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Abstract— This paper presents a new color texture descriptor
combining the Local Mapped Pattern (LMP) and Opponent
Colors methodologies. Considering the RGB space, the new
descriptor named Opponent Color Local Mapped Pattern
(OCLMP) considers the differences between the central pixel -
taken from a color channel - and its neighbors - taken from the
opponent channel. The OCLMP descriptor is evaluated over two
color texture databases, Outex and USPTex, and compared with
Opponent Color Local Binary Pattern descriptor (OCLBP), which
also considers opponent colors in its approach. The experimental
results have shown that OCLMP performs better than OCLBP
reporting better accuracy and lower processing time.
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I. INTRODUCAO

A classificag@o de texturas € uma importante tarefa na area
de visdo computacional. O uso da cor na tentativa de melhorar a
acuricia dos métodos de classificacdo tem sido comprovado em
muitos trabalhos, como o estudo feito por Bianconi et al. [1].

Dentre os desafios de se usar a “cor da textura” ou textura
colorida, estdo a forma como ela é extraida e o espaco de cores
considerado. Jain e Healey [2] introduziram a representacio de
texturas coloridas utilizando cores oponentes, processo que é
baseado no sistema visual humano. Eles propdem a extracdo de
caracteristicas de uma textura colorida utilizando pares de cores
oponentes dentro de um espago de cores, juntamente com
caracteristicas unicromaticas, ou seja, de um tnico canal de cor.
Essas caracteristicas sdo computadas a partir das saidas de um
filtro de Gabor, combinando informacdes de diferentes bandas
espectrais em diferentes escalas.

Maenpaa e Pietikainen [3] propuseram o descritor Opponent
Color Local Binary Pattern (OCLBP). O OCLBP utiliza a
representacdo de cores oponentes proposta em [2] aplicada ao
descritor de texturas Local Binary Pattern (LBP) e, segundo os
resultados reportados, apresenta melhor desempenho que o
descritor baseado nos filtros de Gabor.

Em 2012, Vieira et al. [4], introduziram um novo descritor
baseado em numeros fuzzy, que posteriormente evoluiu para o

Local Mapped Pattern (LMP) [5]. Este novo descritor mapeia os
padrdes locais de uma textura para os bins de um histograma
utilizando uma func¢ido de mapeamento que pode ser modificada
de acordo com a aplicagdo. Os autores ainda mostram que o
LMP ¢ uma generalizagdo do LBP, e que este tultimo pode ser
obtido modificando-se alguns parametros do primeiro.

Motivado pelo alto desempenho do LMP em diversas
aplica¢des [4-8] propomos, neste trabalho, a investigacao da sua
utilizacdo na classificacdo de texturas coloridas, juntamente
com a teoria de cores oponentes proposta por Jain e Healey [2],
introduzindo o descritor Opponent Color Local Mapped Pattern
(OCLMP).

Este artigo estd estruturado em seis se¢des. Nesta se¢do I
foram apresentadas as justificativas e a motivagdo para
classificacdo de texturas coloridas. A sec¢do II resume o método
base para o descritor OCLMP, o qual € proposto neste trabalho
na se¢do III. O método e o material utilizado sao descritos na
secdo IV, sendo os resultados obtidos discutidos na secdo V.
Finalmente, a se¢do VI conclui o trabalho.

II. LoCcAL MAPPED PATTERN

O descriptor Local Mapped Pattern (LMP) utiliza uma
funcdo de mapeamento para construir um histograma que
representa as frequéncias dos padrdes locais contidos em uma
determinada imagem (Fig. 1). Estes padrdes sdo baseados nas
diferencas dos valores entre o pixel central e seus vizinhos.
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Figura 1: Padrdo Local 3x3.
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Considerando-se uma vizinhanca v =W X W de uma
textura como sendo um padrao local, este pode ser mapeado para
um bin h;, de um histograma a partir da Equacéo (1)
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em que f é a fungdo de mapeamento aplicada a diferenca entre
cada vizinho g; e o pixel central g., M é uma matriz de pesos
pré-definida e B € o nimero de bins do histograma.

