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Abstract. We study the orbital stability of standing waves with discontinuous bump-like
profile for the nonlinear Schrödinger model with the repulsive δ′-interaction on the line.
We consider the model with power non-linearity. In particular, it is showed that such
standing waves are unstable in the energy space under some restrictions for parameters.
The use of extension theory of symmetric operators by Krein-von Neumann is fundamental
for estimating the Morse index of self-adjoint operators associated with our stability study.
Moreover, for this purpose we use Sturm oscillation results and analytic perturbation theory.
The Perron-Frobenius property for the repulsive δ′-interaction is established.

The arguments presented in this investigation has prospects for the study of the stability
of stationary waves solutions of other nonlinear evolution equations with point interactions.
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47A55; Secondary 34L40, 47A75, 47B25, 47E05.
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1. Introduction

In the last years the study of nonlinear dispersive models with point interactions has at-
tracted a lot of attention of mathematicians and physicists. In particular, the prototype
of framework for description of these phenomena have been on all the line and more re-
cently on star graphs. Such models appear in nonlinear optics, Bose Einstein condensates,
Wannier-Stark effect, and quantum graphs (or networks) (see [7, 22, 25, 26, 36, 56] and ref-
erence therein). The prototype equation for description of these models on the line is the
nonlinear Schrödinger equation

iut(x, t)−Au(x, t) + F (u(x, t)) = 0, x 6= 0, (1.1)

where (x, t) ∈ R+ × R, F (u) represents the nonlinearity, and A is a self-adjoint interaction
operator with particular boundary conditions at x = 0. The most studied recently are the
following two specific operators:
• Schrödinger operator A = Aδ,−α with the δ-interaction of intensity −α defined by

Aδ,−αv(x) = −v′′(x), x 6= 0,

D(Aδ,−α) =
{
v ∈ H1(R) ∩H2(R− {0}) : v′(0+)− v′(0−) = −αv(0)

}
.
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2 J. ANGULO AND N. GOLOSHCHAPOVA

The operator Aδ,−α is formally defined by the expression Aδ,−α = − d2

dx2
− αδ(x), where δ(x)

is the Dirac delta distribution centered at x = 0. In this case, equation (1.1) is called the
NLS-δ model.
• Schrödinger operator A = Aδ′,−β with δ′-interaction of intensity −β defined by

Aδ′,−βv(x) = −v′′(x), x 6= 0,

Dβ := D(Aδ′,−β) = {H2(R− {0}) : v(0+)− v(0−) = −βv′(0), v′(0+) = v′(0−)}.

We recall that Aδ′,−β is formally defined by the expression Aδ′,−β = − d2

dx2
− β〈·, δ′〉δ′(x),

and that the elements in Dβ do not need to be continuous, however they have a continuous
derivative at x = 0. Thus, the function v ∈ Dβ such that v′(0) = 0 obviously belongs to
H2(R). In particular, every even function belonging to Dβ is a H2(R)-function.

The mathematical study of these two point interaction models with nonlinearities F (u) =
|u|p−1u, p > 1, and F (u) = uLog|u|2, has attracted a lot of attention, and currently it is a
very active research area (see [2–6,12–16,19,20,23,28,31–35,37,38,40,44–47,50] and reference
therein). Numerous analytical, numerical and experimental works deal with special solutions
of (1.1). In particular, a big part of them consider so-called standing wave solutions which
preserve the spatial shape and harmonically oscillate in time, namely, solutions of the form

u(x, t) = eiωtϕ(x).

For example, in the case of nonlinearity F (u) = |u|p−1u, we induce that the profile ϕ satisfies
the equation

Aϕ+ ωϕ− |ϕ|p−1ϕ = 0, ϕ ∈ D(A). (1.2)
In this paper we investigate the orbital stability of the standing waves of the NLS-δ′ model

with power nonlinearity
iut −Aδ′,−βu+ |u|p−1u = 0 (1.3)

in the case of β < 0 (repulsive δ′-interaction). One of the main advantages of using delta-
type potentials is the existence of an explicit expression for the profile ϕ in (1.2). This
allows one to prove very specific stability results, the proofs of which are considerably harder
in the case of an effective linear potential term V (x) in (1.1), i.e. for A = −∂2

x − V (x)
(see [21,48,53,54,59,67] and reference therein). We recall that the general NLS model with
external potential

iut + uxx + V (x)u+ F (u) = 0 (1.4)
has been studied theoretically and experimentally in Bose-Einstein condensates (see [27,64,
65] and reference therein). It model also represents a trapping (wave-guiding) structure for
light beams, induced by an inhomogeneity of the local refractive index (see [7, 49, 52, 55,
60, 61, 68, 69] and reference therein). In particular, the δ- and δ′-interaction terms in (1.1)
adequately represent narrow trap which is able to capture broad solitonic beams (see [69]).

For completeness we will briefly describe the main results on the stability of standing waves
for the model (1.1) with the δ- and δ′-interaction. In [37] the authors showed that NLS-δ
equation with power nonlinearity has a unique positive even solution (modulo rotation) for
ω > α2

4
,

ϕω,α(x) =

[
(p+ 1)ω

2
sech2

(
(p− 1)

√
ω

2
|x|+ tanh−1

( α

2
√
ω

))] 1
p−1

, x ∈ R.

