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Abstract
For C1 transitive Anosov diffeomorphisms, we consider the sets of irregular points without
physical-like behaviour and regular points without physical-like behaviour respectively and
show that they all carry full topological entropy. Roughly speaking, physical-like measures
do not affect the dynamical complexity of the regular set and the irregular set in the sense of
topological entropy.

Keywords SRB-like, Physical-like or observable measure · Topological entropy ·
Uniformly hyperbolic systems

Mathematics Subject Classification 37D20 · 37D30 · 37C45 · 37A35 · 37B40

1 Introduction

The differentiable ergodic theory of dynamical systems is mainly developed in the C1+α

scenario. Relatively few results were obtained in the C1 context. In this paper we focus
our attention on C1 dynamical systems, for which the Lebesgue measure is not necessarily
invariant.

Among the most useful concepts in the ergodic theory, the physical probability measures
play an important role.An invariant probabilitymeasureμ is called physical if for a Lebesgue-
positive set of initial states x , the time-average of any continuous function ϕ along the orbit
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of x , up to time n, converges (when n → +∞) to the expected value of ϕ with respect
to μ. Not any system, principally in the C1 context, possesses physical measures. This
problem can be easily dodged by substituting the definition of physical measure by a weaker
concept: physical-like measure, also called SRB-like or observable measure (see Definition
2.4). Physical-like measures do always exist (see [11]).

For any C1+α transitive Anosov diffeomorphism f , the classical Pesin theory ensures
the existence of a unique physical measure μ f , which is also of SRB (Sinai–Ruelle–Bowen)
type. Besides,μ f has a basin of statistical attraction with full Lebesgue measure and satisfies
Pesin entropy formula. The typical points are those in the basin of statistical attraction of
μ. Analogously, in [11] it was proved that for any C0 system f , there exists a nonempty
set O f composed by all the observable or physical-like measures. Besides, the basin of
statistical attraction ofO f has full Lebesgue measure, and if f is (for instance) a C1 Anosov
diffeomorphism, then any measureμ inO f satisfies Pesin entropy formula (see [10]). In this
general case, the typical points are those in the basin of statistical attraction of O f .

Along this paper, we will disregard the typical orbits, and look only at the orbits in the set
of zero-Lebesgue measure that have non physical-like behaviour. Precisely, a point x ∈ M
without physical-like behaviour, is a point such that none of the limits when n → ∞ of the
convergent subsequences of its time-averages, is a physical-like measure. In other words x
is anything but typical. We denote by � f the set of such points. Thus

� f = {x : pw f (x) ∩ O f = ∅}, (1)

where pw f (x) :=
⎧
⎨

⎩
μ ∈ P : lim

j→+∞
1

n j

n j−1
∑

i=1

δ f i (x) = μ for some sequence n j → +∞
⎫
⎬

⎭
,

and P denotes the space of all the probability measures endowed with the weak∗ topology.
We will adopt also a topological point of view, and look at the increasing rate of the

topological information quantity of f ; namely, its topological entropy htop( f ). In [8], Bowen
defined the topological entropy htop(E) restricted to an arbitrary subset E of the space M .
Among its properties: htop(E) increases with E , and htop(M) = htop( f ). We say that a
set E ⊂ M has full topological entropy if htop(E) = htop( f ). If so, the dynamics of f
restricted to E produces the total increasing rate of topological information of the system. In
other words, even if one disregards the orbits whose initial states are not in E , the information
obtained from the sub-dynamics is, roughly speaking, the information of the whole system.

We also consider irregular and regular sets without physical-like behaviour. A point x ∈
M is irregular if the sequence of time-averages along its orbit is not convergent, that is,
#pw f (x) > 1. It is also called point with historic behaviour [23,26]. Otherwise, x is called
regular (called quasi-regular in [13,18]). Let I f be the set of irregular points and R f be the
set of regular points. In [2] it is proved that I f carries full topological entropy for hyperbolic
systems. This result is generalized to systems with specification-like properties [28,29]. The
points without physical-like behaviour may be irregular or not. For any continuous map
f : M 	→ M , the set of irregular points without physical-like behaviour has zero Lebesgue
measure by Theorem 2.5 below and also zero μ-measure for any f -invariant measure μ by
Birkhoff ergodic theorem.

