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Abstract 

In the classical literature of NLP, the Lagrangian duals (minimax and Wolfe's) 11.fe 

lengthily discussed under various assumptions of convexity and/or regularity. Their rela­

tions with optimality conditions (saddle point and stationary point) are also very much 

exploited. This paper exploits the characteristics of the optimal value function of the dual · 

problems, trying to clarify the e&1ential or n?D essential role of the usual assumptions, 

presenting some probably obvious results like the necessity and sufficiency of v(•) being 

convex and l.s.c. in order to avoi.d duality ~ps in the minimax dual, some characterizations 

of dual solutions, the role of weak duality theorems and the idea of /( •) uniqueness. 

1. Introduction 

The classical body of NLP literature lays heavily on optimality conditions and La­

grangian duality. For the cnse of minimax Lagrangian duality a number of interesting 

papers has clarified several aspects of its study, since the classical work of Geoffrion [2], 

passing by Tind and Wolsey [8] and reaching, for instance Flippo et alii [l). 

The same drive has not been applied to Wolfe's dual, although its application on 

models with physical or economic interpretations is quite widespread, as much as stationary 

• FOMU stands for "probably obvious, maybe useful". 
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point conditions. 

This paper intends to present explictly some results that being probably obvious are 

not clearly stated, but have the property of identifying which is the role of several usual 

assumptions, so it is hoped that its comments may be useful. 

In section 2, we recall classical definitions, generalize the concept of "no duality gap", 

a.nd obtain the obvious result that if there is no duality gap then the perturbation function 

is convex and lower semicontinuous. In section 3, we revisit the minimax dual trying to 

isolate the role of every usual assumption in the derivation of the related results. A similar 

task is undergone for Wolfe's dual, in section 4, showing the relations and dissimilarities 

between these results a.nd stationary point conditions. 

2, Basic presentation 

We shall use an approach quite similar~ Geofl'rion's (2), but with enough differences 

to suggest some initial remarks. 

Let us recall some classical definitiollll: 

Definition 2.1. Given X° C R", X 0 '1- 0, 

/: X 0 -+ R 

g: xo-+ nm, 

the minizatfon problem (MP) is defined as: 

"find, if there exists, x• E X, such that 

/(z•) = min{/(z) I z EX}, 

where 
t,. 

X = {z E X 0 I g(.:i:) ~O}." 

--:, This definition can be generalized to (MP,), minimization problem with RIIS y, for 

11 ER"', when the feaaible set (X) is replaced by X, = {z e X 6 /g(z) ~ 11}, 

The usage of this more general definit.ion, (MP,), generates the need of defining: 
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Definition 2.2. The feasible perturbations se& Y and the perturbation function v( •) are 

defined as: 

(i) Y = {y E Rm I 3z E X 0
: g(z) ~ y}, 

(ii) v: Y-+ RU {-oo} by v(11) = inf{/(z) I z Ex,}. ■ 

It is com"enient to note that (X 0 ¢ 0 => Y ~ 0) and (Y '¢ 0 => Y = Y + R+ and 

Y¢.0). 

Associated with (MP) and (MP,) it is usual to introduce the Lagrangean functi~n 

and two Lagrangean duals (minimax and Wolfe's) defined u: 

Definition 2.3. As in (2.1), we define 

(i) the Lagrangean function L(x,u) as L(·,·): X 0 x R~-+ R, by 

L(x,u) = f(x)+ < u,g(x) >; 

(ii) the minimax dual (D,), associated to (MP,), for 1f E Y, 

"find, if there exists, u• E U, such that 

F(u*)- < u•,y >= max{F(u)- < u,y >I u EU}. 

(a) u = {u ER+ I inf{L(z,u) I z E X 0
} ER}, 

(b) F: U-+ R, by F(u) = inf{L(x,u) Ix e X•};" 

(iii) the Wolfe's dual (WD,), associated to (M~1 ), for 1f E Y, 

"find, if there exists, (x•, u•) EDU, such that 

L(x., u*)- < u•, 31 >= max{L(x, u)- < u,y >I (z, u) EDU}, 

where DU= {(x,u) E X 0 x R+ I Vs L(z,u) = V/(z) + E~1 u;Vg;(z) = O}";* 

(iv) the optimal value functions for the minimax problem (w( ·)) and for the Wolfe's dual 

