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Abstract— This paper presents a new color texture descriptor 
combining the Local Mapped Pattern (LMP) and Opponent 
Colors methodologies. Considering the RGB space, the new 
descriptor named Opponent Color Local Mapped Pattern 
(OCLMP) considers the differences between the central pixel -
taken from a color channel - and its neighbors - taken from the 
opponent channel. The OCLMP descriptor is evaluated over two 
color texture databases, Outex and USPTex, and compared with 
Opponent Color Local Binary Pattern descriptor (OCLBP), which 
also considers opponent colors in its approach. The experimental 
results have shown that OCLMP performs better than OCLBP 
reporting better accuracy and lower processing time. 
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I.  INTRODUÇÃO 

A classificação de texturas é uma importante tarefa na área 
de visão computacional. O uso da cor na tentativa de melhorar a 
acurácia dos métodos de classificação tem sido comprovado em 
muitos trabalhos, como o estudo feito por Bianconi et al. [1]. 

Dentre os desafios de se usar a “cor da textura” ou textura 
colorida, estão a forma como ela é extraída e o espaço de cores 
considerado. Jain e Healey [2] introduziram a representação de 
texturas coloridas utilizando cores oponentes, processo que é 
baseado no sistema visual humano. Eles propõem a extração de 
características de uma textura colorida utilizando pares de cores 
oponentes dentro de um espaço de cores, juntamente com 
características unicromáticas, ou seja, de um único canal de cor. 
Essas características são computadas a partir das saídas de um 
filtro de Gabor, combinando informações de diferentes bandas 
espectrais em diferentes escalas. 

 Maenpaa e Pietikainen [3] propuseram o descritor Opponent 
Color Local Binary Pattern (OCLBP). O OCLBP utiliza a 
representação de cores oponentes proposta em [2]  aplicada ao 
descritor de texturas Local Binary Pattern (LBP) e, segundo os 
resultados reportados, apresenta melhor desempenho que o 
descritor baseado nos filtros de Gabor. 

 Em 2012, Vieira et al. [4], introduziram um novo descritor 
baseado em números fuzzy, que posteriormente evoluiu para o 

Local Mapped Pattern (LMP) [5]. Este novo descritor mapeia os 
padrões locais de uma textura para os bins de um histograma 
utilizando uma função de mapeamento que pode ser modificada 
de acordo com a aplicação. Os autores ainda mostram que o 
LMP é uma generalização do LBP, e que este último pode ser 
obtido modificando-se alguns parâmetros do primeiro. 

 Motivado pelo alto desempenho do LMP em diversas 
aplicações [4-8] propomos, neste trabalho, a investigação da sua 
utilização na classificação de texturas coloridas,  juntamente 
com a teoria de cores oponentes proposta por Jain e Healey [2], 
introduzindo o descritor Opponent Color Local Mapped Pattern 
(OCLMP).  

 Este artigo está estruturado em seis seções. Nesta seção I 
foram apresentadas as justificativas e a motivação para 
classificação de texturas coloridas. A seção II resume o método 
base para o descritor OCLMP, o qual é proposto neste trabalho 
na seção III.  O método e o material utilizado são descritos na 
seção IV, sendo os resultados obtidos discutidos na seção V. 
Finalmente, a seção VI conclui o trabalho.  

 

II. LOCAL MAPPED PATTERN 

O descriptor Local Mapped Pattern (LMP) utiliza uma 
função de mapeamento para construir um histograma que 
representa as frequências dos padrões locais contidos em uma 
determinada imagem (Fig. 1). Estes padrões são baseados nas 
diferenças dos valores entre o pixel central e seus vizinhos.  

Figura 1: Padrão Local 3x3. 
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Considerando-se uma vizinhança ݒ = � × � de uma 
textura como sendo um padrão local, este pode ser mapeado para 
um bin ℎ௕ de um histograma a partir da Equação (1) 

      ℎ௕ = �݊ݑ݋� ቆ∑ ௙���ሺ�ሻ�−భ�=భ∑ �ሺ�ሻ�−భ�=భ  ሺܤ − ͳሻቇ             (1) 

em que ݂ é a função de mapeamento aplicada a diferença entre 
cada vizinho ݃�  e o pixel central ݃௖, � é uma matriz de pesos 
pré-definida e B é o número de bins do histograma. 