Theorem A Let f : M 	→ M be a C1 transitive Anosov diffeomorphism on a compact
Riemannian manifold M. Then
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(1) the set � f ∩ I f of irregular points without physical-like behaviour has full topological
entropy;

(2) the set � f ∩ R f of regular points without physical-like behaviour has full topological
entropy.

To prove this theorem, we will use the following main tools: the topological and metric
properties of asymptotically entropy-expansivemaps ([5,14,17,19]), the formulae of the topo-
logical entropy of saturated sets according to [21], and Pesin entropy formula for physical-like
measures of certain C1 diffeomorphisms according to [10].

Organization of the paper.Section 2 is a review of definitions tomake precise the statements
of the theorems and their proofs. In Sect. 3 we give some key technique lemmas by an abstract
framework and then end the proof of Theorem A.

2 Definitions

2.1 Physical-like or SRB-likemeasures

Let f : M → M be a continuous map on a compact manifold M , which does not necessarily
preserve any smooth measures with respect to the Lebesgue measure. LetP denote the space
of all the probability measures endowed with the weak∗ topology, and P f ⊂ P denote the
space of f -invariant probability measures.

Definition 2.1 (Empirical probabilities or time-averages and p-omega limit).
For any point x ∈ M and for any integer number n ≥ 1, the empirical probability or

time-average measure ϒn(x) of the f -orbit of x up to time n, is defined by

ϒn(x) := 1

n

n−1∑

j=0

δ f j (x),

where δy is the Dirac probability measure supported at y ∈ M . Consider the sequence{
ϒn

}

n∈N+ of empiric probabilities in the spaceP , and define the p-omega-limit set pω f (x) ⊂
P as follows:

pω f (x) :=
{
μ ∈ P : ∃ ni → +∞ such that lim

i→+∞ ϒni = μ
}
.

It is standard to check that pω f (x) ⊂ P f . From [13] we know that pω f (x) is always
nonempty, weak∗-compact and connected.

Definition 2.2 (Physical or SRB measures and their basins)
We call a measure μ ∈ P physical or SRB (Sinai–Ruelle–Bowen), if the set

Gμ = {x ∈ M : pω f (x) = {μ}} (2)

has positive Lebesgue measure. The set Gμ is called basin of statistical attraction of μ, or
in brief, basin of μ (even if μ is not physical).

Remark 2.3 The above definition of physical or SRB measures is not adopted by all the
authors. Somemathematicians require themeasureμ to be ergodic to call it physical. Besides,
some mathematicians when studying C1+α systems do not define SRB as a synonym of
physical measure, but take into account the property of absolute continuity on the unstable
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foliation. But, in the scenario of continuous systems, and even for C1 systems, the unstable
conditional measures can not be defined because the unstable foliation may not exist.

Definition 2.4 (Physical-like measures and their ε-basins, cf. [11])
Choose any metric dist∗ that induces the weak∗ topology on the space P of probability

measures. A probability measure μ ∈ P is called physical-like (or SRB-like or observable)
if for any ε > 0 the set

Gμ(ε) = {x ∈ M : dist∗(pω f (x), μ) < ε}, (3)

has positive Lebesguemeasure. The setGμ(ε) is called basin of ε-partial statistical attraction
of μ, or in brief, ε-basin of μ. We denote by O f the set of physical-like measures for f .
It is standard to check that every physical-like measure is f -invariant and that O f does not
depend on the choice of the metric in P .

Theorem 2.5 (Characterization of physical-like measures [11])
Let f : M → M be a continuous map on a compact manifold M. Then, the set O f of

physical-like measures is nonempty, weak∗ compact, and contains the limits of the convergent
subsequences of the empiric probabilities for Lebesgue almost all the initial states x ∈ M.
Besides, no proper subset of O f has the latter three properties simultaneously.

2.2 Topological definitions

In this subsection we list some other concepts that we will use along the proofs. Indeed, we
will not formally use the mathematical conditions that impose those definitions, but only
some already known relations among them. So here, we just cite the bibliography where the
definitions can be found.

Topological entropy of a subset E ⊂ M . We adopt Bowen’s definition of the topological
entropy htop(E) of an arbitrary subset E ⊂ M , for any compact metric space M and any
continuous map f on M (see [8]).

Entropy-expansive and asymptotically entropy-expansivemaps.We refer to [5,14,17,19]
for the definitions of expansive, entropy-expansive and asymptotically entropy-expansive
maps. From those definitions, trivially every expansive homeomorphism is entropy-
expansive, and every entropy expansive map (not necessarily an homeomorphism) is
asymptotically entropy-expansive.

