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We investigate the low-temperature properties of the one-dimensional spin-1 Heisenberg model with geometric
fluctuations induced by aperiodic but deterministic coupling distributions, involving two parameters. We focus
on two aperiodic sequences, the Fibonacci sequence and the 6-3 sequence. Our goal is to understand how these
geometric fluctuations modify the physics of the (gapped) Haldane phase, which corresponds to the ground state
of the uniform spin-1 chain. We make use of different adaptations of the strong-disorder renormalization-group
(SDRG) scheme of Ma, Dasgupta, and Hu, widely employed in the study of random spin chains, supplemented
by quantum Monte Carlo and density-matrix renormalization-group numerical calculations, to study the nature
of the ground state as the coupling modulation is increased. We find no phase transition for the Fibonacci chain,
while we show that the 6-3 chain exhibits a phase transition to a gapless, aperiodicity-dominated phase similar
to the one found for the aperiodic spin-1/2 XXZ chain. Contrary to what is verified for random spin-1 chains,
we show that different adaptations of the SDRG scheme may lead to different qualitative conclusions about the
nature of the ground state in the presence of aperiodic coupling modulations.
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I. INTRODUCTION

Quantum spin chains represent a suitable laboratory for
the study of the combined effects, on many-body systems,
of quantum fluctuations and broken translation symmetry,
represented for instance by the presence of an inhomogeneous
coupling distribution. A paradigmatic model in this context is
the Heisenberg chain, described by the Hamiltonian

H =
L∑

j=1

Jj Sj · Sj+1, (1)

in which the constants Jj > 0 are antiferromagnetic couplings
between the spin-S operators located at contiguous sites.

Even in the uniform limit (Jj ≡ J ), the model exhibits a
variety of physical behavior, strongly dependent on the integer
or half-integer character of S. According to a widely accepted
conjecture by Haldane [1,2], chains with half-integer S have a
gapless energy spectrum, while the ground state of chains with
integer S is separated from the first excited states by a finite
energy gap. The most notable effects are seen in the extreme
quantum limit of small values of S, in which the two classes of
systems are represented by S = 1

2 and 1. In this last case (S =
1), the ground state—-the so-called Haldane phase—which
can be well approximated by a valence-bond-solid state [3],
exhibits a hidden topological order, revealed by a string order
parameter [4] and the boundaries of open finite chains of length
L harbor spin- 1

2 degrees of freedom.
Whether the low-energy spectrum is gapless or gapped gov-

erns not only the low-temperature thermodynamic behavior but
also affects the stability of the uniform ground state towards
the breaking of translation symmetry. In the simple case of
dimerization (the introduction of alternating couplings Jodd

and Jeven along the chain), the spin- 1
2 chain becomes gapped

even in the presence of an infinitesimal difference between
Jodd and Jeven, while the Haldane phase is protected by the
finite gap.

Disorder effects, represented by random uncorrelated cou-
plings, are even more pronounced. For the spin- 1

2 chain,
much information on the effects of random couplings can be
obtained by using the strong-disorder renormalization-group
(SDRG) scheme introduced by Ma, Dasgupta, and Hu [5,6].
The basic idea is to eliminate high-energy degrees of freedom
by identifying strongly coupled spin pairs along the chain,
which contribute very little to magnetic properties at low tem-
peratures and therefore can be decimated away, giving rise to
weak effective couplings between the remaining neighboring
spins. A number of studies performed during the last two
decades [7–11] showed that, in the presence of any finite
disorder, the ground state turns into a random-singlet phase,
which can be pictured as a collection of widely separated spin
pairs coupled in singlet states. This is a consequence of the fact
that, in the renormalization-group language, disorder induces
a flow of the probability distribution of effective couplings
towards an infinite-randomness fixed point, in which, at a
given energy scale, there are only a few strong effective
couplings, which give rise to the singlet pairs, while the vast
majority of the remaining couplings are much weaker. In this
random-singlet phase, physical properties are quite distinct
from the ones in the uniform chain, being characterized by
an activated dynamics, in which energy and length scales are
not related by a power law, but by a stretched exponential
form. Furthermore, ground-state spin-spin correlations are
dominated by the rare singlet pairs, leading to a striking
distinction between average and typical behaviors [8].

The picture for random spin-1 chains looks even richer.
Investigations based on extensions of the SDRG scheme
[12–17], combined with numerical studies [18–23], point to
the stability of the Haldane phase towards sufficiently weak
disorder; intermediate disorder seems to lead to a gapless
Haldane phase, characterized by a finite string order parameter
and exhibiting nonuniversal effects associated with Griffiths
singularities [24], and sufficiently strong disorder induces a
random-singlet phase.

1098-0121/2014/89(13)/134408(17) 134408-1 ©2014 American Physical Society

http://dx.doi.org/10.1103/PhysRevB.89.134408


CASA GRANDE, LAFLORENCIE, ALET, AND VIEIRA PHYSICAL REVIEW B 89, 134408 (2014)

For the spin- 1
2 chain, effects partially similar to those

produced by randomness are induced by the presence of
aperiodic but deterministic couplings. This kind of aperiodicity
is suggested by analogy with quasicrystals [25], structures
exhibiting symmetries forbidden by traditional crystallogra-
phy and corresponding to projections of higher-dimensional
Bravais lattices onto low-dimensional subspaces. Aperiodic
couplings can be produced by letter sequences generated by
substitution rules such as the one associated with the Fibonacci
sequence, a → ab, b → a. The iteration of the rule leads to
a sequence abaababa . . ., in which there is no characteristic
period. Associating different letters with different coupling
values Ja and Jb, an aperiodic chain is built. Distinct aperiodic
sequences give rise to different geometric fluctuations, gauged
by a wandering exponent ω associated with the power-law
describing the growth of suitably defined coupling fluctuations
as the chain length increases. The case ω = 1

2 emulates the
fluctuations induced by random uncorrelated couplings.

An adaptation of the SDRG method to the aperiodic spin- 1
2

XXZ chain [26,27], a particular case of which is the Heisenberg
chain, revealed that low-temperature thermodynamic proper-
ties and the nature of the ground state are deeply changed
by aperiodicity generated by sequences for which ω � 0, and
behavior reminiscent of that characterizing the random-singlet
phase can be observed. Notably, there is in general a stretched
exponential relation between energy and length scales, and
a clear distinction between average and typical behavior
of spin-spin correlation functions, in this case associated
with the existence of characteristic lengths emerging from
the combination of aperiodicity and quantum fluctuations.
Furthermore, and in contrast to the random-singlet phase,
correlations may exhibit an ultrametric structure related to
the inflation symmetry inherent to aperiodic sequences.

In this paper, we investigate the effects of aperiodic
couplings on the low-temperature properties of quantum spin-1
Heisenberg chains. As in the case of random uncorrelated
couplings, we expect that the Haldane phase is stable towards
the introduction of weak aperiodic modulation (as measured by
a coupling ratio r = Jb/Ja � 1), but that strong modulation
(r → 0 or r → ∞) may lead to an aperiodicity-dominated
gapless phase, quite similar to the one observed for the corre-
sponding spin- 1

2 chain. We obtain analytical results in the case
of strong modulation by using different adaptations of the
SDRG scheme. Analytical results are compared to numerical
simulations obtained using quantum Monte Carlo (QMC) and
density matrix renormalization group (DMRG) methods.

The first adaptation—or approach—of SDRG is valid only
in the limit of very strong modulation, and corresponds to
the immediate extension to spin-1 particles of the SDRG
approach of Refs. [5,6]. This involves identifying the most
strongly connected spin cluster in the chain, and calculating
effective couplings between spins neighboring the cluster by
assuming that the cluster is locked in its ground state. In the
simplest case in which such cluster is a spin pair, the ground
state is a singlet, and the excited states consist of a triplet
and a quintuplet, all of which are only assumed to contribute
to the effective couplings via virtual excitations. Since this
fails for intermediate disorder [14], a number of alternative
adaptations have been proposed [13,15–17]. One of these—the
second approach in the present paper—consists in ignoring

only the highest local excitations, usually introducing effective
spins in the process, and calculating effective couplings so
that local gaps are preserved. In case the most strongly
correlated cluster is a spin pair, this amounts to replacing
the pair of S = 1 spins by a pair of S = 1

2 spins, connected
by a bond identical to the original one. This process is
known not to preserve all matrix elements in the subspace
of local states kept [15,17], a problem that can be corrected
at the expense of introducing nonfrustrating ferromagnetic
next-nearest neighbor couplings—the third approach.

For random uncorrelated couplings, the second and third
approaches described above are expected to lead to the
same qualitative results. However, we show here that this
is not necessarily the case in the presence of aperiodic
but deterministic couplings. We argue that the qualitative
equivalence between the second and third approaches is to
be expected only when geometric fluctuations, as measured
by the wandering exponent ω, are sufficiently strong.

The remaining of this paper is as follows. For the sake of
completeness, in Sec. II we review the SDRG scheme of Ma,
Dasgupta, and Hu for the random-bond spin- 1

2 Heisenberg
chain. The adaptation of the scheme to spin-1 chains, along
the three approaches mentioned above, is described in Sec. III.
In Secs. IV and V, we apply the three approaches to the
Heisenberg spin-1 chain with couplings modulated by the
Fibonacci and the 6-3 sequences, which respectively induce
geometric fluctuations characterized by ω = 0 and ω � 0.43.
This allows us to investigate cases representative of different
regimes of dynamic scaling in the corresponding spin- 1

2 chain,
which the spin-1 chain may be expected to approach in the
strong-modulation limit. Results are checked against QMC
and DMRG simulations. Section VI summarizes our findings,
while several technical points are discussed in the Appendices.

