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Resumo

Nés provaremos que um problema de valor inicial para uma classe de EDOs generalizadas,
também conhecidas como equacdes de Kurzweil, gera um sistema semidindmico local. Sob
certas condicOes de perturbagdo, também mostramos que esta classe de EDOs generalizadas
admite um semifluxo descontinuo, ao qual nos referiremos como um sistema semidindmico
impulsivo. Como consequéncia, obtemos o principio de invaridncia de LaSalle para tal classe
de EDOs generalizadas. Devido & importancia do principio de invaridncia de LaSalle em
estudar a estabilidade de sistemas diferenciais, incluimos uma aplicagdo para sistemas dife-
renciais ordindrios auténomos sob a agdo impulsiva em tempos varidveis.
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S. AFONSO, E. BONOTTO, M. FEDERSON, AND S. SCHWABIK

ABSTRACT. We consider an initial value problem for a class of generalized ODEs, also
known as Kurzweil equations, and we prove the existence of a local semidynamical system
there. Under certain perturbation conditions, we also show that this class of generalized
ODEs admits a discontinuous semiflow which we shall refer to as an impulsive semidynam-
ical system. As a consequence, we obtain LaSalle’s invariance principle for such a class of
generalized ODEs. Due to the importance of LaSalle’s invariance principle in studying sta-
bility of differential systems, we include an application to autonomous ordinary differential
systems with impulse action at variable times.

1. INTRODUCTION

In order to generalize certain results on continuous dependence of solutions of ordinary
differential equations (ODEs) with respect to the initial data, J. Kurzweil introduced, in
1957, the notion of generalized ordinary differential equations for functions taking values in
Euclidean and Banach spaces. We refer to these equations as generalized ODEs or Kurzwe:l
equations. See references [15] and [17] for instance.

The correspondence between generalized ODEs and classic ODEs is very simple. It is
known that the ordinary system

& = f{#,1), (1)
where ¢ = dz/dt, Q C R™ is open and f : 2 x R — R", is equivalent to the “integral
equation”

=) ] faod, b, @)

when the integral exists in some sense. It is also known that if the integral in (2) is considered
in the sense of Riemann, Lebesgue (with the equivalent McShane definition) or Henstock-
Kurzweil, for instance, then it can be approximated by a sum of the form

zm: f(z(m:), ) (si — 8i-1)

1991 Mathematics Subject Classification. 34K45,37B25, 54H20. o
Key words and phrases. Generalized ordinary differential equations, impulse, LaSalle’s invariance princi-

ple, impulsive semidynamical systems.
1



2 S. AFONSO, E. BONOTTO, M. FEDERSON, AND §. SCHWABIK

where tp =59 <8, <...< s, =tisa sufficiently fine partition of the interval [t,,t] and,
foreachi=1,2,...,m, 7 is “close” enough to the interval [s;_1, s;].
Alternatively, if we define

F(z,8) = /s f(z,0)do, (z,8) € Q xR,

then the integral in (2) can be approximated by

S [ tatno)da =3[P, 5) - Flatr), 5. e

In this case, the righthand side of (3) approximates the non-absolute Kurzweil integral which,
when considered in (2), gives rise to a differential equation of type (1), but in a wider sense.
Such differential equation is known as generalized ordinary differential equation or Kurzweil
equation (see [1], [9] and [17]).

In the present paper, we consider a class of generalized ODEs and we prove the existence
of a local semidynamical system. We also consider the case where the system of generalized
ODEs is subject to some perturbations. In this case, we introduce the notion of an impulsive
semidynamical system and we prove that one such system can be constructed for our class
of generalized ODEs. With this result at hand we are able to present a version of LaSalle’s
invariance principle. In particular, a version of LaSalle’s invariance principle for ordinary
differential systems subject to impulse effects at variable times comes out naturally.

At this moment, we would like to make a comment on our treatment of differential systems
with impulses at variable times which is in connection with the ideas and approach of S. K.
Kaul [14] and K. Ciesielski [7] and [8] and differs from the approach of V. Lakshmikantham et
al in [16]. In [16] and in some papers (see [16] Theorems 2.12.1 and 2.12.2, and also {19] and
[20], for instance) the study of properties of differential systems with impulses is somehow
reduced to the pre-assigned case by the imposition of additional hypotheses as the number
of times the impulse surfaces are reached by the integral curve (usually exactly once), the
assumption that the sequence of impulse surfaces is monotone increasing, etc. In the present
paper, we an impulse operator, which can be the sum of several impulse operators, acting on
a surface M (or in a collection of surfaces which can also be denoted by M) and transferring

the solution to another surface N (or a collection of surfaces N).
We start our presentation by mentioning some basic facts of the Kurzweil integration

theory and of the theory of generalized differential equations.
2. GENERALIZED ODEs
A tagged division of a compact interval [a,b] C R is a finite collection
{(7, [85-1,8]) : = 1,2,...,k},

where a = so < 1 < ... < s, = b is a division of [a,b] and 7; € [si-1,si], 1 = 1,2,...,k.
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A gauge on [a,b] is any function ¢ : [a, b] — (0,+00). Given a gauge 6 on [a, b], a tagged
division d = (7, [si_1, s;]) of [a, b] is d-fine if, for every 3,

[sic1, 8] C{t€[a,b]: [t—7| <6(m)}.

Let X be a Banach space. In the sequel, we will use integration specified by the next
definition.

Definition 2.1. A function U (7,t) : [a,b] X [a,b] — X is Kurzweil integrable over [a, b], if
there is a unique element I € X such that given € > 0, there is a gauge & of [a,b] such that
for every é-fine tagged division d = (7;, [si-1, 8i]) of [a, b], we have

IS (U, d) - I|| <&,

where S (U,d) = 3, (U (73, 8:) — U (73, 8i-1)]. In this case, we write I = f: DU (1,t) and use
the convention f: DU (r,t) = — ;' DU (7,t), whenever b < a.

This type of integration belongs to Jaroslav Kurzweil and it was described extensively in
Chapter I of [17] for the case X = R™ (see Definition 1.2n in [17]).

Checking the results concerning this integration in [17], it can be easily seen that many of
the results presented there can be transferred without any changes to the case of X-valued
functions U (7,t) : [a,b] X [a,b] = X. Let us mention a few of them. The integral has the
usual properties of linearity, additivity with respect to adjacent intervals, etc.

An important result, which will be used latter, concerns the integrability on subintervals

(see Theorem 1.10 in [17]).

Lemma 2.1. Let U (7,1) : [a,b] X [a,b] = X be integrable over [a,b]. Then fcd DU(r,t)
ezists, for each subinterval [c,d] C [a, b].

The next result is known as the Saks-Henstock Lemma. A proof of it can be found in [17],
Lemma 1.13.

Lemma 2.2 (Saks-Henstock Lemma). Let U (7,t) : [a,b] x [a,b] — X. If for everye >0, §
is a gauge of [a,b] such that for every é-fine tagged division d = (7, [si-1, si]) of [a, ],

Z [U (7, 8:) = U (75, 8i-1)] — / DU (1,t)

thenfora<c <m<d <c<mMm<d<...<q<m<d <b, withn; € [¢j,d] C
[n; =6 (n5),m; +6(mj)], 5 =1,2,...,1, we have

Z [U (nj, di) = U (nj, ¢;) — /'j DU (7, t)]

J

<E€

< E.

The following result, an important Hake-type theorem (see Theorem 1.14 in [17]), is based
on Saks-Henstock Lemma (Lemma 2.2).
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Lemma 2.3. Let a function U : [a,b] x [a,b] = X be given such that U is integrable over
[a,c] for every c € [a,b) and let the limit

- [/ DU(r, ) — bc)+U(b,b)]=I.eX

c—b—

exist. Then the function U is integrable over [a,b] and

/abDU('r,t) =1

Similarly, if the function U is integrable over [c,b] for every c € (a,b] and the limit

lim [/cbDU(T,t)+U(a,c) - U(a,a)] =leX

c—a+

ezists, then the function U is integrable over [a,b] and

b
/ DU(r,1) = I.
This leads to the following result (see Theorem 1.16 in [17]).

Lemma 2.4. Let U : X [a,b] = X be integrable over [a,b] and c € [a,b]. Then

hm[/ DU(r,t) = U(e,s) + Ulc, ) ] /DU(T,
§—C

Lemma 2.4 above shows that the function defined by
s € [a,b] — / DU(r,t) € X,

that is, the indefinite integral of U, may not be continuous in general. The indefinite integral -
is continuous at a point ¢ € [a, ], if and only if, the function Uf(c,-) : [a, b] — X is continuous
at the point c. Notice that if U : [a,d] X [a,b] — X is integrable over [a, b], then by Lemma -
2.1 the indefinite integral of the function U is well defined on the whole interval [a, ].

Let @ = O x [0, +00), where O C X is an open subset. Let us present the concept of a
generalized ordinary differential equation with righthand side G': 2 — X.

Definition 2.2. A function z : [a, 8] =& X is called a solution of the generalized ordinary

differential equation

dx
- = DG(z,1) (4)
),

t) € Q for all t € [, B] and if the equality

N /7 " DG(z(7), 1)

on the interval [, 8] C [0, +00), if (z(t

holds for every v, v € [, B].
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Given an initial condition (z,%) € 2 the following definition of a solution of the initial
value problem for the equation (4) will be used.