Specification and g-almost product propertiesWe adopt the definition of the specification
property of themap f , as for instance in [4,6,7,13,24,28]).We note that the original definition
of specification, due to Bowen [6], was stronger than the specification property that we adopt
here.

We recall the definition of the blowup functions g : N 	→ N, and of the g-almost product
property of the map f , in [21]). Every continuous map f that has the specification property,
also has the g-almost product property for some blow up function g ( [21, Proposition 2.1]).
In other words, the g-almost product property is weaker than the specification property.

2.3 Saturated sets and saturation property of the entropy

Let f : M 	→ M be a continuous map on a compact metric space M . We reformulate the
definition of the saturated sets in [21], as follows:
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Definition 2.6 (Saturated sets) Let K ⊆ P f . We call the (maybe empty) following setGK ⊂
M , the saturated set of K :

GK = {x ∈ M : pw f (x) = K }. (4)

Note that Gμ = G{μ} for any invariant measure μ from (2) and (4). Remark that if
GK 
= ∅, then K must be nonempty, compact and connected since from [13] pw f (x) is
always nonempty, compact and connected for any point x . For convenience, we introduce
the following definition inspired in the results of [21]:

Definition 2.7 (Saturation property of the entropy) We say that the continuous system f :
M 	→ M has the saturation property of the entropy, if for any nonempty, weak∗ compact
and connected set K ⊆ P f , the following equality holds:

htop(GK ) = inf{hμ( f ) : μ ∈ K },
where hμ( f ) is the metric entropy of f with respect to the probability measure μ.

Say a systemhas the singleton saturation property if for any invariant (not necessarily ergodic)
measure μ,

htop(Gμ) = hμ( f ). (5)

This property holds for any systemwith the g-almost product structure [21]. In [8, Theorem3],
Bowen proved that equality (5) holds for any ergodic measure μ, for any continuous map f
on a compact metric space M (without any other assumptions).

Define an interval [μ, ν] := {tμ + (1 − t)ν, t ∈ [0, 1]} for μ, ν ∈ P f . Say f
has the interval saturation property when for any intervals [μ, ν] (trivial or not) we have
htop(G[μ,ν]) = min{hμ( f ), hν( f )}.Obviously saturation property of the entropy is stronger
than interval saturation property and the later is stronger than singleton saturation property.
Interval saturation property is satisfied for many systems with specification-like properties:
strong nonuniform specification [30], system with saturation property of the entropy such as
asymptotically entropy-expansive system with the g-almost product structure [21].

2.4 �-irregualr, regular and level sets

We denote by C0(M, R) the space of continuous real functions ϕ : M 	→ R. Given ϕ ∈
C0(M, R), consider the set I ϕ

f defined by

I ϕ
f :=

⎧
⎨

⎩
x ∈ M : 1

n

n−1∑

j=0

ϕ
(
f j (x)

)
is not convergent

⎫
⎬

⎭
.

The points in I ϕ
f are called ϕ−irregular. Then, due to the weak∗ topology, we have

I f =
⋃

ϕ∈C0(M,R)

I ϕ
f . (6)

The set of strongly regular points (called regular in [18]), denoted by SR f , which means
that

SR f =
⋃

μ∈P f , μ ergodic

(Gμ ∩ Sμ),
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where Sμ denotes the support of μ. This set has full measure for any invariant measure by
Birkhoff ergodic theorem and ergodic decomposition theorem.

Let

Re
f =

⋃

μ∈P f , ergodic

Gμ, Rne
f =

⋃

μ∈P f , not ergodic

Gμ.

The points in Re
f and Rne

f are called ergodic regular points and non-ergodic regular points
respectively.

Let φ : M → R be a continuous function and denote the interval [infμ∈P f

∫
φdμ,

supμ∈P f

∫
φdμ] by Lφ and its interior by I nt(Lφ). For a ∈ R, define level set

Rφ(a) :=
⎧
⎨

⎩
x : lim

n→+∞
1

n

n−1∑

j=0

ϕ
(
f j (x)

) = a

⎫
⎬

⎭
.

By weak∗ topology, a necessary condition for Rφ(a) 
= ∅ is a ∈ Lφ. Its topological entropy
has a variational principle characterized by supμ∈P f ,

∫
φdμ=a hμ( f ) in [1] for hyperbolic

systems and [21,27] for systems with specification-like properties.

