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Abstract
In this paper we are interested in maximal ideals ofC∞ functions with an off-diagonal
condition. Their importance is related to solutions of nonlinear PDEswith singularities
and also to applications in physics. Such ideals were first studied by E. E. Rosinger.
Examples of such ideals are the ones originating from the Colombeau algebras of
generalized functions. It is in this context that we determine maximal ideals with an
off-diagonal condition.
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1 Introduction

By introducing distribution theory, Schwartz was among the first to provide us with a
well developed theory of generalized functions. This is a linear theory not admitting
multiplication among the new objects. Several attempts were made to find a setting
which permits suchmultiplicationswhilemaintaining the essence of Schwartz’ theory.
A general way of constructing these algebras is due to E. E. Rosinger. We refer the
reader to [21] and its list of references for the importance and more details about these
algebras. Below is a short description of Rosinger’s construction.

We dedicate this paper to Professor Jorge Aragona of the University of São Paulo - Brazil, for his lifetime
contributions in the field of Colombeau Generalized Functions. Professor Aragona was the mentor of the
Brazilian group and made a lot of friends with persons in the field. His contributions and expertise will be
missed as will be his presence.
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Let � be an infinite set, K ∈ {R,C}, � ⊂ K
n an open subset and C (�) the ring

of continuous functions taking values in K. Consider the commutative unital algebra
C (�)� of nets ( fλ)λ∈� and its diagonal

U�(�) = {( fλ)λ∈� : fλ = fλ0},

with λ0 ∈ � a fixed index.We have thatU�(�) is a subalgebra ofC (�)� and there is a
natural algebra isomorphism u : C (�) → U�(�), defined by u( f ) = ( fλ)λ∈�; fλ =
f , ∀ λ ∈ �. Given a subalgebraA ⊂ C (�)� and an ideal I�A , we say that the pair
(A ,I) satisfies an off-diagonal condition (it is an off-diagonal pair) if the following
holds:

I ∩ (A ∩ U�(�)) = {0}.

The resulting quotient algebra A /I is called an off-diagonal quotient algebra.
Of particular interest are the off-diagonal quotient algebras with A ⊂ C∞(�)� ⊂
C (�)� since, in this case, one can choose I to be a differential ideal and hence,
the resulting off-diagonal quotient is a differential algebra. The interest in these off-
diagonal quotients is because they are natural candidates for environments in which
multiplication of Schwartz’s distributions can take place. Examples of such candidates
are the Colombeau algebras of generalized functions, introduced in the eighties by
J. F. Colombeau, in which distributions may bemultiplied and hence are environments
for solving nonlinear PDEs. The ideal of the off-diagonal pair can be adjusted to control
the singularities that can be handled by the corresponding off-diagonal quotient.

As in [21], we are interested in the maximal ideals of these off-diagonal quotients.
If we consider � with the discrete topology, the maximal ideals we are interested
in satisfy certain vanishing conditions coming from the Stone-Čech compactification
β(� × �) of � × �. This is a well know construction, but may be highly non-trivial.
Fortunately, in the case of Colombeau algebras, one can view the elements of the off-
diagonal quotient as functions over a topological space taking values in an ultrametric
ring. This permits the use of the ideas of the classical construction of Gillman and
Jerison (see [15,16]). The needed topology was defined, but not used, by H. Biagioni,
and studied in more details by D. Scarpalézos. As noted by M. Oberguggenberger,
this topology was coined the sharp topology. Being crucial in further developments of
the theory, it permitted, together with the key notion of generalized point values intro-
duced by M. Kunzinger and M. Oberguggenberger, the development of a differential
calculus which permits to see distributions as differentiable functions defined over an
ultrametric space and taking values in an ultrametric ring (see [6]). This is where non-
Archimedean analysis comes into the picture. Recall that non-Archimedean function
theory was introduced by J. Tate when studying elliptic curves with bad reduction
(see [11]). So it should not come as a surprise that non-Archimedean analysis comes
into the picture when studying nonlinear PDEs with singularities. Other off-diagonal
quotients were introduced by Todorov and Vernaeve. Classical texts containing the
Theory of Colombeau generalized functions are [1,10,12,13,17–19] and [20]. A very
interesting and completely different approach can be found in [25].
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In [16], Khelif and Scarpalézos use a quotient algebra of the simplified algebra of
Colombeau generalized functions to continue the study of its maximal ideals started
in [9]. Ifm�K andL = K/m, they prove that elements of the quotient algebra may be
identified with continuous maps from a subset of Ln taking values in L. This quotient
algebra is also a differential algebra containing an embedding of the space of Schwartz
distributions. Using a compactification process, and themethods developed in [9], they
parametrize the maximal spectra. Our approach is a bit different and concerns both
the simple and full Colombeau algebra.

In this paper, we pick up the string left in the paragraph after [9, Theorem 6.5],
and study the maximal ideals of Colombeau algebras. This is where the link between
ideals of Colombeau algebras and with Gillman and Jerison’s classical construction is
established. With this, we give one more solution for the embedding problem, i.e., the
problem of embedding the Schwartz distributions in a differential algebra such that the
image of the ring of C∞−functions is a subalgebra and the embedding commuteswith
partial derivation, showing that there is an embedding of Schwartz’ distributions in a
ring of infinitely differentiable functions contained inF (Ln,L), where L is as in the
previous paragraph. The relationship with the ultrafilter construction of Todorov and
Vernaeve is highlighted. This is done in the next section. It turned out that idempotents
play a central role in the algebraic part of the theory. First they were totally identified
for the simplified algebras and later this was also done for the ring of Colombeau
full generalized numbers (see [5,7]). In all cases, it turns out that the Boolean algebra
consists of characteristic functions defined on the parameter space of the defining
algebra. Making use of the results of Section 4, we continue this line of research and
determine the Boolean algebra of the full algebra of Colombeau generalized functions.
To do so, we make use of results of [14] which generalizes the differential calculus of
[6], defined in the context of the simplified algebra, to the context of the full algebra
of Colombeau generalized functions. We also study traces of ideals, and filters in the
context of the full algebra.