Definition 2.3. A function  : [a, 8] = X is a solution of the generalized ordinary differ-
ential equation (4) with the initial condition z(t) = 2 on the interval [, 8] C [0, +00) if
to € [, B8], (z(t),t) € Q for all t € |, B] and if the equality

z(v) — 2 = vDG(z(T),t)

to

holds for every v € [a, B].
Remark 2.1. Let U (1,t) = G (z (1) ,t). In the definition of fab DG (z (1),t), there are only

differences of the form
U (Ti, S,;) -U (Ti, S-,;_l) = G (.’E (7’-,') ,Si) — G (.'L‘ (Ti) )31'—1) .

Thus, adding to G (z,t) a function varying only in z, the solutions of (4) do not change. In
particular, subtracting G (z,0) from G (z,t), we obtain a normalized representation G; of G
fulfilling G, (z,0) = 0 for every z.

Now, we define a class of functions G : 2 — X for which it is possible to obtain some
information concerning the solutions of (4).

Definition 2.4. Given a nondecreasing function h : [0,+00) — R, we say that a function
G : Q= X belongs to the class F(Q, h) if G(z,0) =0 for all z € O,

1G(z, s2) — G(z, s1)|| < |h(s2) — h(s1)] (5)
for all (z, s3), (z,51) € Q and A
1G(z, s2) = G(z,81) — G(y,82) + Gy, s1)| < llz = yll|A(s2) — h(s1)| (6)

for all (z, s2), (z,51), (v,82), (y,s1) € .

The next lemma will imply the fact that all solutions of the generalized differential equation
(4), with G satisfying (5), are of locally bounded variation.

Lemma 2.5. Suppose G : Q0 — X satisfies (5). If [, 8] C [0,+00) and z : [, f] = X is a
solution of (4), then the inequality

lz(s2) = z(s1)l| < |h(s2) — A(s1)]
holds for every si, s2 € [a, B].

For a proof of Lemma 2.5, see Lemma 3.10 in [17]. o
Let varf(z) denote the variation of a function z : [a, ] = X in [, B]. Lemma 2.5 implies

the following property of the solutions of (4).
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Corollary 2.1. Suppose G : Q@ — X satisfies (5). If [, 8] C [0, +00) and z : [a,8) = X is
a solution of (4), then z is of bounded variation on [, ] and

var? £ < h(B) — h(e) < +oo.

In addition, every point in [, 8] at which the function h is continuous is a continuity point
of the solution z : o, ] — X.

Moreover, we have the following result (see Lemma 3.12 in [17]).

Lemma 2.6. If z : [a, 8] = X is a solution of (4) and G : Q — X satisfies condition (5),
then :

z(o+) — z(0) = lim z(s) — z(0) = G(z(0),0+) — G(z(0), 0)

s—o+

for o € [a, B) and
z(0) — z(0—) = z(0) - lim z(s) = G(z(0), 0) — G(z(0),0-)

for o € (e, (], where
G(z,0+) = lim G(z,s), foro € [a,B)

s—o+
and

Glz,0-) = lim G(z,), for o € (]

Note that in spite of (5) and of Lemma 2.5, all the onesided limits G(z,0+), G(z,0-),
z(o+) and z(o—) exist in X, since h is a nondecreasing real function.

By a step function f : [a,b] — X, we mean a function for which there is a finite division
a=0 <P <...<PBm=>such that in every open interval (8;_1,6:), i = 1,...,m, the
function f is equal to a constant ¢; € X. ’

Now we present a result on the existence of the integral involved in the definition of the
solution of the generalized differential equation (4).

Proposition 2.1. Let G € F(, h). Ifz : [, ] = X, with [o, 8] C [0, +00), is the uniform
limit of a sequence (zx)ren Of step functions zy : (o, B] = X such that (z(s),s)) € Q and
(zx(s),s) € Q, for every k € N and for every s € [, B]. Then the integral f DG(z(7),1)
ezists and

B 7]
/ DG(e(r), ) = lim / DG(zx(r), 1).

Proof. For each k € N, the integral |, f DG(zx(7),t) exists by Corollary 3.15, [17].
Given € > 0, let ko € N be such that for k& > ko, we have
€

”CBk(S) - .’E(S)” = 2[h(,3) = h(Ol)]’ s € [a) ,B],
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and let § be a gauge on [a, b] such that for k > ko, we have

m

> [6(en(m).t) ~ Glautr, o]~ [ DG(an(r)0

=1

N ™

~ for every 4-fine tagged division D = {a =t <71 <t; < ... < tpy < Tp <t = B} of
[, B]. Then for every k > ko, we have

m B
S G @(m), ) — Gla(n), ti-y)] - / DG(zi(r), 1)

=1

< Z G (z(m:), t:) — G(2(n), tic1) — Gz (7:), t:) + G2k (m:), tica) ||+

Z[Gm (), ) — Glz(), )] - / DG(z(r), 1) <
< D Mh(t) = bt maxla(r) = 2u(r)] + 5 =
= [h(8) — (@) max [lz(r) - zu(r)| + 5 < €
and the proof is complete. O

Next, we specialize Proposition 2.1 for a specific class of functions z : [e, §] = X.

A function f : [a,b] — X is called regulated, if at any point ¢ € [a, b], it possesses onesided
limits, that is the limit lim,;— f(s) = f(t—) € X exists for every ¢ € (a,b] and the limit
limgy44 f(s) = f(t+) € X exists for every ¢ € [a,b). We write f € G([a,b], X) in this case.
Therefore, if f € G([a,b], X), then for every € > 0 and ¢ € (a,b], there are a § > 0 and
f(t—) € X such that

|f(s) — f(t=)||<e, when t—4d<s<t,
and, for every € > 0 and ¢ € [a, b), there are a § > 0 and f(t+) € X such that
|f(s) = f(t+)|| <e when t<s<t+§.

If we endow G([a,b], X) with the usual supremum norm ||f|lcc = SUpPg<;< || f(?)]l, then
(G([a,b], X), || - leo) is & Banach space. For other properties of this space, the reader may
want to consult [13]. For example, it is known that regulated functions are the uniform limit
of step functions and this leads, by Proposition 2.1, to the next statement.

Lemma 2.7. Let G € F(Q,h) and z : [a, ] — X be regulated (in particular, a function
of bounded variation) on [, 8] C [0,+00) and (z(s),s) € Q for every s € [a,B]. Then
the integral ff DG(z(7),t) ezists and the function s — [, DG(z(7),t) € X is of bounded
variation in [, B] (and therefore also regulated).

The next result concerns the existence of a solution of (4) (see [10], Theorem 2.15).
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Theorem 2.1 (Existence and uniqueness). Let G :  — X belong to the class F (2, h),
where the function h is continuous from the left. If for every (Z,t0) € Q such that for
Ty =T+ G(T,t+) — G(T,t0) we have (T4,t) € Q, then there ezists A > 0 such that on
the interval [to, 1o + A] there ezists a unique solution z : [to,ty + A] = X of the generalized
ordinary differential equation (4) for which z(t,) = . :

Remark 2.2. The assumption on the left continuity of the function h in Theorem 2.1 implies
that the solutions of (4) are also left continuous (cf. Lemma 2.5). Given a solution z of
(4), the limit z(o—) exists for every o in the domain of . This follows again by Lemma 2.5
and, by Lemma 2.6, we have the relation

z(o) = z(0—) + G(z(0),0) — G(z(0),0-)
which describes the discontinuity of the given solution.

Remark 2.3. We say that = : [tg, to + b) = X is the mazimal solution of (4) with z(ty) =
u € O, if x is a solution of (4) on every interval [ty, to+0], B < b, and it cannot be continued
to [to, to + b]. We denote b = w(u, G) in this case.

For other properties of generalized differential equations and their applications, see [10],
[11) and [12]. :

3. THE COMPACTNESS OF THE CLASS F(Q, h)

In this section, we will consider X = R™ and we are going to show that the class F(Q, h)
is a compact space when h is a nondecreasing continuous function, where = O X [0, +c0),
with O C R™ an open set.

At first, we are going to endow the space F(Q,h) with a metric. Let {K,}s>1 be a
sequence of compact sets in Q such that K, C int(K,41) and Q = [} K,.. By int(A) we
mean the interior of a subset A of 2. For each natural n > 1, we construct a pseudo-metric
on F (£, h) as follows: let

IG1 — Galln = sup{[|G1(, 1) — Ga2(z, )| : (2, %) € Kn},

where || - || is any metric in R", and set

G1— Gz||n
u(G, G) = o= G

14 |G = Galln’

The required metric is then given by

(o)
p(G1,Ga) = Z 27" pn(G1, Go)
n=1
and (F(, k), p) is a metric space. Note that the metric p depends on the choice of .the
sequence K,. However any other sequence of compact sets generates an equivalent metric.
The next result concerns the equicontinuity of the class F(S2, h).
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Lemma 3.1. Assume h : [0,4+00) = R is a nondecreasing continuous function. Then
F (8, h) is equicontinuous on compact subsets of @ = O x [0, +0c0), where @ C R™ is open.