(wd(·)), as 
I 

• When discussing Woire's dual or any other concept UBing (DU), we will be asswning 

J /(-) and g(•) continuously differentiable on the open set x•. 
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(a) w: Y-+ RU {+00,-00} by w(y) = sup{F(u)- < u,y >I u EU}; 

(b) wd:Y-+RU{+oo,-oo} by wd(y)=s~p{L(z,u)-<u,y>l(z,u)EDU}. ■ 

It is interesting to note that at this point we can present a strong structural result for 

the optimal value functions for the two dual problems here analysed: 

Fact 2.4) If the dual problem is feasible and bounded, then its 'optimal value function is 

convex and lower semicontinuous. 

Proof: These a.re clMsical results on convex functions and on l.s.c. functions (see for 

instance C.1.6 and 4.1.13 in Ma.ngasarian (5)). ■ 

The condition of bounded dual is applied for each ii E Y, i.e., optimal value of the 

, dual of (MP,) ,f +oo. For the minimax dual, it will be shown that as a weak duality 

theorem holds then the dual is bounded for every r, E Y. Otherwise, we could state the 

result using domain of finiteness, which is convex. .From now on we will assume that the 

dual function is bounded by above in Y. 

Fact 2.5) H the dual problem has a solution for y = ii, then its optimal value function is 

subdifferentiable at ii and a subgra.dient is obtainable from the dual optimal solution. 

Proof: Specific proofs will be presented for each of the two dual problems in their corre-

sponding sections. ■ 

This result becomes much more interesting if compled with the following definition: 

Definition 2.6) It is said that there is no duality gap for (MP) and its dual (Wolfe's or 

roiuiroax) if for every ii E Y, there is no duality gap at ii, i.e., the optimal values of (MP;) 

and its corresponding dual are equal. 
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This definition is not the classical one, that would correspond to no duality gap at 

ii= 0. It is our contention, that such a cardinal result (in the sense that it is based upon 

a: particular value of the RBS) is not the best approach to obtain structural results, that 

should depend upon assumptions just on X 0
, J( •) and g( • ), except for some "frontier 

conditions", like ii belongs or not to the interior of Y. 

This "non-cardinal" definition of "no duality gap" leads to a trivial, but interesting 

fact: 

Fact 2. 7) H there is no duality gap for (MP) and some of its Lagrangean dual problems 

(minimax or Wolfe's), then the perturbation function is convex and lower semicontinous, 

assuming that there is ii such that v(y) E R. 

Proof: It follows directly from the definitions and (2.4). • 
This result may be the key for understanding the reason for convexity assumptions 

on Lagrangean duality theory and the related topic of optimality conditions, classically 

atributed to Kuhn and Tucker. · 

In order to conclude this section, let us present the following definitions: 

Definition 2.8) The pair {z, ii) E X 0 x R"' obbeys the sadlle point optimality conditions 

for (MP), if and only if: 

(i) L(z,u) = min{L(z,ii) I% Ex•}; 

(ii) ii~ O; 

(iii) g(x) ~ y; 

(iv) < u,g(z) - y >= O. • 
Definition 2.9) The pair {z, ii) E X 0 x Rm ohbeys the stationary point optimality 

conditions for (MP), if and only if: 
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(i) (x,u) EDU~ {(z,u) E X 0 X R+' I VzL{z,u) = O}; 

(ii) g(x) ~ y; 

(iii) < u, g(z) - 11 >= o. 

3. Minimax duality and saddle point optimality conditi?ns. 

■ 

The definition of the minimax dual is such that a weak duality theorem is automati­

cally valid: 

Fact 3.1) . (Weak duality theorem.) If z is feasible in (MP,) and u is feasible in 

(D,), then the objective function of the minimization problem evaluated at i" is not less 

than the dual objective function evaluated at u. 

, Proof: It follows directly from 

F(u)- < u, 11 >~ f(x)+ ·< u,g(z) -11 >~ J(z). ■ 

This result is basic for the following verification: 

Fact 3.2) (i", u) obbeys the saddle point optimality condition for (MP), if and only if 

(i) z solves (MP,), 

(ii) u solves (Dy), 

(iii) w(y) = v(y). 