 A matriz de pesos, função de mapeamento e número de bins 
do histograma são parâmetros a serem definidos de acordo com 
a aplicação pretendida. Para a classificação de texturas, os 
autores sugerem B=256 e uma curva sigmóide como função de 
mapeamento (Eq. (2)) 

௚݂ =  ଵଵ+௘−[��−�೎ሻ]�                        (2) 

 

na qual,  [݃� − ݃௖] são as diferenças entre o valor do pixel 
central ݃ ௖ e seus vizinhos ݃ � (� = ͳ, ⋯ , ݒ − ͳ) e � é o parâmetro 
que determina a inclinação da curva. A Equação (3) mostra a 
matriz de pesos proposta.  

 � = [ͳ ͳ ͳͳ ͳ ͳͳ ͳ ͳ]                               (3) 

 

 A metodologia pode ainda ser estendida para vizinhanças 
circulares [6]. Dado um par ordenado (P,R) de inteiros positivos, 
onde P é o número de pontos amostrados e R é o raio, uma região 
simétrica circular pode ser definida como na Figura 2.                                     

 

                                                                                    

Figura 2: Vizinhança circular simétrica com P=8 e R=1. 

 

As coordenadas de cada pixel vizinho ݃௣ (݌ = ͳ, ⋯ , � −ͳ), são dadas por ሺ−ܴ sinሺʹ�݌ �⁄ ሻ, ܴ cosሺʹ�݌ �⁄ ሻሻ em 
relação ao pixel central ݃௖ localizado nas coordenadas (0,0). Os 
valores dos vizinhos que não estão localizados no centro do 
pixel são estimados por interpolação. Nessa nova versão 
denominada Sampled-Local Mapped Pattern (S-LMP), a matriz 
de pesos não é considerada a fim de obter invariância a rotação. 
Os padrões locais são então mapeados para um bin  ℎ௕ do 

histograma utilizando a Eq. (4) e a função de mapeamento 
aprensentada na Eq. (5). 

 
  ℎ௕ = �݊ݑ݋� (∑ ௙����=భ� ሺܤ − ͳሻ)                (4) 

 ௚݂� = ଵଵ+௘−[��−�೎]�                             (5) 

 

 

III. OPPONENT COLOR LOCAL MAPPED PATTERN                                   

A representação de texturas coloridas utilizando cores 
oponentes considera os pares oponentes dentro de um espaço de 
cores. Para o espaço de cores RGB, por exemplo, temos os pares 
R-G, R-B, G-R, G-B, B-R e B-G. Como destacado em [3], os 
pares simétricos como R-B e B-R por exemplo, são altamente 
redundantes e por isso optamos por utilizar somente 3 pares de 
cores oponentes R-G, R-B e G-B. 

O descritor OCLMP combina a metodologia LMP com a 
teoria de cores oponentes. Para isso, considera-se o pixel central 
em um espaço de cores, e seus vizinhos são extraídos da cor 
oponente, como mostrado na Figura 3. O descritor S-LMP é 
aplicado a cada par de cores oponentes e também a cada canal 
de cor separadamente, obtendo-se assim, seis vetores de 
características que são então concatenados em um único vetor 
(Fig. 4).                                                                                                          

 

                    

Figura 3: Pares de cores oponentes e processo de seleção dos 
pixels para um descritor de configuração (P,R) = (8,1). 

 

IV. MATERIAIS E MÉTODO 

A avaliação do método foi realizada em duas bases de dados: 
Outex [9] e USPTex [10]. A base de dados Outex é 
disponibilizada pela Universidade de Oulu e possui várias suítes 
de testes previamente organizadas de acordo com a aplicação. 
Neste trabalho foi utilizada a suíte Outex 13 [3], que possui 68 
texturas (Fig. 5), de tamanho 746 x 538 pixels, adquiridas sob  
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uma luz CIE A incandescente 2856 K. Cada textura é 
subdividida em 20 amostras de 128 x 128 pixels, gerando 1360 
amostras. Metade das amostras é utilizada como conjunto de 
teste e a outra metade como conjunto de treinamento (conjunto 
de busca). Essa divisão é realizada seguindo um padrão de 
tabuleiro de xadrez, em que a primeira amostra do canto superior 
esquerdo pertence ao conjunto de treinamento. 

 

Figura 5: As 68 texturas da suíte Outex 13.  

A base de texturas USPTex contém 191 texturas adquiridas 
utilizando uma câmera digital com 512×384 pixels de resolução. 
As texturas incluem feijões, arroz, tecido, vegetação, nuvens, 
etc. (Fig. 6). Neste experimento foram utilizadas 12 amostras de 

128 x 128 pixels para uma das 191 classes, totalizando 2292 
amostras. Metade das amostras foram utilizadas como conjunto 
de teste e metade como conjunto de treinamento. As amostras 
foram separadas da mesma forma que na base Outex, seguindo 
um padrão de tabuleiro de xadrez. 

