, the events GW151226 and LVT151012 had some overlap with the ES channel during a part
of the +500 s time window. Finally, all the three binary black hole merger events GW151226,
LVT151012 and GW150914 could be observed in the DGH channel during the +500 s, and
their follow-up could be carried on during a fraction of the 1 day time window. No neutrino
candidates were found during the £500 s and 1 day time windows [17].

3.1. The binary neutron star merger event GW170817/GRB 170817A

Thanks to the several electromagnetic counterparts, this was the most precisely located event at
the equatorial coordinates o (2000) = 13"09™48%.085, § (2000) = —23°22'53".343 [4]. Neutrino
searches in the energy range of GeV to EeV in coincidence with GW170817/GRB 170817A were
performed by the most sensitive neutrino observatories ANTARES, IceCube and Auger [18].
The sky map of these neutrino searches, as well as their results are shown in figure 4.
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Figure 4. Left: Sensitive sky areas of ANTARES, IceCube and Auger at the time of the event
GW170817 in Equatorial Coordinates. The red contour marks the 90% C.L. location of the
event GW170817 [1, 18]. Right: Upper limits at 90% C.L. of the neutrino spectral fluence from
the event GW170817 for a £500 s time window (top panel) and in the following 14 days after the
trigger (bottom panel). Some model predictions for the neutrino emission scaled to a distance
of 40 Mpc are also shown in the plot.

In Auger, the whole £500 s time window was observed in the ES channel field of view, the
most sensitive channel to ultra-high energy neutrinos. In this period, the source of GW170817
transited from 6 ~ 93°.3 to 8 ~ 90°.4 as seen from the center of the array. The performance
of the SD array (which is monitored each minute) was very stable, with an average number
of active stations amounting to ~ 95.8% 4 0.1%. No inclined showers passing the ES channel
selection were detected. The estimated number of background events in this 1000 s window
is ~ 6.3 x 1077, for the cuts applied in the ES channel [15]. Assuming neutrinos are emitted



26th Extended European Cosmic Ray Symposium 10P Publishing
IOP Conf. Series: Journal of Physics: Conf. Series 1181 (2019) 012060 do0i:10.1088/1742-6596/1181/1/012060

steadily during this period, with an energy spectrum of £~2 [17], the non-detection of candidates
allows us to put limits to its fluence (see figure 4 right). In the following 14 days searches were
carried out both in the ES and DG channels. From the Auger coordinates, the zenith angle of
the optical counterpart of the event oscillates daily between 6 ~ 11° to 8 ~ 121°. The source is
visible in the ES channel for ~ 4% (90° < 6 < 95°) of the day, in the DGL channel for ~ 10.5%
(60° < # < 75°), and in the DGH for 11.1% (75° < § < 90°). No significative counterpart was
found in any of the searches with any of the observatories, a result which is compatible with the
expectations of a GRB observed off-axis or with a low luminosity GRB [18].

4. Conclusions

With the functioning of the LIGO/Virgo systems, and with the upcoming gravitational wave
detectors, it is foreseeable an increase of the detection of gravitational wave events from nearby
sources. The detection of neutrino candidates from gravitational wave events would allow
to better understand the processes by which these ultra-high energy neutrinos, and possibly
ultra-high energy cosmic rays are produced. Also, in the case of the non-detection of any
other counterparts, it could help to better constrain the position of these sources in the sky
with a precision, ranging from less than ~ 1 deg? to the order of 10 deg? [17]. The Pierre
Auger Observatory, along with the neutrino detectors IceCube and ANTARES is committed in
continuing the rapid searches of neutrino candidates from the follow-up of future gravitational
wave events.
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