Proof: Using the weak duality theorem it is a simple matter of identifying primal feasi­

bility, dual feasibility and complementary slackness. ■ 

This result leads naturally to the question of existence for solutions for (Dy). In order 

to characterize this existence it suffices to state: 
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Fact 3.3) The dual problem (Dy) has a i1olution at y = i if and only if w(·) is 

subdifferentiable at y = y. Moreover, u is a solution of (Di) if and only if (-u) is a 

subgradient of w(·) at y = y. 

Proof: Obviously, it suffices to prove the last statement. 

(a) u solves Dy=> (-ii) is a subgradient 0£ w(•) at 11 = fi. 

w(y) = sup!:?0{inf.,ex• /(:i:)+ < u,g(:i:)-y >} ~ (definition of w(•)) 

~ inf.,ex• {/(x)+ < u,g(x)- y >} = (u solves Dy=> u EU) 

= w(y)+ < -u, y - y > ( w(y) = inf .,ex• {/(x)+ < u, g(x) - y >} ). 

(b) ( -ii) is a subgradient of w( ·) at y => ii solves Dy. 

As (z E X 0 => g(x) E Y) and w(•) is subdifferentiable at y, 

w(g(z)) ~ w(i)+ < -ii,g(z) -'fi >, 

(as w(•) is non-increasing). 

Analogously, Vz E X 0
, 

/(z) ~ v(g(z)); 

and by the weak duality theorem: 

v(g(x)) ~ w(g(z)). 

From (bl), (b3), (b4), it follows that 

then 

inf {(J(:i:)+ < u,g(:i:) - i >} ~ w(y). 
sex• -

Using the facts (b5) and (b2), we can conclude that u EU, 80 

w(y) ~ inf{/(:i:)+ < ii,g(:i:)-i >I z E X 0
}. 
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From (b2), (b5) and (b6), the result follows. ■ 

It is interesting to note that w( •) is convex, so the subdifferentiability is guaranteed 

in the interior of Y (it was already indicated Y ¢ 0) (the proof of this result is classical). 

A stronger result is obtained assuming subdift'erentiability of the perturbation function 

v(•): 

Fact 3.4) The dual problem (Dy) has a solution at JI= ii and there is no duality gap at 

this point if and only if v( ·) is subdifferentiable at Ji. 

Proof: 

(a) ii solves (Dy) and w(y) = v(y) => v(·) is subdifferentiable at JI= y. 

We can assert that Vy E Y 

11(11)?, w(y), 

?, w(Y)+ < -u,y-y >, 

?, 11(Y)+ < -ii,y-y >, 

by the weak duality theorem 

by (3.3) 

as 11(Y) = w(y). 

{ 

u solves (DV) 
(b) -ii is a subgradient of 11( ·) at y = y => 

w(y) = 11(y) 

In a way completely analogous to (3.3)b, we obtain: 

ii EU and F(u)?, 11(y)+ < ii,y >. 

So 

w(y) !: F(ii)- < ii, y >?, 11(y) ~ w(y), 

where the last inequality is derived from the weak duality theorem. 

Clearly, these last inequalities imply 

w(y) = F(ii)- < ii, ii >= 11(j). 
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One important corollary of this result is that 

Fact 3.5) H v(·) is convex then fhere is no duality gap in the interior of the feasible 

perturbation set. 

Proof: It follows from the subdifferentiability of a convex function in an open set-and 

that for y E oY, Ve> O, (y+el) E Y, so Ve> 0, 

v(ri) ~ v(y +el)~ v(y)+ < -u,ri +t:1-i > 

=}v(y) ~ supv(y)- < u,y -y > +t: < -u,l >= v(y)+ < -u,y -y >, 
e>O 

where the last inequality follows from ii~ 0 (where u is the subgradient of v(•) at 

u e Y). ■ 

With these results we can state: 

Fact 3.6) There is no duality gap if and only if v( •) is convex and lower semicontinuous. 

Proof: The only if part is a repetition of fact 2. 7. So we just have to show that 

v(•) is convex and lower semicontinuous => V'IJ E Y, v(y) = w('IJ). 

For 1/ E Y, the result follows from (3.5). 

