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ABSTRACT

Recent cosmological analyses rely on the ability to accurately sample from high-dimensional posterior distributions. A variety
of algorithms have been applied in the field, but justification of the particular sampler choice and settings is often lacking.
Here, we investigate three such samplers to motivate and validate the algorithm and settings used for the Dark Energy Survey
(DES) analyses of the first 3 yr (Y3) of data from combined measurements of weak lensing and galaxy clustering. We employ
the full DES Year 1 likelihood alongside a much faster approximate likelihood, which enables us to assess the outcomes from
each sampler choice and demonstrate the robustness of our full results. We find that the ellipsoidal nested sampling algorithm
MULTINEST reports inconsistent estimates of the Bayesian evidence and somewhat narrower parameter credible intervals than the
sliced nested sampling implemented in porvcHorRD. We compare the findings from MULTINEST and pPoLYCHORD with parameter
inference from the Metropolis—Hastings algorithm, finding good agreement. We determine that poLycHORD provides a good
balance of speed and robustness for posterior and evidence estimation, and recommend different settings for testing purposes
and final chains for analyses with DES Y3 data. Our methodology can readily be reproduced to obtain suitable sampler settings
for future surveys.

Key words: methods: statistical —cosmological parameters —cosmology: observations —large-scale structure of the Universe.

of the high dimensionality and complex shapes of the distributions.

1 INTRODUCTION . . . .
Nuisance parameters (accounting for various calibration and sys-

The sampling of a posterior distribution is one of the central elements
in current cosmological analyses. With the increasing complexity of
cosmological surveys and the large amount of data available, it is a
complicated challenge to extract cosmological parameters' because

* E-mail: pablo.lemos.18 @ucl.ac.uk (PL); nweaverd @umich.edu (NW)

'In this work, we use the term parameters to refer to the parameters
characterizing a model, both nuisance and cosmological, for which we
want to generate samples. We use the term hyperparameters to refer to the
parameters specific to sampler settings, which affect their performance, such
as the number of samples we want to obtain, the stopping criteria, etc. This
terminology is common in the machine learning literature. Note that the

tematic effects) complicate the analysis by increasing the number of
parameters well beyond the six of the standard (A cold dark matter)
ACDM model of cosmology.

Bayesian techniques give a principled framework for probabilistic
inference, for instance characterizing information about complex,
usually non-Gaussian, posterior distributions for which the mean
and standard deviation alone are insufficient to fully describe the

term hyperparameters can refer to different concepts, even in the field of
cosmology (Lahav et al. 2000; Hobson, Bridle & Lahav 2002; Luis Bernal &
Peacock 2018).
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shape of the distribution. Markov Chain Monte Carlo (MCMC)
methods have traditionally been used for this purpose (Metropolis
et al. 1953; Neal 1997), and have a long history of applications
in cosmology (e.g. Christensen et al. 2001; Knox, Christensen &
Skordis 2001; Lewis & Bridle 2002; Verde et al. 2003; Tegmark
et al. 2004; Dunkley et al. 2005; Shaw, Bridges & Hobson 2007).
However, for some applications (such as model comparison and the
comparison of different data sets) it is necessary to calculate not only
the shape of the posterior distribution but also the Bayesian evidence.
Nested Sampling (Skilling 2006) is the method most commonly used
for this purpose, because of its speed and its ability to obtain both
the Bayesian evidence and the posterior distribution in the same
calculation.

Because of their wide applicability, many tools have been devel-
oped to implement these sampling algorithms given a user-defined
likelihood, and the choice to use one over another may be more driven
by accessibility and ease of implementation than rigorous testing for
the specific analysis at hand.

As the constraining power of cosmological data sets has grown,
different analyses have begun to diverge in their inferred parameter
posteriors. Perhaps most famous is the discrepancy in the measure-
ments of Hy by the Planck Collaboration (2020) versus that obtained
via distance ladder measurements (Riess et al. 2022), but there exists
also tension between measurements of Sy = o5(2,m/0.3)*° from
large-scale structure probes and that inferred by Planck under ACDM
(see Di Valentino et al. 2021a, b; Shah, Lemos & Lahav 2021, for
reviews on these tensions). As these discrepancies could be indicators
of new physics, it is vital that the inferences upon which they are
based are robust to analysis choices such as the specific sampler and
settings used.

Most samplers include hyperparameters that allow one to tune the
algorithm and, in the limit of infinite computing time and resources,
allow one to obtain arbitrarily precise constraints. In practice, we
require a balance of speed and accuracy, where it is feasible to run
a large number of chains but the error introduced by the sampler
is a negligible (or at least quantifiable) contribution to the analysis’
error budget. This is particularly true for the Dark Energy Survey
(DES, The Dark Energy Survey Collaboration 2005) combined weak
lensing and galaxy clustering cosmology analysis (henceforth, 3 x
2 pt), where the complexity of the data and analysis pipeline results
in the need to run a large number of chains for validation purposes.

In this work, we perform a careful investigation of several lead-
ing sampling algorithms available within the CosmoSIS analysis
framework. We focus on poLycHORD and MULTINEST because of their
ability to estimate the Bayesian evidence, and calculation of model
comparison and data set tension statistics are of particular interest
for the DES Y3 analysis. We investigate how hyperparameters
impact performance and focus particularly on avoiding biases in
the parameter constraints and evidence, which could lead to mistaken
interpretation of the core analysis results. We make recommendations
for the sampler and settings for three different use cases of the DES
Y3 data, which strike different balances of speed and accuracy.

There have been previous attempts at characterizing sampler
performance. For example, Allison & Dunkley (2014) compared
MCMC and Nested Sampling methods, and Higson et al. (2019)
developed diagnostic methods to assess errors from Nested Sampling
chains, including the use of bootstrapping individual chain samples to
assess uncertainty. We use some of these tools, but assess uncertainty
using full independent chain realizations run over a wide range of
parameter settings, and using high-resolution chains as benchmarks.
We combine tests on the first year of DES data (DES Y1) and on the
results of a fast, approximate version of the likelihood that allows
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us to generate a large number of sampling runs under the same
hyperparameter settings.

The paper is structured as follows: In Section 2, we introduce the
methodology and notation of Bayesian parameter estimation, as well
as the summary statistics that we will use throughout this work. In
Section 3, we present the methodology and data used in this work.
Our results are shown in Section 4, and we present our conclusions
in Section 5. All the data produced from this work are available upon
request.

2 SAMPLERS

This section describes the formalism of parameter estimation in
a Bayesian framework, as well as the three different sampling
algorithms employed in this work. Detailed descriptions of the
formalism can be found for example in MacKay (2002) and Sivia &
Skilling (2006).

2.1 The Bayesian framework

In parameter estimation we have obtained some data D; we have
assumed a theoretical model M, and we seek an estimate of the
parameters 6 of the model. This is accomplished by applying Bayes’
theorem

P(D|§, M) x P(O|M)

P@O|D, M) = . 1
®l ) P(D|M) @
The quantities in this equation are usually labelled as
Lx1II
P = : 2
Z @

where P is the posterior, £ the likelihood, IT the prior, and Z
the marginal likelihood or Bayesian evidence. The latter can be
expressed as

Z:/Exl‘[d@. A3)

This is typically a complicated and high-dimensional integral.
Because Z acts as a normalizing factor that does not depend on the
parameters, it often plays no role for parameter estimation. There
are, however, other applications where the Bayesian evidence is
fundamental; one such case is Bayesian model comparison. Here,
we have two competing theoretical models M4 and My and we want
to know which of these models is preferred given some measured
data D. For this we calculate the ratio

P(Ms|D) _ P(DIMa) = P(Ma)
P(My|D)  P(D|Mp) =~ P(Mp)’

“

where the equality follows from Bayes’ theorem. The second factor
on the right-hand side is the ratio of the prior beliefs in the two
models. If there is no prior reason to prefer one model over the
other, then this term is unity and hence disappears. The first factor
on the right-hand side is the ratio of the Bayesian pieces of evidence
for the two models. Therefore, under the assumption of equal prior
beliefs in the two models, we can find which model is preferred by
the data by calculating the ratio

==, (&)
This quantity is called the Bayes factor. Bayesian pieces of evidence

are also used to quantify tension between different data sets
(Marshall, Rajguru & Slosar 2006).
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In addition to the Bayesian evidence of equation (3), we will
compute two more summary statistics from our chains, which
contain important information about our problem. The first one is the
Kullback-Leibler divergence (Kullback & Leibler 1951), given by
DkL = /P(G)log 26 de. (6)

7(0)

The Kullback-Leibler divergence measures the information gain
when going from the prior to the posterior distribution, measured
in natural bits, or nats. The Kullback-Leibler divergence can be
used amongst other things to calculate the information between two
data sets, which in turn can be used to calculate the Suspiciousness
(Handley & Lemos 2019b), and quantify the concordance between
the data sets in a way that does not depend on prior volumes.