For α < 0 the continuous profile ϕω,α has exactly two bumps. In this case the standing
wave eiωtϕω,α is unstable "almost for sure" in H1(R) for any p > 1 (see [31,37,63]). Mention
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NLS WITH δ′-INTERACTION 3

that the classical variational argument (for instance, via the Nehari manifold analysis) is not
applicable for the stability investigation.

Further, as far as we know, the NLS-δ′ model has not been studied in the repulsive case,
namely, for β < 0. From [3, Proposition 5.1] it follows that for β < 0 equation (1.2) has two
types of solutions (odd and asymmetric, see Figures 1 (a)-(b) below)

ϕoddω,β(x) = sign(x)

[
(p+ 1)ω

2
sech2

(
(p− 1)

√
ω

2
(|x|+ y0)

)] 1
p−1

, x 6= 0; 4
β2 < ω, (1.5)

ϕasω,β(x) =





[
(p+1)ω

2
sech2

(
(p−1)

√
ω

2
(x+ y1)

)] 1
p−1
, x > 0;

−
[

(p+1)ω
2

sech2
(

(p−1)
√
ω

2
(x− y2)

)] 1
p−1
, x < 0,

, ω > 4
β2

p+1
p−1

,

where y1 and y2 are negative constants depending on β, p, ω, and satisfying specific relations,
and y0 < 0 in (1.5) is defined by

y0 =
1√

ω(p− 1)
Log

(β√ω + 2

β
√
ω − 2

)
. (1.6)

Figure 1(a).ϕoddω,β for β < 0 Figure 1(b).ϕasω,β for β < 0

For the case β > 0, the profiles in (1.5) are still solutions for (1.2) (y0, y1, y2 are positive
in this case) and they are of tail-type profile (see Figure 3 below). Their stability was
studied in [3] by variational techniques and Grillakis, Shatah and Strauss stability approach
(see [42]). In Section 5 below, via extension theory approach, we improved the stability
results in [3].

The main purpose of this paper is to establish the stability properties of the odd discon-
tinuous bump-like profile defined in (1.5) in the case β < 0. To our knowledge this problem
is quite new. Our approach is based on the classical Sturm-Liouville theory (on the line and
on the half-line) and the extension theory of symmetric operators by Krein-von Neumann,
which provides the key ingredient for estimating the Morse index of specific self-adjoint
Schrödinger operators associated with ϕoddω,β’s profiles. The analytic perturbation theory and
continuation arguments for analytic families of linear operators help us to obtain the precise
values of the Morse indices. Moreover, we use in our analysis the fact that the mentioned
self-adjoint Schrödinger operators satisfy the Perron-Frobenius property in the case of the
repulsive δ′-interaction (see Lemma 6.5).

Our main stability theorem for the odd bump-like ϕoddω,β is the following.

Theorem 1.1. Let A = Aδ′,−β in (1.2), β < 0, and p > 1. Let also ϕoddω,β be defined by (1.5)
for ω > 4

β2 . If ω∗ = 4(p+1)
β2(p−1)

, then the following assertions hold.
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4 J. ANGULO AND N. GOLOSHCHAPOVA

1) Let p ∈ [5,+∞). Then for all ω, the standing wave eiωtϕoddω,β is linearly unstable (also
orbitally unstable) in H1(R− {0}).

2) Let p ∈ (1, 3]. Then,
a) for p ∈ (1, 2] and ω < ω∗, the standing wave eiωtϕoddω,β is linearly unstable in

H1(R− {0});
b) for p ∈ (2, 3] and ω < ω∗, the standing wave eiωtϕoddω,β is linearly unstable (also

orbitally unstable) in H1(R− {0});
c) for ω = ω∗, the standing wave eiωtϕoddω,β is orbitally stable in H1

odd(R− {0}).
Here H1

odd(R− {0}) denotes the subspace of odd functions in H1(R− {0}).
The case p ∈ (3, 5) is studied in Remark 4.3-a) and it is based in numerical simulations.

The nonlinear instability property of the standing wave eiωtϕodd
ω,β established in Theorem 1.1,

it is deduced of the spectral instability property of this profile (see Remark 2.4 below). The
stability properties of the discontinuous non-symmetric bump-like profiles ϕasω,β in (1.5) will
be the subject of an upcoming study of us.

Lastly, our method have allowed us to establish the first results of the orbital (in)stability
of the Gaussian-type standing waves u(x, t) = eiωtψω,γ with discontinuous bump-like profile

ψω,γ(x) = sign(x)e
ω+1
2 e−

1
2

(|x|+ 2
γ

)2 , x 6= 0, (1.7)

with ω ∈ R and γ < 0, for the nonlinear Schrödinger equation with logarithmic nonlinearity
and the δ′-interaction

iut −Aδ′,−γu+ uLog|u|2 = 0. (1.8)
This study is currently being written.