2.5 Dominated splitting

Definition 2.8 (Dominated splitting) Let f : M → M be aC1 diffeomorphism on a compact
Riemannian manifold M . Let T M = E ⊕ F be a Df -invariant and continuous splitting such
that dim(E) · dim(F) 
= 0. It is called a dominated splitting if there exists σ > 1 such that

‖Df |E(x)‖‖Df −1
f (x)|F( f (x))‖ ≤ σ−1 ∀x ∈ M .

Remark 2.9 The continuity of the splitting in the latter definition is redundant (see [3, p. 288]).
The classical definition of dominated splitting is T M = E ⊕ F such that there exists C > 0
and σ > 1:

‖Df n |E(x)‖ · ‖Df −n |F( f n(x))‖ ≤ Cσ−n,∀x ∈ M, n ≥ 1.

It is equivalent to Definition 2.8 (see [12]).

2.6 Pesin entropy formula

Definition 2.10 (Pesin entropy formula) Let f : M 	→ M be a C1 diffeomorphism on a
compact Riemannian manifold M and let μ ∈ P f . We say that μ satisfies Pesin Entropy
Formula if

hμ( f ) =
∫ ∑

χi (x)≥0

χi (x)dμ, (7)

where hμ( f ) is the metric entropy of μ and χ1(x) ≥ χ2(x) · · · ≥ χdim(M)(x) denote the
Lyapunov exponents of μ-a.e. x ∈ M . We denote

PE f := {
μ ∈ P f : μ satisfies Pesin Entropy Formula (7)

}
.

Remark 2.11 A convex subset K ofP f is called a face when almost every ergodic component
of measures in K also belongs to K . Note that PE f is a face, and either PE f = P f or the
interior of PE f in P f is empty, due to the affinity property of metric entropy function and
Ruelle’s inequality [22].
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2.7 Equilibrium states

Let us return to the continuous setting and state the basic definitions and properties of the
thermodynamic formalism (see for instance [16]). Let f be a continuous map on a compact
manifold M . Fix a continuous real function ψ : M 	→ R, which is called the potential.
Consider the following real number p f (ψ):

p f (ψ) := sup
μ∈P f

(
hμ( f ) −

∫

ψ dμ
)
.

The number p f (ψ) is called the pressure with respect to the potential ψ .

Definition 2.12 The (maybe empty) set ES f (ψ) of f -invariant probability measures, is
defined by

ES f :=
{

μ ∈ P f : hμ( f ) −
∫

ψ dμ = p f (ψ)

}

.

The measures μ in ES f are called equilibrium states of f with respect to the potential ψ .
So ES f (ψ) is the set of equilibrium states.

Remark 2.13 Due to the affinity property of the entropy function, ES f (ψ) is a face and either
is thewhole spaceP f , or it has empty interior inP f . If f is asymptotically entropy-expansive,
then it is known that the entropy function is upper semi-continuous. Thus, ES f (ψ) is besides
nonempty and weak∗-compact (see for instance [16, Theorem 4.2.3]).

3 Abstract framework and proof of theorem A

3.1 Points with L-behaviour

Let f : M → M be a continuous map on a compact metric space M . Let L ⊆ P f . Recall

GL := {x ∈ M |pw f (x) = L}.
Define

HL := {x ∈ M |pw f (x) ⊆ L}.
Here we call HL the set of points with L-behaviour. Note that GL ⊆ HL . Moreover for
L ⊆ L ′ we have HL ⊆ HL ′ . For K ⊆ P f the set of points without K -behaviour is then
HP f \K .

For any real number t ≥ 0, define the (maybe empty) set

Q(t) := {x : ∃μ ∈ pw f (x) s.t . hμ( f ) ≤ t}.
From [8, Theorem 2]:

htop(Q(t)) ≤ t . (8)

Observe that for any L ⊆ P f one has htop(HL) ≤ supμ∈L hμ( f ) by (8). Recall Bowen’s
result of [8, Theorem 3] that for any ergodic μ and measurable set � with μ(�) = 1,

htop(�) ≥ hμ( f ). (9)

Thus by (8) and (9) one gets that for any ergodic μ, htop(Gμ ∩ Sμ) = htop(Gμ) = hμ( f ).