II. STRONG-DISORDER RENORMALIZATION GROUP
FOR THE HEISENBERG SPIN- 1

2 CHAIN

The SDRG scheme of Ma, Dasgupta, and Hu consists in
the iterative decimation of the strongest energy parameter—
usually a bond connecting two spins—and its replacement
by an effective parameter calculated by perturbation theory,
in order to eliminate the highest energy degrees of freedom
present in the system. The new effective bond is always smaller
than the decimated one. After the decimation, the process is
repeated with the next strongest bond in the chain, and so on.
In the asymptotic limit of a very large number of iterations,
the effective Hamiltonian generated by this method should de-
scribe well the low-energy (low-temperature) thermodynamic
behavior of the system.

The method was first introduced to study the random-bond
spin- 1

2 Heisenberg chain [5,6] and successfully reveals the
thermodynamics properties of the corresponding ground state,
which has been dubbed a random-singlet phase [8]. The first
step of the method is finding the strongest bond in the chain,
say J0. Assuming that the coupling distribution is sufficiently
broad, at low temperatures (T � J0 in suitable units), the
spin pair coupled by J0 can be pictured as frozen in its local
ground state (a singlet), and thus can be eliminated, its virtual
excitations giving rise to an effective bond coupling the spins
neighboring the pair, as illustrated in Fig. 1.
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FIG. 1. Decimation procedure for a pair of S = 1
2 spins.

If we assume that the neighboring bonds Jl and Jr are
much weaker that J0, we can calculate the effective bond by
perturbation theory. Treating the interactions between the pair
and the rest of the chain, via the neighboring spins sl and sr ,
as a perturbation over the exact states of the pair, we can write
the local Hamiltonian as

h = h0 + h1,

with

h0 = J0s1 · s2, h1 = Jlsl · s1 + Jrs2 · sr ,

where h1 represents the perturbation over the states of the pair
s1 and s2 associated with h0. (Throughout this paper, spin- 1

2
operators are represented in lowercase, unless explicitly stated
otherwise.) The eigenstates of h0 are a singlet,

|�0〉 = 1√
2

(|+−〉 − |−+〉) , (2)

with energy E0 = − 3
4J0, and a triplet,

|�+
1 〉 = | + +〉, ∣∣�0

1

〉 = 1√
2

(| + −〉 + | − +〉),
(3)|�−

1 〉 = | − −〉,
with energy E1 = 1

4J0. If we assume that h0 sets the energy
scale � of the system, a reasonable estimate for this is � =
E1 − E0, and at lower energy scales the pair s1 and s2 is
effectively frozen in its ground state.

Up to second order in perturbation theory, the effective
Hamiltonian is then written as

heff = 〈�0|h1|�0〉 +
∑

i

∣∣〈�0|h1

∣∣�i
1

〉∣∣2
E0 − E1

= E′ + J ′
0sl · sr ,

(4)

with the summation running over i ∈ {+,0,−}. The effective
parameters are given by

E′ = −3

4
J0 − 3

16

(
J 2

l + J 2
r

)
J0

and J ′
0 = 1

2

JlJr

J0
, (5)

in which E′ represents a correction to the ground-state energy
of h, and J ′

0 is an effective coupling between the spins sl and
sr .

Notice that the effective bond J ′
0 is always smaller than

the original bond J0, so that the energy scale is consistently
reduced. The iteration of the above renormalization rule will
lead to a probability distribution of effective bonds [8], which

gets broader and broader, suggesting that the results thus
obtained are asymptotically exact. In fact, the fixed-point
probability distribution of the effective couplings has infinite
variance—an infinite-randomness fixed point.

III. STRONG-DISORDER RENORMALIZATION GROUP
FOR THE HEISENBERG SPIN-1 CHAIN

In this section, we review and discuss three different
approaches to adapting the SDRG method for spin-1 chains
[15–17]. The different approaches arise from the difference
between the spectrum of the spin-1 and spin- 1

2 pairs, and
from the search for a decimation procedure which consistently
reduces the energy scale. Other approaches have also been
considered in the literature [12,13,28].

A. The first approach

This approach is the direct adaptation of the calculations in
the previous section to the spin-1 case. The local Hamiltonian
is defined by

h = h0 + h1, (6)

with

h0 = J0S1 · S2, h1 = JlSl · S1 + JrS2 · Sr , (7)

where h1 is to be treated as a perturbation over h0. (Throughout
this paper, spin-1 operators are represented in uppercase.) The
energy levels of h0 are a singlet, with energy E0 = −2J0, a
triplet, with energy E1 = −J0, and a quintuplet, with energy
E2 = J0. Discarding all excited states sets the local energy
scale to � = E1 − E0 = J0.

Applying second-order perturbation theory to the above
Hamiltonian, by summing over all excited states of h0, as in
Eq. (4), the effective bond between Sl and Sr is given by the
rule

J ′
0 = 4

3

JlJr

J0
, (8)

which is not necessarily consistent, because the conditions
Jl < J0 and Jr < J0 are not enough to guarantee that J ′

0 < J0.
However, this result should be valid if the coupling distribution
is sufficiently broad, i.e., if one is sure that Jl,Jr � J0. As
discussed below, the search for a decimation rule which is
consistent when the above rule fails gives rise to two other
approaches, in which the spin-1 pair is replaced by a spin- 1

2
pair.

B. The second approach

The second approach we discuss was used by Monthus
et al. [16,17] in the study of random spin-1 chains. The idea
is to discard only the quintuplet states of h0, by replacing the
spin-1 pair S1 and S2 by a pair of spin- 1

2 effective spins s′
1

and s′
2, also connected by a bond J0, in order to reproduce the

lowest energy gap of h0. The effective local Hamiltonian is
then written as

heff
0 = − 5

4J0 + J0s′
1 · s′

2. (9)

It should be noted that the constant −5J0/4 is used to match
the states of heff

0 and h0 in Eq. (7).
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FIG. 2. Decimation procedure for a pair of S = 1 spins according
to the second approach.

The local Hamiltonian is replaced by an effective local
Hamiltonian with the spins Sl , s′

1, s′
2, and Sr ,

heff = heff
0 + heff

1 , (10)

as shown in Fig. 2. Now the question is how to determine
the perturbation term heff

1 , which represents the connection
between the effective spin- 1

2 pair and the rest of the chain. If
one requires, to first-order in perturbation theory, that both heff

1
and h1 in Eq. (7) yield the same matrix elements inside their
respective singlet subspaces and inside their respective triplet
subspaces, one concludes that [16,17]

heff
1 = JlSl · s′

1 + Jrs′
2 · Sr . (11)

This rule reduces the local energy scale from 3J0 (the gap
between the singlet and the quintuplet states of h0) to J0 (the
gap between the singlet and triplet states of heff

0 ).
However, the effective Hamiltonian in Eq. (11) does not

reproduce the matrix elements of h1 between states in the
singlet and triplet subspaces. In order to achieve this, one has
to introduce next-nearest-neighbor couplings, giving rise to
the exact first-order effective Hamiltonian [15–17]

hexact
1 = JlSl · (α+s′

1 + α−s′
2) + Jr (α−s′

1 + α+s′
2) · Sr , (12)

with

α± = 1 ± α

2
and α =

√
8

3
� 1.63. (13)

As the next-nearest-neighbor bonds are ferromagnetic,
α−Jl,r � −0.316Jl,r , they do not introduce frustration in the
system. Note also that, although the nearest-neighbor effective
bonds, α+Jl,r � 1.32Jl,r , are stronger than the original ones, it
can be checked that the associated gap of the four-spin cluster
decreases as compared to 3J0 (see Table II in Appendix B), so
that the energy scale is still consistently reduced.

Due to the nonfrustrating character of the ferromagnetic
bonds, Monthus et al. argued that it is safe to ignore them,
if one is interested only in qualitative features of the physical
effects introduced by randomness, and build a renormalization
scheme based on the effective Hamiltonian of Eq. (11). This
forms the basis for the second approach. Since the effective
perturbative term introduces spin- 1

2 objects, one needs to
deal with renormalization steps involving both spin-1 and
spin- 1

2 operators in order to have a closed scheme for the
renormalization group. There is clearly the possibility that
the largest local energy scale is set by a pair composed of a
spin- 1

2 object s1 and a spin-1 object S2 connected by a bond J0,
and interacting with neighboring spins sl and Sr via weaker

s1 S2

sl

sl

Sr

Sr

s1

J0 JrJl

JrJl

FIG. 3. (Color online) Decimation procedure for a mixed-spin
pair according to the second approach.

bonds Jl and Jr , as shown in Fig. 3. The ground state of the
pair corresponds to a doublet, giving rise to an effective spin- 1

2
object s′

1, and to first order in perturbation theory, the four-spin
cluster can be described by an effective Hamiltonian

heff = J ′
l sl · s′

1 + J ′
rs′

1 · Sr , (14)

with

J ′
l = − 1

3Jl and J ′
r = 4

3Jr . (15)

Notice that this last process generates ferromagnetic bonds,
but these only connect spin- 1

2 objects. In case the local energy
scale is set by such a bond, −|J0|, connecting s1 and s2,
the unperturbed ground state is a triplet, giving rise to an
effective spin-1 object S′

1; see Fig. 4. A first-order perturbative
calculation leads to an effective Hamiltonian

heff = J ′
l Sl · S′

1 + J ′
rS′

1 · Sr , with J ′
l,r = 1

2Jl,r . (16)

To summarize, in this second approach there are four kinds
of bonds, and each of them requires a different decimation
rule. In the same notation used in Ref. 17, these are:

(i) Rule 1: A pair of S = 1
2 spins connected by an

ferromagnetic bond [Fig. 4, Eq. (16)].
(ii) Rule 2: A pair of S = 1

2 spins connected by an
antiferromagnetic bond [Fig. 1, Eqs. (4) and (5)].

(iii) Rule 3: A mixed-spin pair connected by an antiferro-
magnetic bond [Fig. 3, Eqs. (14) and (15)].

