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1. Introdugao

1.1. Dada uma equacdo integral do tipo (IK), linear,
L
(K) 2(t) = 20+ [ dK(t)T(s) = £t) (fl@)=0). a<t<h

(v. (1]), com z, f € G([a, b], X), sendo o espago das fungdes regradas de [a. b] a valores
no espaco de Banach .Y, temos associado a ela, sob certas condigdes, um operador-

solugao
R(t,s) € L(X) (t=5)

onde vale

2(t) = £(1) - Rt 0)f(@) — 20) - [ d,R(t.)S(5).

Para deixar claras algumas condigoes, as vezes notamos o valor da solugdo z gerada
por f, em t, com condigao inicial o ne instante to por z,(¢; o, Zo).
No que segue, usaremos livremente as notagdes e resultados de [1] e [2].

1.2. O problema. Scjam os nimeros reais
(*) a<ty<tg+ws<ti<ti+ws<sb e Ae|0uw].

O problema que nos propomos ¢ ¢ seguinte:

E possivel em (K) repetir um pedago de solugao de comprimento
(P) w? Isto é: é possivel ter solugao r em (K) tal que z(to+A) = z(t, +A),
para todo A € [0, w]?

No que segue, encaminhamos o problema

381



2. Repetigio de pedagos de solugdes em (K)
Consideremos o sistema (IX) e a restrigdo linear em suas solugoes, Fi[z], (A € [0, w]),
(F) Rz]l=z(te+ ) -zt +A) =0

onde {p, t; e w satisfazem (*). Dizemos que a solugéo z; satisfaz (K') + (F)) se z; é
solugio de (K) e vale Fy[zs] = 0.

A classe das z; que satisfazem (K’) + (F)) pode ser caracterizada pelo teorema:

Teorema 2.1 Seja f € G([a,b], X). Defina para cada A, ¢}, como

&=~ [ &R, (0)f(0)

onde R} , (0) = Rlto + A+,0) — R(t) + A+,0). S (a.b) e A € [0,w] com o, %) e w
satisfazendo (*).

A fungdo f que gera a solugao z; em (K) satisfaz (K') + (F)) se e s6 se
—cj € Ry, (@) - X,

Ainda mais, se —c} = R}, , (a) - Z,, entéo

rs(t) = z,(t; 0. 24)

Demonstragao: Scgundo [1; Th. 2.5] temos

b
z(to + ) =2ty + 2) = [ -dsalo)z(0)
onde

2.1) u(a)={’ seto+A<oSti+A
0 caso contrario

Agora, [2; Lemma 4.3 e 4.2] d4 o resto do teorema fazendo no Lemma 4.2, to = a.

3. Sobre o problema (P)

Pela aplicagio do Teorema 2.1 podemos concluir de imediato:

Teorema 3.1. Existe solucdo para o problema (P) da secgio 1, se existe
f € G([a,b]..X) com
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para todo A € [0, w].
Teorema 3.2. Sejama <7<t e Xz C X, com

Xg={fO)+R({I.a) -z~ /:-d,R(f, a)f(s); f€G(e,b,X)eze X}

Entdo existe solugdo para o problema (P) se existe f com
- 1+ A )
[R(to + A+,%) — R(t, + A+, )] f (1) + ‘[' -d,,Ri\u‘“ (0)f(o) € 'Rfo'h(t') - X

para todo A € [0, w]
Escolhendo novos instantes iniciais em () podemos obter uma condigao necessaria
para f realizar (P): f tem que ser idéntica nos intervalos [to. 2o + w] e [t;, # + w).
De fato:seja em (IX) o instante inicial @ = tg + A e definamos agora em Fy[z], A €
[0, w].

0 se s=tg+2A
Q,\(S)= I se tp+A<s<t+A
0 se s>t +2

Podemos demonstrar:

Teorema 3.3. Dada a equacgio (I{), se para todo A € [0, w], R(to + A+, to+A) =
R(to+ A, to+A) e R(ty + A+, Lo+ A) = R(t, + A, {5+ A), entdo dada f forcando em
(K) uma solugao com xz;(2, + A; g+ A, Zg) = o, vale

flto+ A) = f(ti+ A)

Demonstragao: Dec acordo com os Lemas 4.2 e 4.3 de [2]. (agora com 2 14, sendo o
to + A), temos
(3.2)
—c} =flto+A) = Rti+ M. to+A)f(to+A) = /::A dyR(t; + A, 0)f (o) )
=1z — R(t) + A+, to+ ANz
Por outro lado
To =x{ti+ A ta+ A Z)=f(tLi+A)— R+ A o+ A)f(to + )+
+R(t + ), 1o+ N)z0 ~ [ " ’:‘ d, Rt + A 0) (o)

to+

(3.3)

Finalmente substituindo (3.3) em (3.2), vemos que

fllo+A)=f(ty+ A)

Aplicaremos estes resultados futuramente em sisternas EDF e EDP.

383



Bibliografia

1. C.S. Honig, Volterra - Stieltjes Integral Equations, Math. Studies 16, N-Holland
Pub. Comp, 1975.

2. C.S. Honig, The adjoint equation of a linear V-S integral equation with a linear
constraint, LNM 957, Springer. 1982.

Departamento de Matematica e Estatistica
Universidade de Sao Paulo

C.P. 66281 - CEP 05389-970

Sao Paulo, Brasil

384