Our last summary statistic is the Bayesian Model Dimensional-
ity (henceforth BMD), which provides an estimate of how many
Gaussian dimensions are constrained by our data:

PO 2
d= 2/7?(9) (m% - DKL) ds. (7

Handley & Lemos (2019a) discuss the advantages of characterizing
dimensionality via the BMD as opposed to other commonly used
measures like the Bayesian Model Complexity (Spiegelhalter et al.
2002), such as not relying on a single-point estimator. Another
advantage of the BMD is that it can be computed directly from
both nested sampling and MCMC chains as

a
5= ((og £)*)., — (log L)%, 8)

where (-)p indicates an average over the posterior distribution.

2.2 Metropolis—Hastings

MCMC is one of the most widely used methods for sampling
probability distributions. It consists of using chains in which each
element depends only on the previous one, known as Markov Chains,
to obtain samples from the target distribution. The Metropolis—
Hastings algorithm (Hastings 1970) (denoted MH in the following)
is a common MCMC method, widely used in various fields such as
statistical mechanics or as here, Bayesian inference. Here, we use
MH in order to generate samples from the posterior distribution of
the cosmological and nuisance parameters. Next, we describe the
fundamental aspects of MCMC algorithms in general, and MH in
particular, as well as details of its implementation within this work.

Note that we include the MH sampler primarily as a benchmark
against which we can compare the parameter estimation results of
the nested samplers that are the main focus of this work. We have
not made a significant effort to optimize the MH sampler’s speed and
performance, so a fair assessment of its computational cost compared
to PoLYCHORD and MULTINEST is beyond the scope of this paper.

2.2.1 The Metropolis—Hastings algorithm

The goal of MCMC algorithms is to return samples from a distri-
bution that converges towards a unique stationary distribution 7 (6)
(where 6 are the cosmological and nuisance parameters) of the target
distribution, in this case the posterior P(0). Given the transition
matrix p; of a Markov chain, which corresponds to the probability
of moving from state i at time ¢ to state j at time # 4 1, we thus have

T =Zpij7fi~ 9)
J
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We now need to construct such a transition matrix.
The MH algorithm proposed in Hastings (1970) does so by
requiring p;; and 7 to satisfy the so-called detailed balance

i pij = jPji- (10)
In MH, the transition matrix is then defined as

Dij = qij%j, (11)
where ¢;; is the proposal distribution (corresponding to a proposed

‘jump’ in parameter space) and «; the acceptance distribution
(corresponding to accepting this ‘jump’ or not), defined as

a;; = min (1,M>. (12)
Pidij

If a chain of samples is selected using this algorithm for a large
number of steps, the density of their resulting distribution will follow
the target distribution, i.e. the posterior P(6).

Depending on the initial point in parameter space and the provided
proposal, some samples drawn at the beginning of this process
should be discarded as they are not representative of the posterior
distribution. This period is called burn-in, where the accepted points
may be far from the peak of the posterior, and can be minimized if
starting at a point in parameter space closer to the best-fitting value
(see Hogg & Foreman-Mackey 2018 for a discussion on choices to
limit the burn-in period). It can be explored by plotting the posterior
or parameter values as a function of step number (or overplotting
these values from chains that started at different points), where the
burn-in corresponds to samples before these values converge around
the typical set.

One potential way of speeding up MH algorithms often used in
cosmology is to take advantage of the fact that some parameters,
known as ‘fast’, do not affect the slowest parts of the likelihood
calculation, which in the case of cosmology often involve the
transfer function or line-of-sight integration. These parameters can
be decorrelated and sampled separately, making sampling nearly as
fast as it would for the ‘slow’ parameters alone (Lewis 2013). When
fast and slow parameters cannot be fully decorrelated in principle,
they can be sampled using ‘dragging’ (Neal 2005), which consists
of ‘dragging’ the fast parameters while keeping the slow ones fixed,
leading to fast likelihood evaluations. Both of these methods are
implemented in the COBAYA package (Torrado & Lewis 2021).

One of the difficulties of using MCMC algorithms such as MH
is the lack of definitive criteria ensuring the chain has converged
towards the target distribution. Several criteria for testing the conver-
gence have been proposed (An, Brooks & Gelman 1998; Sinharay
2003). It is also useful to study the autocorrelation of the MH chains
to verify that the samples are independent on scales much smaller
than the chain length. In the following text, we will mainly use
the Gelman—Rubin diagnostic which is derived from the method
proposed in Gelman & Rubin (1992) to monitor the convergence of
MH chains. This diagnostic works by comparing parameter estimates
from a number of independent chains. Specifically, adopting the
standard notation, it estimates the potential scale reduction factor R
for a given parameter 0, defined as

R=—, (13)

SIES

where V is the estimator of the variance of the parameter and W
is the average of the variance of 6 within a chain (in the above
expression, the impact of degrees of freedom defined in Gelman
& Rubin 1992 is neglected). R ~ 1 implies that the distribution of
the sampled parameter is close to stationary; while this does not
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guarantee that the chain has converged, it is a good indication of
convergence for unimodal posteriors when R is nearing 1 for all
parameters. A typical convergence criterion is to stop when R — 1 <
0.1. When considering M independent chains, the variance estimator
V is defined as

B, (14)

where N is the length of the chains and B/N is an estimate of the
variance of the parameter mean 6 across chains i.e.

I &
B/N = ﬁ’;(9[- —0). (15)

2.2.2 Implementation

For this study we use a simple version of the MH sampler imple-
mented within CosmoSIS. In the configuration used here the MH
sampler uses a fast—slow scheme in which each parameter subspace
uses a separate multivariate Gaussian proposal, with a one-third
chance of each proposed jump length being drawn instead from
an exponential distribution, to better explore parameter tails. We
oversampled the fast subspace by a factor of 5 and have nine fast
parameters. In typical use of this sampler, the proposal is initially
set to an estimate of parameter covariances, then tuned at the start
of the chain. During tuning, the estimated parameter covariances are
replaced with those computed from the points sampled in the chain
up to that point.

For this particular study we set the initial proposal using a param-
eter covariance extracted from a finished high-quality porycHORD
chain, and because that was expected to be close to the target
distribution, we did not tune the proposal. This choice was motivated
primarily by simplicity, in that it allowed us to use the MH sampler
without adjusting its hyperparameters. Variations of this setting could
have been used, namely using a more approximate initial proposal
estimate — for example, using only the diagonal part of the parameter
covariance — and then tuning the proposal. These choices would be
expected to produce the same posterior estimate, just over a longer
period of time.

Note that using the MH sampler requires sampling a scaled
version of the primordial power spectrum amplitude, 10°Ag. This is
because the relative size of the unscaled Ag values compared to other
parameters is small, which causes the proposal covariance matrix to
be ill-conditioned.