(iv) Rule 4: A pair of S = 1 spins connected by an
antiferromagnetic bond [Fig. 2, Eq. (11)].

Which rule is to be applied depends on which bond sets the
energy scale at a given step of the SDRG scheme. Using as an
estimate for such a scale the local gap � between the ground
state and the first discarded excited energy level of the spin
pair, we have for the different rules:

�1 = −J0 = |J0|, �2 = J0,
(17)

�3 = 3
2J0, �4 = 3J0.

s1 s2

Sl

Sl

Sr

Sr

S1

J0 < 0 JrJl

JrJl

FIG. 4. (Color online) Decimation procedure for a pair of fer-
romagnetically coupled spin- 1

2 objects according to the second
approach.
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The SDRG scheme for the random-bond spin-1 chain then
amounts to recursively looking for the bond associated with
the largest � and applying the corresponding decimation rule.

In the case of deterministic aperiodicity generated by
substitution rules, there appear blocks composed of more
than one strong bond, as in the Fibonacci sequence
(abaababaabaab . . . ) with Ja > Jb. In order to deal with
these cases, the set of decimation rules has to be extended,
as described, in the spin- 1

2 case, in Refs. [26,27]. The starting
point is to find the spin block yielding the largest local energy
gap, and renormalizing it to either an effective bond between
the spins neighboring the block, or to one or two effective spins,
according to the lowest energy levels of the original block; see
Appendix B. The effective couplings are then to be calculated
by first- or second-order perturbation theory. In order to avoid
such complications as much as possible, we choose Jb > Ja

and focus on the strong-modulation regime for analytical
calculations. Moderate modulation can be studied numerically
using SDRG, by implementing the rules for different blocks,
and results from such calculations are briefly mentioned below.

C. The third approach

The third approach consists in using the exact first-order
Hamiltonian hexact

1 of Eq. (12) as the effective local Hamilto-
nian that arises from the decimation of a spin-1 pair. Among
the decimation rules, of concern here is a modification of
rule 4 along the lines of Eq. (12). With the introduction of
both nearest- and next-nearest-neighbor bonds, it is possible
that a spin S1 is strongly coupled to a spin S2 while both are
weakly coupled to a number of other spins. Therefore the exact
first-order Hamiltonian turns into

hexact
1 =

nl∑
i=1

J
(i)
l S(i)

l · (α+s′
1 + α−s′

2)

+
nr∑

i=1

J (i)
r (α−s′

1 + α+s′
2) · S(i)

r , (18)

where nl is the number of spins S(i)
l to which S1 is weakly

coupled via J
(i)
l , and nr is the number of spins S(i)

r to which S2

is weakly coupled via J (i)
r . Thus, rule 4 now reads

(iv’) Rule 4′: A pair of S = 1 spins connected by an
antiferromagnetic bond [Fig. 5, Eq. (18)]. Notice that Fig. 5
illustrates the case nl = nr = 1.

Spin 1

Spin 1/2

S1 S2

Sl

Sl

Sr

Sr

s1 s2

J0

J0 JrJl

α+Jrα+Jl

α−Jrα−Jl

FIG. 5. (Color online) Decimation procedure for a pair of S = 1
spins according to the third approach.

IV. THE SPIN-1 FIBONACCI-HEISENBERG CHAIN

The Fibonacci sequence is produced by the iterative
application of the substitution rule

σfb :

{
a → ab

b → a
, (19)

starting from a single letter (either a or b).
The spin- 1

2 Heisenberg chain with couplings Ji ∈ {Ja,Jb}
following the Fibonacci sequence remains critical (i.e., gap-
less) for all finite values of the coupling ratio Jb/Ja . Since
enforced dimerization makes the chain gapped, for general
aperiodic sequences, the relevant geometric fluctuations to
be measured are those associated with pairs of subsequent
letters. As discussed in Ref. [27] (and references therein), these
grow with the chain length as a power-law, with a wandering
exponent ω related to the substitution rule for letter pairs,
rather than for single letters. (For an example concerning the
Fibonacci sequence, see Appendix A.)

In the case of the Fibonacci sequence, this exponent is ω =
0, in contrast to the random-bond chain, for which ω = 1

2 . Thus
geometric fluctuations associated with couplings chosen from
the Fibonacci sequence are much weaker than those produced
by a random coupling distribution. Despite this fact, Fibonacci
couplings also induce dramatic changes in the low-temperature
behavior of the Heisenberg spin- 1

2 chain [26,27]. As we show
below, this is not the case for the Heisenberg spin-1 chain.

In the following sections, we present the results of applying
the three different SDRG approaches defined in the previous
section to the problem of the Fibonacci-Heisenberg spin-1
chain. We also discuss the discrepancies between the second
and the other two approaches, and present results from
quantum Monte Carlo and DMRG calculations, which point to
the fact that, in contrast to the random-bond chain, the second
approach does lead to qualitatively incorrect conclusions about
the low-temperature behavior of the system.

A. SDRG: The first approach

Figure 6(a) shows the first few bonds near the left end of the
Fibonacci-Heisenberg chain. As mentioned before, throughout
the paper we assume Jb > Ja , but here, in order to apply the
first approach, we assume the stronger condition Jb � Ja .

According to the usual recipe of the first approach, all Jb

bonds, which appear enclosed in Fig. 6(a), are to be decimated
in a first SDRG lattice sweep, giving rise to effective couplings.
Between spins 1 and 4 in Fig. 6(a) there is one spin pair
connected by an isolated Jb bond, and its decimation results

1 2 3 4 5 6 7 8 9
(a)

(b)

J
(0)
a

J
(0)
b J

(1)
b

J
(1)
a

FIG. 6. (Color online) (a) Coupling distribution of the spin-1
Fibonacci-Heisenberg chain. (b) Effective chain obtained from the
first SDRG approach after a single lattice sweep.
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in an effective bond J ′
b, by directly applying Eq. (8). But there

is also another effective bond, J ′
a , which appears for instance

between spins 4 and 9 by sequentially decimating the Jb bonds
connecting spins 5-6 and 7-8. Thus we have

J ′
a =

(
4

3

)2
J 3

a

J 2
b

and J ′
b = 4

3

J 2
a

Jb

. (20)

Notice that if the effective bond J ′
b is to be smaller than the

original bond Jb, so that the decimations lead to a reduction
of the energy scale, we must have Jb >

√
4/3Ja , which

constitutes a consistency condition for the first approach.
As hinted by Fig. 6(b), decimating all original Jb bonds

leads to a Fibonacci modulation of the effective bonds
(disregarding the first effective bond as a boundary effect).
It is then clear that a new SDRG sweep will again generate
a Fibonacci sequence, and so on. Therefore we can define
recursive equations for the effective parameters, as well as for
the ratio between them. These are given by

J (j+1)
a =

(
4

3

)2 [J (j )
a

]3[
J

(j )
b

]2 , J
(j+1)
b = 4

3

[
J

(j )
a

]2
J

(j )
b

,

r (j+1) ≡ J
(j+1)
b

J
(j+1)
a

=
(

3

4

)
r (j ), (21)

in which j labels the SDRG lattice sweep, j = 0 correspond-
ing to the original chain.

Notice that the ratio between the effective bonds decreases
along the RG iterations. This means that the effective chain
looks more and more uniform as the energy scale is reduced,
and we then conclude that a Fibonacci modulation does not
drive the system towards an aperiodic singlet phase even for an
arbitrarily large initial coupling ratio, unlike what is observed
for the Fibonacci-Heisenberg spin- 1

2 chain [26,27].
Thus we expect the chain to remain in the Haldane phase,

but with a gap which depends on the bare coupling ratio
r = Jb/Ja . An estimate of this gap is provided by the value
of the effective couplings at the energy scale for which the
effective coupling ratio becomes of order 1. This happens after
j ∗ iterations of the SDRG scheme, with

j ∗ = ln r

ln 4
3

. (22)

From the above equations, we thus conclude that the gap
should behave as

� (r) ∼ r
− ln r

ln(4/3) Jb, (23)

up to a multiplicative constant. Taking logarithms on both
sides, this last result can be rewritten as

ln � (r) ∼ ln Jb − ln2 r

ln(4/3)
, (24)

making evident that the gap vanishes asymptotically as the
bare coupling ratio becomes larger and larger, with Jb held
constant.

It is also possible to follow the growth of bond lengths as
the SDRG scheme proceeds. If we denote by �

(j )
a and �

(j )
b the

respective lengths of the weak and strong bonds after j SDRG
lattice sweeps, inspection of Fig. 6 leads to relations which

can be written in matrix form as[
�

(j+1)
a

�
(j+1)
b

]
=
[

3 2

2 1

]
·
[
�

(j )
a

�
(j )
b

]
, (25)

so that the asymptotic growth of the bond lengths follows

�(j )
a ∼ �

(j )
b ∼ τ j , (26)

with τ = 2 + √
5, the largest eigenvalue of the above matrix,

corresponding to the rescaling factor of the renormalization-
group transformation. Taking into account the bare lengths
�(0)

a = �
(0)
b = 1, the asymptotic length of the strong bonds is

given by

�
(j )
b � 1 + √

5

2
√

5
τ j ≡ cτ j . (27)

An estimate for the correlation length of the spin-1
Fibonacci-Heisenberg chain is provided by the length of
the strong bonds at the SDRG iteration where the effective
coupling ratio becomes of order 1. Thus we have

ξ ∼ �
(j∗)
b � crν, (28)

showing that the correlation length diverges at the infinite-
modulation limit as a power law with a quite large exponent

ν = ln τ

ln 4
3

� 5.02. (29)

B. SDRG: The second approach

Now we study the conclusions we can extract from the
second approach by applying it to the strong-modulation case
Jb � Ja . Figure 7 pictures the steps required to obtain effective
couplings in the Fibonacci-Heisenberg chain according to
the second approach. The original chain is shown in Fig. 7(a).
Applying rule 4 of Sec. III B to all Jb bonds connecting spin-1
pairs, these are replaced by spin- 1

2 pairs, as shown in Fig. 7(b).
As we assume Jb � Ja , the next step involves decimating all
Jb bonds connecting spin- 1

2 pairs, yielding effective couplings

J ′
a =

(
1

2

)2
J 3

a

J 2
b

and J ′
b = 1

2

J 2
a

Jb

. (30)

Again, ignoring the leftmost bond in Fig. 7(c), the effective
couplings follow a Fibonacci sequence.