Notation ismostly standard, andwe refer the reader to the classical texts for notation
and definitions which we may have omitted.

2 Preliminary

We start recalling the construction of theBoolean algebra of Colombeau algebras. First
determined in [7] for the simplified algebras, this was later done in [5] in the context of
the full algebras. For A ⊂ A0(K), Ac denotes the complement of A inA0(K) and χA

the characteristic function of A with domain A0(K). Let S = {
S ⊂ I |0 ∈ S̄ ∩ S̄c

}
,

where S̄ denotes the topological closure of the set S in I =]0, 1], and

S f = {
A ⊂ A0(K)|∀ p ∈ N, ∃ ϕ ∈ Ap(K), {ε|ϕε ∈ A} ∈ S}

.

P∗(S f ) denotes the set of all the subsets F of P(S f ) which satisfy: ∀ A ∈ S f , either
A ∈ F or Ac ∈ F , and if A, B ∈ F , then A ∪ B ∈ F .
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For each F ∈ P∗(S f ), g f (F) denotes the ideal of K generated by the set of
idempotents {χA : A ∈ F}. For each F ∈ P∗(S f ) the ideal g f (F) is a proper prime
ideal (see [5,7]).

Inv(K) denotes the group of units of K with subgroup H = {α̇r : r ∈ R}, where
α̇r (ϕ) = (diam(supp(ϕ)))r or α̇r (ϕ) = (i(ϕ))r , and i(ϕ) denotes the diameter of the
support of ϕ ∈ A0(K). Recall that, for the simplified algebra, αr , with r ∈ R, denotes
the class of the element (ε −→ εr ).

We refer the reader to the classical references for the definitions of the Colombeau
algebras K and G(�). When working in the context of the full algebra, to avoid
confusion, we will use the subscript f to distinguish the simplified and full setting, if
necessary. When not explicit, the proof or assertion hold for both the simplified and
full algebra.

The differential calculus developed in [6] permits to view generalized functions as
C∞-functions defined on a subset �̃c contained in K

n
. This was generalized to the

context of the full algebra in [14]. K
n
is a Haussdorff space, with the sharp topol-

ogy, containing �̃c as a clopen subset and K
n is discretely embedded (see [6]). This

differential calculus hasmost of the standard properties, and features of classical differ-
ential calculus. There exist non-constant functions with zero derivative, but restricting
to Colombeau generalized functions, a function with zero derivative is constant.

Given ξ ∈ �̃c, define νξ : G(�) → K by νξ ( f ) = f (ξ). If Y ⊂ �̃c and I � K is
an ideal, then

GY ,I(�) = { f ∈ G(�) : νξ ( f ) ∈ I ∀ ξ ∈ Y }

is an ideal of G(�). These ideals have been studied in [9] for the simplified algebra.
Here we shall study them in the context of the full algebra. Given an ideal J of G(�),
its generalized trace is defined as GTr(J) = {ξ ∈ �̃c|νξ (J) �= K}, and GTr(J) ∩ �

is called its trace (see [9]). In the simplified algebra, the set of compactly supported
generalized functions, Gc(�) = { f ∈ G(�) : supp( f ) ⊂⊂ �}, is a dense ideal of
G(�) whose generalized trace is empty (see [9]). In the case of the full algebra, this
ideal is also dense and plays an important role in proving the existence of generalized
solutions for a certain nonlinear parabolic equation (see [4]).

Given a non trivial zero divisor x ∈ K, its zero set, is given by Z(x̂) ∈ S f , where
x̂ is any representatives of x . This gives rise to a unique element of the Boolean
algebra B(K) and we shall denote it by χZ(x̂). Note that the zero set of an invertible
element gives rise to 1 ∈ B(K). So we do not need to fix a specific representative when
working with zero sets of elements. The Fundamental Theorem ofK (see [5,9]) states
that x ∈ Inv(K) if, and only if, the zero set of x , Z(x̂) /∈ S f for all representatives x̂
of x , and x /∈ Inv(K) if, and only if, ∃ e ∈ B(K)−{0} such that x ·e = 0. In particular,
if x ∈ K \ {0}, and x /∈ Inv(K), then x is a zero divisor. One also has that x ∈ Inv(K)

if, and only if, there exists r ∈ R such that αr ≤ |x | and that B(K) = {χT : T ∈ S}.
The latter is a discrete subset of K (see [5,6]).

Another important property that holds in all these algebras is what we callConvexity
of Ideals: all these algebras are partially ordered rings and if I is an ideal, y ∈ I and
|x | ≤ |y| then x ∈ I. For the sake of completeness, we recall that, for example, for
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the simplified Colombeau ring of generalized numbers the norm of an element x is
defined by ‖x‖ = e−V (x), where V (x) = sup{r ∈ R : |x(ε)| = o(εr )}. For example,
‖αr‖ = e−r and thus as r −→ ∞ we have that αr −→ 0. We refer the reader to [5]
for the definition of the norm in the full case and to [5,9] for convexity of ideals.

The subring of elements of K whose limit when ε −→ 0 is equal to 0, we shall
denote by K0 (see [7,14]). This subring contains the infinitesimals of K and thus
contains all the elements whose norm are less than one. Hopefully, this does not create
any confusion with similar notions in the text representing residual class fields. The
meaning will be clear from the context.