2.3 MultiNest

Multinest is an example of a nested sampling algorithm (Skilling
2006) which, in contrast to MCMC samplers like MH, can be used
to calculate the Bayesian evidence in addition to estimating the
posterior. Instead of selecting individual samples sequentially, nested
sampling starts with a large number of points (called ‘live’ points),
and then repeatedly selects the live point with the smallest value of
the posterior density, eliminates it (turning it into a ‘dead point’), and
then finds a new replacement live point with a posterior value larger
than that of the point that was eliminated. The collection of all points
(live and dead) can then be used to calculate the evidence while also
serving as a (weighted) sample of the posterior. The most difficult
part of Nested Sampling is finding new live points. It is extremely
inefficient simply to randomly generate points until one with a higher
posterior value is found (especially when most live points are close
to the maximum of the posterior and when the problem has high
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dimensionality). This is the challenge that specific algorithms like
MULTINEST are designed to address.

MULTINEST® is a publicly available code for Nested Sampling
(Feroz, Hobson & Bridges 2009; Feroz et al. 2019). It has been
extensively used for cosmology analyses, including that of the
first year (Y1) of DES data (Abbott et al. 2018). MULTINEST uses
a technique called ellipsoidal sampling (Mukherjee, Parkinson &
Liddle 2006b), where it calculates a D-dimensional ellipsoid from
current set of live points, and finds the next point within that ellipsoid,
expanded by a certain factor. MULTINEST also includes a clustering
algorithm to identify multiple peaks in the posterior distribution,
allowing it to sample multimodal posteriors. This was its main
improvement over the ellipsoidal nested sampling code cosMONEST
(Mukherjee et al. 2006a, b; Pahud et al. 2006; Parkinson, Mukherjee
& Liddle 2006). There are other examples of ellipsoidal Nested
Sampling algorithms, such as NEsTLE® and pynesTY* (Speagle 2020),
which uses dynamic sampling while still relying on ellipsoidal nested
sampling.

As described in Skilling (2006), the standard Nested Sampling
approach calculates the pieces of evidence using the accepted
samples, and using an approximation for the distribution of sampling
weights. In addition to this calculation, MULTINEST produces an
alternative calculation of the Bayesian evidence using Importance
Nested Sampling (henceforth INS). INS, first introduced in the
context of Nested Sampling in Cameron & Pettitt (2014), uses all
likelihood evaluations to estimate the evidence, instead of using
only the accepted points in the MULTINEST run (which in some cases
has acceptance rates as low as ~ 1 percent). In an ideal case, both
estimates of the evidence should agree. In this work, when we refer
to the MULTINEST evidence, we are referencing the ‘default’ evidence
calculation, and we will explicitly make reference to the INS evidence
when that is not the case.

While ellipsoidal nested sampling leads to fast sampling, it can also
lead to biases in both the posterior and the evidence estimation, as
discussed later in the paper. This is illustrated in Fig. 1: If the ellipsoid
is not expanded enough, the calculation of the evidence will ‘miss’
parts of the distribution. These issues are discussed using MULTINEST
as an example, but apply to any implementation of ellipsoidal nested
sampling.

2.4 PolyChord

An alternative code for Nested Sampling is poLycHorD (Handley,
Hobson & Lasenby 2015a, b).> The difference between this algorithm
and MultiNest is in the approach to generating new live points.
Instead of the ellipsoidal sampling, it uses so-called slice sampling
(Aitken & Akman 2013), where new live points are generated by
taking a random slice through the parameter space that includes the
current live point, and randomly generating new points until one
with higher likelihood is found. The process is then repeated with
the new point and a slice in a new random direction, for a user-
defined number of repetitions (72,¢peq:s) until the candidate live point
is sufficiently uncorrelated with the initial live point. In practice, the
sample covariance of existing points is used to decorrelate and whiten
the parameter space, such that slices are performed on an affine
transformation of parameter space where the relevant likelihood

2 https://github.com/farhanferoz/MultiNest
3http://kylebarbary.com/nestle/index.html
“https://dynesty.readthedocs.io/en/latest/

3 https://github.com/PolyChord/PolyChordLite
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— True Posterior

e MultiNest live points

"7} MultiNest ellipse

Figure 1. An example of murTINEST’s ellipsoidal sampling, and how it can lead to biases. When trying to sample a certain distribution (top left), MULTINEST
randomly generates some points (top right). It then uses the covariance matrix obtained from those points to calculate an ellipsoid enclosing all existing live
points (bottom left, dashed line). That ellipsoid is expanded in volume by a factor inversely proportional to the efficiency, and samples are drawn from that
ellipsoid (bottom right, dot—dashed line). As the latter plot shows in the light blue regions, if the magnification factor is not big enough (i.e. the efficiency is too

high), this can lead to a bias in the estimation of the evidence.

width is O(1) in each direction. This both simplifies and accelerates
the generation of new samples.

Like munTINEST, POLYCHORD has a clustering algorithm which
allows it to sample multimodal posterior distributions. In addition,
POLYCHORD is compatible with the fast—slow parameter implementa-
tion used by the code cosMOMC (Lewis & Bridle 2002; Lewis 2013),
which provides a significant increase in speed for cosmological
likelihoods. While it is slower than MULTINEST in obtaining pos-
terior distributions and Bayesian pieces of evidence for the models
studied here, we will show that it more reliably gives unbiased
results.

2.5 Other samplers

In this work, we focus on three sampling algorithms commonly used
in cosmology (Metropolis—Hastings, ellipsoidal nested sampling,
and slice nested sampling). One common sampler that we do not
implement is EMCEE, which is an affine-invariant MCMC sampler that
uses an ensemble of walkers to traverse the posterior and update the
proposal distribution before applying standard Metropolis—Hastings
acceptance criteria (Foreman-Mackey et al. 2013). We found that
in the large-dimensional parameter spaces tested here, the samples
generated by EvMceEE had high enough levels of correlation so as
to require intractable runtimes. Coupled with the inability to apply
convergence criteria like the Gelman—Rubin statistic to correlated
walkers and the large amount of samples that need to be discarded
as burn-in, we decided not to include it in this study.

There exist other algorithms that, while perhaps not yet as widely
used in cosmology, could become more common in the future.

MNRAS 521, 1184-1199 (2023)

Zeus® (Karamanis, Beutler & Peacock 2021) is an implementation
of ensemble slice sampling (Karamanis & Beutler 2021) for MCMC,
and has the advantage of not requiring tuning of any hyperparam-
eters, thus providing a promising alternative to traditional MCMC
algorithms. We provide a more detailed discussion of Zeus, and
compare it to EMCEE, MULTINEST, and POLYCHORD in Section A. Other
algorithms such as Hamiltonian Monte Carlo (Betancourt 2017) or
the No-U-Turn Sampler algorithm (Hoffman & Gelman 2014) have
existed for some time, but require accurate derivatives, which cannot
be accessed easily in current cosmological theory codes such as cams.

3 METHODOLOGY

The goal of this paper is to compare the performance of the
previously introduced methods for cosmological analysis. In cos-
mology, we usually perform inference with about six to eight
cosmological parameters, and a number of nuisance parameters
used to model systematic uncertainties. The nuisance parameters are
usually marginalized over for cosmological constraints, though they
may also be interesting in their own right (e.g. constraining galaxy
bias or the amplitude of intrinsic alignment of galaxies). Here, we
use the pipeline for the DES Year 1 3 x 2 pt analysis, which has
20 nuisance parameters. We assume a wCDM cosmological model,
which allows for a varying equation of state for dark energy. We
therefore constrain seven cosmological parameters: {Qy,, Qv, A, s,
A, w, Q\,hz}, giving a total of 27 parameters to be sampled.

®https://zeus-meme.readthedocs.io/en/latest/
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In practice, we use two different pipelines in our analysis. We
use the public DES Y1 3 x 2 pt likelihood implemented in the
cosmological parameter estimation code cosmosis (Zuntz et al.
2015), which includes all the samplers used in this work. In addition,
we also use a fast likelihood that employs several approximations to
reduce the evaluation time by a factor of ~50. Both of these pipelines
are described below.

