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1. Introduction

In this work we consider the following family of scalar reaction–diffusion equa-
tions with Dirichlet boundary conditions and initial conditions:

∂tu+ (−∂xx)αu = f(x, u), x ∈ (0, `),

u(t, 0) = u(t, `) = 0,

u(0, x) = u0(x),

(1.1)

where α > 0, (−∂xx)α represents the fractional power of the negative Laplacian
operator (in the sense of [1]) and f : (0, `)×R→ R is a non-dissipative nonlinearity
(we will make sense of this notion below).

We shall understand (1.1) as a perturbation of the limiting problem (that is,
when α = 1), as α varies in a suitable small neighborhood of 1. Those type of
perturbed semilinear equations are often referred to as fractional approximations
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de São Paulo (FAPESP) # 2022/01439-5, Brasil
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- SC, Brasil. e-mail: m.bortolan@ufsc.br, ORCiD: 0000-0002-4838-8847.

[U. Castro] Address: Instituto Federal de Educação, Ciência e Tecnologia de Goiás (IFG), Rua

02, QD. 10, Lts. 1 a 15, Residencial Bauman, CEP:766000-000, Cidade de Goiás - GO, Brasil.
e-mail: ubirajara.castro@ifg.edu.br, ORCiD: 0009-0002-0038-8255.

[J. Fernandes] This study was financed in part by the Coordenação de Aperfeiçoamento de

Pessoal de Nı́vel Superior - Brasil (CAPES) - Finance Code 001, by Fundação Carlos Chaga
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of the original one, and they represent, in this case, variations in the diffusion prop-
erties of the Laplacian operator. Fractional approximations are fairly recent in the
literature and they have a useful physical meaning: as pointed in [19] and [21], there
is an extensive set of physical applications where sub-diffusivity or super-diffusivity
take place, such as heat diffusion in sub/super conductors. Those situations are fre-
quently represented by mathematical models in which the linear term that governs
the equation is a fractional power of the negative Laplacian, (−∆)α. In those cases,
sub-diffusion or super-diffusion are represented by 0 < α < 1 or α > 1, respectively.

Understanding the continuity of the asymptotic structures under these perturba-
tions can be useful when modeling a real life problem, where one cannot accurately
state if the medium has properties of sub or super-diffusion. This take on frac-
tional approximations of semilinear problems was previously considered in several
papers, such as [3, 4, 6, 7, 8, 9, 14, 15]. So far, the literature deals with an abstract
semilinear problem, in a Banach space X, of the form{

ut + Λαu = F (u), t > 0,

u(0) = u0,
(1.2)

where α ∈ (1− δ, 1 + δ), for some small δ > 0, and Λ is a linear positive operator.
In general, the outline of the existent works is the following:

◦ present results regarding the existence of unique maximal solutions for (1.2);

◦ by using a dissipative assumption on F , ensure that these solutions are globally
defined, that is, defined for all t > 0;

◦ prove the existence of (compact) global attractors for (1.2), as well as their
upper and lower semicontinuity with respect to α.

Our purpose goes in a similar direction, but rather than assuming a dissipative
condition for the nonlinearity, we will deal with a class of non-dissipative nonlin-
earities. In those cases, whenever it is possible to prove the existence of global
solutions, the object in the phase space that provides the asymptotic dynamics for
the problem, since there is no bounded absorbing set, is the unbounded attractor,
that is, compactness is no longer assumed. The theory of unbounded attractors has
a little over 40 years and can be found, for instance, in [2, 5, 10, 12, 13, 23, 24].

We shall prove the existence of unbounded attractors associated to (1.1), namely
Jα, and we analyze their continuity as β → α, for α in small a neighborhood of
1. To the best of our knowledge, there is no other work, so far, in the literature
that proves a result on continuity of unbounded attractors in terms of Hausdorff
semidistance. In [12] the authors study a perturbation of a non-dissipative problem
and their effect on the unbounded attractors. They were able to prove that the
gradient structure in the unbounded attractor remains under these perturbations.
Nevertheless, continuity in terms of the Hausdorff semidistance is not guaranteed
in that situation. The type of perturbation considered in our paper, given in terms
of fractional powers, allows this take on continuity of the family {Jα}α∈(1−δ,1+δ) of
unbounded attractors.

Let us describe our setting a little further. It is known from the usual semigroup
theory that, for each u0 ∈ L2(0, `), (1.1) has a local solution if f(x, u) is locally
Lipschitz continuous with respect to u, uniformly in x (see [17, Theorem 3.3.3]).
Usually, in order to ensure that there exists a bounded absorbing set for (1.1), one
requires that f satisfies a certain dissipative condition, given in terms of the first
eigenvalue λ1 of −∂xx, namely

lim sup
|u|→∞

f(x, u)

|u|
< λ1,
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uniformly in x (see [16]). Since we want to treat exactly the opposite case, where
there is no bounded absorbing set, we will restrict ourselves to the case where

f(x, u) = bu+ g(x, u), (1.3)

with b > λ1 and g(x, u) bounded and globally Lipschitz in the variable u, uniformly
for x ∈ (0, `). We see that in this case we have the opposite condition of dissipation,
that is,

lim sup
|u|→∞

f(x, u)

|u|
= b > λ1.