Spin 1/2

Spin 1
(a)

(b)

(c)

J
(0)
a

J
(0)
b J

(1)
b

J
(1)
a

FIG. 7. (Color online) Renormalization of the spin-1 Fibonacci-
Heisenberg chain according to the second SDRG approach. (a) The
original chain. (b) Spin-1 pairs connected by (strong) Jb bonds are
replaced by spin- 1

2 pairs. (c) Spin- 1
2 pairs are decimated, yielding

effective couplings between remaining S = 1 spins.

134408-6



ANALYTICAL AND NUMERICAL STUDIES OF . . . PHYSICAL REVIEW B 89, 134408 (2014)

From the above equations, it is clear that the values of
the effective couplings predicted by the second approach
are significantly smaller than the ones predicted by the first
approach. This fact leads to errors when using effective Jb

couplings to estimate the energy levels of the Fibonacci-
Heisenberg chain, but also, in contrast to the first approach, it
is clear that the effective coupling ratio predicted by the second
approach,

r ′ = J ′
b

J ′
a

= 2
Jb

Ja

= 2r, (31)

is larger than the bare coupling ratio r . Therefore, according
to the second approach, the effective coupling ratio should
become larger and larger as the SDRG scheme is iterated,
so that Fibonacci-modulated couplings should induce an
aperiodicity-dominated gapless phase analogous to the one
observed for the Fibonacci-Heisenberg spin- 1

2 chain. This
conclusion is qualitatively incorrect, since, as we will see
below, taking into account the next-nearest-neighbor bonds
neglected in the second approach recovers the predictions of
the first approach for strong modulation.

C. SDRG: The third approach

When applying the third approach to the Fibonacci-
Heisenberg chain following the recipe of Secs. III B and III C,
after replacing all spin-1 pairs connected by Jb bonds by
spin- 1

2 pairs, there appear next-nearest- and further-neighbor
bonds as illustrated in Fig. 8(b). In particular, the coupling
between spins 5 and 8 in Fig. 8(b) appears due to the repeated
application of rule 4′.

For Jb > α2
+Ja � 1.73Ja , the largest local gap in Fig. 8(b) is

provided by the nearest-neighbor Jb bonds (see Appendix B),
which should then be decimated to yield the effective couplings
shown in Fig. 8(c). This procedure is different for the Jb bonds
which are separated from other Jb bonds by at least two weaker
Ja bonds (such as the bond between spins 2 and 3 in the figure)
and for the Jb bonds separated by a single Ja bond (as in the
sequence of bonds between spins 5 and 8).

1 2 3 4 5 6 7 8 9

(a)

(b)

(c)

Spin 1

Spin 1/2

Ja

Jb

(α+)Ja

(α2
+)Ja

(α−)Ja

(α+α−)Ja

(α2
−)Ja

Jb

Ja

FIG. 8. (Color online) Renormalization of the spin-1 Fibonacci-
Heisenberg chain according to the third SDRG approach. (a) The
original chain. (b) Spin-1 pairs connected by (strong) Jb bonds are
replaced by spin- 1

2 pairs, are further-neighbor couplings are produced.
(c) Spin- 1

2 pairs are decimated, yielding effective couplings between
remaining S = 1 spins.

In the former case, we have to treat all weaker bonds (near-
est and next-nearest) as perturbations over the Hamiltonian

h0 = Jbs2 · s3, (32)

following a second-order perturbative approach analogous to
the one in Eq. (4). The result is an effective bond between
spins 1 and 4 in Fig. 8, given by

J ′
b = (α+ − α−)2

2

J 2
a

Jb

= 4

3

J 2
a

Jb

. (33)

In the latter case, so that we avoid ambiguities arising
from the order in which the Jb bonds are decimated, we
must perform a third-order perturbative calculation in which
all weaker bonds (nearest and next-nearest) are treated as
perturbations over the Hamiltonian

h0 = Jbs5 · s6 + Jbs7 · s8. (34)

As detailed in Appendix C, this yields an effective bond
connecting spins 4 and 9, given by

J ′
a = (α+ − α−)4

4

J 3
a

J 2
b

=
(

4

3

)2
J 3

a

J 2
b

. (35)

Thus, comparing the above results with Eq. (20), we see
that for Jb > α2

+Ja the third approach yields exactly the same
effective bonds as the first approach. Therefore, properly
taking into account next-nearest neighbor bonds generated by
the SDRG scheme fixes the qualitatively incorrect prediction of
the second approach that strong Fibonacci modulations induce
a gapless, aperiodicity-dominated phase in the Heisenberg
spin-1 chain.

For weaker coupling ratios, 1 < Jb/Ja < α2
+, the largest

local gap in Fig. 8(b) is not set by the Jb bonds, and the order of
the decimations is altered. Numerical implementations of the
third approach indicate that the distribution of effective bonds
becomes dimerized. As it is known that a dimerized spin- 1

2
chain has a ground state which is adiabatically connected to
the Haldane phase [29], this is in qualitative agreement with
the prediction of the first approach, and with the fact that the
Haldane phase is stable towards Fibonacci modulations for
any value of the coupling ratio.

D. Comparison with QMC simulations

According to the SDRG predictions, for strong modulation
(r � 1), the Fibonacci-Heisenberg chain can be approximated
as a collection of independent spin pairs, coupled in singlet
states by the effective Jb bonds. In the spin- 1

2 case, for which
the ground state is expected to be in the aperiodic singlet
phase [27], this picture should be qualitatively correct at all
temperatures, provided the modulation is strong enough. On
the other hand, in the spin-1 case, this picture should break
down at temperatures below the energy gap � (r) of Eq. (23).
Therefore we can estimate the free energy of the Fibonacci-
Heisenberg chain as

f (B,T ) = 1

2

j∗∑
j=0

(nj − nj+1)Fpair
(
J

(j )
b ; B,T

)
, (36)
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where Fpair(J
(j )
b ; B,T ) is the free energy of a spin pair

interacting via the Hamiltonian

Hpair = J
(j )
b S1 · S2 − B

(
Sz

1 + Sz
2

)
(37)

(with B a small magnetic field, introduced to allow the
calculation of the magnetic susceptibility), nj is the fraction
of active spins (those not yet decimated) at the j th iteration
of the SDRG scheme, and j ∗ is the iteration at which the
effective coupling ratio becomes of order unity. From the above
discussion, it is clear that j ∗ = ∞ for the spin- 1

2 case, while it
can be shown from Eqs. (21) that j ∗ = ln r/ ln (4/3) for the
spin-1 case.

For the first j ∗ iterations of the SDRG scheme, as the
effective couplings always follow a Fibonacci sequence, the
fraction of active spins satisfy the recurrence relation nj+1 =
(1 − 2fb)nj , where fb = (3 − √

5)/2 � 0.382 is the fraction
of letters b in the infinite Fibonacci sequence (see Appendix D).
Thus we obtain nj = (1 − 2fb)j .

The susceptibility at zero field is readily obtained from the
free energy,

χ (T ) = − ∂2f

∂B2

∣∣∣∣
B=0

. (38)

We first checked the SDRG predictions for the spin- 1
2 chain,

using the effective couplings calculated in Ref. [27], by
comparing the results of Eqs. (36) and (38) with QMC
simulations, performed using the stochastic series expansion
scheme [30,31] with directed loop updates [32]. As shown
in Fig. 9, the SDRG prediction gets closer and closer to the
QMC results as the modulation increases, as expected from
the perturbative nature of the SDRG scheme.

For the corresponding spin-1 chain, Figs. 10 and 11 show
the temperature dependence of the susceptibility according
to the second and third SDRG approaches, along with

10−4 10−2 100

T

10−2

1

102

104

χ(
T)

r = 3
r = 10
r = 20
r = 100

FIG. 9. (Color online) Magnetic susceptibility as a function of
temperature for the spin-1/2 Fibonacci-Heisenberg chain. Solid lines
correspond to the SDRG prediction for different coupling ratios
r = Jb/Ja . QMC results (symbols) were obtained using chains with
90 sites and open boundary conditions. Error bars are smaller than
symbol size.

10-3 10-2 10-1 100 101

T

10-1

100

101

χ(
T)

SDRG-second approach
SDRG-third approach
QMC L = 35
QMC L = 45
QMC L = 55
QMC L = 65
QMC L = 85
QMC L = 145

FIG. 10. (Color online) Temperature dependence of the magnetic
susceptibility for the spin-1 Fibonacci-Heisenberg chain with cou-
pling ratio r = 10. Solid (dashed) line corresponds to the SDRG
prediction according to the second (third) approach, while symbols
correspond to QMC results for different chain sizes L. QMC error
bars are smaller than symbol size.

QMC data, for coupling ratios r = 10 and 20, respectively.
Clearly, the agreement with low-temperature numerical data is
significantly better for the third SDRG approach, and improves
as the number L of spins in the chain increases. Notice the
shoulders in the susceptibility curves (e.g., slightly to the left
of T � 100 and 10−2 in Fig. 10) at temperatures close to energy
scales related to the effective Jb bonds.