A matriz de pesos, funcdo de mapeamento e nimero de bins
do histograma sdo parimetros a serem definidos de acordo com
a aplicacdo pretendida. Para a classificacdo de texturas, os
autores sugerem B=256 e uma curva sigméide como fungio de
mapeamento (Eq. (2))
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na qual, [g; —g.] s@o as diferencas entre o valor do pixel
central g, e seus vizinhos g; (i = 1,--,v — 1) e f é o parAmetro
que determina a inclinagdo da curva. A Equacio (3) mostra a
matriz de pesos proposta.
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A metodologia pode ainda ser estendida para vizinhancas
circulares [6]. Dado um par ordenado (P,R) de inteiros positivos,
onde P € o nimero de pontos amostrados e R € o raio, uma regido
simétrica circular pode ser definida como na Figura 2.
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Figura 2: Vizinhanga circular simétrica com P=8 e R=1.

As coordenadas de cada pixel vizinho g, (p = 1,-+-,P —
1), sdo dadas por (—Rsin(2mp/P), Rcos(2mp/P)) em
relacdo ao pixel central g, localizado nas coordenadas (0,0). Os
valores dos vizinhos que ndo estdo localizados no centro do
pixel sdo estimados por interpolagdo. Nessa nova versao
denominada Sampled-Local Mapped Pattern (S-LMP), a matriz
de pesos ndo € considerada a fim de obter invariancia a rotagéo.
Os padrdes locais sdo entdo mapeados para um bin h, do

histograma utilizando a Eq. (4) e a fun¢do de mapeamento
aprensentada na Eq. (5).
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III. OPPONENT COLOR LOCAL MAPPED PATTERN

A representacdo de texturas coloridas utilizando cores
oponentes considera os pares oponentes dentro de um espago de
cores. Para o espaco de cores RGB, por exemplo, temos os pares
R-G, R-B, G-R, G-B, B-R ¢ B-G. Como destacado em [3], os
pares simétricos como R-B e B-R por exemplo, sdo altamente
redundantes e por isso optamos por utilizar somente 3 pares de
cores oponentes R-G, R-B e G-B.

O descritor OCLMP combina a metodologia LMP com a
teoria de cores oponentes. Para isso, considera-se o pixel central
em um espago de cores, e seus vizinhos sdo extraidos da cor
oponente, como mostrado na Figura 3. O descritor S-LMP é
aplicado a cada par de cores oponentes e também a cada canal
de cor separadamente, obtendo-se assim, seis vetores de
caracteristicas que sdo entdo concatenados em um dnico vetor
(Fig. 4).
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Figura 3: Pares de cores oponentes e processo de selecdo dos
pixels para um descritor de configuracdo (P,R) = (8,1).

IV. MATERIAIS E METODO

A avaliagdo do método foi realizada em duas bases de dados:
Outex [9] e USPTex [10]. A base de dados Outex €
disponibilizada pela Universidade de Oulu e possui varias suites
de testes previamente organizadas de acordo com a aplicagdo.
Neste trabalho foi utilizada a suite Outex 13 [3], que possui 68
texturas (Fig. 5), de tamanho 746 x 538 pixels, adquiridas sob
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Figura 4: Processo de geragdo do vetor de caracteristicas do descritor OCLMP.

uma luz CIE A incandescente 2856 K. Cada textura é 128 x 128 pixels para uma das 191 classes, totalizando 2292
subdividida em 20 amostras de 128 x 128 pixels, gerando 1360 amostras. Metade das amostras foram utilizadas como conjunto
amostras. Metade das amostras € utilizada como conjunto de de teste e metade como conjunto de treinamento. As amostras
teste e a outra metade como conjunto de treinamento (conjunto foram separadas da mesma forma que na base Outex, seguindo
de busca). Essa divisdo € realizada seguindo um padrdo de um padrdo de tabuleiro de xadrez.

tabuleiro de xadrez, em que a primeira amostra do canto superior
esquerdo pertence ao conjunto de treinamento.

Figura 5: As 68 texturas da suite Outex 13.

A base de texturas USPTex contém 191 texturas adquiridas Figura 6: Exemplos de texturas da base de dados UPSTex
utilizando uma camera digital com 512x384 pixels de resolugo.
As texturas incluem feijdes, arroz, tecido, vegetagdo, nuvens, O descritor é aplicado a cada amostra dos conjuntos de teste

etc. (Fig. 6). Neste experimento foram utilizadas 12 amostras de e de treinamento, gerando um vetor de caracteristicas que
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representa cada imagem. Cada vetor de caracteristicas do
conjunto de teste ¢ comparado a todos os vetores do conjunto de
treinamento utilizando-se uma medida de distincia.