123



E. Catsigeras et al.

Lemma 3.1 For any L ⊆ P f one has

(1)

sup
μ∈L

hμ( f ) ≥ htop(HL) ≥ htop(HL ∩ R f ) ≥ htop(HL ∩ SR f ) = sup
μ∈L, μ ergodic

hμ( f );

(2) When L is a face, then the inequalities in item (1) are all equalities;
(3) When f has singleton saturation property, we also have

sup
μ∈L

hμ( f ) = htop(HL) = htop(HL ∩ R f ),

and

htop(HL ∩ Rne
f ) ≥ sup

μ∈L, non-ergodic
hμ( f );

(4) When f has interval saturation property,
if φ : M → R is a continuous function with infμ∈P f

∫
φdμ < supμ∈P f

∫
φdμ, then

htop(I
φ
f ∩ HL) ≥ sup

[μ,ν]⊆L,
∫

φdμ
=∫
φdν

min{hμ( f ), hν( f )}.

Proof (1) Item (1) is from (8) and (9).
(2) When L is a face, supμ∈L hμ( f ) = supμ∈L, μ ergodic hμ( f ) so that item (2) is obtained

by item (1).
(3) For any μ ∈ L, Gμ ⊆ HL ∩ R f and if further μ is non-ergodic, then Gμ ⊆ HL ∩ Rne

f .
Thus by using singleton saturation property one has item (3).

(4) Note that for any non trivial intervals [μ, ν],G[μ,ν] ⊆ I f and if further
∫

φdμ 
= ∫
φdν,

thenG[μ,ν] ⊆ Iφ
f . If [μ, ν] ⊆ L, thenG[μ,ν] ⊆ HL so that item (4) follows from interval

saturation property. ��

3.2 Entropy of measures outside a (weak) face

Herewe introduce a possiblyweak version of face calledweak face. A convex subset K ⊆ P f

is called a weak face, if for any μ ∈ K with μ = λν + (1−λ)ω for some λ ∈ (0, 1), one has
ν, ω ∈ K . We say K is proper if K 
= P f . Say f satisfies the entropy-dense property if for
any μ ∈ P f , for any neighborhood G of μ in P f , and for any η > 0, there exists an ergodic
measure ν ∈ P f such that hν > hμ − η. From [20] entropy-dense holds for any system with
g−almost product structure.

Lemma 3.2 Let f : M → M be a continuous map on a compact metric space M. Assume
K is a proper weak face of P f then

(1) one has

sup
μ not ergodic /∈K

hμ( f ) = htop( f ), (10)

(2) If φ : M → R is a continuous function with infμ∈P f

∫
φdμ < supμ∈P f

∫
φdμ, then

sup
[μ,ν]⊆P f \K ,

∫
φdμ
=∫

φdν

min{hμ( f ), hν( f )} = htop( f ), (11)

123



Topological entropy on points without physical-like behaviour

and for any a ∈ I nt(Lφ(a)),

sup
μ not ergodic∈P f \K ,

∫
φdμ=a

hμ( f ) = sup
μ∈P f ,

∫
φdμ=a

hμ( f ). (12)

(3) If further K is closed and that ergodic measures are entropy-dense, then

sup
μ ergodic /∈K

hμ( f ) = htop( f ), (13)

Remark 3.3 (1) There are other contexts (K is nomore assumed to be aweak face, even con-
vex) where we can check equation (13): Assume supμ∈K hμ( f ) < htop( f ) or assume
K contains finitely (resp., countably) ergodic measures and for any h < htop( f ) there
are infinitely (resp., uncountably) many ergodic measures with entropy larger than h,

then equation (13) holds true;
(2) Let us explain why it is required that a ∈ I nt(Lφ(a)). Here we give an example for

which equation (12) is false when a is an endpoint of Lφ. Let σ : �2 → �2 be the full
shift of two symbols and let� � �2 be a minimal subset with positive entropy and only
one invariant measure supported on � (which is ensured by [15]). Take a periodic orbit
Orb(p) contained in �2\� and define a continuous function φ : �2 → R satisfying
that φ|� = 0, φ|Orb(p) = 1 and 0 < φ(x) < 1 for other points of x . a = 0 is an
endpoint of Lφ but no non-ergodic invariant measure μ with

∫
φdμ = 0 so that for

any K ,

sup
μ not ergodic∈P f \K ,

∫
φdμ=0

hμ( f ) = 0 < htop(�) = sup
μ∈P f ,

∫
φdμ=0

hμ( f ).