It is clear that with condition (1.3), for each given u0 ∈ L2(Ω), problem (1.1)
has a unique globally defined solution. Our goals in this work are as follows:

◦ to prove the existence of an unbounded attractor Jα for (1.1);

◦ to prove the upper and lower semicontinuity, using the Hausdorff semidistance,
of the family {Jα}α∈(1−δ,1+δ) for a suitable small δ > 0.

To that end, we organize this paper as follows: Section 2 is dedicated to the
abstract theory of unbounded attractors, where we review the main results already
established in the literature. In Section 3 we prove that (1.1), under condition
(1.3), possess an unbounded attractor Jα (see Theorem 3.5). Lastly, Section 4
is dedicated to the results on upper and lower semicontinuity of the family of
unbounded attractors {Jα}α∈(1−δ,1+δ) (see Theorems 4.6 and 4.10).

2. Unbounded attractors

In this section, following [10], we briefly present the abstract theory of unbounded
attractors for semigroups in Banach spaces. Let T = {T (t) : t > 0} be a semigroup
in a Banach space (X, ‖ · ‖), that is,

◦ T (0)x = x for all x ∈ X;

◦ T (t+ s) = T (t)T (s) for all t, s > 0;

◦ the map [0,∞)×X 3 (t, x) 7→ T (t)x ∈ X is continuous.

For nonempty sets A,B ⊂ X we define the Hausdorff semidistance between A
and B by

dH(A,B) = sup
a∈A

inf
b∈B
‖a− b‖.

Definition 2.1. A closed set U ⊂ X is called an unbounded attractor for T if

(a) U is invariant for T , that is, T (t)U = U for all t > 0;
(b) U attracts bounded sets under the action of T , that is, for each B ⊂ X

bounded we have

lim
t→∞

dH(T (t)B,U) = 0;

(c) there is no proper closed subset of U satisfying both (a) and (b).

Comparing this definition with the one of a (compact) global attractor (see [25])
for semigroups, one can see that we replace the compactness with the minimality
condition (c). This enlarges the class of dynamical systems that has its long-time
dynamics represented by a particular set of the phase space. However, the lack of
compactness allows situations where the characterization of the unbounded attrac-
tor is complicated, and the uniqueness of this object is not ensured. The absence
of uniqueness is problematic if we wish to provide a set in the phase space that
describe the asymptotic dynamics. If there is more than one unbounded attractor,
which one will be used to describe the asymptotic dynamics?

Luckily, in certain situations, one can find a unique unbounded attractor and
even characterize it in terms of global solutions. In [10], following the ideas of [13],
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the authors exhibited a guideline to prove that, under suitable conditions, the set
of bounded in the past global solutions

J = {ξ(0) : ξ is a bounded in the past global solution of T},

is the unique unbounded attractor of T . Here, ξ : R → X is a bounded in the past
global solution of T if T (t)ξ(s) = ξ(t + s) for all t > 0 and s ∈ R, and the set
ξ((−∞, 0]) is bounded in X. This set J has the following properties:

Proposition 2.2. [10, Proposition 3]

(i) J is invariant,
(ii) if A ⊂ X is bounded and invariant then A ⊂ Wu(A) ⊂ J , where the

unstable set Wu(A) is defined by

Wu(A) =
{
ξ(0) : ξ is a global solution of T such that lim

s→−∞
dH(ξ(s), A) = 0

}
.

Now we present the main definitions and results of [10] that will be later used
in the text.

Definition 2.3. A semigroup T in a Banach space X is u-asymptotically com-
pact if for each B ⊂ X bounded there exists t0 = t0(B) > 0 such that for each
t > t0 there exists a compact set K(t) ⊂ X with

lim
t→∞

dH(T (t)B,K(t)) = 0.

We say that a set G ⊂ X is u-strongly absorbing for T if

(A1) G is positively invariant by T , that is, T (t)G ⊂ G for all t > 0;
(A2) for each B ⊂ X bounded there exists t0 = t0(B) > 0 such that T (t)B ⊂ G

for all t > t0;
(A3) there exists a sequence of bounded sets {Hn}n∈N ⊂ G such that:

◦ Hn ⊂ Hn+1 for each n ∈ N;
◦ G \Hn is positively invariant by T for each n ∈ N;
◦ if B ⊂ G is bounded there exists n ∈ N such that B ⊂ Hn.

(A4) lim
t→∞

dH(T (t)G,J ) = 0.

With that, the main result of [10] regarding the existence of the unbounded
attractor is as follows.