Proof. Let A C O and C C [0,+00) be compact subsets and let (z,t) € A x C be an
arbitrary point. Take an arbitrary G € F(, h). Since G(z,0) = 0 for every z € O, we have

IG(z,2) = Gy, )| = |G (=) - G(=,0) — G(y, ) + G(y,0)],

for each y € A. Then, using condition (6), we have

1G(z,8) = Gy, )l < ll= = ylllR(®) = h(0)] < [lz — yl|(|R(2)| + |A(O)]), (7)
for y € A.
On the other hand, by condition (5), we have
IG(y,1) = G(y, s)l| < |h(t) = h(s)], | (8)

for every (y,s) € A x C. Thus by (7) and (8), we obtain

< llz = yll(Ip@)] + [RO0)]) + [A(2) = A(s)],

for all (y,s) € A x C. Since h is a continuous function (therefore uniformly continuous on
C), for every € > 0 there exists § > 0 such that

|h(t) — h(s)| < % whenever |t —s| <6, t,s € C.

Moreover, by the compactness of C, there exists M > 0 such that |h(s)| < M for all s € C.

Therefore, |
1G(z,t) = G(y,3)ll < ¢

whenever ||z — y|| < %(M + |h(0))~! and |t — s| < 6, with (y,s) € A x C. This completes

the proof. a

The compactness of the class F(f2, h) is presented next.

Theorem 3.1. Assume h : [0,+400) — R is nondecreasing and continuous. Then the space
F(Q, h) is compact.

Proof. By Lemma 3.1, the family of functions in F(§2, h) is equicontinuous on compact
subsets of = O x [0, +00). Moreover, F(£2, h) is also uniformly bounded on compact sets.
Indeed. Since G(z,0) =0 for all G € F(Q, h) and z € O, we have

1G(z, t)|| = [|G(z,t) = G(=,0)|| < |A(t) = h(0)] < [A(£)] + [R(O)], (9)
for every t € [0, +00), z € O and G € F(Q, h). Let A C O and C C [0, +00) be compact sets
and suppose (z,t) € A x C. Since h is a continuous function and C' is a compact set, there

exists M > 0 such that |h(s)| < M for all s € C. Then by (9) we have ||G(z,t)|| < M+[h(0)]
for all (z,t) € A x C and all G € F(, h). Therefore, by Ascoli’s Theorem, for each

sequence {Gn}n>1 in F(£, h) there exists a subsequence {Gn, }x>1 converging to a certain
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function Go uniformly on compact subsets. Since F(Q, h) is a closed set (see Definition 2.4),
Go € (9, h). This completes the proof. O

4. EXISTENCE OF A LOCAL SEMIDYNAMICAL SYSTEM

We continue to consider the special case where X = R™ .
Let O C R" be an open set. Consider the generalized ODE

dz .
E = DG(.’II, t)) ; B (10)

where G :  — R™ belongs to F(Q, k) with @ = O x [0, +c0) and h is a nondecreasmg
continuous real function defined on [0, +c0).

By (5) and (6), G is continuous in both variables.
Let {Gx}r>1 be a sequence of elements of F(f, h) and let G € F(RQ, h) We say that

k—+00

{Gk}k>1 converges to G in F (2, h), and we write G "— *23° G, if and only if Gk(z, t) =
G(z, t) in R" for each (z, t) € Q, that is,

|Gi(z, t) — G(z, t)|| *25°0

for every (z, t) € Q, where || - || is a norm in R". Moreover, given a sequence {vg}r»1 in R®
and v € R", we write (vg, Gi) R (v,G) in R™® x F(Q, h), if and only if |lvx — v|| st ol
and ||Gk(z, s) — G(z, s)|| *=55° 0 for every (z, 5) € Q.

Now we introduce the notion of a local semidynamical system and prove that initial value -
problems for the generalized ODE (10) generate a local semidynamical system. See [1] for
an analogous result in a different setting of functions G.

For each (v,G) € O x F(, k), let I, ) be an interval of type [0, b) C R, with b € R, .
and define T

S ={(t,v,G) ER x O X F(},h) : t € Itu,i) }-

Definition 4.1. A mapping
m:5 = O0xFQ,h)
is called a local semidynamical system on O x F(Q, h), if the following properties hold:
i) 7(0,v,G) = (v,G), for every (v,G) € O x F(Q,h); |
ii) Given (v,G) € O x F(h), ift € L) and s € Iripc), thent +s € I and
(s, 7(t,v,G)) = w(t+5,v,G);
iii) For each (v, G) € O x F(Q, h) fized, n(t, v, G) is continuous at every ¢ € I(w,6)-
iv) I,6) = [0, b,g)) is mazimal in the following sense: either Iiy.g) = R, or, if bu,c) #
+00, then the positive orbit

{r(t,v,G):t€ [0, bw,c))} C O X F(Q,h)

cannot be continued to a larger interval [0, bw,g) +¢), ¢ > 0;
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v) If (vk, Gi) "=25° (v, G), where (v, G) and (v, Gy) € O x F(Q h), k=1,2,..., then
I(,,,G) C liminf I(Uk.G'k)'

Remark 4.1. Note that, if the domain of 7 is Ry x O x F(Q, h), then conditions iv) and
v) are satisfied trivially. When this is the case, we call T a global semidynamical system.

Now, let G € F(Q, h) be given. For each ¢ > 0, we define the translate G; of G by
Gi(z, s) = G(z, t+ s) — G(z, t), (11)
where (z, s) € Q. Then the following properties can be easily checked:
i) Go = G (normalization of G);
ii) Gi4r = (Gt), for all ¢,7 > 0 (semigroup property);
iii) the mapping (¢, G) — G, is continuous.

Now we define a subset of F(§2,h) with the important property that it contains the
translates G; of all its elements G.

Definition 4.2. Given a nondecreasing continuous function h : [0, +00) — R, we say that
a function G : Q — X belongs to the class F*(Q, h), if G belongs to the class F(Q, h) and
the function h satisfies

|h(t1 + 8) — h(tz + s)| < |h(t1) — h(t2)], t1,t2,s € [0, +00).
Remark 4.2. It follows from Theorem 3.1 that the class F*(2, h) is compact.
The following statement is easy to check.

Lemma 4.1. Let G € F*(Q, h). Then the translates G; of G belong to F*(S2, h) for each
b0,

Since we are assuming that G € F*(Q, h), with h nondecreasing and continuous, it is clear
from (11) that for each ¢ > 0, G; is continuous.

Our aim now is to construct a local semidynamical system for an initial value problem
concerning the generalized ODE (10). At first, we state the main result of this section,
namely Theorem 4.1, which generalizes [1], Theorem 6.3 and [9], Theorem 4.1. Then we
present several auxiliary results and, finally, we give a proof of Theorem 4.1.

Theorem 4.1. Assume that for eachu € O and each G € F*(Q, h), z(t, u, G) is the unique
mazimal solution of the initial value problem
% o DGz 1),  =(0)=u. (12)
dr
Let [0, w(u, G)), w(u, G) > 0, be the mazimal interval of definition of z(-,u,G). Define
1:8—=0xF*(Q, h) by
7(t, u, G) = (z(t, u, G), Gy), (13)
where S = {(t,u,G) € Ry x O x F*(Q,h) : t € I} Then w is a local semidynamical

system on O x F*(, h).
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Note that the maximal interval I(, ) of the semidynamical system given by (13) coincides
with [0, w(u, G)) necessarily, since the second component G; of the flow is defined for all
t € [0, +00).

In order to prove Theorem 4.1, we need to prove that the conditions in Definition 4.1 hold.
Therefore we need some auxiliary lemmas. The first result we present, namely Lemma 4.2,
says that the function 7 defined by (13) in Theorem 4.1 satisfies the identity and semigroup
properties.

Lemma 4.2. The mapping m defined in Theorem 4.1 satisfies the following conditions:
a) 7(0, u, G) = (u, G) for each (u,G) € O x F*(Q, h);
b) Ift € Iy, ) and s € Ir(t,u,G), thent+s € I, ) and w(s, 7(t, u, G)) =7w(t+s, u, G)
for all (u,G) € O x F*(Q, h).
Proof.
a) By definition, is clear that
7(0, u, G) = (z(0, u, G), Go) = (u, G),
for all (u,G) € O x F*(Q, h).
b) In order to prove this item we borrow some ideas from [18]. Let t € Iy, g), § € Ir(t,u,0)
and (u,G) € O x F*(Q, h). Denote

:B(T) . .'17(7', U, G))
¥(1) = 2(T, 2(t), Gt)

and put
§(r) ==z(r +1),
where z is the maximal solution of (12) and % is a solution of the generalized ODE

2 = DIG(Y, 9], (19
with initial condition
¥(0) = z(t) = z(¢, u, G). (15)

We assert that € is a solution of problem (14)-(15). Indeed. We have

o+t
£(0) — £(0) = z(o + 1) — z(t) = /t DG((r), ).

By the change of variable ¢(s) = s +t, it follows by a substitution theorem (see
[17], Theorem 1.18) that

" DG(a(r),s) = /¢ f()) DG(a(r),9) = | " DG((4(5)), (1)) =

= /6 DG(z(s +t), p+ ).
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Thus,

£(o) —£(0) = /OUDG(:I:(T+t),s+t) = /tr DG,(&(7), ).