Proof (1) Equation (10) follows from the affinity of the entropy. More precisely, Let ν1 ∈
K , ν2 /∈ K and fix ε > 0. By variational principle, one can take ergodic ν such that
hν( f ) > htop( f ) − ε and then one can take θ ∈ (0, 1) close to 1 such that θhν( f ) >

htop( f )− ε. If ν ∈ K , then take μ = θν + (1− θ)ν2 and otherwise takeμ = θν + (1−
θ)ν1. In any caseμ should be not in K , not ergodic and hμ( f ) ≥ θhν( f ) > htop( f )−ε.

(2) Consider a continuous function with infμ∈P f

∫
φdμ < supμ∈P f

∫
φdμ. Fix ε > 0.

From Eq. (10) we have got that there exists ν /∈ K such that hν( f ) > htop( f ) − ε.

Take η ∈ P f such that
∫

φdν 
= ∫
φdη, then one can takeμ = sν + (1− s)η for s close

enough to 1 such that hμ( f ) ≥ shν( f ) > htop( f )−ε and thenμ /∈ K since K is a weak
face. Note that

∫
φdν 
= ∫

φdμ,μ, ν /∈ K and min{hμ( f ), hν( f )} > htop( f ) − ε so
that one has equation (11).
Now we start to show Eq. (12). Fix a ∈ I nt(Lφ(a)). Since above μ, ν satisfies that∫

φdν 
= ∫
φdμ,μ, ν /∈ K , then there is ω ∈ {μ, ν} such that ω /∈ K and

∫
φdω 
=

a. Without loss of generality, we may assume
∫

φdω < a. Take η ∈ P f such that∫
φdη > a and then there exists a unique number t ∈ (0, 1) such that

∫
φdν′ = a,

where ν′ = tω + (1 − t)η. Note that ν′ is not ergodic and ν′ /∈ K since K is a
weak face. Write ta := supμ∈P f ,

∫
φdμ=a hμ( f ). Take μ′ ∈ P f with

∫
φdμ′ = a

such that hμ′( f ) > ta − ε. Then it is enough to end the proof of Eq. (12) by taking
λ = sμ′ + (1 − s)ν′ for s close enough to 1.

(3) Fix ε > 0. By equation (10) we can take μ /∈ K such that hμ( f ) > htop( f ) − ε. Then
take ergodic measure ν close to μ with hν( f ) > hμ( f ) − ε > htop( f ) − 2ε. As K is
closed we may choose ν /∈ K . This finishes the proof of item (3). ��
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3.3 Points without K-behaviour

One can combine Lemmas 3.1 and 3.2 together to get following:

Theorem 3.4 Let f : M 	→ M be a continuous map on a compact metric space M and let
K ⊆ P f is a proper weak face. If f has interval saturation property, then

(1) the set of non-ergodic regular points without K-behaviour has full topological entropy;
(2) For any φ ∈ C0(M, R) with infμ∈P f

∫
φdμ < supμ∈P f

∫
φdμ and a ∈ I nt(Lφ), the

set of non-ergodic regular points without K -behavior has full topological entropy inside
the level set Rφ(a).

(3) For any φ ∈ C0(M, R) with infμ∈P f

∫
φdμ < supμ∈P f

∫
φdμ, the set of φ−irregular

points without K-behaviour has full topological entropy;
(4) If further K is closed and f has entropy-dense property, then the set of strongly
regular points without K-behaviour has full topological entropy.

Proof (1) Take L = P f \K in the second part of item (3) of Lemma 3.1 and then by (10)
one gets item (1).

(2) From [21, Proposition 7.1] singleton saturation property implies that

htop(Rφ(a)) = sup
μ∈P f ,

∫
φdμ=a

hμ( f ).

Thus one can take L = {μ : ∫
φdμ = a} ∩ P f \K in the second part of item (3) of

Lemma 3.1 and then by (12) one gets item (2).
(3) Take L = P f \K in item (4) of Lemma 3.1 and then by (11) one gets item (3).
(4) Take L = P f \K in item (1) of Lemma 3.1 and then by equation (13) one gets

item (4). ��

This result is the key argument of present paper and is suitable to all following systems
(since saturation property of the entropy and entropy-dense property hold for asymptotically
entropy-expansive system with the g-almost product structure [20,21]):

Example 3.5 (1) Any C1 transitive Anosov diffeomorphism satisfies Theorem 3.4, since
it is expansive and has specification property which is stronger than g-almost product
property by [21].