3.1 Fast likelihood analysis

The sampling methods described in this work can be slow, and in
some cases we can only understand the effects of tuning different
hyperparameters by repeating the sampling a large number of times.
For that purpose, we generated a fast likelihood, which produces
posterior distributions that are similar to those of the DES Y1
pipeline, but uses multiple approximations to significantly reduce
the run time. The resulting likelihood is an approximation to the true
likelihood that allows for a large number of chains to be run and thus
for the variance of samplers to be characterized. It can be considered
a toy model that is substantially more applicable to our use case than
the analytic models (e.g. Gaussian mixture models) that are often
employed to characterize sampler behaviours.
The primary changes in the fast likelihood are:

(1) Using the fitting function presented in Eisenstein & Hu (1998)
for the transfer function when computing the linear matter power
spectrum;

(i1) Acceleration of the calculation of the Halofit non-linear
scale (Equation A4 in Takahashi et al. 2012) using a non-iterative
interpolation-based root-finding algorithm and trapezoidal integra-
tion;

(iii) Calculation of the lensing efficiencies and Limber angular
correlation functions (Equations IV.3-IV.6 in Abbott et al. 2018)
using a simplified trapezoidal integration scheme.

3.2 Application to DES Y1 data

We apply all the samplers described above to the DES 3 x 2 pt
analysis, running MULTINEST and POLYCHORD with a large number
of different hyperparameter settings. Because the bulk of the work
presented in this paper was performed while the analysis pipeline
for the recently released Y3 analysis (Abbott et al. 2022) was being
developed, these tests are run using the DES Y1 data (Abbott et al.
2018) and the Y1 version of the DES modelling pipeline. These
data consist of a combination of three two-point correlation function
measurements: cosmic shear, galaxy—galaxy lensing, and galaxy
clustering.

There are mainly two purposes to this paper: to find sampler
settings that yield unbiased results for the DES analysis while
minimizing the running time, and to generally understand the causes
of bias in the parameter estimation or evidence calculation. The
results presented in this work depend heavily on the dimensionality
of the likelihood, as well as the form of the likelihood, and so
cannot be generalized to all sampling problems. However, as most
cosmological sampling problems have similar dimensionality and
characteristics, these results should still be useful in guiding sampler
choices in future cosmological analyses.

4 RESULTS

In this work, we have explored different sampling settings, to
compare their performance and run time. Unless stated otherwise,
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Figure 2. Posterior distribution for a high-quality Nested Sampling run (red)
and a Metropolis—Hastings run (yellow) which uses a full proposal covariance.

all runs use the same likelihood, priors, and data, and are run using
the same computing platform (the Cori system at NERSC) and with
the same number of nodes.

4.1 Posterior validation with Metropolis—Hastings

MCMC methods are expected to produce more reliable posteriors
than Nested Sampling, because their convergence criterion is based
on the posterior, not on the Bayesian evidence (which is difficult
to estimate well from standard MCMC chains). Given this, before
looking in detail at the effects of hyperparameters, we compare
constraint contours from MH and porycHORD in order to benchmark
the accuracy of the nested sampling posterior estimates.

We run eight MH chains in parallel using four processors per
chains, spread across two nodes. We stopped the chainsonce R — 1 <
0.02 for all parameters (see Section 2.2 for a description of the
Gelman—Rubin statistic R), amounting to 762 000 samples. We burn
the first 20 per cent of the chains, as described in Section 2.2. Fig. 2
shows the posterior estimated with these two sets of chains on the
cosmological parameters w, 2, and og along with the posterior
estimated from a high-quality porycHORD chain.

We note that our MH run was slower than most nested sampling
runs, using around 4600 CPU-hours (6 d of walltime). Nested
sampling is known to scale better with dimensionality, so this
is on some level expected. However, we emphasize that this is
not necessarily a fair comparison because, as was discussed in
Section 2.2, our MH runs did not employ a number of speed-up
techniques which would likely be used in practice if MH were being
used as the main sampler in an analysis. This is fine for our purposes,
because as noted above we are using the MH chains to compare
posterior distributions, not runtime.

We interpret the good agreement observed in Fig. 2 between MH
and the high-quality porycHOrD chain as confirmation that with
good enough settings, Nested sampling can accurately sample the
posterior. We then explore what these settings need to be for both
MULTINEST and POLYCHORD.
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4.2 MULTINEST

MULTINEST has several hyperparameters that can be tuned. These
changes can increase accuracy in computing different quantities,
at the expense of computing time. Table 1 shows timing and
summary statistic results’ of running MuLTINEST chains with the
DES likelihood using a variety of different choices for the sampler’s
hyperparameters. We briefly describe these MULTINEST hyperparam-
eters (for more details see Feroz et al. 2009, 2019, henceforth FOS,
F13, respectively), and how they affect the sampler performance.

(1) nyive: the number of live points. This quantifies how many

points are used to sample the posterior and is proportional to the
expected final number of samples in the chain. For the full likelihood
we compare two different values: n;;,, = 250 and n;,, = 675. The
latter value is based on the fiducial choice of n;;,, = 25 % D, where
D is the number of parameters being sampled.
A higher number of live points increases the accuracy of the estimated
posterior distributions and Bayesian evidence; we find that increasing
nyve decreases the uncertainty in logZ by a factor /Any., and
increases run time linearly.

(i) ef ficiency: a MULTINEST-specific hyperparameter that con-
trols the size of the ellipsoids used by MULTINEST to search for new
live points. To find the next live point after every step, MULTINEST uses
the covariance of the existing live points to create an N-dimensional
ellipsoid, then expands the ellipsoid by a factor of 1/efficiency
before using it to find the next live point.® This procedure is illustrated
in Fig. 1.

As previously explained, this figure also shows a potential weakness
of muLTINEST: we see that the expanded ellipsoid, shown with
the dash—dotted orange line in the lower right-hand panel, is not
capturing part of the tails of the true posterior distribution, shown
in shaded blue. These regions will not be sampled, or considered
when calculating the Bayesian evidence. This missing-posterior-tail
bias will be more severe for higher values of efficiency, a finding
that is reflected in the results shown in Table 1, Fig. 3, and Fig. 4.
When the efficiency is too high, all the summary statistics calculated
in this work are systematically wrong. Even for efficiencies as low
as 1073, we find a lack of convergence in summary statistics and
disagreement with the best PoLyCHORD values.

This bias can be reproduced using a 27-dimensional Gaussian
posterior distribution, which has a known true evidence, as shown
in Fig. 5. Comparisons to this Gaussian toy model also show that
POLYCHORD gets more reliable evidence estimates, motivating us to
adopt the best porycHorD run on the DES likelihood as a benchmark
‘correct value’.

We also see in Table 1 that there is an approximately power-law
relation between runtime and efficiency. Therefore, it can become
extremely computationally expensive to achieve a low enough value
of efficiency to obtain unbiased evidence estimates with MULTINEST.
The importance of the efficiency hyperparameter for MULTINEST
presents another challenge in that there is no principled way of
knowing what value of the efficiency should be used, or if the value
used was low enough, without running the algorithm multiple times.

"Reported uncertainties are via bootstrap resampling as computed by the
ANESTHETIC software package Handley (2019).

8The efficiency is thus a rough estimate of the acceptance rate, the probability
that a point sampled from the expanded ellipsoid will have a higher likelihood
than the point needing replacement. However, the algorithm’s acceptance
scales better than this due to the ellipsoid hitting the prior boundaries in some
of the parameter directions, as indicated by the fact that the BMD is less than
the number of sampled parameters.