As the QMC calculations involve chains with an odd
number of spins, the susceptibility does not vanish at low
temperatures even when the ground state is gapped. However,
for the coupling ratios used in Figs. 10 and 11, the energy scale
of the gaps, according to Eq. (23), correspond to temperatures

10-4 10-3 10-2 10-1 100 101

T

10-1

100

101

102

χ(
T)

SDRG-second approach
SDRG-third approach
QMC L = 35
QMC L = 45
QMC L = 55
QMC L = 65
QMC L = 85
QMC L = 145

FIG. 11. (Color online) Temperature dependence of the magnetic
susceptibility for the spin-1 Fibonacci-Heisenberg chain, similar as
Fig. 10, but with a coupling ratio r = 20.
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below 10−8Jb, much lower than the temperatures that could
be reached in our simulations.

E. Gap and string order correlations of the Fibonacci S = 1
chain as a function of the coupling ratio

In order to check whether a sufficiently large coupling ratio
could induce a gapless aperiodic singlet phase, we now present
a numerical determination of the spin gap for different values
of the coupling ratio and different chains lengths, using the
DMRG method.

DMRG simulation details. We simulate aperiodic S = 1
chains with a number L of spins, with open boundary condi-
tions, using DMRG [33] formulated in the matrix-product state
formalism [34]. We use an SU(2)-symmetric formulation [35],
taking advantage of the symmetry of the Hamiltonian (1),
which reduces considerably the number of states m to be kept
in the DMRG calculation. We nevertheless find that the con-
vergence to the ground states in different total spin sector ST =
0,1 or 2 is particularly difficult to achieve for large L and large
coupling ratio r , which we attribute to the aperiodicity in the
system. To ensure convergence, we use a specific warming pro-
cedure where we increase sequentially the number m of SU(2)
states kept, typically by values of 20 or 50, up to values of m

where the ground-state energy no longer varies. For the largest
Fibonacci chains (here L = 378), the maximum number of
SU(2) states was m = 1000, corresponding to approximatively
4800 U(1) states. For each value of m in this warming proce-
dure, we perform a very large (sometimes more than 200) num-
ber of sweeps, again checking that the energy does not vary.

Numerical determination of gaps. Depending on the parity
of the chain size L, the ground-state is found to be in the
ST = 0 sector (for even L) or the ST = 1 sector (odd L), as
expected. In the Haldane phase, the energy difference between
these two sectors is expected to decrease exponentially with
increasing L for open chains, due to the presence of spin- 1

2
degrees of freedom near the boundaries [36]. Similar to what
was done in the original DMRG study of uniform S = 1
chains [33], we compute the gap � as the energy difference
between this ground-state and the energy of the ground-state
in the ST = 2 sector: � = E0(ST = 2) − E0(ST = 0/1). We
simulate chains with sizes L = 14,22,35,56,90,145,234,378
corresponding to the “natural” numbers (in the Fibonacci
sequence) of bonds L − 1 = 13,21,34,55,89,144,233,377.
In the following, results are presented only for the specific
Fibonacci bond sequence corresponding to the size L and
starting with a single letter a, but we checked for small L < 70
that the same qualitative behavior is obtained when averaging
results over the L + 1 different possible subsequences of the
Fibonacci sequence that can be accommodated in a chain with
L spins.

We present in Fig. 12 the results for the gap � (in units of
Ja), as a function of coupling ratio r , for different system sizes
L. It is clear from this figure that the gap does not vanish in
the entire range r ∈ [1,6] that we simulated, even though as
expected, it decreases quite considerably with increasing r .

Notice that we should not expect the DMRG gaps to be
direcly comparable to those predicted by Eq. (23), which is
valid in the infinite-chain, large-modulation limit, and disre-
gards boundary effects. These turn out to be quite important,

1 2 3 4 5 6r
0

0.1

0.2

0.3

0.4

0.5

Δ

L = 22
L = 35
L = 56
L = 90
L = 145
L = 234
L = 378

22 56 145 378
L

10-3

10-2

10-1

Δ

DMRG
SDRG

FIG. 12. (Color online) Spin 1 chain modulated by the Fibonacci
sequence: gap � = E0(ST = 2) − E0(ST = 0/1) between the lowest-
lying quintuplet ST = 2 state energy E0(ST = 2) and the ground-state
energy E0 (which is either in the ST = 0 singlet or ST = 1 triplet
sector, depending on the chain parity), as a function of coupling ratio
r = Jb/Ja , for different system sizes L.

especially for the small chain lengths accessible via DMRG.
Instead, we present in the inset of Fig. 12 a comparison between
the DMRG gaps for the strongest modulation for which reliable
data are available, r = 6, and the corresponding open-chain
SDRG predictions (see Appendix E). The agreement is quite
good for small chains, but discrepancies arise for L � 56,
due to the fact that, as the effective coupling ratio decreases
for increasing system size [see Eq. (21)], the perturbative
calculations underlying the SDRG approach become less
precise, leading to errors in the gap estimate. Nevertheless,
for still larger chains (L = 234 and 378), the curves clearly
approach each other.

String order. The previous gap results indicate that the
Haldane phase is not destroyed by imposing a Fibonnaci
aperiodic sequence for the couplings. This is furthermore
confirmed by the numerical DMRG computation of the string
order correlation function [4],

〈Oz(i,j )〉 =
〈
Sz

i exp

(
ıπ

j−1∏
k=i+1

Sz
k

)
Sz

j

〉
,

as a function of the distance x = |j − i|. The string order
correlation function takes nonvanishing values in the large
distance limit in the Haldane phase [4] and is thus a good
indicator of the continuity of the Haldane phase as the strength
of the aperiodicity is increased. We represent in Fig. 13
〈Oz(x = |j − i|)〉 with i = L/4 and x running from 0 to L/2
(we consider the initial and final points to minimize effects
due to the open boundary conditions) for selected values of
the coupling ratio r , for the largest L = 378 system simulated.
A real-space correlation function such as 〈Oz(x)〉 is inevitably
nonmonotonous for such aperiodic systems, but the results of
Fig. 13 indicate that the string order does not vanish up to
r = 6, albeit it reaches smaller thermodynamic values (when
x → ∞) as r is increased, as expected from the gap behavior.

Overall, the DMRG results on the gap and string order
support the conclusion of SDRG (approaches 1 and 3) that
the gapped Haldane phase remains robust against Fibonacci
aperiodicity.
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0 50 100 150 200
x

-0.4
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<
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r=1.0
r=2.0
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FIG. 13. (Color online) Spin 1 chain modulated by the Fibonacci
sequence: string order correlation function 〈Oz(x = |i − j |)〉 as a
function of distance x taken starting from the quarter-chain point
i = L/4 up to the maximum value x = L/2, for a L = 376 chain and
different aperiodicity strengths r = Jb/Ja .

V. THE SPIN-1 CHAIN WITH COUPLINGS FOLLOWING
THE 6-3 SEQUENCE

We now study the effects of geometric fluctuations induced
by couplings following the 6-3 sequence on the spin-1 Heisen-
berg chain. The 6-3 sequence is defined by the substitution rule

σ63 :

{
a → babaaa

b → baa
, (39)

starting from a single letter (either a or b). The wandering ex-
ponent characterizing pair fluctuations in the 6-3 sequence [27]
is ω = ln 2/ ln 5 � 0.43, and thus we expect for the spin- 1

2
chain and for the strong-modulation spin-1 chain a dynamical
scaling characterized by the stretched exponential form

�(�) ∼ exp(�/�0)ω , (40)

with r0 a nonuniversal constant. As described below, this is
exactly what we obtain from the SDRG scheme.

A. The first approach

Figure 14(a) shows the bond distribution prescribed by
the 6-3 sequence. Assuming again Jb > Ja , the first SDRG
lattice sweep generates two kinds of effective bonds, exactly
as in the case of the Fibonacci-Heisenberg chain (see Fig. 6).
Furthermore, the remaining Ja couplings can be reinterpreted

JaJb

J
(0)
1 J

(0)
2J

(0)
3

(a)

(b)

FIG. 14. (Color online) (a) Coupling distribution of the spin-1
Heisenberg chain according to the 6-3 sequence. (b) Effective chain
obtained from the first SDRG approach after a single lattice sweep.

J
(i)
1 J

(i)
2 J

(i)
3

J
(i+1)
1J

(i+1)
2 J

(i+1)
3

(a)

(b)

FIG. 15. (Color online) Self-similar coupling distribution ob-
tained from the first SDRG approach for subsequent lattice sweeps.
Singlets are formed between spins connected by the strong effective
bonds J

(i)
1 .

as a third kind of effective bond, so that we can write

J
(0)
1 = Ja, J

(0)
2 =

(
4

3

)
J 2

a

Jb

, J
(0)
3 =

(
4

3

)2
J 3

a

J 2
b

, (41)

as long as Jb >
√

4/3Ja .
Subsequent SDRG lattice sweeps yield a scale-invariant

coupling distribution, as shown in Fig. 15, leading to a set of
recurrence equations given by

J
(j+1)
1 =

(
4

3

)
J

(j )
2 J

(j )
3

J
(j )
1

, J
(j+1)
2 =

(
4

3

)2 J
(j )
2

[
J

(j )
3

]2[
J

(j )
1

]2 ,

J
(j+1)
3 =

(
4

3

)3 J
(j )
2

[
J

(j )
3

]3[
J

(j )
1

]3 , (42)

which are valid as long as J
(j )
1 > J

(j )
2 . This last condition is

true only for Jb > (4/3)Ja .
Defining coupling ratios between the parameters J1, J2, and

J3, we can write the recurrence equations

ρ(j+1) ≡ J
(j+1)
1

J
(j+1)
3

=
[

3

4
ρ(j )

]2

,

(43)

σ (j+1) ≡ J
(j+1)
1

J
(j+1)
2

= 3

4
ρ(j ),

making it clear that, under the condition Jb > (4/3)Ja , there
is a single, infinite-modulation fixed point, ρ∞ = σ∞ = ∞.
Thus the first SDRG approach predicts that, in the strong-
modulation limit, couplings following the 6-3 sequence induce
a gapless aperiodic singlet phase, whose dynamical scaling
form is calculated in Sec. V D. A rough estimate of the critical
point separating the Haldane phase from the gapless phase is
provided by the condition Jb > (4/3)Ja .