3 Aragona algebras

In this section, we shall be working in both the simplified and full Colombeau algebra.
The proofs we shall give work in both cases and, where needed, we shall highlight the
results we are using to give the proofs in both the simple and full case. Unless explicit,
we shall use the notation of the simplified algebra to keep notation simple. In this
section, � ⊂ K

n will denote an open and connected subset and K ∈ {R,C}. We will
be using the Embedding Theorem, κ : G(�) → F (�̃c,K), and also the differential
calculus introduced in [6] and extended in [14]. The reference [6, Proposition 4.4]
will be of particular importance in this section. We shall show how this leads to new
algebras which are nearer to standard calculus than the ones given in the embedding
theorem in [6,14].

The starting point of this section is the paragraph after [9, Theorem 6.5]. There, the
similarity of some maximal ideals in G(�) with maximal ideals in rings of continu-
ous functions is noted. We shall show how to develop this in the full and simplified
Colombeau algebras.

Let I � K be an ideal, L = K/I, and let π : K → L be the canonical map. We
extend this map fromK

n
to Ln , applying it in each coordinate, and still denoting it by

π .
Given f ∈ G(�), denotingκ( f ) still by f , x ∈ �̃c and h ∈ In such that x+h ∈ �̃c,

there exists z ∈ �̃c such that

f (x + h) − f (x) = 〈∇ f (z) | h〉 ∈ I.

It follows that, in L, π( f (x + h)) = π( f (x)). Note that by [6, Proposition 3.2] if
‖h‖ < 1, then x + h ∈ �̃c. Consider the algebra of functions F (Ln,L), and its
subalgebra A = F (X ,L), with X = π(�̃c). We consider all these spaces with the
quotient topology. By what we just proved, there exists an algebra homomorphism

� : G(�) → A

defined by

�( f )(π(x)) = π( f (x)),
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recalling that we denote κ( f ) still by f . In case I = m is a maximal ideal, thenL is the
residual field ofm, and we denote it byL = Km. We also denote by X(n,L) = π(�̃c)

and A (m,L) = A = F (X(n,L),L) the algebra of functions defined in X(n,L)

and taking values in L. We call X(n,L) ⊂ K
n
m an Aragona n-Space andA (m,L) an

Aragona Algebra. These names are given in honor of Jorge Aragona who contributed
much to the development of the theory of Colombeau generalized functions. In the
case of an Aragona Algebra we have:

Lemma 1 The kernel of � is given by

J = ker(�) = { f ∈ G(�) : �m( f ) ⊂ m}.

Moreover, J is a differential ideal of G(�), and if F ∈ G(�) is such that ∂F
∂x j

∈
J, ∀ 1 ≤ j ≤ n, then there exists a constant c ∈ K such that c+ F ∈ J. In particular,
if n = 1, this means that each f ∈ J has a primitive in J.

Proof We first suppose that n = 1. Since m is closed (see [5,7]), we have that if
f ∈ ker(�), then, by [6,14],

f ′(x) = lim
N�k→∞

f (x + αk) − f (x)

αk
∈ m.

As noted after the embedding theorem in [6,14], all elements f ∈ G(�) have a
primitive F and we may suppose 0 ∈ � and F(0) = 0. Hence, if f ∈ J it follows
that F(x) = F(x) − F(0) = F ′(c)(x − 0) = f (c) · x ∈ m, ∀ x ∈ �̃c. It follows that
F ∈ J. From this it follows that, in general, if f ∈ J, then ∂α f ∈ J, ∀ α, multi-index.
Using Leibniz’s rule, this proves that ker(�) is a differentiable ideal of G(�). Since
F(x + h) − F(x) = 〈∇F(z) | h〉 ∈ I, because the coordinates of the gradient are in
the kernel, the last part of the Lemma follows. ��

It follows from Lemma 1 that the differential algebra G(�)/ ker(�) (see also [16]
for the latter algebra) is contained in an Aragona algebra, and the former is a quotient
algebra of a Colombeau algebra.

If f ∈ C∞(�) is non-zero then, since C∞(�) is canonically embedded as a
subalgebra in G(�), it follows that �m( f ) contains units, and hence f /∈ ker(�).
Consequently, we have that C∞(�) ∩ ker(�) = {0}, which is an off-diagonal condi-
tion.

If 0 ∈ � and δ is the Dirac distribution, then δ(0) ∈ α−1 · K∗ ⊂ Inv(K) and
hence δ /∈ ker(�). Our aim is to prove that ker(�) ∩ D ′(�) = {0} meaning that
we may embed the Schwartz distributions in an Aragona algebra (see Theorem 2, the
Embedding Theorem, for the equivalent statement: Ker(�) ∩ E ′(�) = {0}). It is
easily seen that � is injective when restricted to D ′(�) if, and only if, � is injective
when restricted to E ′(�), the subspace of distributions of compact support. In fact, if
w ∈ J ∩ D ′(�) is non-zero, then there exists a compact subset K ⊂ � such that the
restriction χK · w �= 0 and �(χK · w) = �(χK ) · �(w) = 0, where, in this specific
case, χK denotes the characteristic function of the set K . This notation should not
cause any misinterpretation when dealing with idempotents.
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If K = R, then Rm is a real closed field. The facts that R is partially ordered and
m is a convex ideal, imply that Rm is a totally ordered field. We refer the reader to
[9] and also to a, yet, unpublished paper of Aragona-Juriaans-Martins ( [8]) (written
also as a result of interactions with D. Scarpalézos), where the study of the residue
fields was undertaken and several, now folklore, results were proved. Some of them
are recalled and used below.

In case K = R, we have that L = Rm is a real closed field from which it follows
that Cm is an algebraically closed field and does not depend on the maximal ideal m,
that is, all these fields are isomorphic. The last claim follows from a classical result
of Steinitz on real closed fields since it can be shown that polynomials of odd degree
and coefficients in Rm always have a zero in Rm (see [8] fore more details). All these
fields are ultrametric fields, where the ultrametric is given by

‖π(α)‖m = inf{‖α + h‖ : h ∈ m}.