MNRAS 521, 1184-1199 (2023)

Note that biases from high efficiencies have a less severe impact on
marginalized posteriors than on estimates of the Bayesian evidence.
We can see this in Fig. 3. While higher efficiency does cause the
sampler to miss the tails of the distribution, even for very high values
those missing tails are unlikely to significantly affect interpretation
of the contours. Thus, if we are only interested in the posterior
distributions, we do not need to use efficiencies as low as would be
needed if we wanted to compute the Bayesian evidence.

(iii) Tolerance: the stopping criterion. Both muLTINEST and poLy -

CHORD can estimate how much the existing live points will contribute
to the estimate of the evidence. When that contribution is smaller
than the chosen value of the tolerance, the algorithm terminates.
One can check whether the tolerance is low enough by plotting the
progression of the weights of the chain, as shown in Fig. 6. If the
tolerance is low enough, this plot will show a peak that reaches unity,
and will then decay back towards zero. A spike at the end shows that
the contribution to the evidence from the final set of live points is too
high, and the tolerance should be decreased.
Table 1 shows that tolerance does not have a significant impact on
either run-time or on summary statistics. Because of this, and because
a chain initially run with higher tolerance can be resumed to reach
a lower tolerance, the choice of this parameter is not considered
a challenge: we simply recommend a tolerance that ensures that
weights look similar to those on the right-hand panel of Fig. 6.

(iv) OMPthreads: MULTINEST in cosMmosIs uses a double paral-
lelization scheme: The Boltzmann solver cams (Lewis, Challinor &
Lasenby 2000; Howlett et al. 2012) is parallelized using OPENMP,
and the MULTINEST sampling algorithm uses MPI parallelization.
We tested two settings, both using the same number of nodes, but
changing the number of cores used on each type of parallelization.
We find that not using the opeNnmMp parallelization greatly improves
the sampling speed. We expected this, as muLTINEST Will be faster
when all cores are used by MPTI parallelization, up to the number
of live points. As expected, changing this setting does not affect the
results in any way apart from the run time.

(v) Constant Efficiency: MULTINEST can use a different sampling
method, called ‘constant efficiency’ mode. In this setting, we aban-
don the strategy of increasing the volume of the ellipse by a factor
of 1/efficiency. Instead, the increase in the size of the ellipses
changes at every step to match the input ‘constant efficiency’ value
in the sampling efficiency (i.e. the ratio of points accepted to points
sampled). F13 describe how:

‘Despite the increased chances of the fitted ellipsoids encroaching
within the constrained likelihood volume (i.e. missing regions of
parameter space for which £ > L£;), past experience has shown
(e.g. FO8) this constant efficiency mode may nevertheless produce
reasonably accurate posterior distributions for parameter estimation
purposes.’

Our results agree with these statements in F13, with some caveats.
Indeed, for efficiencies set to values of 0.3 and 0.1, constant efficiency
mode produces significantly quicker runtimes and worse estimates
of the evidence and other summary statistics than the standard mode.
However, at lower efficiency values we find that this trend is inverted.
For example, when the ‘constant efficiency’ hyperparameter is set to
1073, the constant efficiency runtime becomes longer than standard
MULTINEST, and the evidence estimate also appears to converge to
the correct value. However, given its longer runtime at efficiencies
needed for accurate pieces of evidence, we do not recommend using
‘constant efficiency’ to estimate the evidence.

As previously discussed, MULTINEST produces an alternative
INS evidence estimate. By examining Table 1 we can compare
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Table 1. Comparison of time required and output values for MULTINEST with different settings. All runs use the DES Y1 3 x 2 pt likelihood and a wCDM
cosmology, with 128 cores. The settings O M Pthreads = 1 corresponds to 128 MPI threads, while O M Pthreads = 4 corresponds to 32 MPI threads. CE
refers to ‘Constant efficiency’. L Evals is the number of Likelihood evaluations. INS refers to the Importance Nested Sampling reported by MULTINEST, Dz,
is the Kullback-Leibler divergence, and BMD is the Bayesian Model Dimensionality. Reported uncertainties are via bootstrap resampling as computed by

anNeEsTHETIC (Handley 2019).

Nijve Eff Tol OMP CE Time (h)  Acceptance L Evals logZ INS logZ Dk, BMD
675 1 0.3 1 F 11.2 0.067 265314 —277.71 £0.17 —285.14 £0.05 1854 +0.16 13.0+0.3
675 1 0.1 1 F 13.8 0.056 340783 —277.68 £0.17 —284.93 £0.22 18.61 £0.15 13.5+04
675 1 0.01 1 F 20.3 0.042 510583 —277.63 £0.17 —284.94£0.14 1842+0.15 13.0+£04
675 1 0.1 4 F 46.3 0.053 356248 —277.53+£0.17 —285.09£0.06 1833 +£0.16 12.8+0.4
675 1 0.1 1 T 3.8 0.228 78561 —27541+£0.16 —286.36+0.19 17.59+£0.15 123+0.3
250 0.3 0.1 1 F 43 0.053 134554 —278.68 £0.28 —285.46£0.27 19.32+£0.28 13.3+£0.6
675 0.3 0.3 1 F 14.6 0.054 346242 —278.52+0.17 —285.01 £0.14 19.16 £0.16 13.5+0.4
675 0.3 0.1 1 F 16.2 0.048 396284 —278.37+£0.17 —285.13£0.10 19.14£0.17 12.6£0.4
675 0.3 0.01 1 F 21.4 0.040 531284 —278.53+0.17 —284.63 £0.28 19.18 £0.16 13.7+0.4
675 0.3 0.1 4 F 50.3 0.050 383602 —278.45+0.17 —285.13£0.04 1921 +£0.16 13.0£0.3
675 0.3 0.1 1 T 4.6 0.199 94746 —276.56 £ 0.17 —285.78 £0.24 18.64 £0.16 123 +£0.4
250 0.1 0.1 1 F 5.9 0.041 178614 —279.09 £ 0.28 —285.69 £0.04 1998 £0.28 13.4+£0.7
675 0.1 0.1 1 F 23.7 0.035 562784 —278.88 +£0.17 —285.16 £0.10 19.44 £0.17 129+04
675 0.1 0.1 1 T 6.9 0.106 189995 —278.34+£0.17 —28527£0.06 1993 +£0.16 13.2+04
250 0.01 0.1 1 F 11.7 0.026 294202 —280.78 £ 0.29 —285.67 £0.02 20.97 £0.30 144 +£0.7
675 0.01 0.1 1 F 39.3 0.025 825487 —280.62+0.18 —285.38 £0.02 21.04£0.17 13.6£0.4
675 0.01 0.1 1 T 28.1 0.027 754351 —280.76 +0.18 —285.23 £0.02 20.96 £0.16 14.0£0.4
250 0.001 0.1 1 F 39.0 0.010 823090 —281.78 £0.30 —285.93 £0.01 21.62+£0.28 14.6£0.7
675 0.001 0.1 1 F 109.5 0.010 2116032  —282.01 £0.18 —285294+0.02 21.99+0.17 149404
675 0.001 0.1 1 T 126.3 0.008 2756262  —280.92£0.19 —285524+0.09 20.17+0.17 152404
: -3
— EfﬁcTency =10 _978 - PolyChord best ¢
Efficiency—1 ¢ MultiNest log Z ¢
MultiNest INS log Z
—280 A
; | ; ¢
N
09r 7 g
’ — —282- ¢
€ 08} % -
0.7r :
. ) . . ) —284 A
—05F ' 1 I 1 ;
—1.0p T 7 T L LR | LA LR | L LB AL |
s 10-3 102 101 10°
—L5F T 7 Efficiency
02 03 04 07 0.9 -1.6 —1.0 Figure 4. vuLTINEST calculations of the evidence for different values of the
Qi og w efficiency. The MuLTINEST values are plotted as red points, the MULTINEST

Figure 3. Marginalized one- and two-dimensional posterior distributions for
two extreme values of the efficiency on MuLTINEST. In red, a low value, which
is therefore more likely to have fully sampled the tails of the distribution,
and in the yellow dotted contours, a high value. We can see how the high
efficiency does not fully sample the tails of the posterior distributions, and
therefore gets narrower contours.

its dependence on hyperparameters to that of the main evidence
calculation. This INS evidence estimate is very stable amongst all
of our MULTINEST runs, always around the value of logZ ~ —285,
almost independently of the hyperparamter settings. Fig. 4 shows
this graphically, with the INS estimates of the evidence in orange.