B. The second approach

Figure 16 shows the results of applying the second SDRG
approach to the spin-1 Heisenberg chain with couplings
modulated by the 6-3 sequence. In Fig. 16(b), all spin pairs
connected by Jb bonds are replaced by spin- 1

2 pairs after the
first lattice sweep, and for Jb � 1.91Ja all spin- 1

2 pairs are then
decimated, leading to the configuration in Fig. 16(c), with three
effective bonds given by

J
(0)
1 = Ja, J

(0)
2 =

(
1

2

)
J 2

a

Jb

, J
(0)
3 =

(
1

2

)2
J 3

a

J 2
b

. (44)
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Spin 1/2

Spin 1

Ja

Jb

J
(0)
1 J

(0)
2J

(0)
3

(a)

(b)

(c)

FIG. 16. (Color online) First step of renormalization of the spin-
1 Heisenberg chain with couplings following the 6-3 sequence
according to the second SDRG approach. (a) The original chain.
(b) Spin-1 pairs connected by (strong) Jb bonds are replaced by spin- 1

2
pairs. (c) Spin- 1

2 pairs are decimated, yielding effective couplings
between remaining S = 1 spins.

Starting from the configuration in Fig. 16(c), each subse-
quent SDRG steps involve two consecutive sweeps through
the lattice, the first one replacing all spin-1 pairs connected by
J1 bonds by spin- 1

2 pairs, which are then decimated to yield
new effective couplings. This is illustrated in Fig. 17, and leads
to the recurrence relations

J
(j+1)
1 =

(
1

2

)
J

(j )
2 J

(j )
3

J
(j )
1

, J
(j+1)
2 =

(
1

2

)2 J
(j )
2

[
J

(j )
3

]2[
J

(j )
1

]2 ,

J
(j+1)
3 =

(
1

2

)3 J
(j )
2

[
J

(j )
3

]3[
J

(j )
1

]3 , (45)

in which j labels the SDRG step. These equations are valid
as long as J

(j )
1 > 3

2J
(j )
2 , a condition that is always verified for

Jb � 1.91Ja .
As in the case of the first approach, we can define the

coupling ratios ρ ≡ J1/J3 and σ ≡ J1/J2, whose recurrence
relations read

ρ(j+1) = [2ρ(j )]2, σ (j+1) = 2ρ(j ). (46)

These also point to an infinite-modulation fixed point, ρ∞ =
σ∞ = ∞, so that predictions from the first and the second

Spin 1/2

Spin 1

J
(i)
1

J
(i)
2

J
(i)
3

J
(i+1)
1J

(i+1)
2 J

(i+1)
3

(a)

(b)

(c)

FIG. 17. (Color online) Self-similar coupling distribution ob-
tained from the second SDRG approach for subsequent RG steps.
(a) Effective chain consisting only of S = 1 spins. (b) Strongly-
connected spin-1 pairs form spin- 1

2 pairs. (c) Spin- 1
2 pairs are

decimated, giving rise to a new effective chain, again consisting only
of spin-1 pairs, with an invariant coupling distribution.

approach are now in qualitative agreement, although, as for
the Fibonacci-Heisenberg chain, the energy levels predicted
by the two approaches (estimated from the effective J1 bonds)
are distinct.

If Jb � 1.91Ja , numerical implementations of the
second SDRG approach (not detailed here) predict the
renormalization of a different set of bonds than in the first
SDRG step, according to the recipe associating the energy
scale with the bond clusters yielding the largest local gap.
However, for 1.69Ja � Jb � 1.91Ja , the distribution of
effective couplings in Fig. 17(a) is eventually reached, so that
the scheme still predicts a gapless, aperiodic singlet phase as
the ground state. For Jb � 1.69Ja , however, the distribution
of effective couplings arrives at a dimerized spin- 1

2 chain,
a state equivalent to the Haldane phase. Thus, within the
approximations leading to the second SDRG approach,
Jb � 1.69Ja corresponds to the critical point separating a
gapped from an aperiodicity-dominated gapless phase.

C. The third approach

Figure 18 shows the first step of the renormalization
of the spin-1 Heisenberg chain with couplings following
the 6-3 sequence, according to the third SDRG approach.
Forming spin- 1

2 pairs from strongly connected spin-1 pairs,
and assuming Jb > 3Ja , second- and third-order perturbation
theory leads to effective couplings which, along with the
remaining Ja bonds, define a set of effective bonds:

J
(0)
1 = Ja,

J
(0)
2 = (α+ − α−)2

2

J 2
a

Jb

=
(

4

3

)
J 2

a

Jb

, (47)

J
(0)
3 = (α+ − α−)4

4

J 3
a

J 2
b

=
(

4

3

)2
J 3

a

J 2
b

,

exactly as in the first SDRG approach. Notice that, as in
the Fibonacci-Heisenberg chain, further-neighbor couplings
are introduced in the middle of the RG step, but eliminated
at the end for strong enough modulation. Nevertheless, they
are essential in obtaining from the third approach the same
effective couplings predicted by the first approach [37].

(a)

(b)

(c)

Spin 1

Spin 1/2

Jb

Ja

(α+)Ja

(α−)Ja

(α2
+)Ja

(α+α−)Ja

(α2
−)Ja

J
(0)
1 J

(0)
2 J

(0)
3

FIG. 18. (Color online) First step of the renormalization of the
spin-1 Heisenberg chain with couplings following the 6-3 sequence,
according to the third SDRG approach. (a) The original chain.
(b) Spin-1 pairs connected by (strong) Jb bonds are replaced by
spin- 1

2 pairs, are further-neighbor couplings are produced. (c) Spin- 1
2

pairs are decimated, yielding effective couplings between remaining
S = 1 spins.
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Spin 1

Spin 1/2

J
(i)
1J

(i)
2 J

(i)
3

α+J
(i)
2

α−J
(i)
2

α+J
(i)
3

α−J
(i)
3

α2
+J

(i)
3

α+α−J
(i)
3

α2
−J

(i)
3

J
(i+1)
1J

(i+1)
2 J

(i+1)
3

FIG. 19. (Color online) Self-similar coupling distribution obtained from the third SDRG approach for subsequent RG steps.
(a) Effective chain consisting only of S = 1 spins. (b) Strongly connected spin-1 pairs form spin- 1

2 pairs, and further-neighbor bonds are
formed. (c) Spin- 1

2 pairs are decimated, giving rise to a new effective chain, again consisting only of spin-1 pairs, with an invariant coupling
distribution.

Subsequent SDRG steps start from the coupling distribution
in Fig. 18(c), shown in expanded form in Fig. 19(a). After
forming spin- 1

2 pairs from spin-1 pairs coupled by effective J1

bonds, these spin- 1
2 pairs are decimated, taking into account

the presence of further neighbor bonds, to yield, from second-
, third- and fourth-order perturbation theory, new effective
couplings obeying the recurrence relations:

J
(j+1)
1 = (α+ − α−)2

2

J
(j )
2 J

(j )
3

J
(j )
1

=
(

4

3

)
J

(j )
2 J

(j )
3

J
(j )
1

,

J
(j+1)
2 = (α+ − α−)4

4

J
(j )
2

[
J

(j )
3

]2[
J

(j )
1

]2 =
(

4

3

)2 J
(j )
2

[
J

(j )
3

]2[
J

(j )
1

]2 ,

J
(j+1)
3 = (α+ − α−)6

8

J
(j )
2

[
J

(j )
3

]3[
J

(j )
1

]3 =
(

4

3

)3 J
(j )
2

[
J

(j )
3

]3[
J

(j )
1

]3 ,

(48)

valid as long as Jb > α2
+Ja.

Thus, for sufficiently strong modulation, the first and the
third SDRG approaches yield the same quantitative predictions
for the ground-state properties and the energy levels, while the
second approach qualitatively agrees with the other two.

In the presence of moderate or weak modulation, in which
the perturbative calculations underlying the SDRG scheme
become increasingly inadequate, quantitative predictions are
expected to depend on finer details of the first and third
approaches. Indeed, for α2

+Ja < Jb < 3Ja , numerical imple-
mentations of the third approach still predict a gapless ground
state, although with a slightly different set of renormalized
bonds in the first RG step. However, for Jb � α2

+Ja , the third
approach eventually leads to an effective chain composed
of spin- 1

2 objects with a dimerized distribution of effective
couplings, thus predicting a gapped phase. Of course, for
such a range of coupling ratios, we do not expect any of the
predictions for the critical coupling ratio to be precise.

D. Dynamic scaling relation

In the strong-modulation gapless phase we can derive the
dynamic scaling relation between energy and length scales.

It is natural to assume that, as the various energy levels are
estimated from the values of the strongest effective couplings
at each step of the SDRG scheme, the relevant length scales
are the corresponding effective lengths. From the recurrence
relations in Eqs. (48), and by looking at Fig. 19, it can be seen
that the lengths of the effective couplings satisfy recurrence
relations that can be written in matrix form as⎡

⎢⎣
�

(j+1)
1

�
(j+1)
2

�
(j+1)
3

⎤
⎥⎦ =

⎡
⎣1 1 1

2 1 2
3 1 3

⎤
⎦ ·

⎡
⎢⎣

�
(j )
1

�
(j )
2

�
(j )
3

⎤
⎥⎦ , (49)

in which again j labels the SDRG steps. The matrix appearing
in the above equation has eigenvalues λ1 = λ2 = 0 and λ3 = 5,
so that, in the asymptotic limit, all effective lengths scale as

�(j ) ∼ λ
j

3. (50)

The energy levels, being proportional to the value of the
largest bond in each iteration, scale as �j ∼ J

(j )
1 . Thus, by

solving the recurrence relations in Eqs. (43) and (48), we can
write

�j ∼ �
−2 ln(4/3)

ln 5
j exp

[
−3

2
ln

(
9

16
ρ(0)

)
�ω

j

]
, (51)

with ω = ln 2
ln 5 . As expected, apart from unimportant constants,

this is the same stretched-exponential form obeyed by the spin-
1
2 Heisenberg chain with couplings following the 6-3 sequence.