Moreover £(0) = z(t) = z(t, u, G). Hence, by the uniqueness of the solution of (12)
(see Theorem 2.1), we get

Y(o) =&(0) =x(0+1), forall o€ I ue =[0,w(y, G)). (16)
Therefore,

(s, 7(t, u, G)) = =(s, z(t, u, G), Gy) = 7 (s, z(t), Gy) =
(s, z(t), Gi), (Ge)s) = (£(s), (Gy)s) =

£(s), Gott) = (z(s+ 1), Giys) =
(s+1t,u, G), Giys) =7m(s+ ¢, u, G)

Z

(
(
(
and the proof is complete. O

The next result is not difficult to prove. It says that the motion (-,u,G) of (u,G) is
continuous on the interval I(, ).

Lemma 4.3. Let m be the mapping defined in Theorem 4.1. For each fized (u,G) € O x
F*(Q,h), 7(t, u, G) is continuous at every t € I, ).

Lemma 4.4. Let z(t, u, G) be the unique mazimal solution of (12) defined on [0, w(u, G)).
Suppose w = w(u, G) < +oo. Ifz(t,u, G) > z ast — w™, then 2 ¢ O.

Proof. Let w = w(u, G) < 4+o00. Then a pair (z,w), with 2 € O, cannot be a limit point of
the solution (z(¢, u, G), t) as t = w™. Indeed. Suppose the contrary. Since z(¢, u, G) = 2
ast — w~, we can define z(w) = z. By the existence theorem (Theorem 2.1), we can extend
the solution to an interval strictly greater than [0, w) and this is a contradiction. Thus we

finished the proof. v O

The next proposition concerns the continuous dependence of a solution of a generalized
ODE on the initial data. A similar statement was proved in [17] for the case when X = R".
We postpone its proof for an analogous statement in the more general case of a Banach space

to the Appendix of our paper.

Proposition 4.1. Assume that Q = OX|[c, d] and G : Q@ — R™ belongs to the class F($, h),
for k=0,1,2, ..., where [c,d] C [0, +00). Suppose
lim Gg(z, t) = Go(z, t),

k—+o00
for (z,t) € O x [c, d). Let[e, B) C [c, d] and 7y : [, B] = R", k = 1,2, ..., be solutions of

the generalized ODE
él)_ = DGy (z, t),
dr
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on [a, B] such that

kgr-ll:looxk(s) — -7;0(3), s € [a) IB]a

and (z(s), s) € Q for s € [, B]. Then zy : [, f] = R™ satisfies:
i) ”xo(sz) — 2o(81)l] < h(s2) — h(s1), if 81 < 89, 51, 52 € [e, B];
11) 1m :zzk( ) = zo(s) uniformly on [a, B);
iii) xo 15 a solution of the generalized ODE, = DGy(z, t), on [, f).
The next proposition concerns the continuous dependence of a solution of a-generalized
ODE with respect to parameters which are presented in the form of sequences. A proof using

the known Helly-type selection principle for functions which take values in R™ can be found
in [17], Theorem 8.6.

Proposition 4.2. Suppose Q = O x [c, d] and Gi : @ — R™ belongs to the class F(Q, h)
for k=0,1,2,..., where [c,d] C [0, +00). Suppose :

khrf Gk(z, t) = Go(z, t), (z,t) € O x [c, d].

Let [a, f] C [¢, d] and =z : [a, B] — R" be the unique solution of

d .
c_ié = DGy(z, t), z(a)= yo,
Yo € O, on [, B). Assume further that there is a sequence {yx}x>1 € O, k = 1,2, ... satisfying
g = Y-

Then there ezists a positive integer ki such that, for all k > k,, there ezists a solution zy of
the generalized differential equation
dz
= DGy (=,
dr ¢(2, 7)
on [a, ] with zx(a) = yr and kli)rjloo zk(s) = zo(s), s € [e, B].

The next theorem is crucial in the proof of Theorem 4.1.

Theorem 4.2. Let z(t, u, G) be the unique solution of (12) defined on the mazimal interval
[0, w(u, G)), with w(u, G) > 0. Then w(u, G) is lower semicontinuous on O x F*(Q, h).

Proof. This proof follows the ideas of the proof presented by Z. Artstein for Theorem A.8 in
[1].

Let (yo, Go) € O x F*(Q, h) and (yk, Gir) € O x F*(Q, h), k = 1,2,..., be such that
(v, Gk) K252 (i, Go)« Let 4 k2490 4 and consider z(s) = z(s, Yo, Go) as being the unique

solution of the system

% DGz, 5), 2(0) = o
dr
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on the maximal interval [0, w(yo, Go)) with w(yo, Go) > 0. By Proposition 4.2, there exists
a positive integer k; such that for each & > k;, there is a solution Tk (S, Yk, Gx) of the
generalized differential equation

dz
d—T = DGk(III, S), IL'(O, Yk, Gk) = Yk

on [0, 7], 0 < v < w(yo, Gyp), with kli)rfooxk(s, Yk, Gr) = (s, Yo, Go), for all s € [0, v]. Note

that 7 is independent of k¥ > k; (see Proposition 4.2).
Define the set A C [0, +o00) by

A={b>0: for k >k, the functions z\(s, y, Gx) are defined on

[0, b] and are equicontinuous on [0, b]}.

Note that the functions zx(-, Y&, G), k > ki, are equicontinuous on [0, 7). Indeed, since
by Lemma 2.5,

llzk(s2, Yk, Gk) — zk(s1, Yk, Gi)|| < |h(s2) — h(s1)], 81, 82 € [0, 7],

and since h is independent of &, the equicontinuity of zx(s, yx, Gx) follows easily. Therefore
A#0. :

Let # = sup A. We shall show that [0, ) is the maximal positive interval of definition of
z(*, Yo, Go). This will imply the lower semicontinuity of w.

Let 0 < b < . By Lemma 2.5, we have

lzk(s, ve, Gl < llwell + llze (s, yes Gi) — will <
< llkll + [a(s) = R(0)] < llyell + [~ (b) — R(0)],

for each s € [0, b] and, since y = Yo, the sequence of functions z(:, vk, G) is, for
k > ko, ko sufficiently larger than k;, an equibounded sequence. Thus we have an infinite
pointwise precompact family {zx(s, yx, Gi)} of uniformly bounded variation. This implies,
by a Helly’s type choice principle (see [2]), that the sequence zx (-, yk, Gk), for k > ks, is
precompact in C([0, b], R*). Using Proposition 4.1, it can be seen that every limit point of
this sequence is a solution of the system

%;B: = DGy(z, s5), z(0)=1yo
on [0,b]. The uniqueness of solutions of this equation implies that there is only one limit
point of the sequence {z(s, Yk, Gk)} for k > k; and, therefore, the whole sequence converges
uniformly to the solution z(s, yo, Go) on [0, b].

Suppose z(8) = z(B, Yo, Go) is defined. Then z(8) € O. Thus, by Theorem 2.1, there
is a Ag > 0 such that z(s, yo, Go) is defined for s € [8, B + Ag]. By Proposition 4.2, for
sufficiently large k the solutions (s, yx, Gi) are also defined on the interval [0, B+ Ap] and

are equicontinuous there. But this contradicts the fact that § = sup A. Hence z(B, Yo, Go)
is not defined and B = w(yo, Go)- a
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Now we are able to prove Theorem 4.1.

Proof. (of Theorem 4.1) By Lemma 4.2, we obtain items i) and ii). Item iii) follows from
Lemma 4.3, item iv) follows from Lemma 4.4 and item v) follows from Theorem 4.2. O

5. EXISTENCE OF AN IMPULSIVE SEMIDYNAMICAL SYSTEM

Our aim is this section is to define a semidynamical system subject to instantaneous
perturbations.

5.1. An impulsive initial value problem. Consider the initial value problem

X =DG ), a0 =, a7)
for G in F*(Q, h), where Q = O x [0, +00) with O C R" an open set, u in O and z(t, u, G) -
is the unique solution of (17) (see Theorem 2.1).

Now we will describe the impulse effects acting on a generalized ordinary differential -
equation. The moments of time of such impulses are not pre-assigned, but vary on time.

Let M be a closed subset of R*. We assume that M satisfies the following condition: if for
any G € F*(Q, h) and for any u € O, the solution of (17) is such that z(t,u,G) € M for

some ty > 0, then there exists an € > 0 such that
z(t,u,G) ¢ M for t € (to —e€,to) U (to,t0 +€)-
This last condition means that the points of M are isolated in each trajectory of the system
(1’126w, define a function ¢ : O x F*(Q, h) — (0, +o0] by
s, if z(s,u,G) €M and z(t,u,G) ¢ M for 0 <t<s,
P G)= { +oo, if z(t,u,G) ¢ M for all ¢ > 0.
This means that ¢(u, G) is the least positive time at which the trajectory of u meets M.

Given system (17), we consider the following impulsive initial value problem associated to
(17)

(18)

dz
a‘; = DG(.’E, S),

I:M = N,

z(0) = u,
where I is a continuous function, N = I(M), [MNO) c O\ M and M satisfies the condition
that the points of M are isolated in each trajectory of the system (17). The solution of (19),
which we denote by Z(t,u, G), is described in the following lines.