INS evidence estimates in orange, and the grey band shows the 68 per cent
confidence level of the best PoLYCHORD estimate.

They are significantly and consistently lower than the best estimate
from porycHorD. While this might suggest convergence to the ‘truth’,
this is belied by results from the Gaussian toy model of Fig. 5, in
which the muLTINEST INS evidence estimates are also systematically
biased low. Our results thus appear to contradict the findings of
F13, which showed that in some toy models INS was more accurate
than the baseline evidence estimate of muLTINEST. Note that in
addition to being lower than the truth, the INS evidence reported also
significantly underestimates its sampling error, i.e. the uncertainty
caused by imperfect sampling.
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Figure 5. muLTINEST and PoLYCHORD estimations of the evidence for different values of the efficiency and 7,¢pears parameters, for a Gaussian posterior
distribution with known truth (dashed line). In both cases, we use nlive = 250 and rolerance = 0.1. For each setting, we show 10 different sampling runs,
which we displace along the x-axis for visualization purposes. The figure shows how porycHORD gets more reliable evidence estimates even for low values of
Nyepears» Where as MULTINEST gets biased estimates if the efficiency is not low enough. The yellow points include error bars, even though they are too small to

be seen.
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Figure 6. Normalized sample weight (weight divided by maximum weight) versus number of samples for different values of the tolerance. This plots serves as
a convergence diagnostic; only the plot on the right has converged in this case. All plots use PoLYCHORD With 71jy.= 250 and 7, epears= 60.

4.3 Polychord

Like MuLTINEST, POLYCHORD has a number of hyperparameters which
can be adjusted to balance running time and the accuracy of estimates
for posterior distributions and summary statistics. The result of
varying them is shown in Table 2.

(1) nyive, the number of live points. As with MULTINEST, more live
points lead to an increase in the accuracy of the posterior distribution,
and to a decrease in the error estimate for the evidence. Also, as was
the case for MULTINEST, POLYCHORD run-times scale linearly with the
number of live points.

(ii) tolerance,the stopping criterion. Itis defined in the same way
for Section 4.2, and the same conclusions apply: a lower tolerance

MNRAS 521, 1184-1199 (2023)

does not have a significant impact on either runtime nor summary
statistic accuracy. In fact, the tolerance seems to have even less of
an impact on runtime for porLycHORD than for MULTINEST. As before,
we recommend using the weight-versus-step-number convergence
diagnostic illustrated in the right-hand panel of Fig. 6 to select a
reasonable tolerance for a chain, and note that a poLycHORD chain
can be resumed to reach a lower tolerance.

(iii) 7yepears, the number of repeats. This hyperparameter is spe-
cific to poLYCHORD’s slice-sampling algorithm described in Sec-
tion 2.4. Recall that at every step, POLYCHORD repeats the process
of creating a slice through parameter space in a random direction, in
which it finds a new potential live point. The value of 71,.¢pcq;s dictates
how many times this process is repeated for each sample selection. If
this number is too low, the new live point will be correlated with the
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Table 2. Comparison of time required for porycHorD with different settings. All runs use the DES Y1 3 x 2 pt likelihood and a wCDM cosmology, with 128
cores. The settings O M Pthreads = 1 corresponds to 128 MPI threads, while OM Pthreads = 4 corresponds to 32 MPI threads.

Njve Tol Nrepeats OMP Time (h) Acceptance L Evals logZ Dg;. BMD

50 0.1 60 1 21.3 0.003 473705 —282.22 + 0.65 22.26 + 0.64 121+1.3
250 0.3 60 1 51.7 0.006 1171509 —282.01 £0.29  21.854+0.27 143 +0.7
250 0.1 15 1 11.9 0.022 342878 —281.47+£0.32  21.51 £0.30 143 4+0.7
250 0.1 30 1 23.7 0.011 675895 —282.64 £0.29  22.35+£0.27 156 £ 0.7
250 0.1 60 1 46.2 0.006 1319862 —282.51 £0.30  22.34 £0.26 152 +0.7
250 0.1 60 4 75.5 0.007 1016058 —28248 £0.29 2226 +£0.29 143 +0.7
250 0.1 120 1 87.4 0.003 2597251 —282.87 £0.30  22.30 £0.32 149+0.8
250 0.03 60 1 60.9 0.006 1379582 —282.46+0.30 22.21 £0.30 144 +0.7
250 0.01 60 1 62.4 0.006 1504 244 —282.72 +£0.30  22.72 £0.34 13.5+0.6
250 0.001 60 1 68.3 0.005 1670676 —282.09 +£0.30 22.12+£0.29 142 +0.6
675 0.1 15 1 22.5 0.026 733506 —281.54 +£0.18  21.38 £0.18 14.1+04
675 0.1 30 1 47.5 0.014 1458 873 —282.52+0.19 22.32+£0.19 14.6 £ 04
675 0.1 60 1 117.9 0.007 2863702 —282.09 +£0.18  21.95+0.17 144 +05
675 0.01 60 1 131.2 0.007 3289309 —282.14+£0.18 21.79 £0.17 145+04
675 0.1 120 1 191.4 0.003 5795180 —282.34 +£0.18  22.32+£0.17 1434+04

(iv) OMPthreads. As with MULTINEST, we obtain the best results

—281.4 PolyChord best when we use all our cores for MPT parallelization, up to the number
¢ PolyChord of cores matching the number of live points.
—281.6 1

—281.8 1 4.4 Fast-likelihood tests of sampler variance
To —9282.0 1 While the studies above give us an indication of how changing the
= values of PoLYCHORD and MULTINEST hyperparameters affect runtime
—282.2 1 and the accuracy of summary statistic estimates, they do not tell us
much about noise in those relations due to the particular realization
—282.4 of random points sampled in a given chain run. In order to assess
this sampler variance, we run a large number of independent chains,
—282.6 1 which long runtimes make infeasible with the full DES likelihood
studied above. Thus, to more robustly assess convergence properties
1'5 3'0 6I0 150 and characterize how sampler variance changes across settings,

we use the approximate fast likelihood to generate multiple chain
realizations at each set of sampler hyperparameters.

We use a set of three ‘high-quality’ porycHorD chains with
Njive = 1000, nyepeass = 120, and tol = 0.001 to approximate
the truth and compare with the performance of chains run with
lower quality settings. Unless otherwise stated, we ran 20 inde-
pendent chains for each combination of settings. While the pre-

Num Repeats

Figure 7. povvcuorD estimations of the evidence for different values of
Nrepears- The different values are plotted as red points, and the blue band
shows the 68 per cent confidence level of the best PoLYCHORD estimate.

previous sample in the chain. Such correlations between live points vious sections illustrated the different impacts of the efficiency
could bias the posterior distribution and summary statistics. In this and npears parameters (as the unique hyperparameters for each
sense, a higher value of 7,.peqrs i Somewhat akin to increasing the sampler), we found that varying nj,. had the most pronounced
degree of “thinning’ of a standard MCMC chain, with the result that impact on posterior and evidence estimates for both MULTINEST and
more likelihood evaluations are performed but then discarded, in the poLyCcHORD. This aligns with the recommendations of Higson et al.
interest of reducing systematic uncertainty. (2019), who note that increasing n;;,, is the most computationally
The official poLycHORD paper (Handley et al. 2015b) recommends efficient way to increase accuracy, as it decreases both stochastic
using at least 71,¢peqrs ~ 2D, where D is the number of dimensions and systematic contributions to the uncertainty. We therefore mostly
being sampled. In this work, we tested values that are approximately show results in this section with respect to varying ;.. Unless
{0.5, 1, 2, 4} times the number of dimensions. Fig. 7 shows the otherwise stated, MULTINEST chains were run with efficiency =
corresponding values of the summary statistics. We see that a value 0.1 and tolerance = 0.1, and poLycHORD chains with n,¢pears = 30
Nyepears = 15 obtains biased estimates of the evidence for the full and rolerance = 0.01.