E. Comparison with QMC simulations

Using the same independent-singlet approximation de-
scribed for the Fibonacci-Heisenberg chain in Sec. IV D,
we can obtain SDRG predictions for the susceptibility at
zero field when couplings follow the 6-3 sequence. Only a
small adaptation is necessary, as the self-similar coupling
distribution is distinct from the 6-3 sequence itself. Thus,
we must take into account that the fraction of Jb bonds in
the original chain is fb = 1

3 , while the fraction of J1 bonds
in the self-similar distribution is fJ1 = 2

5 . Below, the results
of the independent-singlet approximation are compared with
quantum Monte Carlo simulations.
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r  = 3
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r = 20
r = 100

FIG. 20. (Color online) Temperature-dependence of the mag-
netic susceptibility for the spin- 1

2 Heisenberg chain with aperiodic
couplings following the 6-3 sequence. Solid lines are the SDRG
predictions for various coupling ratios r = Jb/Ja , while symbols
indicate the corresponding QMC results obtained for L = 75 sites.

For the spin- 1
2 chain with L = 75 sites the results are shown

in Fig. 20. As expected, the agreement between the SDRG
prediction and QMC simulations is better for larger coupling
ratios r = Jb/Ja .

In Figs. 21 and 22 we show the results for the spin-1 chain
with coupling ratios r = 5 and 10, respectively. As in the
case of the Fibonacci-Heisenberg chain, it is clear that the
QMC results are in better agreement with the predictions of
the third SDRG approach. Again notice the shoulders in the

10-3 10-2 10-1 100 101

T

10-1

100

101

102

χ(
T)

SDRG-second approach
SDRG-third approach
QMC L = 25
QMC L = 45
QMC L = 65
QMC L = 85
QMC L = 105

FIG. 21. (Color online) Temperature dependence of the magnetic
susceptibility for the spin-1 Heisenberg chain with aperiodic cou-
plings following the 6-3 sequence with coupling ratio r = 5. Solid
(dashed) line corresponds to the SDRG prediction according to the
second (third) approach, while symbols correspond to QMC results
for different chain sizes L. QMC error bars are smaller than symbol
size.

10-4 10-3 10-2 10-1 100 101

T
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100
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102

 χ
(T

)

SDRG-second approach
SDRG-third approach
QMC L = 25
QMC L = 45
QMC L = 65
QMC L = 85
QMC L = 105

FIG. 22. (Color online) Temperature dependence of the magnetic
susceptibility for the spin-1 Heisenberg chain with aperiodic cou-
plings following the 6-3 sequence, similar as Fig. 21, but with a
coupling ratio r = 10.

susceptibility curves close to temperatures corresponding to
energy scales related to the effective Jb bonds.

F. Gap and string order of the 6-3 S = 1 chain as a function
of the coupling ratio

We use the same DMRG procedure described in Sec. IV E
to compute the spin gap � (in units of Ja) for open S = 1
spin chains modulated by the 6-3 sequence. We use systems
of sizes L = 45,75,85,105,325,376 and display the results
in Fig. 23. Our calculations reveal that the spin gap � clearly
vanishes for sufficiently large systems, when the coupling ratio
r is large enough. For the largest systems considered (L = 325
and 376), our simulations did not converge for too large values

1 2 3 4 5 6r
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

Δ

L = 45
L = 75
L = 85
L = 105
L = 325
L = 376

0 0.005 0.01 0.015
1/L

0

0.02

0.04

0.06

0.08

0.1

Δ

r = 2.6
r = 2.7
r = 2.8
r = 2.9
r = 3.0
r = 3.2

FIG. 23. (Color online) Spin-1 chain modulated by the 6-3 se-
quence: gap � = E0(ST = 2) − E0(ST = 01) between the lowest-
lying quintuplet ST = 2 state energy E0(ST = 2) and the ground-state
energy E0 (which is either in the ST = 0 singlet or ST = 1 triplet
sector, depending on the chain parity), as a function of coupling ratio
r = Jb/Ja , for different system sizes L.
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FIG. 24. (Color online) Spin-1 chain modulated by the 6-3 se-
quence: string order correlation function 〈Oz(x = |i − j |)〉 as a
function of distance x taken starting from the quarter-chain point
i = L/4 up to the maximum value x = L/2, for a L = 376 chain (top)
and a L = 105 chain (bottom) and different aperiodicity strengths
r = Jb/Ja .

of r � 4, but the behavior at smaller r and for smaller L clearly
indicates that the gap must vanish for these cases.

These results are again in agreement with the SDRG
calculations, which indicate that the Haldane gap must vanish
above a critical modulation rc, to give rise to the gapless
aperiodic singlet phase. The critical value rc at which this
quantum phase transition takes place is difficult to estimate
precisely due to strong finite-size effects arising from a
small gap. Considering the largest system available, we can
nevertheless ascertain that the system is gapless at r = 3.4.
The inset of Fig. 23 displays the spin gap � as a function
of inverse system size 1/L, for values of the coupling ratio
close to the transition. We can tentatively deduce a value
rc ≈ 2.9(2), even though this phenomenological determination
has to be taken with care. Even though the SDRG prediction
rc � 1.73 (from approach 3) is different, it is subject to a large
uncertainty, since for such small values of the bond ratio the
perturbative calculations become much imprecise, and we can
nevertheless conclude that the numerical calculations of the
spin gap support the SDRG prediction of a gapless phase at
large enough (but finite) value of the coupling ratio r .

We finally confirm this finding by computing the string
order correlation function 〈Oz(x = |j − i|)〉 using the same
setup as presented in Sec. IV E. We present in Fig. 24 the
results of our simulations for the maximum chain size L = 376
where we could reach convergence for r = 1,2,3 (top panel)
and for a smaller chain size L = 105 where convergence was
ensured up to r = 6 (bottom panel), for integer values of r .
For L = 376, the long-distance behavior of 〈Oz(x)〉 indicates
that the Haldane phase is still present in this finite-size sample
up to r = 3, albeit with a small string order parameter for
this latter value of r , in agreement with the small gap value
found for this system. On the other hand, for r = 4,5,6, results
for the smaller sample L = 105 already clearly indicate that
the string order vanishes in the long-distance limit, nicely
confirming that the Haldane phase has disappeared. Due to

the irregular behavior in x, we did not attempt to perform
finite-size scaling on the string-order correlation function
for different system sizes to estimate the critical coupling
value rc, but our results for the largest sample L = 376 are
consistent with the estimate rc = 2.9(2) obtained from the
gap estimate.

VI. DISCUSSION AND CONCLUSIONS

In this paper, we investigated the effects of aperiodic
but deterministic bond modulations on the zero and low-
temperature properties of the spin-1 Heisenberg chain. We
presented explicit results for aperiodic bonds generated by
two different binary substitution rules, associated with the
Fibonacci and the 6-3 sequences.

For the Fibonacci-Heisenberg chain, whose geometric
fluctuations are gauged by a wandering exponent ω = 0,
calculations based on different adaptations of the SDRG
scheme yielded conflicting results. While the SDRG approach
of Monthus et al. [16,17], which allows for the appearance of
effective S = 1

2 spins as the transformation proceeds, predicts
that for strong bond modulation the ground state corresponds
to a gapless, aperiodicity-dominated phase, the inclusion of
nonfrustrating next-nearest-neighbor effective bonds in the
SDRG scheme points to a gapped ground state, and to the
stability of the Haldane phase towards any finite Fibonacci
modulation. This is the same prediction as obtained from
the simplest SDRG scheme which only involves S = 1 spins,
and is supported by both quantum Monte Carlo and DMRG
calculations.

On the other hand, for the Heisenberg chains with bonds fol-
lowing the 6-3 sequence, characterized by stronger geometric
fluctuations (ω � 0.43), all SDRG approaches give the same
qualitative prediction, according to which the Haldane phase
should be stable in the presence of weak bond modulation (as
measured by the ratio r between the strong and weak bonds
Jb and Ja), while strong bond modulation (r � 1) drives the
ground state towards a gapless aperiodicity-dominated phase,
similar to the one obtained for the analogous S = 1

2 Heisenberg
chain. Again, this prediction is nicely supported by quantum
Monte Carlo and DMRG calculations.

Although we only presented explicit calculations for two
aperiodic sequences, we can draw more general conclusions
for the strong-modulation regime based on known results for
the S = 1

2 Heisenberg chain [27]. For virtually all binary
substitution sequences characterized by a wandering exponent
ω � 0, it is possible to write recursion relations for a main
bond ratio in the form [27]

r (j+1) = γ [r (j )]k, (52)

where γ is a constant, r (j ) is the bond ratio calculated at the
j th iteration of the SDRG transformation, and k is an integer
related to the wandering exponent ω and to the rescaling factor
τ of the transformation by

ω = ln k

ln τ
. (53)

While for the SDRG approach of Monthus et al. the constant
γ is greater than 1, the other approaches predict 0 < γ < 1.
For k � 2 (ω > 0), the effective bond ratio diverges along the
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iterations, as long as the bare bond ratio r (0) is large enough,
irrespective of the value of γ , thus always driving the system
towards a gapless phase in the strong-modulation limit. On the
other hand, for k = 1 (ω = 0), the constant γ defines whether
the flow of the effective bond ratio is directed towards the
Haldane phase of unit effective bond ratio or to the opposing
aperiodicity-dominated phase. Therefore we predict that only
for sequences for which the wandering exponent is zero the
different SDRG approaches will offer conflicting qualitative
results.