For Ji E 8Y, we consider y,. = (0 + ¼l) E Y, and we have: 

w(O) ~ limn-ooinf w(y"), as Jin ~ fJ and so w(yn) ~ w(ti), 

So 

= lim,._,.,in! v(y"), UBing (3.5) as r," E Y, 

~ v(y), 

~ w(y), 

as v( ·) is lowt:r semicontinuous in Y. 

by the weak duality theorem. 

w(fi) = v(fi), what concludes the proof. 

This result, coupled with (3.2), allow us to state 
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Fact 3.7) The saddle point optimality conditions are necessary for all y E Y if and only 

if v( ·) is convex and subdifferentiable. 

Proof: The result is trivial from the previous facts, except that it must be shown that a 

subdifferentiable funcion in a set is lower semicontinuous in this set and this is trivial. ■ 

The interest of these results is that we do not only show in an easy manner the only 

if part of (3.7), but also that is quite clear that there is a pad due to "no duality gap" 

(3.6) and a part due to the existence of a dual solution (3.3). We also note that Geoffrion 

[2] proved a similar result to (3.6), under the assumption that v(•) is convex and, in this 

note, we show that convexity is intimately tied with the absence of a duality gap, in the 

extended sense of (2.6), i.e., for all feasible perturbations (RHS's). 

4. Wolfe's duality and stationary point conditions 

The definition of the dual due to Wolfe, does not imply automatically the validity of a 

weak duality theorem. In order to have this result, we must introduce some assumptions, 

like convt>-Xity of all functions (/(·) and g(•)). This comment implies that for Wolfe's 

dual we can state a somehow weaker version of (3.2): 

• 
Fact 4.1) If there holds a weak duality theorem for MP, and WD,, then: 

{ 

(i) i" solves (MP,); 

(i", u) obbeys the stationary point conditions for (MP,) <=> (ii) ('i, u) solves (WD,); 

(iii) wd(y) = v(y) 

Proof: Ommited, as it is identical to the one of (3.2). ■ 

It must be noted that the assumption of the validity of a weak duality theorem implies 



• 

• 
that dual feasibility ((z, u) E DU) is a. quite strong property, i.e., 

Fact 4.2) 1£ there holds a weak duality theorem, then 

{ 

(i) z solves (M P,(i)); 

(z, u) EDU* (ii) (z, u) solves (WD,ct)); 

(iii) wd(g(z)) = v(g(z)) = /(i). 

Proo£: Ommited, as it is a trivial corollary of (4.1). 

It is interesting to note that if a weak duality theorem holds, then 

{((xi,u1),(~2,u2)) EDU x DU and g(x1 ) = g(x2)}::} {/(x1 ) = /(x2)}. 

■ 

Altho"ugh it is quite tempting to state that if for every dual feasible point (.i,u), 

(i, u) solves (W D)g(i), i solves (M P,ct)) and w(g(i)) = v(g(i)} then a weak duality 

theorem holds, this is not the case as it can be seen taking X 0 = (-1,0)U (0,1), g(x) = 

z,.J(z)=(l-x), for zE(-1,0) and /(z)=:r:2 , for zE(0,1). 

Unfortunately we do not have, for Wolfe's dual, a clear cut characterization of existen<.'.e 

of optimal solutions of the dual· as we had in (3.3). We can assert the somehow modest 

results: 

Fact 4.3) H (x,u) solves (WD,) then (-u) is a subgradient of wd(·) at 71 = y. 
* ... 

Proof: As (z, u) E DU and wd(y) = L(z, u)- < u, j >, 

L(x, u)- < u, 11 >= wd(y)- < u, 11 - y >~ wd(y ). 

Fact 4.4) I£ (-ii) is a subgradient of wd( ·) at 1J = y, 

if there exists 'z E X 0 such that (z, ii) E DU and 

if there holds a weak duality theorem, 

then (z,u) •solves (WD,). 

11 
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Note: As wd(·) is non-increasing, i.e., y1 ~ r?:::} wd{s,1) ~ wd(rP)), any subgraclient 

of wd(·) has no positive components. 

Proof: As_ ( -u) is a subgraclient of wd( ·) at JI = j,i, 

wd(g(x)) ~ wd(V)- < u,g(x) -y >. 

As (x,ii) EDU, by (4.2) and (4.3) . 

wd(y) ~ wd(g(x))- < ii, y - g(x) >= f(x)+ < ii, g(x) > - < ii, y >. 