A fim de avaliar como o descritor se comporta quando
diferentes medidas de distancias sdo utilizadas, seu desempenho
foi analisado mediante duas métricas: distancia L1 (Eq. (6)) e
distancia chi-quadrado (Eq.(7)), nas quais, S refere-se a amostra
de busca do conjunto de testes e M refere-se a amostra do
conjunto de treinamento, sendo B o nimero de bins.

D(S,M) = Y5_41Sp — My (6)
1 (Sp—Mp)?
X(SM) = 3 =1y Q)

Para a classificagdo utilizou-se o classificador k-NN (k
vizinhos mais pr6ximos) com k=1, ou seja, a classe da amostra
do conjunto de treinamento que possui a menor distincia da
amostra de teste € considerada a predicdo do classificador.

O desempenho da classificagdo é reportado através da
acuracia, ou taxa de acerto (Eq. (9)).

A= numero de amostras classificadas corretamente ©)

numero de amostras de teste

V. RESULTADOS E DISCUSSOES

O descritor OCLMP possui pardmetros que devem ser
definidos de acordo com a aplica¢do, como nimero de bins do
histograma, fun¢c@o de mapeamento e configuracido de raio e
nimero de vizinhos. Pra esta aplicacdo os histogramas foram
construidos com 256 bins (B=256), e a fun¢do sigméide foi
utilizada no mapeamento.

Conforme apresentado na Eq. (5), a funcdo sigmdide possui
o parAmetro f que determina sua inclinag@o. Para otimizagdo
deste parametro foi aplicado um algoritmo genético da Toolbox
de otimizac¢do do Matlab (versdao R2014a). A funcdo objetivo a
ser maximizada é a acurécia, e as imagens do conjunto de
treinamento foram utilizadas para realizar a otimizagdo. O
intervalo de possiveis valores para a inclinagdo da curva é
]0, oo[. No entanto, a fim de tornar a otimiza¢fo mais réapida e,
baseando-se em testes realizados previamente, optou-se por
restringir este intervalo para ]0, 5].

Apbs testes preliminares, os parametros de vizinhanga e raio
(P,R) que obtiveram os melhores desempenhos foram (8,1) e
(16,2). Sendo assim, todos os experimentos foram realizados
considerando estas duas configuragdes.

A Tabela I apresenta os pardmetros otimizados por meio de
algoritmo genético para cada caso considerando-se a base de
dados Outex. Na Tabela II sdo apresentados os pardmetros
otimizados para a base de dados USPTex. Os resultados obtidos

(acuracia) s@o apresentados nas Tabelas III e IV, as quais
apresentam ainda uma comparagio entre o desempenho dos
descritores OCLBP [3] e OCLMP.

TABELA I: Valores dos pardmetros 8 otimizados para o banco de dados
Outex para cada configuracdo de vizinhanca e raio (P,R) em cada métrica
utilizada.

P,R)=(8,1 P,R) = (16,2
Distancia Canais (P.R) = 8,1) (P,R) = (16,2)
B B
R-G 2,4918 2,0196
R-B 2,3554 0,5644
G-B 2,0229 0,9495
L1
R 0,1094 0,4221
G 0,0743 0,0394
B 0,3347 02095
R-G 1,4755 1,8357
R-B 1,4567 2.1820
G-B 1,6712 0,0177
Chi-quadrado
R 0,3440 1,1866
G 1,0874 1,4281
B 0,4051 0.3688

TABELA II: Valores dos parametros 5 otimizados para o banco de dados
USPTex para cada configuracio de vizinhanga e raio (P,R) em cada métrica
utilizada.

P,R)= (8,1 P,R) = (16,2
Distancia Canais (P,R) = 8,1) (P,R) = (16,2)
B B
R-G 4,7392 4,3220
R-B 0,8520 0,3417
G-B 2,5253 1,4337
L1
R 0,0743 0.0532
G 0,1488 4,6046
B 0,2685 0,0424
R-G 0,3108 3,1781
R-B 0,7493 0,4475
G-B 1,1202 02973
Chi-quadrado
R 0,7326 0,3307
G 0,4336 24226
B 0,4454 0,2503
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TABELA III: Acuracia (%) obtida pelos descritores OCLMP e OCLBP no
banco de dados Outex.