Theorem 2.4. [10, Theorem 4 and Proposition 10] If T is u-asymptotically compact
and has an u-strongly absorbing set G, than J is the unique unbounded attractor
for T . Moreover, J ⊂ G and J is bounded-compact, that is, J ∩ F is compact for
each closed and bounded subset F of X.

Now we present the characterization of the unbounded attractors in terms of the
unstable sets of its invariant bounded sets, as given in [10].

Definition 2.5. We say that a collection E of subsets of X is a bounded disjoint
collection of isolated invariant sets for the semigroup T if

◦ each E ∈ E is bounded, invariant for T , and there exists ε > 0 such that E is
the maximal invariant set in Oε(E) = {x ∈ X : d(x, e) < ε for some e ∈ E};
◦ there exists δ > 0 such that for all E,E∗ ∈ E with E 6= E∗ we have

Oδ(E) ∩ Oδ(E∗) = ∅.

The letter u in front of the definitions stands for “unbounded”, in order to distinguish them
from the classical definitions from the dissipative case.
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Let T be a semigroup such that the set J of bounded in the past global solution is
the unique unbounded attractor, and assume that E a bounded disjoint collection of
isolated invariant sets of T . We say that T is E-gradient if there exists a continuous
function V : J → R such that

◦ R+ 3 t 7→ V (T (t)x) decreases for any x ∈ J .
◦ If V (T (t)x) = V (x) for all t > 0, then x ∈ E for some E ∈ E .
◦ V is constant on the connected components of each E ∈ E .

In this case, V is called an E-Lyapunov functional for T .

Proposition 2.6. [10, Theorem 8 and Corollary 9] Let T be a semigroup such that
the set J of bounded in the past global solution is the unique unbounded attractor,
and assume that E is a bounded disjoint collection of isolated invariant sets of T .
If T is E-gradient and J is bounded-compact then

J = Wu
( ⋃
E∈E

E
)
.

If E = {E1, . . . , En} then

J =

n⋃
i=1

Wu(Ei).

It is of particular interest the case where the collection E of bounded disjoint
isolated invariant sets is formed by a finite number of isolated equilibria, that is,
E = {u1, . . . , un}. If T is E-gradient, we have

J =

n⋃
i=1

Wu(ui).

3. Existence of unbounded attractors

We deal with (1.1) in the non-dissipative case, that is, we shall assume (1.3).
Let

A := −∂xx : D(A) ⊂ L2(0, `)→ L2(0, `)

be the negative Laplacian with Dirichlet boundary conditions and domain D(A) =
H2(0, `)∩H1

0 (0, `). In this case, A is a densely defined positive self-adjoint operator,
with compact resolvent and spectrum σ(A) = σp(A) = {λj}j>1 satisfying

λ1 > 0, λj 6 λj+1 for all n ∈ N and λj →∞,
and to each λj we have an associate eigenvector ϕj ∈ D(A). We assume that there
exists N ∈ N such that

λN < b < λN+1, (3.1)

and define

σ =
1

2
min{b− λN , λN+1 − b} > 0. (3.2)

Problem (1.1) can be rewritten as an abstract evolution equation in X = L2(0, `)
of the form {

ut = (−Aα + bI)u+ g̃(u), t > 0,

u(0) = u0 ∈ X,
(3.3)

where α > 0, and g̃(u)(x) = g(x, u(x)) for u ∈ X and x ∈ (0, `). Note that
g̃ : X → X is bounded and globally Lipschitz in X, since g(x, u) is bounded and
globally Lipschitz on u, uniformly for x ∈ (0, `). We denote

Lα := −Aα + bI, (3.4)

and we have the following properties:

Recall that a point u ∈ X is an equilibrium for T if T (t)u = u for all t > 0.
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Lemma 3.1. Let Lα be the linear operator defined in (3.4).

(1) σ(Lα) = σp(Lα) = −[σ(A)]α + b. Furthermore, ϕj is the eigenvalue of Lα
associated to −λαj + b, where ϕj is the eigenvector of A associated with λj,
for each j ∈ N;

(2) there exists δ > 0 such that for α ∈ (1−δ, 1+δ), Lα is the infinitesimal gen-
erator of an analytic semigroup {eLαt : t > 0} in X = L2(0, `). Moreover,
eLαt is a compact operator for each t > 0;

(3) problem (3.3) has unique solution uα(·, u0) : [0,∞)→ X. Setting Tα(t)u0 =
uα(t, u0) for t > 0, u0 ∈ X and α > 0, Tα = {Tα(t) : t > 0} defines a
compact semigroup in X for each α > 0, and for each t > 0 we have

Tα(t)u0 = eLαtu0 +

∫ t

0

eLα(t−s)g̃(Tα(s)u0)ds.

Proof. The proof of (1) follows from [20, Theorem 5.3.1] and the fact that the
eigenvectors of Aα associated to an λαj are the same as the eigenvector of A asso-
ciated to an λj . Using [18, Theorem 2] we obtain item (2). Item (3) follows from
[17, Theorem 3.3.3 and Corollary 3.3.5] and the compactness of eLαt for t > 0.