If (u, G) = 400, then Z(t,u,G) = z(t,u,G), for all t > 0, where z(t,u, G) is solution of
(17). However if @(u, G) = so, we define Z(t,u, G) on [0, so] by
<

Z(t,u,G) = { :I:S-t,u,G'), S;;: s

)

(19)
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where uf” = I(u;) and u; = z(so,u, G). Denote u by uj.
Since 5o < 400, the process now continues from uf on. Thus, if o(uf,G) = +oo, then
we define Z(t,u, G) = z(t — so, uf, G), s < t < +00, where z(-, u}, G) is the solution of the

Zystem Z—: = DG(z, s), (0) = uy. When p(uf,G) = s, we define Z(t,u, G) on [so, so + 1]
4
B5,6) = { :rit— $0,u7,G), s <t<sp+ s
Uy, : t = sg + 81,

where uj = I(u,) and uy = z(s1, 47, G).

Now we suppose that Z(t,u,G) is defined on the interval [t,_,,t,] and that (14, G) =
uf, where t, = Y0 's; with n > 1. If ¢(ust,G) = 400, then Z(t,u,G) = z(t — t,,u},G),
t > t,. But if p(u}, G) = s,, then

E(t u G) = x(t - tn,U’T,G), hn<t< t'n-l—l
)y Uy .u:'+1, t = thy1,

where u},; = I(Unt1) and un41 = z(sn,uf,G). Notice that Z(t,u,G) is defined on each
interval [t,, tn41], where to = 0 and tp41 = Y 1y 8i, n = 0,1,2,.... Thus Z(t,u, G) is defined
on [0, tnt1].

The process above ends after a finite number of steps, whenever ¢(u}, G) = +oco for some
n. Or it continues indefinitely, if p(u},G) < 400, n = 0, 1, 2, ..., and thus Z(t,u,G) is
defined on the interval [0, T'(u, G)), where T'(u, G) = 3 iop Si-

5.2. An impulsive semidynamical system. In this subsection, we are going to show that
problem (19) admits a discontinuous semiflow which we will call an impulsive semidynamical
system.

Impulsive systems where the motion is defined for all £ > 0 are the most important and
interesting ones. Moreover, in many cases, the systems defined in [0,w), w < oo, can be
extended, via isomorphisms, to [0,+0c0) (see [8]). Thus we may restrict ourselves to such
systems. We will therefore assume that the solutions of equations (17) and (19) are defined

in the whole interval [0, +c0).
We recall that a local semidynamical system 7 corresponding to problem (17) and defined

in Ry x O x F*(Q, h) is given by

7(t, u, G) = (z(t, u, G), Gy).
Hence 7 is a global semidynamical system (see Remark 4.1). We denote such system by
(O x F*(Q, h),7) and, from now on, we drop the term “global” and we refer to such system

simply as a semidynamical system.

For every (u,G) € O x F*(S, h), the continuous function () : Ry — O X F*(51, b)
defined by 7y, ¢)(t) = 7(t, u, G) is called the motion of (u, G). Given (u,G) € O X F* (R, h),
the positive orbit of (u,G) is given by

7t (u,G) = {r(t,u,G) : t > 0}.
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Definition 5.1. An impulsive semidynamical system on O x F*(Q, h) is a mapping
T:Ry x Ox F*(Q, h) = O x F*(Q, h)
such that

a) 7(0,u,G) = (u,G) for each (u,G) € O x F*(Q, h);

b) 7(s,7(t,u, G)) = T(t + s,u,G), with (u,G) € O x F*(Q, h) and t,s € [0, +00);

c) for each (u,G) € O x F*(Q, h), the mapping (-, u, G) is continuous from the right
at every point in [0, +o00) and the left limits 7 (t—,u, G) exist for all t > 0.

Given (u,G) € O x F*(Q, h), the positive impulsive orbit of (u, @) is defined by the set
7 (u,G) = {7(t,u,G) : t > 0}.

Let (O x F*(Q, h), ) be a semidynamical system corresponding to problem (17). Then
its motion is given by
7r(t’ u’ G) = (x(t) u) G)) Gt))
where z(t,u, G) is the unique solution of (17) defined on the whole interval [0, +co).
Now, define the mapping

T:Ry xOxF*(Q, h) > O x F*(Q, h)

by
T(tu,G) =7t —ty,ut,G), for t, <t<tpy1 and n=0,1,2,...," (20)
where u = uf, o = 0 and ¢, = Y ' s; with n > 1. Recall that s, = o(u},G),n =
0,1,2,....
Note that
T(t,u, G) = (z(t, u,G), Ges, )
fort, <t <tpy1,n=0,1,2,..., where Z(¢, u, G) is solution of (19).

Theorem 5.1. 7 given by (20) is an impulsive semidynamical system associated to (19).
We denote such system by (O x F*(Q, h), 7).

Proof. The proof of Proposition 2.1 in [4] can be applied to prove conditions a) and b) from
Definition 5.1 with obvious modifications. Since Z(¢,u,G) and G; are continuous from the
right at every point ¢ € [0, +00) and the left limits Z(¢—, u, G) and G, exist for all ¢ > 0,
condition ¢) from Definition 5.1 follows. Hence (O x F*(2, h), 7) defines an impulsive
semidynamical system corresponding to problem (19). O

For details about the theory of impulsive semidynamical systems in the classic ordinary
case, the reader may to consult [3]-[8] and also [14].

In the next section, we will present a version of LaSalle’s invariance principle for gener-
alized ODEs. In order to state such result, we strongly used the existence of an impulsive
semidynamical system (O x F*(, h), ) (Theorem 5.1). Later, we will apply LaSalle’s in-
variance principle for generalized ODEs and the correspondence between impulsive ODEs
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and generalized ODEs to get a LaSalle’s invariance principle for impulsive autonomous ODEs
without the need to construct a local discontinuous semiflow.

6. LASALLE’S INVARIANCE PRINCIPLE

We shall consider that the funcion ¢ defined in (18) is continuous on (O\M) x F*(Q, h).
In [7], the reader may find conditions that the impulsive set M must fulfill so that the function
 is continuous.

We start by introducing the concept of a limit set for an impulsive semidynamical system
in the frame of generalized systems. Let (O x F*(R2, h), ™) be an impulsive semidynamical
system as presented in Theorem 5.1. The set of limit points of 7 (¢, u, G), when t = +o00, is
given by

Q*(u, G) = {(u*, G*) € O x F*(Q, h) : T(n, u, G) "25° (u*, G¥)

n—>+oo

for some sequence of positive real numbers A, — -+o00}.
We call Qt(u, G) the positive limit set of 7(t, u, G).

A subset T of O x F*(R, h) is said to be positively T—invariant, if for any (vg, Go) € T
we have 7(t, vo, Go) € I for every ¢ € [0, +00).

In the following lines, we will prove that the limit set Q*(u, G) is positively 7-invariant.
But at first, let us present an auxiliary lemma which is a version of Lemma 2.3 from [14] for
the impulsive system (O x F*(f2, h), 7). The proof follows analogously and we include it

here for the sake of self-containedness of this paper.

Lemma 6.1. Let (O x F*(2, h), T) be the impulsive semidynamical system corresponding
0 (19). Suppose u € O\ M and {va}n>1 is a sequence in O which converges to the initial
value u of (19). Let {Gn}ny>1 be a sequence in F*($, h) such that G, "24° G. Then, for
any t > 0, there ezists a sequence of real numbers {€n}n>1, with €, "21° 0, such that

#(t + €n, Un, Gn) "= 7 (t,u, G).

Proof. For each n € N, n > 1, let z(¢, vn, Gn) be the solution of problem
dz

2 = DGa(z, ),

z(0) = v,
defined for all ¢ > 0. By Proposition 4.2, we have

x(t,'una Gn) ‘nﬁ)OO .'Il(t, u, G)7

(21)

where z(t,u, G) is the solution of (17).
Since G "21$° G, the sequence of translates (Gn): of G also converges to the translate

Gt of G. Thus o
7(t, v, Gn) "—5 7(t,u,G),

for each t > 0.
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If o(u, G) = 400 the result follows. Suppose ¢(u, G) < +oo.

In the sequel, we use some ideas borrowed from [14], Lemma 2.3, to prove the result.

At first, suppose 0 < ¢ < s9, 5o = ¢(u, G). By the continuity of ¢ on (O '\ M) x F*(, h),
given ¢ > 0, € < sp — ¢, there exists a natural number ng such that —e < ¢(vy, G,) — ¢ (u, Q)
for all n > ng. Thus for n > ng, we have ¢t < sy — € < ¢(v,, Gn) and then

(¢, Uny Gn) = 7(t, 0, Gn) "25° 7(t,u, G) = 7 (¢, u, G).

In this case, take €, = 0 for each natural number n = 1,2,.... Thus 7(t + €n, Un, Gn) g g

7(t,u,G).
Now, suppose ¢t = so. Let £, = ©(vn, Gn) — ¢(u, G). Then,

T(t + €ny Un, Gn) = T(@(Vn; Gn)s Un; Gu) = (0, I((va)1), Grn),

where (vn)1 = 2(@(vn, Gn),Vn,Gn), n =1,2,....
Since I((vn)1) "=5° I(uy), we have

Tt + €ny Un, Gn) = 7(0,1((vn)1), Gn) "25° (0, uf, G) = 7 (¢, u, G).