Distdncia Descritor Acuricia
OCLMP (8,1) 94,26
OCLMP (16,2) 94,12
H OCLBP (8,1) 91,18
OCLBP (16,2) 92,94
OCLMP (8,1) 92,50
OCLMP (16,2) 93,68
Chi-quadrado
OCLBP (8,1) 91,62
OCLBP (16,2) 92,35

TABELA 1V: Acurécia obtida pelos descritores OCLMP e OCLBP no
banco de dados USPTex.

Disténcia Descritor Acuracia
OCLMP (8,1) 91,97
OCLMP (16,2) 93,80
H OCLBP (8,1) 91,62
OCLBP (16,2) 91,56
OCLMP (8,1) 91,27
OCLMP (16,2) 93,80
Chi-quadrado
OCLBP (8,1) 91,97
OCLBP (16,2) 93,46

A partir dos resultados reportados na Tabela III, € possivel
verificar que o descritor OCLMP supera o OCLBP na base de
dados Outex 13, independente da métrica de distancia utilizada
na avaliacdo. A vizinhanca (8,1) se mostrou melhor para a
distancia L1, e a vizinhanga (16,2) obteve melhor resultado com
a distancia chi-quadrado. Para a base de texturas USPTex, de
acordo com os resultados apresentados na Tabela IV, o OCLMP
também obteve melhor desempenho que o OCLBP, tanto
utilizando-se a distancia L1, quanto a chi-quadrado. Além disso,
a vizinhanca (16,2) apresentou melhores resultados,
independente da medida de distancia utilizada. De modo geral,
tanto o OCLBP, quanto o OCLMP apresentam melhores
resultados utilizando a vizinhang¢a (16,2), o que pode ser
explicado pelo fato dessa configuracio utilizar mais pixels na
composicdo do valor de representacdo do padrdo local.

Outra anélise realizada foi o tempo de execug¢do. Para isso
calculou-se o tempo que cada descritor necessita para construir
o vetor de caracteristicas relativo a uma amostra do banco de
dados USPTex. O computador utilizado para o teste possui
processador Intel® Core™ i7-6560U CPU 2,2GHz, 8GB de
RAM e sistema operacional Windows 10 Home. Os resultados
sdo reportados na Tabela V.

TABELA V: Tempo de processamento (em segundos) para geracdo de um
vetor de carateristicas, utilizando os descritores OCLMP e OCLBP.

Descritor Tempo (s)
OCLMP (8,1) 0,1184
OCLMP (16,2) 0,1522
OCLBP (8,1) 0,1081
OCLBP (16,2) 0,4859

Por meio dos resultados apresentados na Tabela V podemos
verificar que para a vizinhanca (8,1) os dois descritores
apresentaram tempo de execucdo muito proximo, perto de 0,11
segundos. No entanto, para a configuragdo (16,2), a qual
apresenta os melhores resultados de acuricia, o descritor
OCLMP se mostrou em média 3 vezes mais rdpido que o
OCLBP, gerando um vetor de caracteristicas em
aproximadamente 0,15 segundos, enquanto o OCLBP precisa de
0,48 segundos para realizar a mesma tarefa.

VI. CONCLUSOES

Neste artigo, foi apresentado um novo descritor de texturas
coloridas baseado na metodologia Local Mapped Pattern
(LMP) e utlizando cores oponentes, nomeado Opponent Color
Local Mapped Pattern (OCLMP). O descritor proposto foi
avaliado em dois bancos de texturas coloridas disponiveis na
internet, Outex e USPTex, sendo os resultados comparados com
os resultados obtidos pelo descritor Opponent Color Local
Binary Pattern (OCLBP). O desempenho do descritor proposto
(OCLMP) foi superior ao do OCLBP nos dois bancos de
texturas coloridas utilizados, com ganho de acuricia superior a
3% comparativamente ao OCLBP, e apresentando menor
tempo de processamento, sendo até 3 vezes mais rapido.
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