�

We define

EN = span{ϕ1, . . . , ϕN} and FN = E⊥N .

Clearly X = EN ⊕FN and we denote any element u ∈ X as u = p+ q ∈ EN ⊕FN .
Let PN : X → X denote the orthonormal projection over EN . With δ > 0 as in
Lemma 3.1, we can assume, without loss of generality, that it is small enough so
that

σ < min{b− λαN , λαN+1 − b} for all α ∈ (1− δ, 1 + δ), (3.5)

where σ > 0 is given by (3.2). Also, we choose η > 0 such that

− λα1 + b < η for all α ∈ (1− δ, 1 + δ). (3.6)

Using the classical theory of spectral decomposition of sectorial operators pre-
sented in [18, Theorem III.6.17] and [22, (2.5.14)] we have the following result.

Lemma 3.2. With these assumptions, for α ∈ (1− δ, 1 + δ) we have

(1) LαPN = PNLα and eLαtPN = PNe
Lαt for all t > 0;

(2) L+
α = Lα|EN = LαPN ∈ L(EN ), ‖L+

α‖ 6 η and

〈L+
αp, p〉 > σ‖p‖2 for all p ∈ EN ;

(3) L−α = Lα|FN = Lα(I−PN ) is a sectorial operator in FN , hence it generates

an analytic semigroup {eL−
α t : t > 0} in FN , and

〈L−α q, q〉 6 −σ‖q‖2 for all q ∈ FN ∩D(Lα);

(4) there exists M > 1 such that for all t > 0 and α ∈ (1− δ, 1 + δ) we have

‖eL
+
α tp‖ >Meσt‖p‖ for all p ∈ EN ,

‖eL
−
α tq‖ 6Me−σt‖q‖ for all q ∈ FN ,

and for all t > 0 and α ∈ (1− δ, 1 + δ) we have

‖L−α eL
−
α tq‖ 6Mt−1e−σt‖q‖ for all q ∈ FN .

In order to prove the existence of a unique unbounded attractor for (3.3), we
shall assume an additional condition on the nonlinearity g̃. We assume that for
p ∈ EN and q ∈ FN we have

‖g̃(p+ q)‖ → 0 as ‖p‖ → ∞, (3.7)
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uniformly for q in bounded subsets of FN .
Now we show that, under all these conditions, Theorem 2.4 can be applied to

ensure that

Jα = {ξ(0) : ξ is a bounded in the past global solution of Tα}
is the unique unbounded attractor of the problem (3.3), for each α ∈ (1− δ, 1 + δ).

Proposition 3.3. There exists a constant D > 0, independent of α ∈ (1−δ, 1+δ),
such that the set

G := {u = p+ q ∈ EN ⊕ FN : ‖q‖ 6 D}
is u-strongly absorbing for Tα for all α ∈ (1− δ, 1 + δ).

Proof. Since g̃ is bounded and globally Lipschitz, there exists C > 0 such that

‖g̃(u)‖ 6 C and ‖g̃(u)− g̃(v)‖ 6 C‖u− v‖ for all u, v ∈ X. Define D = C
√
2`
σ > 0.

It follows from [10, Lemma 17] that Tα(t)G ⊂ G and for each B ⊂ X bounded
there exists t0 = t0(B) > 0 such that T (t)B ⊂ G for all t > t0.

Fix κ > 0 and (see [10, (17)]) for n ∈ N set

Hn = {u = p+ q ∈ G : (1 + κ)‖p‖2 − ‖q‖2 6 n2}.
It follows from [10] that Hn ⊂ Hn+1 for all n ∈ N, G \ Hn is positively invariant
for Tα for all n sufficiently large, and if B ⊂ G is bounded then B ⊂ Hn for some
n ∈ N. Lastly, it follows from [10, Page 12] that dH(Tα(t)G,Jα) → 0 as t → ∞,
hence G is u-strongly absorbing for Tα for all α ∈ (1− δ, 1 + δ). �

Remark 3.4. Using the results of [10], we note that the sets Hn have the following
property: for each α ∈ (1 − δ, 1 + δ) and x ∈ X, if Tα(τ)x ∈ Hn for some τ > 0
then x ∈ Hn.

With that we present the main result of this section, which shows that Jα is
indeed the unique unbounded attractor for Tα, for each α ∈ (1− δ, 1 + δ).

Theorem 3.5. Consider (1.1) and assume that (1.3), (3.1) and (3.7) hold. Let
δ > 0 be small enough such that (3.5) and (3.6) hold for α ∈ (1 − δ, 1 + δ). Then
Jα is the unique unbounded attractor of Tα, Jα ⊂ G and Jα is bounded-compact.