Moreover, this ultrametric induces the quotient topology on these fields, in partic-
ular, π is a Lipschitz function with Lipschitz constant equal to 1. We also have that
‖ab‖m ≤ ‖a‖m · ‖b‖m. We shall be using these facts in the rest of the section.

We first prove a result which relates the norm defined on L with the ultrafilter, F ,
defined by m. We refer the reader to [5,7] and [24] for more details on this. We will
be using freely results contained in these references.

Lemma 2 Let m � K be a maximal ideal, L = Km, and F the ultrafilter associated
with m. If α ∈ K, then

‖π(α)‖m = inf{‖α · χA‖ : A ∈ F}.

Proof Note first that π(χA) = 1, ∀ A ∈ F . So if α /∈ m, then π(α · χA) = π(α). We
also have that ‖x‖ = max{‖x · χA‖, ‖x · χAc‖} ≥ ‖x · χA‖, ∀ x ∈ K. From this it
follows that

‖π(α)‖m = inf{‖α + h‖ : h ∈ m} ≥ inf{‖α · χZ(h)‖ : h ∈ m}.

But α · χZ(h) = α − α · χZ(h)c = α + h1, h1 ∈ m, and hence

inf{‖α · χZ(h)‖ : h ∈ m} ≥ inf{‖α + h‖ : h ∈ m} = ‖π(α)‖m.

This proves that equality holds. ��
Note that Lemma 2 shows clearly the relation that exist between the non-standard

construction of L given in [24] and the one using the quotient map. Since F has the
finite intersection property, Lemma 2 actually says that α is totally “peeled” of by the
elements ofF . If one could pictureπ(α) inL it would look totally fragmented (looking
like nothing was left over of α). Our next result uses key ideas of Non-Archimedean
Analysis for which we refer the interested reader to [11].
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Corollary 1 Letm�K be a maximal ideal, L = Km, r ∈ R, L
0 = {x ∈ L : ‖x‖m ≤

1} and Ľ = {x ∈ L : ‖x‖m < 1}. Then we have

1. If π(x) < π(y) in L, then ‖π(x)‖m ≤ ‖π(y)‖m, ∀ x, y ∈ K.
2. All elements of L are power multiplicative, i.e., ‖π(xn)‖m = ‖π(x)‖nm, ∀ n ∈ N

and x ∈ K.
3. L0 is a subring and Ľ is a prime ideal in L0.
4. π(αr ) is a multiplicative element of L, i.e., in L, we have that

‖π(αr · x)‖m = ‖π(αr )‖m · ‖π(x)‖m, ∀ x ∈ K.

Proof To prove the first item, we may choose 0 < x < y in K. For each A ∈ F , we
then have that 0 < x · χA < y · χA. Taking infimum, the result follows.

To prove the second item we use Lemma 2, and the fact that ‖xn‖ = ‖x‖n in K.
For the third item, if x, y ∈ L

0, then ‖x · y‖m ≤ ‖x‖m ·‖y‖m ≤ 1, and ‖x+ y‖m ≤
max{‖x‖m, ‖y‖m}, showing that L0 is a subring of L. In the same way, if follows that
Ľ is a subring too, and contained in L

0. Now choose x, y ∈ L
0 such that x · y ∈ Ľ.

Since Ľ is a subring, and L is totally ordered, we may suppose that 0 < x < y and
so ‖x‖m ≤ ‖y‖m. Next, multiplying with x , we have that 0 < x2 < x · y. Using the
second item, we have that ‖x‖2m = ‖x2‖m ≤ ‖x · y‖m < 1. So we must have that
x ∈ Ľ, proving the primeness of this ideal.

To prove the last item, we recall from [5,7] that the elements αr are multiplicative
elements of K and that ‖χA‖ = 1. Using this and Lemma 2, we have that

‖π(αr )‖m = inf{‖αr · χA‖ : A ∈ F} = ‖αr‖ · inf{‖χA‖ : A ∈ F} = ‖αr‖.

From this we obtain that

‖π(αr · x)‖m = inf{‖αr · x · χA‖ : A ∈ F}
= ‖αr‖ · inf{‖x · χA‖ : A ∈ F}
= ‖αr‖ · ‖π(x)‖m
= ‖π(αr )‖m · ‖π(x)‖m.

��
It follows that the resulting norm is always a pm-norm, i.e., ‖an‖ = ‖a‖n for

a ∈ L, and L
0/Ľ is always an integral domain. The reader may find more on power-

multiplicative norms, pm-norms, in [11, Page 30]. Consequently, the following result
holds for all residue class fields obtained form Colombeau algebras.

Theorem 1 Let m � K be a maximal ideal and L = Km. Then ‖ · ‖m is a valuation
on L.

Proof Toprove this result, one appliesCorollary 1 and [11, 1.5.3, Proposition 1],which
states that for a norm to be a valuation it is sufficient to have certain multiplicative
elements and for L0/Ľ to be an integral domain. ��
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We are now in position to apply the Theory of Non-Archimedean Analysis (see
[11]). To do so, we shall use Theorem 1 to introduce a Differential Calculus in
F (Ln,L) and thus setting the stage to embed the space of Schwartz distributions
in an Aragona algebra.

Since L is a field, the definition of a derivation on L is the standard one given in
Ultrametric Calculus: we say that a function f : U ⊂ L

n → L is differentiable at a
point x0 if there exists a ∈ L

n such that

lim
x→x0

f (x) − f (x0) − 〈a, x − x0〉
‖x − x0‖m = 0.

Let f ∈ G(�) and consider �( f ). Our next result shows that �( f ) is a differen-
tiable function defined on an Aragona space and taking values in the field L.

Lemma 3 Let y0 = π(x0) ∈ X(n,L) and f ∈ G(�). The function �( f ) is differen-
tiable at y0.