But if t > ¢(u, G), then t = 37! s; + t' for some m € N* and 0 < ¢ < sy,

Let tn = 375" @((vn)F, Gn), where (va)f = vn, (va)i = 2(¢((va)i1, Gn), (vn){1, Gn) and
I((vn);) = (va)ffor 1 < i <m — 1. Then .

7 (tns Uny Gn) = ((Un)gy Gn) "= (s, G).

Define e, = t, +t' —t, n =1,2,.... Since u;, ¢ M (because I(M) NM=0and t < s, =
o(ut,@)), it follows by the previous case that

F(t + €ny Uny Gn) = T(t', T (tn, n, Gn)) "—5° 7 (¢, uh, G) = 7(t, v, G)
and this completes the proof. g
By applying Lemma 6.1, the proof of Proposition 6.1 follows straight;,forwardly.
Proposition 6.1. Suppose Qt(u, G) N (M x F*(Q, h)) = 0. Then Q*(u, G) is positively

T—invariant.

The next result gives us a sufficient condition under which Q% (u, G) is a non-empty set.
Proposition 6.2. Let (O x F*(2, h), T) be the impulsive semidynamical system correspond-
ing to (19). If Z(t, u, G) remains in a compact subset C of O for all t € [0, +00), then
Q*(u, G) is non-empty.

Proof. Let {\n}n>1 be a sequence of positive real numbers such that ), "255° +o0. For each
~ 1
natural number n, let p(n) € N* be such that tyn) < An < tpn)+1, Where tpn) = AN

Then
%(/\m u, G) = 71'()\,.‘ — tp(n), u:(n)’ G) = (:L‘()\n = tp(n), u;-(n)’ G)’ G)‘"’tp(n))'
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By the compactness of C, the sequence {Z(\,, u, G)}n>1 admits a convergent subsequence,
say,
Ty G) = T(An, — tyny), Uin ), G) F2H wr € C.

Also, since F*(§2, h) is compact (see Remark 4.2), the sequence {G Ang —tp(nyy Je>1 @dmits a

P(ny

convergent subsequence. Then we can assume that G’,\nk_, K2t Guin F *(©, h). Thus,

p(ngk)
T(Any 4, G) "22° (u*, G*)
and since A,, “2%° 400, we have (u*, G*) € Q*(u, G). O

Now, we present the concept of a Lyapunov function, defined in O x F*(Q, h), with respect
to the impulsive semidynamical system (O x F*(%, k), 7).
Definition 6.1. A nonnegative function V : O x F*(Q, h) — Ry satisfying the conditions
1) V' is continuous on O x F*(, h),
ii) V(u,G) <0 for (u,G) € O x F*(Q, h), where

V(u, G) = limsup V(%(h’u’ G)) - V(u,QG)

h—0+ h ,

is called a Lyapunov function associated to the impulsive semidynamical system (OXF* (2, h), 7).

Item ii) in Definition 6.1 implies that V(7 (¢, u,G)) < V(u, G) for every t > 0.
The next result is a version of LaSalle’s invariance principle. Its proof follows some ideas
of [6], Theorem 3.1.

Theorem 6.1 (LaSalle’s Invariance Principle). Let (O x F*(Q2, h), 7) be the impulsive semi-
dynamical system corresponding to system (19). Suppose Z(t, u, G) remains in a compact
subset C of O for allt € [0, +00). Let V : O x F*(Q, h) — R, be a Lyapunov function as
defined in Definition 6.1. Define E = {z € O x F*(Q, h) : V(2) = 0}. Let W be the largest
set in E which is positively T-invariant. If Q*(u, G) N (M x F*(Q, h)) = 0, then Q*(u, G)
18 contained in W.

Proof. By Proposition 6.2 the positive limit set Q*(u, G) is nonempty. Let (u*,G*) €
Q% (u, G). We have two cases to consider: when Q*(u, G) is a singleton and otherwise.
Suppose Q% (u, G) is a singleton, that is, Q*(u,G) = {(u*,G*)}. By Proposition 6.1, the
set Q+(u, G) is positively 7—invariant. Then 7(t,u*,G*) = (u*,G*) for all ¢ > 0. Hence
V(u*,G*) = 0 and Q*(u,G) C E. Since W is the largest set in E which is positively
7—invariant, we have Q*(u, G) C W.
Now, suppose 2% (u, G) is not a singleton. Let (u1, G1), (u2, Gg) € Q*(u, G). Then there

t4s —+00 —>+oo
are sequences {An }n>1 and {&n}n>1 of positive real numbers )\, —_ 400 and K, —F —+00

such that i
7(An, 4, G) e (u1,G1) and T(Kn,u,G) — 252 (ug, Ga).
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We can choose subsequences such that \,, < Kn,, k=1,2,.... Then
V(7 (Knyy uy G)) < V(T (A, 4, G)). (22)

Since V' is continuous, when k — +oo in (22), we have V (ug, G3) < V/(uy,G1). On the
other hand, we can choose subsequences {s,,} and {),.} such that s,k < )\, , m =
1,2,..., and then V(u;,G1) < V(us, G,). Hence V(u1,G;) = V(ug, Ga), that is, V(u*, G*)
is equal to a constant for every (u*,G*) € Q*(u,G). Consequently V (u*, G*) = 0 for every
(v*,G*) € Q*(u, G), since Q*(u, G) is positively T—invariant. Therefore Q*(u,G) C W and
we finished the proof. O

7. AN APPLICATION

The aim of this section is to present a version of LaSalle’s invariance principle for au-
tonomous ordinary differential equations with impulses at variable times. Clearly the prin-.
ciple also applies in the case where there is absence of impulses.

Let us consider the following initial value problem

& = f(z),
I:M—N, (23)
z(0) = zo,
where £ = ‘;—"t‘, f: O — R", O is an open set of R”, M is a closed subset of R® and I: M — N
is a continuous mapping called the impulse operator such that I(M) " M = (. The reader
may find the fundamental theory related to (23) in [16], for instance.
We denote the solution of (23) by z(t, zo, f).
We shall also consider that M satisfies the following condition: if z(¢g, o, f) € M for some
to > 0, where z(t) = z(t, Zo, f) is solution of (23), then there exists an € > 0 such that
:L‘(t, Zo, f) ¢ M, for te€ (to - E,to) U (to, to + 6).

This means that the solution z of (23) touches M only at isolated points.
Let us denote by A the set of all functions f : O — R" which satisfy the following

conditions:
(A) there is a positive constant K > 0 such that for all z € O,

If @)l < K;
(B) there is a positive constant L > 0 such that for all z,y € O,
1f(z) = f@WII < Lllz - ylI.
We define a function ¢ : @ x A — (0,+00] associated to system (23) by

e if z(s,u,f) €M and z(t,u,f) ¢ M for 0<t<s,
d(u. f) = +o0, if z(t,u,f) ¢ M forall ¢> 0.
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Lemma 7.1. Assume f € A. For eachz € O and each t > 0, define
F(z,t) = f(z)t.
Then F € F*(Q, h), where Q = O x [0,+00) and h(t) = (K + L)t.
Proof. At first, note that h is increasing, continuous and
|h(t + s2) = h(t +s1)| = [(K + L)(s2 — s1)| = |h(s2) — h(s1)],

for every sy, s2,t € [0, +00).
For each z € O, we also have F(z,0) = 0. Moreover,

|1F (2, 82) — F(z, s1)| = | £(2)l Is2 — s1] < Klsz — 1] <
< (K + L)|sz — s1] = [A(s2) = h(s1)],
for all (z, s2), (z,51) € 2, and
|1F(z, 52) — F(z,51) = F(y,52) + F(y, 1) = [I(f(z) = f(¥))(s2 — s1)|| <
SL|lz—vylllsz =81l < (K+L) ||z -yl |s2 — 1]
= |z =yl |h(s2) — h(s1)],

for all (z,s3), (z,81), (¥, S2), (y, 1) € Q. Therefore F € F*(Q, h). O

Let z(t,zo, f) be a solution of (23) defined on [0,+00). The set of all limit points of
z(t, To, f), when t — +o0, is defined by

w(zo, f) = {z* € O : z(An, To, f) "=5° z*, for some sequence

n—+400
—

of positive real numbers {A,},>1 such that A, +o0}.

We call w(zg, f) the w-limit set of the solution z(¢, zo, f).
A subset A of O is said to be positively invariant with respect to system (23), if for each

zg € A, z(t, 7o, f) € A for every t € [0, +00).
The following result follows similarly as Lemma 6.1. It will help us prove that, under
certain conditions, the w-limit set of z(t, zo, f) is positively invariant.

Lemma 7.2. Suppose zo € O \ M and {xn}nzl is a sequence in O which converges to the
point 7. Let z(t) = z(t,zn, f), n=0,1,2,..., be the solution of

& = f(z),

I:M—N,

() = w5,
defined on the interval [0, +00). Then, for any t > 0, there exists a sequence of real numbers

{en}n>1, with €, "2 0, such that

2(t + €n, Tn, [) "2 z(t, T, f).
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Lemma 7.3. Given zo € O, suppose w(zo, /)N M = 0. Then the w-limit set w(zo, f) is
positively invariant with respect to system (23).

n—+00

Proof. Let z* € w(xo, f), then there exists a sequence {\,}n>1 C Ry, Ay "=55° +00, such
that -

(A, To, f) 250 z* € O.