Proof. Using Theorem 2.4, it just remains to note that Tα is u-asymptotically
compact, which is trivial since Tα(t) is a compact map for each t > 0. �

4. Continuity of the unbounded attractors

Up to now we are able to say that each problem (1.1), for α ∈ (1− δ, 1 + δ), has
Jα as its unique unbounded attractor, which are all subsets of G and are bounded-
compact. In this section we shall prove that the family {Jα}α∈(1−δ,1+δ) remains
close in terms of the Hausdorff semidistance as β → α, for each α ∈ (1− δ, 1 + δ).
Throughout this section, we shall assume that conditions required on Theorem 3.5
hold.

4.1. Upper semicontinuity. We recall that the family {Jα}α∈(1−δ,1+δ) is said to
be upper semicontinuous at α ∈ (1− δ, 1 + δ) if

lim
β→α

dH(Jβ ,Jα) = 0.

In what follows, we prove this property. Fix R > 0 and for α ∈ (1 − δ, 1 + δ) we
define the set

Jα,R = Jα ∩ {p+ q ∈ EN ⊕ FN : ‖p‖ 6 R}. (4.1)

Since Jα ⊂ G, we have

Jα,R = Jα ∩ {p+ q ∈ EN ⊕ FN : ‖p‖ 6 R and ‖q‖ 6 D},
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and hence Jα,R is compact (from the bounded-compactness of Jα).
From now on, we assume that δ > 0 obtained in Lemma 3.1 (2) is such that

δ < 1
2 . Hence, (1 − δ, 1 + δ) ⊂ ( 1

2 ,
3
2 ). We also denote |u| the H1

0 (0, `)-norm of

u ∈ H1
0 (0, `).

Lemma 4.1. Given 0 < ξ < σ, there exists c1 > 0 such that for all q ∈ FN and
α ∈ (1− δ, 1 + δ) we have

|eL
−
α tq| 6 c1t−

1
2α e−ξt‖q‖ for all t > 0.

Proof. We know for all t > 0 and q ∈ FN we have

‖eL
−
α tq‖ 6Me−σt‖q‖ and ‖L−α eLαtq‖ 6Mt−1e−σt‖q‖.

Since L−α = Lα = −Aα + bI in FN , we also have

‖AαeL
−
α tq‖ 6 ‖LαeLαtq‖+ b‖eLαtq‖ 6Mt−1e−σt‖q‖+Mbe−σt‖q‖

6Mt−1e−ξt‖q‖+Mbte−(σ−ξ)tt−1e−ξt‖q‖

= M(1 + tbe−(σ−ξ)t)t−1e−ξt‖q‖,

and since [0,∞) 3 t 7→ te−(σ−ξ)t is bounded, it follows that for some c > 0 we have

‖AαeL
−
α tq‖ 6 ct−1e−ξt‖q‖ for all t > 0 and q ∈ FN .

Since α > 1
2 , from [17, Theorem 1.4.4] there exists K > 0 such that

|eL
−
α tq| = ‖A 1

2 eL
−
α tq‖ 6 K‖AαeL

−
α tq‖ 1

2α ‖eL
−
α tq‖1− 1

2α .

Using the previous estimates, we obtain

|eL
−
α tq| 6 Kc 1

2αM1− 1
2α t−

1
2α e−ξt‖q‖ 6 c1t−

1
2α e−ξt‖q‖,

where c1 = supα∈(1−δ,1+δ)Kc
1
2αM1− 1

2α <∞. �

Proposition 4.2. If {xn}n∈N ⊂ G, tn → ∞, αn → α ∈ (1 − δ, 1 + δ), and
{Tαn(tn)xn}n∈N is bounded, then {Tαn(tn)xn}n∈N has a convergent subsequence.
Furthermore, given {xn}n∈N ⊂ X bounded with xn ∈ Jαn for each n ∈ N then
{xn}n∈N has a convergent subsequence in X.

Proof. Since α ∈ (1− δ, 1 + δ), we can assume, without loss of generality, that αn ∈
(1− δ, 1 + δ) for all n ∈ N. We write xn = pn+ qn ∈ EN +FN , pn(t) = PNTαn(t)xn
and qn(t) = (I − PN )Tαn(t)xn for all n ∈ N and t > 0. Since {Tαn(tn)xn}n∈N is
bounded we have {pn(tn)}n∈N ⊂ EN bounded, and since EN is finite dimensional, it
possess a convergent subsequence, which we name the same. Using Lemma 4.1, the
fact that ‖qn‖ 6 D (since {xn}n∈N ⊂ G), the fact that the function g̃ is bounded,
and that

qn(t) = eLαn tqn +

∫ t

0

eLαn (t−s)g̃(Tαn(s)xn)ds for t > 0,

we obtain

|qn(t)| 6 c1t−
1

2αn e−ξt + C

∫ t

0

(t− s)−
1

2αn e−ξ(t−s)ds.