Proof We use the end part of the proof of the embedding theorem, [6, Theorem 4.1]
(see also [14]). For any x ∈ �̃ and h ∈ mn , we have that there exists a constant C(h)

such that

‖π( f (x + h) − f (x0) − f ′(x0)(x + h − x0))‖m ≤
≤ ‖ f (x + h) − f (x0) − f ′(x0)(x + h − x0)‖ ≤

≤ C‖x − x0 + h‖2.

From this it follows that

‖�( f )(π(x)) − �( f )(π(x0)) − �( f ′)(π(x0))(π(x) − π(x0))‖m ≤
≤ C‖π(x) − π(x0)‖2m.

From this and the fact that ‖ · ‖m is a valuation on L, the result follows. ��
Using induction and partial derivatives, it follows that an element f ofG(�) induces

aC∞−map defined on an Aragona space. Since� has a non-zero kernel, the resulting
map may be the zero map. However, we shall prove that the Schwartz distributions
are embedded in Aragona algebras. The whole point here is that Aragona algebras are
nice algebras, where everything behaves just like in standard calculus. If one considers
K = C then, by an already mentioned classical result of Steinitz, the fields L = Km

are all isomorphic (see [8]) and, therefore, for each n there is a unique Aragona Space
and a unique Aragona algebra.

Theorem 2 (Embedding Theorem) Given an open subset � ⊂ R
n there exists an

ultrametric field L, with the ultrametric given by a valuation, an Aragona space
X(n,L) ⊂ L

n, an Aragona algebra A (m,L) and an embedding

τ : D ′(�) → A (m,L) ∩ C∞(X(n,L),L)
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such that

τ(∂αT ) = Dα(τ (T )), ∀ T ∈ D ′(�).

Proof The map τ = � ◦ κ ◦ ι, where κ is the map from the embedding theorem
[6, Theorem 4.1] (see also [14]) and ι is the map defined in [17, Theorem 1.2.10,
Theorem 1.7.15]. This is obviously a linear map and so we just have to prove that it is
injective. As seen above, this means that we must prove that ker(�) ∩ E ′(�) = {0}.
Let w ∈ ker(�) ∩ E ′(�) and V ⊂ � a relatively compact subset of � containing the
support of w, supp(w). Choose φ0 ∈ D(�) such that 〈w,φ0〉 ∈ R

∗. It follows from
[17, Theorem 1.5.8, Theorem 1.7.28] and [2, Proposition 3] that

〈w,φ0〉 =
∫

V

ι(w)(x)ι(φ0)(x)dx = ι(w)(p0)ι(φ0)(p0)μ(V )

for some p0 ∈ Ṽ ⊂ �̃c and where μ(V ) is the Lesbesgue measure of V . It readily
follows that ι(w)(p0) ∈ Inv(K)

⋂
m, a contradiction. That the embedding commutes

with derivation follows directly from the definition of the maps, and from the embed-
ding theorem of [6,14]. ��

The interested reader may find an interesting and different approach in [22,23].
The theorem allows us to see distributions as functions seen in courses of standard
calculus.Wewill use this theorem to studymaximal ideals of the algebra ofColombeau
generalized functions G(�).

Let � ⊂ R
n and 0 �= T ∈ E ′(�) a distribution of compact support and let V be

an open relatively compact subset of � containing the support of T . Then there exists
r > 0 such that ∀ x ∈ Ṽ ⊂ �̃c, we have that αr · T (x) ∈ K0. Hence the point values
of αr T are all in K0.

To finish this section we shall have a closer look at the Aragona spaces. Using the
non-standard analogue, for x0 ∈ K the halo of x0 is the set halo(x0) = {x ∈ K :
x − x0 ∈ K0} = x0 + halo(0) (see [7,14] for the definition of the ring K0). By [6,
Proposition 3.2], we have that if x0 ∈ �̃c, then halo(x0) ⊂ �̃c.

This proves that all elements of �̃c are well inside �̃c and the latter is the galaxy
of all its points. This is what made it possible to define a differential calculus in K

in general and, in particular, on the Colombeau algebras (see [6,14]). The fact that
maximal ideals m � K are closed, convex and uniquely determine an ultrafilter on
P(�), where � is the parameter set of the Colombeau algebra, allowed us to map this
structure to L = Km maintaining the same claims for the Aragona space π(�̃c).

Recall that an element b ∈ L − R is limited if r < b < s for real numbers
r , s ∈ R. So all elements of an Aragona space are limited elements, because all
their coordinates are limited (recall that their representatives are contained in compact
subsets). Since R is embedded in L as a discrete set, it follows that if b ∈ L − R

is limited, say r < b < s with r , s ∈ R, then the set A0 = {x ∈ R : x < b} is
bounded above in R by s and A1 = {x ∈ R : b < x} is bounded below in R by r .
Hence b0 = sup(A0) ∈ R and b1 = inf(A1) ∈ R. Clearly all elements of A1 are
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upper bounds for A0 and hence b0 ≤ b1. If they were not equal then there would exist
n ∈ N such that b0 < b0 + 1

n < b1. Since L is totally ordered and b /∈ R, we have
that either b0 + 1

n < b or b < b0 + 1
n . In the latter case, we have that b0 + 1

n ∈ A1 and
hence b0 + 1

n ≥ inf(A1) = b1, a contradiction. In the former case we would have that
b0 + 1

n ∈ A0 and hence b0 + 1
n ≤ sup(A0) = b0, a contradiction and hence b0 = b1.

Since b �= b0 ∈ R, we may suppose that b−b0 > 0. If b−b0 were not an infinitesimal
there would exist n ∈ N such that b− b0 > 1

n . This would imply that b0 + 1
n ∈ A0 an

hence b0 + 1
n ≤ sup(A0) = b1 = b0, a contradiction. This proves that for a limited

element of b ∈ L there exists b0 ∈ R such that b ∈ halo(b0). This element b0 ∈ R

must be unique because two such real numbers would differ by an infinitesimal, and
hence, must be equal. Recalling that the coordinates of all elements of an Aragona
space are limited this proves the following lemma.