By Lemma 7.2, there exists a sequence of real numbers {e,}n>1, with &, R 0, such that

n—-+00

T(t + €y T(An, 20, f), f) — z(t,2%, f) € O,

for any ¢ > 0. Since z(t + en, (An, Zo, f), ) = z(An + €n + t, Zo, f) (because the system is

autonomous) and t + &, + A, MR ~+00, the result follows. O

Now we define a Lyapunov functional U : O x A — R with respect to equation (23).

Definition 7.1. A nonnegative function U : O x A — R, 1s said to be a Lyapunov function
associated to system (23), if the following properties hold:

(i) U is continuous on O x A,

.

(ii) U(zo, f) <0, for (zo, f) € O x A, where

U(J?O) f) - limsup U(Il?(n,xo, f))nf) s U(z()) f) )
n—0+

Now we are able to present LaSalle’s Invariance Principle for an impulsive autonomous
ordinary system.

Theorem 7.1 (LaSalle’s Invariance Principle). Suppose z(t) = z(t, zo, f) stays in a compact
subset of O for all t € [0,+00), where z(t) = z(t,Zo, f) is the solution of (23) with f €
A. Suppose U is a Lyapunov function as defined in Definition 7.1. Define Hy = {T €
O : U, f) = 0} and let N be the largest set in Hy which is positively invariant. If
w(zo, f)NM = 0, then w(zo, f) CN.

Proof. Let z(t) be a solution of the non-impulsive system

& = f(z),

2(0) = 2o.
Clearly z satisfies t

Z(t) = xy +/ f(z(s))ds, t=>0.
0
By defining
F(z,t) = f(z)t, (z,t) € O % [0,+00),

then z(t) is also a solution of the generalized differential equation

dz
{ a;:DF(x» t), ©(24)

z(0) = zo.
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This fact is easy to check (see the Introduction of this paper).
By Lemma 7.1, F € F*(Q, h), where h(t) = (K + L)t and Q = O x [0, +oc0).
By Theorem 4.1, the mapping 7 : [0, +00) X O x F(, h) — O x F*(Q, h) given by
7(t, o, F) = (2(¢, zo, F), F), (25)
is a semidynamical system on O x F*(Q, h) associated to system (24). By Theorem 5.1,
(O x F*(Q, h),7) is the impulsive semidynamical system associated to the system
“w DF(z, t)
dr
I:M—N (26)
IE(O) =2
where the associated impulsive semiflow is given by
Aﬂ:(ta To, F) = (x(t) Zo, F)) -Flt-tn-))

with z(t) = Z(t) being the unique maximal solution of (23), for ¢, <t < tp41,n=0,1,2,...
with tg =0 and tp41 = Y 5p Siy n =0,1,2,... (recall that s; = ¢((z0)F, F)).
Define V : O x F*(f2, h) — Ry by
V(z(t), F) = U(z(t), f), t=>0.

Note that
Fy(z,t) = F(z,t + h) — F(z,h) = f(z)t = F(z,t),
for all z € O and for all ¢, A > 0. Then, V(z(t), Fy) = V(z(t), F) = U(z(t), f) for all A > 0.

Therefore,
V(z(h, z(t), F), Fn) — V((t), F)

V(z(t), F) = liﬁ:}ljp 5
T Ya(h, alt), £),5) = UG), 1)
= limsup A
'h-)0+
= Ul=(t), ).

On the other hand, we have

V(w),F) = V(uf,F)=V(z(e,F),uwF),F)=
V(z(p(u, F),u, F), Fyu,r)) =
= V(r(p(u, F),u, F)),

for each (u, F) € O x F*(Q, h).
Now, set

E={veOxF(Q,h): V(v) =0}
and let W C E be the largest set in E which is positively 7—invariant. Since w(zo, f)NM = 0,
then Q*(zo, F) N (M x F*(, h)) = 0. Thus, by Theorem 6.1, QF(zo, F) CW.
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We claim that w(zo, f) C NV. Indeed. Let z* € w(zy, f). Then there exists a sequence of
positive real numbers {\,}n>1, An "23° +o0, such that

x(/\n) = x(’\n)xO) f) n-—’_+)°° z"

Note that V(z(An), Fr,) = U(z(An), f). By the compactness of F*(f, ), we can assume
that there exists F* € F*(Q, h) such that Fy "235° F*. Then

limsup V(z(A,), Fi,) = limsup U(z(\,), £),

n—-+00 n—-+o0o
that is,
Uz, f) = V(z*, F*).
Since (z*, F*) € Q% (xo, F), it follows from Theorem 6.1 that V'(z*, F*) = 0. Then
U(a*, f) = V(z*, F*) = 0
and hence z* € H;. Consequently w(yo, f) C H;.

Since w(yo, f) is positively invariant and A is the largest set in H; which is positively
invariant, it follows that w(yo, f) C NV and this completes the proof. O

8. APPENDIX

The main goal of this concluding part of our paper is to prove Proposition 8.1 which is
Proposition 4.1 in a setting of arbitrary Banach-space valued functions. '

Let (X, || - ||) be a Banach space. We denote by BV ([0, +c0), X) the space of functions
f :]0,+00) — X which are locally of bounded variation, that is, for each compact interval
[a,b] C [0,+00), the restriction of f to [a,b], f|a,), is of bounded variation. In BV ([a, b], X),
we consider the usual norm given by || f||sv(,5) = || f(a)|| + varg f, where varg f stands for
the variation of f in the interval [a, b]. "

We assume that Q@ = O X [c, d], where O C X is open. Moreover, we assume that the
function h is nondecreasing and continuous from the left on [0, +00) and the sequence

0 <ty <0< ovs <ilg o ey

with £ g o +00, represents the points of discontinuity of h. The next results hold in the
case where there is absence of impulses.
Lemma 8.1. Assume that each Gy : O x [¢,d] = X, k = 0,1,2,..., belongs to the class

F(Q, h), where h is nondecreasing and left continuous. Let Gy F24° Gy in F(Q, h). Let
e € G([c,d], X), k=1,2,... be such that

[ = olloo = suP [¥(2) — %o (t)] =570,
c<t<d
where [c, d] C [0, +00). Then
/ DG (t(r / DGo(%o(7), s)

k
miar ol s §
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Proof. First of all, note that 1y € G([c, d], X), because vy is, by assumption, the uniform
limit of regulated functions on [c, d].
By Lemma 2.7, all the integrals fcd DGy (vx(7), 8), k=0,1,2,... exist.
Assume that € > 0 is given. Then the regulated function 9 € G([c, d], X) can be uniformly
~approximated by a step function, that is there is a step function y : [c,d] — X such that

ly = wolleo = sup [ly(t) = %o(®)ll <.

Since ||x — Yolleo  — *2%£° 0, there exists a positive integer Np, such that

”wk - "bO”oo <§g,

for all £ > .
Assume that k£ > Ny. Then we have

/ DGy((r), 5) — / DGoltho(r / DIGA(We(), 5) = Geltolr), ] +

+ / DGy (y(r), 5) - Goly(r), )

4 / D[Gi(to(r), 5) — Ci(y(r), s
/ D[Go(y(), 5) — Go(to(7), 3)].

Let us consider the first summand on the righthand side of the inequality in (27).
Let 6 be a gauge defined in [c, d] corresponding to € > 0 in the definition of the integral

fcd DGy (vk(7), s) — Gk (%o, 5)] and let (7, [si-1, si])1<i<p be a d-fine tagged division of [c, d].
Then we have

/dD[GkW)k(T) 8) — Gr(vo(7)

(27)

/ D[Gk Yi(T), ) Gk("/)o('r)a s)]_

5 2’): [(G(¥r(7:), 8:) — Gr(¥r(Ti), 31’-—1)) — (Gx(%o(m), si) — Ge(vo(Ti), si-1))]|| +
<

i [(Gr(w(T:), 8i) — Gi(Wr(7), 8i-1)) — (Gi(o(T), i) — Gr(%o(Ti), 8i-1))]

<e+ i Gk (Wr (), i) — Gr(Wi(m), sic1) — Gr(to(m), 8i) + Gi(o(m), si-a)ll <

“s’wzwk () — Bo(r)| [h(s3) — hlsin)] <

e+ ”d’k = onoo z[h(si) = h(s,-_l)] =
< & +e[h(d) — h(0)] = £(1 + [A(d) — h(c)).
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For the second and fourth summands on the righthand side of (27), we can show analo-
gously that

d
/c DIGk(bo(r), 5) — Gu(u(r), 3)]|| < e(1 + [A(d)  A()])

and

< e(1+[h(d) - h(c)]).

d
/c D[Go(y(7), 8) — Go(to(T), 8)]

Thus

/ DG (4 (r / DGo(to(7), 5)

< 3e(1 + [h(d) — / DIG(y(r), ) — Gou(r), s)]|.