 

Figura 6: Exemplos de texturas da base de dados UPSTex 

 O descritor é aplicado a cada amostra dos conjuntos de teste 
e de treinamento, gerando um vetor de características que 

 

Figura 4: Processo de geração do vetor de características do descritor OCLMP. 
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representa cada imagem. Cada vetor de características do 
conjunto de teste é comparado a todos os vetores do conjunto de 
treinamento utilizando-se uma medida de distância.  

A fim de avaliar como o descritor se comporta quando 
diferentes medidas de distâncias são utilizadas, seu desempenho 
foi analisado mediante duas métricas: distância L1 (Eq. (6)) e 
distância chi-quadrado (Eq.(7)), nas quais, S refere-se à amostra 
de busca do conjunto de testes e M refere-se à amostra do 
conjunto de treinamento, sendo B o número de bins. 

 �ሺܵ, �ሻ =  ∑ |ܵ௕ − �௕|�௕=ଵ                      (6) 

 �ሺܵ, �ሻ =  ଵଶ ∑ ሺ�್−��ሻమሺ�್+�್ሻ�௕=ଵ                   (7) 

 

Para a classificação utilizou-se o classificador k-NN (k 
vizinhos mais próximos) com k=1, ou seja, a classe da amostra 
do conjunto de treinamento que possui a menor distância da 
amostra de teste é considerada a predição do classificador.  

O desempenho da classificação é reportado através da 
acurácia, ou taxa de acerto (Eq. (9)). 

ܣ  = ௡ú௠௘௥௢ ௗ௘ ௔௠௢௦௧௥௔௦ ௖௟௔௦௦�௙�௖௔ௗ௔௦ ௖௢௥௥௘௧௔௠௘௡௧௘௡ú௠௘௥௢ ௗ௘ ௔௠௢௦௧௥௔௦ ௗ௘ ௧௘௦௧௘     (9) 

 

 

V.  RESULTADOS E DISCUSSÕES 

O descritor OCLMP possui parâmetros que devem ser 
definidos de acordo com a aplicação, como número de bins do 
histograma, função de mapeamento e configuração de raio e 
número de vizinhos. Pra esta aplicação os histogramas foram 
construídos com 256 bins (B=256), e a função sigmóide foi 
utilizada no mapeamento.  

Conforme apresentado na Eq. (5), a função sigmóide possui 
o parâmetro � que determina sua inclinação. Para otimização 
deste parâmetro foi aplicado um algoritmo genético da Toolbox 
de otimização do Matlab (versão R2014a). A função objetivo a 
ser maximizada é a acurácia, e as imagens do conjunto de 
treinamento foram utilizadas para realizar a otimização. O 
intervalo de possíveis valores para a inclinação da curva é ]Ͳ, ∞[. No entanto, a fim de tornar a otimização mais rápida e, 
baseando-se em testes realizados previamente, optou-se por 
restringir este intervalo para ]Ͳ, 5]. 

Após testes preliminares, os parâmetros de vizinhança e raio 
(P,R) que obtiveram os melhores desempenhos foram (8,1) e 
(16,2). Sendo assim, todos os experimentos foram realizados 
considerando estas duas configurações.  

A Tabela I apresenta os parâmetros otimizados por meio de 
algoritmo genético para cada caso considerando-se a base de 
dados Outex. Na Tabela II são apresentados os parâmetros 
otimizados para a base de dados USPTex. Os resultados obtidos 

(acurácia) são apresentados nas Tabelas III e IV, as quais 
apresentam ainda uma comparação entre o desempenho dos 
descritores OCLBP [3] e OCLMP. 

 

TABELA I: Valores dos parâmetros � otimizados para o banco de dados 
Outex para cada configuração de vizinhança e raio (P,R) em cada métrica 
utilizada. 

Distância Canais 
(P,R) = (8,1) (P,R) = (16,2) � � 

L1 

R -G 2,4918 2,0196 

R - B 2,3554 0,5644 

G - B 2,0229 0,9495 

R 0,1094 0,4221 

G 0,0743 0,0394 

B 0,3347 0,2095 

Chi-quadrado 

R -G 1,4755 1,8357 

R - B 1,4567 2,1820 

G - B 1,6712 0,0177 

R 0,3440 1,1866 

G 1,0874 1,4281 

B 0,4051 0,3688 

 

 

TABELA II: Valores dos parâmetros � otimizados para o banco de dados 
USPTex para cada configuração de vizinhança e raio (P,R) em cada métrica 
utilizada. 