In general, the presence of aperiodic bonds characterized by
a positive wandering exponent will lead to a phase transition
between the Haldane phase and a gapless phase as the bond
modulation increases. In contrast to the random-bond spin-1
chain, however, we do not expect an intermediate phase
associated with Griffiths singularities. This is due to the
fact that the inflation symmetry of substitution sequences
precludes the appearance of arbitrarily large regions in which
the system is locally in the opposite phase as compared to the
infinite chain. This is in agreement with the behavior of the
aperiodic quantum Ising chain [38] and also, in the context
of nonequilibrium transitions to an absorbing state, of the
aperiodic contact process [39]. Furthermore, due to the fact
that the critical point corresponds to a bare bond ratio of order
unity, estimates of the critical exponents of the transition from
the (perturbative) SDRG scheme are both technically quite
difficult and unreliable. Any calculations of such quantities by
numerical methods are left for future work.
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APPENDIX A: THE WANDERING EXPONENT
FOR LETTER PAIRS

For the Fibonacci sequence, the substitution rule for letter
pairs is built by applying three times the substitution rule σfb

of Eq. (19), yielding

σ 3
fb :

{
a → abaab

b → aba
.

Noting that the pair bb does not occur in the sequence, it
follows that

σ
(2)
fb :

⎧⎨
⎩

aa → (ab)(aa)(ba)(ba)(ab)
ab → (ab)(aa)(ba)(ba)
ba → (ab)(aa)(ba)(ab)

.

TABLE I. Local gaps �, in units of the bond J connecting spins
in each of the various blocks relevant for the first approach. The last
column shows the corresponding renormalized block.

n (block size) configuration �/J (gap) renorm. block x

2 ◦—◦ 1.0 –
3 ◦—◦—◦ 1.0 ◦
4 ◦—◦—◦—◦ 0.5092 –

notation: ◦ = spin1

For a general pair inflation rule σ (2), an associated substi-
tution matrix can be defined as

M(2) =

⎛
⎜⎝

maa(waa) maa(wab) maa(wba) maa(wbb)
mab(waa) mab(wab) mab(wba) mab(wbb)
mba(waa) mba(wab) mba(wba) mba(wbb)
mbb(waa) mbb(wab) mbb(wba) mbb(wbb)

⎞
⎟⎠ ,

where mαβ(wγδ) denotes the number of pairs αβ in the word
associated with the pair γ δ. The leading eigenvalues λ1 and
λ2 of M(2) define a wandering exponent

ω = ln |λ2|
ln λ1

,

which governs the fluctuations of the letter pairs (see Ref. [27]
and references therein).

APPENDIX B: LOCAL GAPS

At moderate modulation, it is important to identify which
spin blocks lead to the largest local energy gap, since these
are the blocks to be renormalized according to the SDRG
prescription. In the following tables, we list the local gaps
corresponding to the various blocks produced by the aperiodic
sequences used in this paper. Table I lists the blocks relevant
for the first SDRG approach, while Table II is relevant for

TABLE II. Local gaps �, in units of the bond J connecting
spins in each of the various blocks relevant for the second and third
approaches. The last column shows the corresponding renormalized
block, with spins connected by a bond J ′.

n (block size) configuration �/ |J | (gap) renorm. block

2 ◦—◦ 3.0 •—• (J ′ > 0)
2 •—◦ 1.5 •
2 •—• (J > 0) 1.0 —(J ′ > 0)
2 •—• (J < 0) 1.0 ◦
3 ◦—◦—◦ 2.0 •—• (J ′ < 0)
3 •—◦—• 1.0 —(J ′ > 0)
3 ◦—◦—• 1.5 •
3 •—•—• 1.0 •
4 ◦—◦—◦—◦ 1.8545 •—• (J ′ > 0)
4 •—◦—◦—• 1.9142 •—• (J ′ > 0)
4 ◦—◦—◦—• 1.0778 •
notation: ◦ = spin1; • = spin1/2
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the second and third approaches. The last column in each
table shows the renormalized blocks, a single straight line
corresponding to an effective coupling between the spins
neighboring the original block. Additional effective couplings
may appear; see Figs. 1 to 5.

APPENDIX C: THIRD-ORDER PERTURBATIVE
CALCULATIONS OF EFFECTIVE COUPLINGS IN THE

THIRD SDRG APPROACH

We consider, as a perturbation over the local Hamiltonian
h0 in Eq. (34), the Hamiltonian

hexact
1 = JaS4 · (α+s5 + α−s6)

+ Jas5 · (α+α−s7 + α2
−s8)

+ Jas6 · (α2
+s7 + α+α−s8)

+ Ja(α−s7 + α+s8) · S9, (C1)

which includes both nearest- and next-nearest bonds to the
spins in h0.

Following degenerate perturbation theory, we find that first-
and second-order corrections to h0 are identically zero, while
the third-order corrections arise from the eigenvalues of the
matrix

heff =
∑

i �=0,j �=0

〈�0|hexact
1 |�i〉〈�i |hexact

1 |�j 〉〈�j |hexact
1 |�0〉

(Ei − E0)(Ej − E0)

−〈�0|hexact
1 |�0〉

∑
i �=0

∣∣〈�0|hexact
1 |�i〉

∣∣2
(Ei − E0)2

, (C2)

in which the states are obtained from direct products of the
eigenstates of the spin pairs 5-6 and 7-8. Those states are the
ground state

|�0〉 = |�0〉56 ⊗ |�0〉78, (C3)

formed by combining both pairs in the singlet states defined in
Eq. (2), and excited states |�i〉 which are formed by singlet-
triplet or triplet-triplet combinations of the states |�0〉, |�+

1 〉,
|�0

1〉, and |�−
1 〉; see again Eq. (3). Expanding the summations,

we arrive at an effective bond between spins 4 and 9 given by
Eq. (35).

APPENDIX D: FRACTIONS OF LETTERS IN AN INFINITE
APERIODIC SEQUENCE

Let us consider a general two-letter substitution rule

σ :

{
a → wa

b → wb
, (D1)

in which wa and wb are words formed by arbitrary combi-
nations of letters a and b. If the numbers of letters a and b

are respectively na and nb, after applying the substitution rule,
these numbers change to n′

a and n′
b, such that[

n′
a

n′
b

]
=
[
maa mab

mba mbb

] [
na

nb

]
, (D2)

mαβ being the number of letters α in the word wβ .

J
(0)
a

J
(0)
b

J
(1)
a

J
(1)
b

(a)

(b)

FIG. 25. (Color online) SDRG approach as applied to the spin-1
Fibonacci-Heisenberg chain with L = 14 sites. After sweeping over
the effective chain in (b), all spins are eliminated.

After many iterations of the substitution rule, assuming the
convergence of the fractions of letters a and b, fa = na/(na +
nb) and fb = nb/(na + nb), it follows from the above matrix
equation that we can write

fb = mba + fb (mbb − mba)

maa + mba + fb (mab + mbb − maa − mba)
, (D3)

with fa = 1 − fb.
For the Fibonacci sequence, whose substitution rule is given

by Eq. (19), we have maa = mab = mba = 1 and mbb = 0, so
that we obtain fb = (3 − √

5)/2. For the 6-3 sequence, with
the substitution rule in Eq. (39), we have maa = 4, mab =
mba = 2, and mbb = 1, so that fb = 1

3 .

APPENDIX E: FINITE-CHAIN SDRG GAPS FOR THE
FIBONACCI-HEISENBERG CHAIN

An SDRG estimate of the gap for finite open chains can
be obtained by stopping the RG scheme at the lowest energy
scale for which at least two spins are still active. Figures 25
through 27 illustrate this for chains with L = 14, 22, and 35
spins. Since we want to obtain estimates to compare with
the DMRG results of Sec. IV E, we need to consider the gap
between the ground state, with total spin ST = 0 or ST = 1,
and the lowest energy level with ST = 2. For L = 14 and
22, the ground state is a singlet (ST = 0), while for L = 35,
with an odd number of spins, the ground state has total
spin ST = 1.

As shown in Fig. 25, for L = 14 spins, the lowest ST = 2
energy level corresponds to exciting two pairs of spins to the
local S = 1 states. Thus the SDRG estimate for this gap is
2J

(1)
b , with the effective J

(1)
b calculated from Eq. (21). For L =

22, as depicted in Fig. 26, the lowest ST = 2 excitation comes

J
(0)
a

J
(0)
b

J
(1)
a

J
(1)
b

(a)

(b)

(c)

FIG. 26. (Color online) SDRG approach as applied to the spin-1
Fibonacci-Heisenberg chain with L = 22 sites. Sweeping over the
effective chain in (b) removes all effective Jb bonds, leaving a single
effective Ja bond, as shown in (c).
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J
(0)
a

J
(0)
b

J
(1)
a

J
(1)
b

(a)

(b)

FIG. 27. (Color online) SDRG approach as applied to the spin-1
Fibonacci-Heisenberg chain with L = 35 sites. After sweeping over
the effective chain in (b), the central spin remains.

from a local S = 2 excitation of a pair of spins connected
by an effective J (1)

a bond, yielding a gap of 3J (1)
a . Finally,

since the ground state for L = 35 has total spin ST = 1, the
lowest ST = 2 excitation corresponds to the local excitation
of a single spin pair, leading to a gap of J

(1)
b , as shown in

Fig. 27. Notice that this explains the nonmonotonic behavior
of the gaps with increasing system size, for r � 5, as observed
in Fig. 12. Estimates of the SDRG gap for larger values of L

can be obtained in an analogous fashion.
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