For t > 1 we have

|qn(t)| 6 c1 +
2Cαn

2αn − 1
+
Ce−ξ

ξ
,

which, in particular, implies that {qn(tn)}n∈N is bounded in H1
0 (0, `) and, hence, it

has a convergent subsequence in L2(0, `). Since Tαn(tn)xn = pn(tn) + qn(tn), the
first part of the result is proved.
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For the second statement, since xn ∈ Jαn and Jαn is Tαn-invariant, there exists
zn ∈ Jαn ⊂ G such that Tαn(n)zn = xn. Since {zn}n∈N ⊂ G, the result follows
directly from the first part. �

Lemma 4.3. For compact sets K ⊂ X, J ⊂ [0,∞), and α ∈ (1− δ, 1 + δ), we have

sup
(t,x)∈J×K

‖Tβ(t)x− Tα(t)x‖ → 0 as β → α.

Also, given (tn, xn) → (t, x) and αn → α ∈ (1 − δ, 1 + δ) we have Tαn(tn)xn →
Tα(t)x as n→∞.

Proof. First statement on the semigroup convergence as β → α over compact sub-
sets of [0,∞) ×X follows similarly to [8, Theorem 5.6], where the authors proved
the convergence of the nonlinear semigroups as β → 1 (no significant change ap-
pears when we consider β → α, for α ∈ (1 − δ, 1 + δ)). For the second part, set
K = {xn : n ∈ N} ∪ {x} and J = {tn : n ∈ N} ∪ {t}, which are compact. Given
ε > 0 there exists n0 ∈ N such that if n > n0 then

sup
(s,y)∈J×K

‖Tαn(s)y − Tα(s)y‖ < ε

2
.

From the continuity properties of Tα, there exists µ > 0 such that if |t− s| < µ and
‖y − x‖ < µ then

‖Tα(t)x− Tα(s)y‖ < ε

2
.

Thus, if n ∈ N is sufficiently large we have

‖Tαn(tn)xn − Tα(t)x‖ 6 ‖Tαn(tn)xn − Tα(tn)xn‖+ ‖Tα(tn)xn − Tα(t)x‖ < ε,

and the conclusion holds. �

Proposition 4.4. Given {xn}n∈N ⊂ X bounded with xn ∈ Jαn for each n ∈ N
then {xn}n∈N has a convergent subsequence to a point x ∈ Jα. In particular, for
each R > 0 and α ∈ (1− δ, 1 + δ) we have

lim
β→α

dH(Jβ,R, Jα,R) = 0, (4.2)

where Jβ,R and Jα,R are as in (4.1).

Proof. Let ξn : R→ X be a bounded in the past global solution of Tαn with ξn(0) =
xn. Using the definition of G, there exists Hm such that {xn}n∈N ⊂ Hm. Hence
(see Remark 3.4) ξn(t) ∈ Hm for all t 6 0 and n ∈ N. From Theorem 4.2, {xn}n∈N
has a convergent subsequence, which we call the same, to a point x ∈ X. Again,
using the previous lemma, {ξn(−1)}n∈N has a convergent subsequence, which we
call the same, to a point x−1 ∈ X. From Lemma 4.3, we have

ξn(0) = Tαn(1)ξn(−1)→ Tα(1)x−1,

and since ξn(0) → x, we obtain Tα(1)x−1 = x. For each k ∈ N we obtain
a subsequence such that ξn(−j) → x−j ∈ X for j = 0, . . . , k, and such that
Tα(1)x−k = x−k+1 for each k > 1.

Setting ξ(t) = T (t)x for t > 0 and ξ(t) = T (t + k)x−k for t ∈ [−k,−k + 1), for
each k ∈ N, then it is simple to see that ξ is a global solution of Tα with ξ(0) = x.
Since the set Hm is closed, it is easy to see that ξ(t) ∈ Hm for all t 6 0, which
implies that ξ is bounded in the past. Hence, x ∈ Jα.

Now assume that (4.2) does not hold. Then there exists ε > 0, αn → α, xn ∈
Jαn,R for each n ∈ N such that

dH(xn, Jα,R) > ε for all n ∈ N. (4.3)

From what we have just proved, since xn ∈ Jαn and {xn}n∈N is bounded, up
to a subsequence, xn → x ∈ Jα. Since PN is continuous, PNxn → PNx. As
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‖PNxn‖ 6 R for all n we obtain ‖PNx‖ 6 R, and hence x ∈ Jα,R and we obtain a
contradiction with (4.3).

�

Using [10, Lemma 18 and Proposition 20] we have the following:

Lemma 4.5. Given ε > 0 there exists R > 0 such that for all α ∈ (1− δ, 1 + δ) we
have

Jα ∩ {p+ q ∈ EN ⊕ FN : ‖p‖ > R} ⊂ Oε(EN ).

Moreover, for each p ∈ EN and α ∈ (1− δ, 1 + δ) there exists q = q(α) ∈ FN such
that p+ q ∈ Jα.

Theorem 4.6 (Upper semicontinuity). For each α ∈ (1− δ, 1 + δ) we have

lim
β→α

dH(Jβ ,Jα) = 0.