(2) Any mixing subshift of finite type satisfies Theorem 3.4, since it is known that it is
expansive and has specification.

(3) Any β−shift satisfies Theorem 3.4, since it is expansive and has g-almost product
property by [21].

Remark 3.6 In [30] the authors have proved under another property of specification, called
nonuniform specification (see [30] for more details), that for all neighborhood V of [μ, ν]
one has htop(HV ) ≥ min{hμ( f ), hν( f )}. Note that nonuniform specification does not a
priori follow from the g-almost product property. Following the above scheme of proof one
gets easily that: Assume K is a proper closed weak face of P f and f satisfies the nonuni-
form specification. Then the set of irregular points without K-behaviour has full topological
entropy.
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3.4 Proof of theorem A

One can apply the abstract Theorem 3.4 for K being the face of measures satisfying the Pesin
entropy formula or the set of equilibrium states for some given potential. Theorem A can be
deduced from Theorem 3.4 and following lemma.

Lemma 3.7 Let f : M 	→ M be a C1 diffeomorphism on a compact Riemannian manifold
M with a dominated splitting T M = E ⊕ F. Assume that the Lyapunov exponents are non
positive along E and non negative along F. Then f is asymptotically entropy-expansive. If
moreover f

satisfies the g-almost product property, and if not all the invariant measures satisfy Pesin
Entropy Formula, then f has saturation and entropy-dense property, PE f is a nonempty
proper closed face and O f ⊆ PE f = ES f (ψ) where ψ(x) = log | det Df |F(x)| and
ES f (ψ) denote its equilibrium states.

Remark 3.8 (1) In general it is unknown whether PE f is closed even if one assumes
that the metric entropy function is upper-continuous, since we do not know whether∫ ∑

χi (x)≥0 χi (x)dμ is continuous w.r.t.μ and Ruelle’s inequality and upper-continuity
of metric entropy may be not enough. Moreover, in general it is also unknown whether
PE f coincides with ES f (ψ) for some continuous function ψ .

(2) The results of Theorem A for ‘without physical-like behaviour’ can be replaced by ones
for ‘without physical-like and smooth behaviour’, since in fact we proved such results
for ‘without Pesin behaviour’ and by [25] every smooth measure also satisfies Pesin’s
entropy formula. It is known that any C1 volume-preserving Anosov diffeomorphism is
transitive Anosov so that Theorem A applies but it is still unknown whether the volume
measure is ergodic or not. In this example for any invariant subset � with positive
Lebesgue measure, Leb|� is a smooth measure where Leb|�(A) := Leb(A∩�)

Leb(�)
for any

Borel measurable A ⊆ M and Leb denotes the volume measure on M .
(3) The assumptions of Lemma 3.7 is little weaker than transitive Anosov diffeomorphisms

which may be suitable for some partially hyperbolic systems.

Proof From [20] entropy-dense holds for any system with g-almost product structure. The
system f is asymptotically entropy-expansive by [9, Theorem 7.6].

As proved in [21, Theorem 3.1], for any continuous map f on a compact metric space,
if f is asymptotically entropy-expansive, then f satisfies the uniform separation property.
Besides, in [21, Theorem1.1] it is proved that if a continuous map f satisfies the uniform
separation and the g-almost product properties, then f has the saturation property of the
entropy. Thus f has saturation property.

That O f ⊆ PE f is [10, Corollary 2]. Taking into account that O f 
= ∅ (see Theorem
2.5), PE f 
= ∅.

By Remark 2.11 PE f is a face and it should be closed since f is asymptotically
entropy-expansive and the functionψ is continuous. More precisely, asymptotically entropy-
expansive implies that the entropy function μ 	→ hμ( f ) is upper semi-continuous (see [31,
Theorem 8.2] for the expansive case, and [5] for the entropy-expansive case; with a standard
adaptation the proofs are extended to the asymptotically entropy-expansive case). Joining
the upper-continuity of the entropy function, continuity of

∫
ψdμ w.r.t μ with Ruelle’s

inequality [22], it is deduced that PE f is weak∗-compact. It is proper since by assumption
PE f 
= P f . ��
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