Lemma 4 Let X(n,L) be an Aragona space. Then it is the disjoint union of the halo
of its points, i.e.,

X(n,L) =
⋃

x∈�

halo(x),

where

halo(x) = x + {y ∈ L : ‖y‖m < 1}.

The Lemma suggests that we may not be aware of much what is going on around us
and that continuity as we know it might be mere illusion. It also permits the following:
given an element f ∈ A (m,L) we associate to it a map f̃ ∈ F (�,L) given by

f̃ (x) = f (x).

We say that an element f of an Aragona algebra is limited provided f (x) is limited,
for all x ∈ X(n,L), where the latter is an Aragona space. In particular such a function
is bounded in the common sense provided � ⊂ R

n is bounded. In this case we can
define

f̃ (x) = shadow[ f (x)],

where shadow[ f (x)] ∈ R is the unique real number such that f (x) is in the
halo(shadow[ f (x)]). As seen in [6], such elements are related to the composition
of generalized functions, and we have that f̃ = 0 if, and only if, �m( f ) ⊂ halo(0).
We say that a function f of an Aragona algebra is bounded if there exists r > 0
such that αr · f is limited. Any limited function is bounded and the set of bounded
functions form a subring of A (m,L). If a function is not bounded or limited, we say
that it is unbounded. For example f0 = δ, the Delta Dirac function, is not limited,
since its value at 0 belongs to α−1 · K∗. On the other hand, a distribution of compact
support is a bounded element since, as seen before, for some αr its image is contained
in αr · K0. Since there exist distributions of unbounded order, it follows that there
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exist unbounded functions in Aragona algebras. As noted in [15], the existence of
such functions are related to the existence of maximal ideals which are not fixed, thus
indicating the existence of non-fixed maximal ideals in Aragona algebras.

Fixing q = π(p) ∈ X , the maximal ideal Gp,m(�) is the inverse image of the
maximal ideal { f ∈ A : �( f )(q) = 0}. Note that ker(�) is the intersection

ker(�) =
⋂

p∈�̃c

Gp,m.

Although � has a kernel, i.e., � is not injective, we may use Aragona algebras to
reduce any question in a Colombeau algebra to an Aragona algebra. The reason for
this is that the Jacobson Radical, Rad(K) = {0} (see [5,7]) and hence we may choose
the embedding such that it separates two given points of �̃c. Moreover, the fact that
Rad(K) = {0} implies that we may embed K in a direct product of fields and hence
we may embed G(�) in a subdirect product of Aragona Algebras. We shall use this in
the next section.

4 Filters and idempotents

In this section we shall be dealing with the full Colombeau algebra. In [24] it is proved
that if p is a prime ideal in the ring of Colombeau generalized numbers, then L =
{A ⊂ (0, 1) : χA ∈ p} is an ultrafilter on (0, 1) containing J0 = {]η, 1[: η ∈]0, 1[}. In
the full algebra, define

J f = {
A ⊂ A0(K)|∀ p ∈ N, ∃ ϕ ∈ Ap(K) such that {ε|ϕε ∈ A} ∈ J0

}
.

Lemma 5 In K the following hold.

1. If F ∈ P∗(S f ), then

L f = {
A ⊂ A0(K) : χA ∈ g f (F)

} = F ∪ {A ⊂ A0(K) : χA /∈ J f }

is a maximal co-filter on A0(K).
2. If L f is a maximal co-filter on A0(K) containing J f , then

F = L f ∩ S f ∈ P∗(S f ).

Proof As already noted, g f (F) is a prime ideal of K and hence

{
A ⊂ A0(K) : χA ∈ g f (F)

}

is an ultrafilter. It follows that L f is a maximal co-filter. This proves the first item.
Since L f is a maximal co-filter, it is closed under finite union and ∀A ∈ S f , either

A or Ac is in L f . The proof will be completed if proved that F is closed under finite
union. In fact, note that we have the disjoint union L f = (S f ∩L f )∪ (J f ∩L f ) and,
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clearly, S f ∩ J f = ∅. If A ∈ S f , then either A or Ac ∈ L f , and hence either A or
Ac ∈ L f ∩ S f = F . Finally, if A, B ∈ F , then A ∪ B ∈ L f and, since we wrote L f

as a disjoint union, we need to show that A ∪ B ∈ S f ∩L f . If this were not the case,
then A∪ B ∈ J f ∩L f . From this we have that χA +χB −χA∩B = 0. Multiplying the
latter equation with χA, we have that χA = 0, and hence A ∈ J f , a contradiction. ��
Corollary 2 If p�K is a prime ideal, then gp = {A ⊂ A0(K) : χA ∈ p} is an ultrafilter
on A0(K) containing J f .

We now determine the Boolean algebra of G(�). We shall give two different proofs:
one using theCalculus defined onColombeau algebras and the other using theCalculus
defined on Aragona algebras.

Theorem 3 For an open connected subset � of Rn, we have that the Boolean algebra
B(G(�)) = B(K).

Proof To prove that B(K) ⊂ B(G(�)), we just have to consider B(K) embedded in
G(�) as constant functions.

Let f ∈ B(G(�)) be a non-trivial idempotent. Then, since f is a differentiable
function on �̃c and is also an idempotent, we have that f (x), is idempotent in K for
all x ∈ �̃c. Consequently f (x) ∈ B(K). Since the Boolean algebra of K is a discrete
subset, � is connected and f is differentiable, it follows that f is constant on �̃c (see
the analogue of [6, Proposition 4.7] in [14]). Hence there exists T ∈ S f , such that
f = χT . ��
We now give a proof using Aragona algebras. Let f ∈ B(G(�)) be a non-trivial

idempotent and choose points, x1 �= x0 in �̃c with f (x0) − f (x1) �= 0. Since the
Jacobson radical Rad(K) = 0 (see [5,7]), there exists a maximal ideal m � K such
that f (x0) − f (x1) /∈ m. Using the Aragona algebra related to m, we have that �( f )
is a non-constant idempotent. But the only idempotents in L = Km are 0 and 1. Since
�( f ) is continuous, we have a contradiction.