Proof. If that is not the case, there exists ε0 > 0, αn → α and xn ∈ Jαn such that

dH(xn,Jα) > ε0 for all n ∈ N. (4.4)

If {xn}n∈N, up to a subsequence, is bounded, then there exists R > 0 such that
xn ∈ Jαn,R for all n ∈ N, and it follows from Proposition 4.4 that {xn}n∈N, up
to a subsequence, converges to some x ∈ Jα,R ⊂ Jα, which contradicts (4.4). It
remains to treat the case where ‖xn‖ → ∞ as n→∞. Since {xn}n∈N ⊂ G, setting
pn = PNxn, we must have ‖pn‖ → ∞ as n → ∞. From Lemma 4.5, there exists
R > 0 such that for all α ∈ (1− δ, 1 + δ) we have

Jα ∩ {p+ q ∈ EN ⊕ FN : ‖p‖ > R} ⊂ O ε0
4

(EN ).

For all n sufficiently large we have ‖pn‖ > R and hence xn ∈ O ε0
4

(EN ). Thus, for

qn = xn − pn, we obtain

‖qn‖ = ‖xn − pn‖ = inf
p∈EN

‖xn − p‖ = dH(xn, EN ) <
ε0
4
.

Also, from Lemma 4.5, there exists qαn ∈ FN such that yn := pn + qαn ∈ Jα, and
since ‖pn‖ is large, we obtain

‖qαn‖ = ‖yn − pn‖
(∗)
= inf

p∈EN
‖yn − p‖ = dH(yn, EN ) <

ε0
4
,

where in (∗) we used the fact that PNyn = pn. This implies that for n sufficiently
large we have

dH(xn,Jα) 6 ‖xn − yn‖ = ‖qn − qαn‖ 6 ‖qn‖+ ‖qαn‖ <
ε0
2
,

and contradicts (4.4). This completes the proof. �

4.2. Lower semicontinuity. Similarly to the upper semicontinuity, we say that
the family {Jα}α∈(1−δ,1+δ) is lower semicontinuous at α ∈ (1− δ, 1 + δ) if

lim
β→α

dH(Jα,Jβ) = 0.

Although alike in definition, the obtainment of the lower semicontinuity is far more
troublesome, and requires additional information on the internal structures of the
unbounded attractors Jα. We first note that from the regularizing properties of the
equation, Jα ⊂ H1

0 (0, `) for α ∈ (1− δ, 1 + δ). Furthermore, (3.3) has a Lyapunov
function Vα : Jα → R given by

Vα(u) = ‖Aα
2 u‖2 − b‖u‖2 − 2

∫ `

0

G̃(u)dx, (4.5)
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where G̃(u)(x) =

∫ u(x)

0

g(x, s)ds for x ∈ (0, `). Indeed, taking the inner product

in L2(0, `) of (3.3) by ut and using the fact that Aα = (−∂xx)α is self-adjoint, we
obtain

‖ut‖2 = 〈ut, ut〉 = 〈−Aαu, ut〉+ 〈bu, ut〉+ 〈g(x, u), ut〉

= −1

2

d

dt

[
‖Aα

2 u‖2 − b‖u‖2 − 2

∫ `

0

G̃(u)dx

]
and consequently, for Vα defined by (4.5), we obtain that d

dtVα(u) = −2‖ut‖2 along
solutions of (3.3). Therefore, Vα is strictly decreasing over non-constant trajectories
and it is constant on the equilibria of (3.3). Henceforth, if Eα is the set of equilibria
of Tα, then Tα is Eα−gradient, and Proposition 2.6 implies that Jα = Wu(Eα).

Recall that if T (t) is Fréchet differentiable in X for each t > 0, then an equi-
librium u0 ∈ X is called hyperbolic if the spectrum σ(DxT (t)u0) of the linear
operator DxT (t)u0 ∈ L(X) does not intersect the unitary circle S1 of C for each
t > 0, that is, σ(DxT (t)u0) ∩ S1 = ∅ for each t > 0.

From now on we assume moreover that

g̃ : H1
0 (0, `)→ L2(0, `) is continuously Frechét differentiable,

which implies, since Jα ⊂ H1
0 (0, `), that Tα(t)|Jα : Jα → Jα is Frechét differentiable

in H1
0 (0, `) for each t > 0 and α ∈ (1 − δ, 1 + δ). This is true, for instance, when

∂g
∂u (x, u) is globally Lipschitz in u, uniformly for x ∈ (0, `).

Proposition 4.7. Assume that there exists α ∈ (1− δ, 1 + δ) such that Eα consists
exactly of n hyperbolic equilibria eα,1, . . . , eα,n. Then there exists µα > 0 such that
for β ∈ (α−µα, α+µα) ⊂ (1−δ, 1+δ), Eβ consists exactly of n hyperbolic equilibria
eβ,1, . . . , eβ,n with

max
i=1,...,n

‖eβ,i − eα,i‖ → 0 as β → α.