likelihood, but values as 10w as 7,¢pears = 30 (for D = 27) already Fig. 8 shows the marginalized 1D constraints on €2, and logZ
obtain valid results. The main conclusion is that, as expected, while for multiple independent MuLTINEST (red) and poryCHORD (blue)
a poor choice for 7,¢peqs can lead to biased results, the accuracy chains with different numbers of live points. The average of the
of estimates for evidence and other summary statistics are not high-quality porycHORD chains are shown in grey. Constraints on £2,,
nearly as sensitive to 71,¢peqrs as they are to MULTINEST’s efficiency are consistent across the different of n;;,, values for both samplers.
hyperparameter. As expected, based on results in previous sections, we find the
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Figure 8. Left: 1D marginalized mean and 68 per cent credible intervals of €y, for both murTINEST (red) and porycHORD (blue) run using the fast likelihood
at different values of nlive ({100, 250, 675 }), while other hyperparameters are held constant at the default values listed in Section 4.4. 20 chains are run at
each setting of n;;y., corresponding to the clusters of jittered points. The mean and standard error of chains at each setting are indicated by stars at the centre of
each cluster. The horizontal lines correspond to the average mean and lo credible intervals of three high-quality poLycaORD runs (n/;ye = 1000, 1,¢pears = 120,
tolerance = 10~3). There is good agreement between poLycHORD and MULTINEST on the mean and small discrepancies between the credible intervals. MULTINEST
credible intervals are consistently smaller than those reported by porycHorb. Fig. 9 shows this in greater detail for Sg. Right: Estimates of the Bayesian evidence
(and its sampler-reported uncertainty) for the same chains as the left-hand plot. The shaded band shows £1o uncertainty on the mean evidence of the three
high-quality porLvcrORD chains. The poLycHORD values are consistent at all settings, including at the lowest settings, with each individual run consistent with
the high-resolution ‘truth” within its reported uncertainty. In contrast, MULTINEST evidence estimates display a systematic bias that is greater for small 7;;y., and
the reported uncertainty for individual chains is insufficient to make runs consistent across different values of n;;,.. The reported uncertainties in log Z for each
individual chain (given by the error bars) is consistent with the sampling variance across chain means for PoLYCHORD, but is greatly overestimated for MULTINEST
where the means across chains are much more tightly clustered. This is shown more directly in Fig. 10.

10004 uncertainty is represented by the half-width of the 68 per cent credible
PolyChord interval (o 63(Ss)), a quantity comparable to the standard deviation but
750 more directly related to the marginalized quantities we are interested
in for Bayesian cosmological inference and less sensitive to the
500 tails of the posterior. As was noted in Section 4.2, underestimation
of credible intervals is expected when the MULTINEST ef ficiency
250 - parameter is too large. We see here that having low n;;,, can also

potentially cause parameter constraint error bars to be slightly

0 . . underestimated.

1500 1 dtiNest Nisve Estimates of both the mean and dispersion of the Bayesian
e —— PolyChord best evidence differ significantly between the samplers. The values of
1000 100 log Z reported by porLycHORD are consistent across the range of
250 settings we tested, indicating minimal systematic bias in the estimates
675 due to hyperparameter settings. In contrast, the reported MULTINEST
500 7 evidence changes significantly as a function of n;;,., and to a degree

much larger than the algorithm’s reported uncertainty. This can also
be seen in Figs 4 and 5, which show results for different likelihoods.
As we increase n;;,, in Fig. 8, the muLTINEST evidence estimate shifts
towards that reported by PolyChord. This behaviour suggests
that the MultiNest settings tested here are insufficient to obtain
accurate pieces of evidence.

In addition to being robust to systematic shifts in the reported
evidence, the sample variance in evidence estimates between differ-
ent PoLYCHORD chains with the same settings shows good agreement
with the sampler variance uncertainty reported from each individual
chain. Fig. 10 shows the distribution of reported evidence values
across the 20 chains at each value of ny;,.. The dashed Gaussian
curves are drawn according to

N ((log Z)., (o (log 2))?) , (16)

0.020 0.022 0.024 0.026
o6 (Ss)

Figure 9. Histogram of the half-width of 68 per cent credible intervals
for Sg for many chains using the fast likelihood for both poLvcHORD (top)
and MULTINEST (bottom). MULTINEST systematically reports smaller credible
intervals than porycuorp for the range of settings tested, here shown with
colours indicating different numbers of live points. The red lines indicate the
credible intervals for the three high-quality porycHORD chains.

Q, credible intervals reported by MULTINEST to be consistently
~ 10 per cent smaller than those reported by porycHorD. The same
is true to a lesser extent for Sg. This is shown in Fig. 9, which

depicts the estimated uncertainty in Sg inferred from PoLYCHORD (top)
and MULTINEST (bottom) chains run with different n;;,, settings. The
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where the averages are computed over each ensemble of 20 chains.
For porLycHORD, these closely match the empirical distribution of
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Figure 10. Histogram of reported logZ for many porLycHORD (top) and
MULTINEST (bottom) chains run with different numbers of live points. The solid
curves are Gaussian fits to the distribution in reported log Z across different
chain realizations. The dashed Gaussian curves show the expected distribution
based on the mean log Z and mean claimed uncertainty across chains. The
relatively close agreement between solid and dashed curves indicates that the
reported uncertainty in porLycHORD chains is fairly representative of the true
sampling error. MULTINEST reports uncertainties considerably larger than the
observed sampling variance.

reported pieces of evidence, indicated by the solid Gaussian curves
which are fits to the histogram. In contrast, the reported statistical
uncertainty in MULTINEST pieces of evidence is much greater than the
observed scatter across chain realizations.

The uncertainty in logZ given by poLycHORD is more solidly
grounded than that of MuLTINEST, having been derived analytically
by Keeton (2011), whereas the MULTINEST evidence estimates use the
relative entropy and are based on information theoretic arguments.
Our numerical results affirm the greater reliability of evidence errors
from POLYCHORD.

Despite MULTINEST overestimating the statistical uncertainty in
log Z, the reported pieces of evidence are still inconsistent across
hyperparameter settings, due to even greater systematic shifts as
nyive 18 increased. However, none of the MULTINEST settings tested
resulted in evidence values approaching the stable PoLYCHORD
estimates.

We can also use this ensemble of chains to estimate and limit the
contribution of sampler biases to the systematic error budget of the
DES Y3 analysis. The DES Y3 analysis requires that unmodelled
systematics shift the maximum posterior point of key cosmological
parameters by not more than 0.3¢ in the 2D plane of €2, and Sg (c.f.
Krause et al. 2021). Here, we adopt a somewhat simplified but none
the less strict criterion that the typical variation of parameter means
across chain realizations is far below their statistical uncertainty. We
thus require

o, [0] < 0.1(0, [0]).. (17)

where the left-hand side is the standard deviation of the parameter
mean across chain realizations and the right-hand side is a threshold,
set equal to a fraction of the average of the standard deviations of
the parameter computed from the individual chains. Note that this
requirement is closely related to requiring the Gelman—Rubin statistic
defined in Section 2.2 to be below a given threshold.
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Figure 11. Standard deviation of parameter means across chains relative to
the average within-chain parameter standard deviation. We require that the
contribution to mean parameter shifts from sampler variance is small for
settings used to run chains testing the impact of unmodelled systematics. The
POLYCHORD publication settings can be found in Table 3.