5 Traces of ideals

We recall the Generalized Cauchy-Schwartz Inequality and the Mean Value Theorem
proved in [6] in the simplified setting which were generalized in the setting of the
full algebras in [14]. Let � be a connected open subset of Rn and f ∈ G(�). For
x, y ∈ �̃c there exists z ∈ �̃c such that

f (x) − f (y) = 〈∇ f (z) | x − y〉

and, for x, y ∈ K, we have that |〈x | y〉| ≤ [x]2 [y]2, where x = (x1, . . . , xn) and

[x]2 = (∑n
i=1 |xi |2

) 1
2 .

Proposition 1 Let�be anopen subset ofRn and ξ ∈ �̃c. The function νξ : G(�) → K

is a continuous epimorphism of K-algebras.
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Proof Since νξ is an evaluation map, and the elements of K are identified with the
constant functions of G(�), we have that νξ is an epimorphism which is clearly K-
linear.

To prove the continuity, we shall use notation and results from [3] and [4] on the
topology of G(�). Of particular importance here is [4, Theorem 2.7] which states that
if �1 ⊂ � is relatively compact, then {Wβ,r : β ∈ N

n, r > 0} is a filter basis of the
topology on G(�1), where Wβ,r = { f ∈ G(�1) : ‖∂σ f ‖�1 ≤ α̇r ,∀ 0 ≤ σ ≤ β}.
Recall also that the sets Vr [0] = {x ∈ K : |x | < α̇r }, with r > 0, generate the sharp
topology on K (see [2,3]).

Since νξ is a homomorphism, we only have to prove its continuity at 0. Let ( fn) ⊂
G(�) converge to zero. Since ξ = [(ξϕ)] is compactly supported, there exists �1 ⊂⊂
� and p ∈ N such that ξϕ ∈ �1, ∀ ϕ ∈ Ap(K). Since the restriction homomorphism
j : G(�) → G(�1) is continuous, given an element Wβ,r of the filtered basis of
G(�1) there exists n0 ∈ N such that j( fn) ∈ Wβ,r , ∀ n ≥ n0. This translates into
|∂σ fn(z)| ≤ α̇r , ∀ z ∈ �̃1, ∀ σ ≤ β. In particular, | fn(ξ)| ≤ α̇r , ∀ n ≥ n0, and hence
fn(ξ) ∈ Vr [0], ∀ n ≥ 0, which proves that fn(ξ) converges to 0, if r −→ ∞. ��
As we have seen in the preliminaries, convexity of ideals implies that if J is an ideal

of R, and x, y ∈ R, then x ∈ J if, and only if, |x | ∈ J and if |y| ≤ |x |, then y ∈ J.

Theorem 4 Let ξ, ζ ∈ �̃c, z = [ξ − ζ ]2 , I, J � K ideals and L � G(�) an ideal.

1. If z ∈ J, then Gξ,J(�) = Gζ,J(�);
2. Let J be prime. Then z ∈ J if, and only if, Gξ,J(�) = Gζ,J(�);
3. Tr(L) = Tr(L) and GTr(L) = GTr(L);
4. If x0 ∈ GTr(L) and L = νx0(L), then �̃c ∩ (x0 + Ln) ⊂ GTr(L), where x0 + Ln =

{x0 + x |x ∈ Ln};
5. If I �= J, then Gξ,I(�) �= Gξ,J(�).

Proof Let f ∈ Gξ,J(�). As already mentioned in the beginning of this section, there
exists z ∈ �̃c such that f (ξ) − f (ζ ) = 〈∇ f (z) | ξ − ζ 〉. From this we have that,

| f (ξ) − f (ζ )| = |〈∇ f (z) | ξ − ζ 〉| ≤ [∇ f (z)]2 [ξ − ζ ]2 = [∇ f (z)]2 · z

Convexity of ideals and the hypothesis imply that f (ζ ) ∈ J. Consequently, Gξ,J(�) =
Gζ,J(�), thus proving the first item.

Let J be prime and let f̂ (ε, x) := 〈x − ξε | x − ξε〉. This is obviously a moderate
function and hence its image f ∈ G(�). Clearly f (ξ) = 0 and thus f ∈ Gξ,J(�). We
also have that f (ζ ) = |[ξ − ζ ]2|2 = z2 ∈ J, and hence, by primeness of J it follows
that z ∈ J. Since the previous item gives us the converse, the second item is proved.

Let L be an ideal of G(�) and x0 ∈ GTr(L). If x0 /∈ GTr(L), then there exists an
element f ∈ L such that f (x0) = 1. Choose ( fn) ⊂ L converging to f . The continuity
of νx0 implies that (νx0( fn)) converges to νx0( f ) ∈ K. Since Inv(K) is open inK and
νx0( f ) = 1 ∈ Inv(K), there exists n0 ∈ N such that fn(x0) ∈ Inv(K). From this it
follows that x0 /∈ GTr(L), a contradiction. This proves that GTr(L) ⊂ GTr(L). Since
the converse is clear, the third item is proved.
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Let x0 ∈ GTr(L), L = νx0(L) and x ∈ �̃c ∩ (x0 + Ln). We have x = x0 + h, h =
(h1, . . . , hn), hi ∈ L, ∀ i = 1, . . . , n. By the choice of x0, we have that L �= K.
Choosing f ∈ L, as before, there exists z ∈ �̃c such that

f (x) − f (x0) = 〈∇ f (z) | x − x0〉 = 〈∇ f (z) | h〉.