Proof. If α = 1, the result follows from [8, Proposition 12] For the general case,
consider the operators

B = Aα, γ =
β

α
, Bγ = (Aα)

β
α ,

and see that γ → 1 as β → α. Hence the result follows from the case α = 1. �

From this point forward, we shall assume that for any α ∈ (1− δ, 1 + δ), the set
of equilibria Eα for (3.3) consists of n hyperbolic equilibria eα,1, . . . , eαn . Therefore,
we have Jα = ∪ni=1W

u(eα,i).

Remark 4.8. In [11, Theorem 1.1] the authors proved that for (1.1) with α = 1,
E1 generically consists only of hyperbolic equilibria, that is, this property holds for
any f in a residual subset of C2([0, `]× R,R).

For ρ > 0 and eα,i ∈ Eα, we define the ρ-local unstable manifold of eα,i as
the set

Wu
ρ (eα,i) = {ξ(0) : ξ is a global solution of Tα with ‖ξ(t)− eα,i‖ < ρ for all t 6 0

and ξ(t)→ eα,i as t→ −∞}.

In [8] the authors proved that the local unstable manifolds of equilibria behaves
continuously as α→ 1−. With minor changes in the proof, which we omit, we can
state the following result.
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Proposition 4.9. [8, Theorem 6.9] There exists a ρ > 0 sufficiently small such
that

max
i=1,...,n

(
dH(Wu

ρ (eβ,i),W
u
ρ (eα,i)) + dH(Wu

ρ (eα,i),W
u
ρ (eβ,i))

)
→ 0 as β → α,

for each α ∈ (1− δ, 1 + δ).

With that we can prove the lower semicontinuity of the family {Jα}α∈(1−δ,1+δ),
as we state and prove next.

Theorem 4.10 (Lower semicontinuity). For each α ∈ (1− δ, 1 + δ), we have

lim
β→α

dH(Jα,Jβ) = 0.

Proof. It is enough to prove that given any ε > 0, there exists a µ = µ(ε) > 0 such
that for any xα ∈ Jα and β ∈ (α− µ, α+ µ), we can find xβ ∈ Jβ such that

‖xβ − xα‖ < ε.

Let R = R(ε) > 0 be the constant obtained in Lemma 4.5 such that, for all
β ∈ (1− δ, 1 + δ),

Jβ ∩ {p+ q ∈ EN ⊕ FN : ‖p‖ > R} ⊂ O ε
2
(EN ).

For xα = p + qα ∈ EN ⊕ FN , with xα ∈ Jα and ‖p‖ > R, then from Lemma 4.5,
‖qα‖ < ε

2 , and for any β ∈ (1 − δ, 1 + δ), there exists qβ ∈ FN with ‖qβ‖ < ε
2 and

such that xβ = p+ qβ ∈ Jβ . Hence

‖xα − xβ‖ = ‖qα − qβ‖ < ε.

Assume now that xα = p + qα ∈ J with ‖p‖ 6 R, that is, xα ∈ Jα,R (see (4.1)).
From Theorem 3.5, Jα,R is compact and there exists xα,1, ..., xα,m ∈ Jα,R such that

Jα,R ⊂
m⋃
j=1

O ε
2
(xα,j).

For each j = 1, . . . ,m, since Jα =
⋃n
i=1W

u(eα,i), xα,j ∈ Wu(eα,i) for some i =
1, . . . , n. Let ξ be the global solution of Tα such that xα,j = ξ(0) as in the definition
of Wu(eα,i). Thus, for some t0 < 0, we have zα,j = ξ(t0) ∈ Wu

ρ (eα,i). From the
continuity of the unstable manifolds of equilibria, we can find zβ,j ∈ Wu

ρ (eβ,i)
arbitrarily close to zα,j , as long as β is arbitrarily close to α. The continuity of the
functions y 7→ Tα(t0)y ∈ X and β 7→ Tβ(t0)y allow us to obtain, for β in a small
neighborhood of α, such that ‖zα,j − zβ,j‖ is sufficiently small, hence

‖xα,j − xβ,j‖ = ‖Tα(t0)zα,i − Tβ(t0)zβ,j‖

6 ‖Tα(t0)zα,j − Tα(t0)zβ,j‖+ ‖Tα(t0)zβ,j − Tβ(t0)zβ,j‖ <
ε

2
.

Since ‖xα − xα,j‖ < ε
2 for some j = 1, . . . ,m, we obtain

‖xα − xβ,j‖ 6 ‖xα − xαj‖+ ‖xαj − xβ,j‖ <
ε

2
+
ε

2
,

proving the theorem. �

Conclusion. Joining these results, we have the following: there exists δ > 0
sufficiently small such that for each α ∈ (1− δ, 1 + δ) equation (1.1) has Jα (the set
of bounded in the past global solutions of (1.1)) as its unique unbounded attractor
and

lim
β→α

[
dH(Jβ ,Jα) + dH(Jα,Jβ)] = 0.
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