We are primarily interested in shifts on 2, and Sg, and so require
that any recommended sampler settings satisfy equation (17) for
those parameters. Fig. 11 confirms this requirement is fulfilled for
nyive>200 with the fiducial values of the other hyperparameters.

5 CONCLUSIONS

In this paper, we have studied the performance of two commonly used
tools used to sample posteriors for cosmological analysis, MULTINEST
and POLYCHORD, as a function of their hyperparameter settings. Our
analysis had two parts: testing multiple sampler settings on the DES
Y1 3 x 2 pt analysis to calibrate the time needed to get unbiased
posterior distributions in the Y3 analysis, and also using a faster
approximate version of the likelihood to characterize the amount of
sampler variance and further validate those findings.

We found that these Nested Sampling algorithms require careful
tuning of their hyperparameters, especially n;;,, and MULTINEST’S el-
lipsoidal sampling efficiency. Particularly for muLTINEST, the wrong
settings can lead to a poor sampling of the tails of the posterior distri-
bution, and to a biased evidence estimation. Furthermore, the superior
speed of the MuLTINEST algorithm compared with PoLYCHORD’S slice
sampling method is not present when sufficiently accurate sampling
hyperparameters are used. PoLYCHORD produces unbiased evidence
estimates with reasonable settings, as well as contours that are in good
agreement with those we find using Metropolis—Hastings. Therefore,
our findings lead us to prefer POLYCHORD Over MULTINEST.

The studies described in this paper were used to guide recom-
mendations for sampler settings used for the DES Y3 cosmology
analysis (Krause et al. 2021) as well as some Y1 follow-up pa-
pers (Chen et al. 2021; Muir et al. 2021). These recommendations
are summarized in Table 3 for three use-cases. We recommend
that muLTINEST only be used for preliminary testing and pipeline
debugging. While it is relatively fast, we found the (fairly standard)
settings described in Case III of Table 3 to produce marginalized pos-
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Table 3. Recommended sampler settings based on this work, used for the
DES Y3 cosmology analysis. Approximate wall-time estimates are given for
awCDM DES Y1 3 x 2 chain run on 128 cores.

Case I: Publication quality
(one-time runs)

Sampler POLYCHORD
Niive 500
Tol 0.01
Rrepeats 60
fast_fraction 0.01
Time to run: ~4.d
Case II: Testing
(noisy contours)
Sampler POLYCHORD
Nijve 250
Tol 0.1
Nrepeats 30
fast_fraction 0.0
Time to run: ~1d
Case III: Very preliminary results only
(unreliable pieces of evidence, 2, and o'g posterior
widths underestimated by ~10 per cent)
Sampler MULTINEST
Niive 250
Efficiency 0.3
Tol 0.1
F
constant_efficiency
Time to run: ~6h

terior widths for 2, and oy that are systematically underestimated
by about 10 per cent and unreliable pieces of evidence. For most
pre-publication testing, we recommend using the fast POLYCHORD
settings described in Case II. Those settings will produce unbiased
posteriors and evidence values, though the resulting contours for
marginalized posteriors will be somewhat noisy. Case I in Table 3
presents our recommendation for publication-quality results, with
an increased number of live points extending the run-time but
resulting in reduced noise in both posterior contours and evidence
estimates.

While this study was performed specifically for DES Y3, our
findings should be useful as a guide for cosmological analyses of
similar dimensionality. Though our results were broadly consistent
across three different likelihoods: the full DES Y1 likelihood, a fast
approximate DES Y1 likelihood, and a 27D Gaussian toy model, the
exact settings of Table 3 will likely need to be adjusted for problems
where the number of dimensions or the shape of the posterior
distribution change significantly. We found that good posterior and
evidence estimates can be obtained with relatively low settings of
Nyepears ~~D With PoLYCHORD, but that MULTINEST pieces of evidence
were systematically biased except at extreme values of ef ficiency,
and MULTINEST missed tail regions of the posterior such that reported
credible intervals were consistently ~ 10 per cent smaller than those
reported by porvcHorp. We found that increasing nj,. had the
greatest impact in improving accuracy of the summary statistics of
interest.

Sampling algorithms are a key component of modern cosmological
analyses and it is important to characterize their impacts on inference.
As demonstrated in this work, poor choice of sampler and/or hyperpa-
rameter settings can lead to biased estimates of parameter constraints
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and other key summary statistics, but it is possible to achieve suffi-
ciently unbiased estimates in realistic use cases. Through this work,
we motivate the sampling methods used for the DES Y3 analyses,
and note that the fine margins demanded by precision cosmology
will increasingly require heightened scrutiny of sampling tools.
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APPENDIX A: OTHER SAMPLERS

In this section, we briefly compare two nested samplers used in this
paper, MULTINEST and POLYCHORD, with two other available sampling
codes, EMCEE and zEus, in terms of the stability of their posterior
estimates. As already noted, eMceE showed very poor convergence
with the full DES likelihood and zeus was not integrated into the
cosmos1s framework at the time of testing, a requirement for its use
in the fiducial DES analysis. Furthermore, neither of these samplers
provide an estimate of the Bayesian Evidence, a key summary
statistic of interest for the DES Y3 analysis. We therefore use the
toy model described in Section 4.2, a 27-dimensional Gaussian like-
lihood distribution, and compare the stability of posterior estimates.

For each sampler, we run 10 chains with the same settings, and
then plot the standard deviation of each parameter mean across
chains divided by the average parameter standard deviation within
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Table Al. Comparison between POLYCHORD, EMCEE, and zeus. All three
samplers are run with settings that generate around 1.5 x 10° likelihood
evaluations, and therefore are expected to take similar amounts of time
in realistic cases, where likelihood evaluations are the slowest part of the
calculation. Likelihood evaluations and acceptance are averaged over each of
the 10 chains. The last column is averaged over each of the 27 parameters.

Sampler (L Evals) (Acceptance) oclpl/{op)e
POLYCHORD 1749508 0.0074 0.06
EMCEE 1500 000 0.26 0.06
ZEUS 1666 525 0.18 0.01

each chain. Defining similar settings across different samplers can
be challenging; we use the Case II settings showed in Table 3 for
POLYCHORD, and tune the settings in the other samplers to obtain
a similar number of likelihood evaluations, of order 5 x 10°. Our
results are shown in Table Al.

We find that for similar numbers of likelihood evaluations, we
get many more samples for eMcee and zeus as shown by their
higher acceptance rates. This is expected for MCMC samplers when
compared to nested samplers. We also see how, for a similar number
of likelihood evaluations, zEus seems to obtain more stable posterior
means than the other two samplers, which shows the great potential
of zeus for future cosmological analyses. It is important, however, to
highlight once more the two main advantages of Nested Sampling,
despite its low acceptance rate: It provides us with an estimate of
the Bayesian Evidence, needed for Bayesian model comparison
and tension quantification; and it can sample multimodal spaces,
something with which MCMC samplers tend to struggle. Therefore,
it is key to select the sampling method that better suits the problem at
hand, and if possible to use multiple methods to ensure robustness.

APPENDIX B: EFFICIENCY RULE OF THUMB

From the results of this paper, as well as our understanding of
ellipsoidal nested sampling, we can set up an approximately guideline
to correctly choose an efficiency that will not lead to biased sampling.

We can estimate the enlargement of the ellipse in each direction
from the efficiency and the number of dimensions Ny, as

enlargement = eff ~!/"¢ (BI)

From Mukherjee et al. (2006a) and our work, we estimate that we
need an enlargement of approximately > 1.5. Therefore, the required
efficiency is approximately

eff ~ 1.5 N, (B2)

This shows how poorly the required efficiency scales with an increase
in dimensionality. In the case of DES, the required efficiency is e ~
1073, which is consistent with the findings of Fig. 4, showing that an
efficiency of 1073 is not enough to reach the correct evidence values.

As a side note, we can also estimate the acceptance of MULTINEST
as

acc = effBMP/Na (B3)

where BMD is the Bayesian Model Dimensionality.
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