Hence

| f (x) − f (x0)| = |〈∇ f (z) | h〉| ≤ [∇ f (z)]2 [h]2 .

By convexity of ideal, and because h = x − x0 ∈ Ln , we have that f (x)− f (x0) ∈ L .
Consequently, f (x) ∈ L , and thus νx (L) ⊂ L �= K. Hence, x ∈ GTr(L). This proves
that �̃c ∩ (x0 + Ln) ⊂ GTr(L).

To prove the last item, let f ∈ Gξ,J(�)∩K. Then f is a constant function and thus
f = f (ξ) ∈ J. From this it follows that Gξ,J(�) ∩ K = J. ��
Theorem 5 Let J and M be ideals of G(�). Then we have:

1. GTr(J) is closed;
2. If M is maximal, ξ ∈ GTr(M) and m = νξ (M). Then

a. M ∩ K = m;
b. νx (M) = m and M = Gx,m(�) for all x ∈ GTr(M);
c. �̃c ∩ {ξ + h|h ∈ mn} = GTr(M).

Proof Consider a sequence (ξn) ⊂ GTr(J) such that ξn → ξ . If ξ /∈ GTr(J), then
νξ (J) = K, and hence, there exists f ∈ J such that f (ξ) = 1. By continuity of f ,
we have that f (ξn) → f (ξ) = 1. Since Inv(K) is open, there exists n0 ∈ N such that
f (ξn) ∈ Inv(K) ∀ n > n0. Hence, ξn /∈ GTr(J), a contradiction.
Let f ∈ M ∩ K. We have that f = f (ξ) = νξ ( f ) ∈ m. On the other hand, if

m �= M ∩ K, there exists f0 ∈ m, but f0 /∈ M, By maximality of M, we have that
f0 ·G(�)+M = G(�). Applying νξ , we obtain that νξ ( f0 ·G(�)+M) = νξ (G(�)) =
K. But νξ ( f0 · G(�) + M) = νξ ( f0 · G(�)) + νξ (M) = f0 · K + m = m �= K, a
contradiction.

We proceed by proving that m is maximal. In fact, if this were not the case then
there exists x0 ∈ K such that x0 · K + m �= K. The maximality of M gives that
x0 · G(�) + M = G(�). Reasoning as in the previous paragraph, we obtain that
x0 · K + m = K, a contradiction.

Let x ∈ GTr(J), fromwhatwe alreadyproved, it follows that νx (M) = M∩K = m.
Supposing that Gx,m(�) is not contained in M we may choose f0 ∈ Gx,m(�), with
f0 /∈ M. By maximality ofM, we have that f0 · G(�) + M = G(�). Applying νx to
this equation, we obtain that K = νx ( f0) ·K+m ⊂ m ·K+m = m, a contradiction.
Hence Gx,m(�) ⊂ M. Since the former is a maximal ideal, we have equality.

To prove the last item, note that, by the Theorem4, �̃c∩{ξ+h|h ∈ mn} ⊂ GTr(M).
Let x ∈ GTr(M), h = x − ξ = (h1, . . . , hn) and z = [x − ξ ]2. By what we already
proved, we have that Gx,m(�) = M = Gξ,m(�). Since M is maximal, and hence
prime, it follows by the second item of Theorem 4 that z ∈ m. Since |h1| ≤ z, it
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follows by convexity of ideals that hi ∈ m, ∀ i = 1, . . . , n. From this we have that
h ∈ mn , and x = ξ + h ∈ ξ + mn . This, together with item 4 of Theorem 4 finishes
the proof. ��
Corollary 3 Let M � G(�) be a maximal ideal. Then

1. Tr(M) has at most one element;
2. Tr(M) is non-empty if, and only if,m = M∩K is a maximal ideal and there exists

a unique ξ ∈ � such that M = Gξ,m(�);
3. GTr(M) is non-empty if, and only if, m = M ∩ K is a maximal ideal and there

exists ξ ∈ �̃c such that M = Gξ,m(�);
4. If M is dense, then GTr(M) = ∅.
Proof Let x, y ∈ Tr(M) ⊂ �. By item 2.c of the Theorem 5, we have that x− y ∈ mn ,
where m = M∩K is maximal. If x �= y, then one of the coordinates of x − y ∈ K is
a non-zero real number belonging tom, a contradiction sincem is a proper ideal ofK.

To prove the second item, note that if Tr(M) �= ∅ then, by the previous item, it has
a unique element. The second item of the Theorem 5 gives us the desired conclusion.

IfM ismaximal anddense then it can not be closed. Suppose thatGTr(M) �= ∅ then,
by the Theorem 5, M = Gx,m(�), for x ∈ GTr(M). Since the map νx is continuous
and maximal ideals ofK are closed, it follows thatM is closed what contradicting the
fact that it is a proper ideal. ��

Let M = Gx0,m(�) � K with m � K a maximal ideal. Given f ∈ G(�) and
g = f − f (x0), we have that g(x0) = 0 ∈ m, and hence g ∈ M. From this it
follows that f +M = f (x0)+M, with f (x0) ∈ K. This proves that the residue class

fields G(�)
M

∼= K

m . Hence there arise no new residue class fields coming from maximal
primes with non-empty generalized trace. We shall call them fixed maximal ideals. If
a maximal ideal is not fixed we shall say that it is a free ideal. So an ideal is fixed
if in an Aragona algebra the intersection of the zero sets of its elements is a point.
Note that this is the classical idea of a maximal ideal in the space C (X) = { f : X →
R : f continuous}, where X is a compact topological space (see [15]). This is exactly
what was suggested in [9], as mentioned before. This is clearly a statement about the
maximal Z -filters in such spaces. In our case, an Aragona space is not compact, since
it contains some open � ⊂ R

n as a discrete subset.
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