Distância Canais 
(P,R) = (8,1) (P,R) = (16,2) � � 

L1 

R -G 4,7392 4,3220 

R - B 0,8520 0,3417 

G - B 2,5253 1,4337 

R 0,0743 0,0532 

G 0,1488 4,6046 

B 0,2685 0,0424 

Chi-quadrado 

R -G 0,3108 3,1781 

R - B 0,7493 0,4475 

G - B 1,1202 0,2973 

R 0,7326 0,3307 

G 0,4336 2,4226 

B 0,4454 0,2503 
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TABELA III: Acurácia (%) obtida pelos descritores OCLMP e OCLBP no 
banco de dados Outex. 

Distância Descritor Acurácia 

L1 

OCLMP (8,1) 94,26 

OCLMP (16,2) 94,12 

OCLBP (8,1) 91,18 

OCLBP (16,2) 92,94 

Chi-quadrado 

OCLMP (8,1) 92,50 

OCLMP (16,2) 93,68 

OCLBP (8,1) 91,62 

OCLBP (16,2) 92,35 

 

 

TABELA IV: Acurácia obtida pelos descritores OCLMP e OCLBP no 
banco de dados USPTex. 

Distância Descritor Acurácia 

L1 

OCLMP (8,1) 91,97 

OCLMP (16,2) 93,80 

OCLBP (8,1) 91,62 

OCLBP (16,2) 91,56 

Chi-quadrado 

OCLMP (8,1) 91,27 

OCLMP (16,2) 93,80 

OCLBP (8,1) 91,97 

OCLBP (16,2) 93,46 

 

A partir dos resultados reportados na Tabela III, é possível 
verificar que o descritor OCLMP supera o OCLBP na base de 
dados Outex 13, independente da métrica de distância utilizada 
na avaliação. A vizinhança (8,1) se mostrou melhor para a 
distância L1, e a vizinhança (16,2) obteve melhor resultado com 
a distância chi-quadrado. Para a base de texturas USPTex, de 
acordo com os resultados apresentados na Tabela IV, o OCLMP 
também obteve melhor desempenho que o OCLBP, tanto 
utilizando-se a distância L1, quanto a chi-quadrado. Além disso, 
a vizinhança (16,2) apresentou melhores resultados, 
independente da medida de distância utilizada. De modo geral, 
tanto o OCLBP, quanto o OCLMP apresentam melhores 
resultados utilizando a vizinhança (16,2), o que pode ser 
explicado pelo fato dessa configuração utilizar mais pixels na 
composição do valor de representação do padrão local. 

Outra análise realizada foi o tempo de execução. Para isso 
calculou-se o tempo que cada descritor necessita para construir 
o vetor de características relativo a uma amostra do banco de 
dados USPTex. O computador utilizado para o teste possui 
processador Intel® Core™ i7-6560U CPU 2,2GHz, 8GB de 
RAM e sistema operacional Windows 10 Home. Os resultados 
são reportados na Tabela V. 

TABELA V: Tempo de processamento (em segundos) para geração de um 
vetor de caraterísticas, utilizando os descritores OCLMP e OCLBP. 

Descritor Tempo (s) 

OCLMP (8,1) 0,1184 

OCLMP (16,2) 0,1522 

OCLBP (8,1) 0,1081 

OCLBP (16,2) 0,4859 

 

Por meio dos resultados apresentados na Tabela V podemos 
verificar que para a vizinhança (8,1) os dois descritores 
apresentaram tempo de execução muito próximo, perto de 0,11 
segundos. No entanto, para a configuração (16,2), a qual 
apresenta os melhores resultados de acurácia, o descritor 
OCLMP se mostrou em média 3 vezes mais rápido que o 
OCLBP, gerando um vetor de características em 
aproximadamente 0,15 segundos, enquanto o OCLBP precisa de 
0,48 segundos para realizar a mesma tarefa.  

 

VI. CONCLUSÕES 

Neste artigo, foi apresentado um novo descritor de texturas 
coloridas baseado na metodologia Local Mapped Pattern 
(LMP) e utlizando cores oponentes, nomeado Opponent Color 
Local Mapped Pattern (OCLMP). O descritor proposto foi 
avaliado em dois bancos de texturas coloridas disponíveis na 
internet, Outex e USPTex, sendo os resultados comparados com 
os resultados obtidos pelo descritor Opponent Color Local 
Binary Pattern (OCLBP). O desempenho do descritor proposto 
(OCLMP) foi superior ao do OCLBP nos dois bancos de 
texturas coloridas utilizados, com ganho de acurácia superior a 
3% comparativamente ao OCLBP, e apresentando menor 
tempo de processamento, sendo até 3 vezes mais rápido. 
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