So wd(y) = f(x)+ < ii,g(x) -V >. ■ 

The statement "correspondent" to ( 3.3) that says "if wd( ·) is subdifferentiable at 

y = y then (W D,) has a solution~• is false as it can be seen setting X 0 = (0, 1), /(x) = 
-x3 and g( x) = x. This is also an example of the non automatic validity of a weak 

duality theorem. 

Similar modifications can be applied to (3.4) leading to: 

Fact 4.5) If there holds a weak duality theorem and (x, ii) solves (W D,) and there is 

no duality gap at y = y then (-u) is a subgradient of 11(·) at 11 = y. 

Proof: Omitted, as it is a simple variation of (3.4.a). ■ 

• 
Fact 4.6} If there holds a. weak duality theorem, if (-ii) is subgradient of 11( •) at y = y 

and there exists x e X 0 sucli that (z, ii) E DU then (x, ii) solves (W D,) and 

v(y) = wd(y). 

Proof: Omitted, as it is a simple variation of (3.4.b). ■ 

It is important to note that a result similar to (3.5) is not valid. This can be shown 

using X 0 = (0, 1), f(x) =·-x and g(x) = x at j,i = 2, for instance. This is a case of 
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Y convex, v( •) and wd( ·) convex, wd( ·) -& v( ·) where the subgradient of wd( ·) at 

'fi = 2 is (-1), the subgradient of v(•) at ii= 2 is 0, DU= {(z, 1) I z E (0, 1)} and 

for all (z, u) EDU, L(z, u) = 0. Clearly this is also an example that (3.6) does not hold 

for Wolfe's dual. 

The interesting point is that although we can not formulate an equivalent result for 

(3. 7), we can derive a quite trivial condition for the stationary point conditions being 

sufficient. It is important to remember that these conditiona are necessary under some 

regularity conditions (see, for instance, Mangasarian [51), like all the binding constraints 

at the point of minimium being pseudo concave. 

Fact 4. 7) Let 

y• = {y E Y I MP, has a solution and for at least one of the solutions of (MP,) 

the stationary point conditions are necessary}, 

then the stationary point conditions are sufficient for I/' E y•, if and only if for every 

11 E Y•, the stationary points are /(-) unique, i.e., {(z,u) and (z,u) obbey the 

stationary point conditions :::} f(z) = f(i)}. 

Proof: Ommitted, as it is trivial. ■ 

Corollary 4.8) H g: X 0 -+ Ir" is pseudo-concave, then for every (MP,) that has an 

optimal solution, the stationary point conditions are BUfficient if and only if the stationary 

points are /(·) unique. 

Proof: Trivial from ( 4. 7). ■ 

One interesting point of this result is the verification that the sufficiency of the sta­

tionary point conditions have no obligatoly connection with Wolfe's duality, in the sense 

13 



that the example /(x) = -x3, g(x) = x, X 0 = (0, 1) hM duality gaps, there is no weak . 

duality, but for Y- = {y E YI y < 1} the station~y point conditions are sufficient. Sim­

ilar results may be obtained under monotonicity assumptions, but the main value of { 4. 7) 

is to state a clear and easy condition for the sufficiency of the stationary point conditions, 

with no ties even to a weak duality theorem, as it happens in the majority of the published 

results. 

S. Conclusion 

These results, whose formulation and demonstrations are quite simple, try to shed 

some light on the role of convexity in Lagrangian duality and to explore the consequent 

limitations and/or power of this tool. For instance, the result that shows that for the 

minimax duality a necessary and sufficient condition for no duality gap is convexity and 

lower semicontinuity reinforces the restriction of the scope in which classical Bender's 

decomposition is valid. The discussion on Wolfe's dual enforces the fact that, unlike 

minimax duality and saddle point conditions, there are no relations between Wolfe's dual 

and stationary point conditions unless a weak duality theorem holds. The specific role of 

sub~fferentiability of the optimal value functions ( v( • ), w( •) and wd( •)) is also presented, 

trying to separate different results that may lead to strong duality theorems. 

An interesting avenue of research is the specification of conditions where a reverse 

duality theorem holds for Wolfe's dual. All the known results use the fact that under some 

assumptions if (z, u) solves (DW) then the stationary point conditions are obbeyed and 

verifying /(·) uniqueness, the point z solves (MP). It appears that a line similar to the 

one presented here may lead to interesting formulations. 
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