Let us now consider the integral fc DGk (y(1), s) — Go(y(7), )]

Since y : [¢,d] — X is a step function, there is a finite number p € N of points ¢ =
To < T1 <7y <+ < 7Tp_y < 71p=dsuch that for 7 € (rj_1,7;), 7 = 1,2,...,p, we have
y(T) = ¢ € X (y assumes a constant value c; in each open interval (r;_1,7;), j = 1,2,...,p).
In this case, an explicit formula for the integral fcd DGy(y(r), s), for every k =0,1,2,...,
can be given, namely,

/ DGi(y(r) Z " DGiy(r), 9)

- TJI

and (using the Hake-type theorem given in Lemma 2.3 and a properly chosen partition of

[rj-1,75])

/ DGy(y(7),t) = Gi(cj, m—=) — Gr(cjy ri—1+) + Ge(y(rj-1), Tj-1+)—
Tj—1
—=Gi(y(rj-1),7i-1) — G(y(rs),m5—=) + Ge(y(r5),75)-
Looking at the difference for the sums on the righthand side for Gy and G’o in the last
equality, we get

L2

lim D[Gk(y(T)) t) - GO (y(T)7 t)] == 01
k—oo Ti-1
because since G € F(£2, h), we have
|Ge(z,t2) — Gr(z, 01|l < [R(t2) — h(t1)]
for every (z,t), (z,t;) € Q and this leads to the conclusion that lim, o4 Gi(z,t + p) =
Gi(z,t+) and limy_04 Gi(z,t — p) = G (z,t—) for every (z,t) € Q uniformly with respect
ok =0 L.t
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k—+00
GOa

Hence by the assumption that G "— we obtain

li t =
k—ir-Poo Gk (x’ +) kgr-i{loo pl—l>m+ Gk (.’L‘ v p)

= pl-%l+khm Gi(z,t+p) =

= p1_1)%1+ Go(z,t + p) = Go(z, t+)

provided (z,t) € .

Since € > 0 can be taken arbitrarily small, we obtain the conclusion of the lemma. O
Corollary 8.1. Let Gy gy Go in F(Q, h). Let Y € BV([c, d], X), k = 0,1,2,..., be
such that ||vx — Yol Bv (L, a)) *2%8° 0, where [c, d] C [0, +00). Then
/me /D%%ﬂ)

lc—)+oo
0.

Proof. Taking into account that BV ([c,d], X) C G([c,d], X) and that for every ¢ € [c, d], we
have

(1% () — %o (2]l l1%e(c) — wo(e)ll + ll%e(2) — Yo (t) — (¥e(c) — ()| <

<
< 1%e(e) = %o()ll + varg(vx — o) <
< |lvk(e) — vo(e)|| + vard(vx — o) = llvk — %ollBv (e, a))»
we can easily see that ||Yx — Yolle — 2% ) and the result follows from Lemma 8.1. O

Proposition 8.1. Assume that Gy : O x [c, d] — X belongs to the class F(Q, h), for
k=0,1,2,.., [c,d] C [0, +00) and that
lim Gg(z, t) = Go(z, t),

k—+00

for (z,t) € O x [c, d]. Let [, B] C [c, d] and zi : [0, B] = X, kb = 1,2,...., be solutions of
the generalized ODE

ar o DGz, )
dr

on [, B] such that
lim zi(s) = zo(s), s € [, B, (28)

k—+00
and (z(s), s) € Q for s € [a, B]. Then zo : [, f] = X satisfies:

i) [lzo(s2) — Zo(s1)|| < h(s2) — h(s1), if 1 < 52, 51, 82 € [, Bl;

ii) hm z:k(s) = zo(s) uniformly on [a, B);
i)

dz
o is a solution of the generalized ODE —— = DGy(z, t), on [a, B).

iii dr
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Proof. Assume that a < s; < sy < 3. Then for any k € N, we have

[20(s2) = Zo(s1)I| < llzo(s2) — Tr(s2)l| + |z (2) — @k (51)|| + ||zk(51) — T0(s1)]].

Take an arbitrary € > 0. By (28), there is an £ € N such that, for k£ > ¢, we have
€ €
lze(s2) = mo(s2)l < 5 and  [lau(s1) - zo(s1)]| < 3.
Using Lemma 2.5, we have

llzx(s2) — zx(s1)ll < h(s2) — h(s1), k=1,2,3,...,
and :
lzo(s2) — Zo(s1)]| < € + h(s2) — h(s1).
 Since £ > 0 can be taken arbitrarily small, we obtain

llZo(s2) — zo(s1)l| < h(s2) — h(s1)

and this implies 7).

For proving i), let us assume that [c, (] does not contain points of discontinuity of the
function h, that is, let us suppose A : [, 8] = R is continuous. By Heine-Borel Theorem,
h is uniformly continuous on [e, £]. This means that for every € > 0, there is a 6 > 0 such
that |h(s) — h(t)| < €, whenever |s —t| < d.

Let € > 0 be arbitrary and let 6 > 0 correspond to it in the definition of uniform continuity.
Then intervals of the form (¢t — 6, t + ), t € [, B], cover [e, B]. Since [e, f] is compact,
there is a finite set r,...,7, such that [a, §] is covered by the finite number of intervals
(7“_7'—5, 'f‘j+6),j= 1,...,[.

Take k* € N such that (by (28)), for £ > k*, we have

|2k (rs) — zo(rs)ll <,
forall j =1,...,£. Let s € [, 8] be given. Then there exists j € {1,...,£} such that
s € (rj — 6, rj + 6). Then, for k& > k*, we have
loe(s) = mo(&)l| < llzi(s) = a(r)ll + lonlrs) = 0(ra)l + Igo(rs) — 20(a)] <
< |A(s) = h(rj)| + &+ |h(s) — h(r;)| < 3e.

Since this can be done for any s € [, (], we obtain i7) in this case.
Recall that h is nondecreasing, continuous from the left on [0, +00) and 0 < t; < t; <

Lt < ..., With # g=: +00, is the sequence of points of discontinuity of . -Thus if
[a, BN (UJr {tk}) # (), since tx — +00, there exists a finite number of points ¢}s in [c, ],
that is, & < tm < tm+1 < ... < lmyp < 6.
Assume € > 0 is given. By (28), there is a k* € N such that, for any j € {m,m+1,...,m+

p}, we get
Nlze(t) — zo ()l <,

whenever k > k*.
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Consider any of the intervals [, tm], [tm, tms1); .- -, [tm+p-1) tm+1]y [tmap, B). Denote it
by [a, b] and define
. h(s) s € (a, b]
h = ) )
() { h(a+), s=a.
Then; by the assumptions on A, the function h* : [a, b] = R is nondecreasing and continuous.
Forall k=0,1,..., put z(a) = z(a+) and z}(s) = zx(s), s € (a, b).
It is easy to see that, by (28), we have

Jm zi(s) = z5(s), s € (a, B,

Jm zi(a) = lim zi(a+) = zo(a+) = z5(a)

and

llzk(s2) = zi(s1)ll < [B*(s2) — A" (1),

. : k :
for a < s; < 83 < b. Using the previous result, z} i o zg uniformly on [a, b]. Hence, for

every € > 0, there exists k, € N such that
|z (s) — zo(s)|| = l|lzk(s) — 23 ()| <&,

whenever s € (a, b], ||zx(a) — zo(a)|| < &, k > k, and =z *24%° 2o uniformly on [a, b]. Since
this can be done for every of the finite number of intervals of the type [a, b], we obtain 1)
and. its general form as stated in the conclusion of the theorem.

Now, let us prove 3i3).

By the definition of a solution of the generalized ODE g—f = DGylz, t), b =1,2,3, .\, W&
have

2x(s2) — zx(s1) = | DGi(za(r), 1) (29)

S1

for every si, s2 € [@, B]. By Corollary 8.1, we have

" DGy(ze(r), 8) — / " D@zl 8)

S1 1

for any s, s; € [a, B]. Using (29), we have

= e / DGo(zo(7), t)H <

k
—+00 0,

/s 1” DEG), )~ / DGo(zo(r), 9)

= ||zk(s2) — zo(s2)ll + Iz (51) — o (s1)[| +
Then, when k — +o00, we obtain

zo(82) — Zo(s1) = /82 DGo(zo(T), t)

for every si, s2 € [a, B]. Therefore z is a solution of to the generalized ODE g—f = DGy(z, t)
on [, A and we finished the proof. 0
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NOTAS DO ICMC

SERIE MATEMATICA

322/09 COSTA, J. C. F.; SAIA, M. J. ; SOARES JR,, C. H. - Bi-Lipschitz,
Q’='R, cy K:’ RV; cVa K:V

M:C.— On'acyclic and'simply connected open manifolds

FENILE, . C. - Clsd injective systsand its fundamental limit
spaces .

'318/09  BIANCONI, R.; FEDERSON, M. - A fredholm-type theorem for linear
integral equations of stieltjes type.

zonley iindexs
and: nonlinear

316009  CARBINNATO, M. C.. RYBAKOWSKY, K. P. - Conley index and
homology index braids in singular perturbation problems without
uniqueness of solutions.

Analitic 1'o nitor:Maniic

CALLEJAS-BEDREGAL, R.. JORGE PEREZ, V. H. - Mixed
Multiplicities of Arbitrary Modules.

'314/09

Homoclinic® tangency  anda variaton=o;