Notation

Let A be a densely defined closed symmetric operator on a Hilbert space H with do-
main D(A), and let A∗ be its adjoint. We denote deficiency subspaces of A by N+(A) :=
Ker(A∗ − i) and N−(A) := Ker(A∗ + i). The deficiency indices of A are denoted by
n±(A) := dim(N±(A)). The number of negative eigenvalues counting multiplicities (Morse
index) is denoted by n(A). The spectrum (resp. point spectrum) of A is denoted by σ(A)
(resp. σp(A)). The resolvent set of A is denoted by ρ(A). By dim(Ran(A)) we denote the
dimension of the range of the operator A given by Ran(A) = {Ax : x ∈ D(A)}.

Let I be interval on the real line, by ‖ · ‖p we denote the norm in Lp(I). In particular,
‖ · ‖ denotes the norm in L2(I), and 〈·, ·〉 denotes the scalar product in L2(I). The Sobolev
spaces are denoted by Hk(I), k ∈ N.

2. Stability analysis framework for NLS-δ′ equation

Crucial role in the stability analysis is played by the symmetries of the NLS equation (1.1)
with point interactions. The basic symmetry associated to the mentioned equation with the
nonlinearity F satisfying F (eiθu) = eiθF (u) is phase-invariance (in particular, translation
invariance does not hold due to the defect). Thus, it is reasonable to define orbital stability
as follows.

Definition 2.1. The standing wave u(x, t) = eiωtϕ(x) is said to be orbitally stable in a
Hilbert space X by the flow of equation (1.1) if for any ε > 0 there exists η > 0 with the
following property: if u0 ∈ X satisfies ‖u0 − ϕ‖X < η, then the solution u(t) of (1.1) with
u(0) = u0 exists for any t ∈ R and
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NLS WITH δ′-INTERACTION 5

sup
t∈R

inf
θ∈R
‖u(t)− eiθϕ‖X < ε.

Otherwise, the standing wave u(x, t) = eiωtϕ(x) is said to be orbitally unstable in X.

In our analysis for the δ′-interaction models the energy space X in Definition 2.1 will
coincide with one of the spaces H1(R− {0}), H1

odd(R− {0}).
Investigation of the orbital stability by Grillakis, Shatah and Strauss approach (see [41,42])

requires well-posedness of the associated initial value problem to (1.3). A part of the following
result was proved in [3],

Theorem 2.2. Let p > 1 and β 6= 0. Then equation (1.3) is locally well-posed in H1(R −
{0}), namely, for any u0 ∈ H1(R − {0}) there exists T = T (‖u0‖H1(R−{0})) > 0 such that
equation (1.3) has a unique solution u ∈ C([−T, T ];H1(R− {0})) satisfying u(0) = u0. For
each T0 ∈ (0, T ) the mapping data-solution

ϕ ∈ Bδ(u0) ⊂ H1(R− {0})→ u ∈ C([−T0, T0];H1(R− {0})), u(0) = ϕ

is continuous for some δ > 0 small. In particular, for p > 2 this mapping is at least of class
C2. Moreover, if an initial data u0 is odd, then the solution u(t) is also odd.

The equation (1.3) has the following conservation laws (of energy and charge)

E(u) = E(u0), Q(u) = 1
2
‖u‖2 = 1

2
‖u0‖2,

where the energy is defined by

E(u) = 1
2
‖u′‖2 − 1

p+1
‖u‖p+1

p+1 − 1
2β
|u(0+)− u(0−)|2.

In particular, for 1 < p < 5 the solutions to (1.3) are globally defined in time.

Proof. The local well-posedness result in H1(R−{0}) follows from standard arguments of the
Banach fixed point theorem and it was proved in [3]. The C2-regularity of the mapping data-
solution is not so standard. By convenience of the reader we give a sketch of the prove for the
case β < 0. Consider the mapping Ju0 : C([−T, T ];H1(R−{0})) −→ C([−T, T ];H1(R−{0}))
given by

Ju0 [u](t) = e−iAβu0 + i

∫ t

0

e−i(t−s)Aβ |u(s)|p−1u(s)ds,

with Aβ ≡ Aδ′,−β and e−itAβ being the unitary group associated to the linear equation

iut = Aβ ≡ −uxx − β〈δ′, ·〉δ′(x)u. (2.1)

One needs to show that the mapping Ju0 is well-defined. Using the one-dimensional Gagliardo-
Nirenberg inequality, the relation |(|f |p−1f)′| ≤ C0|f |p−1|f ′| and Hölder’s inequality, we ob-
tain for u ∈ H1(R− {0})

|||u|p−1u||H1(R−{0}) ≤ C1||u||pH1(R−{0}). (2.2)

Moreover, using (2.2) and the L2-unitarity of e−itAβ , we get

||Ju0 [u](t)||H1(R−{0}) ≤ C2||u0||H1(R−{0}) + C3T sup
s∈[0,T ]

||u(s)||pH1(R−{0}),

where the positive constants C2, C3 do not depend on u0. Therefore Ju0 [u](t) ∈ H1(R−{0}).
The continuity and contraction property of Ju0 are proved in a standard way. Therefore,
we obtain the existence of a unique solution to the Cauchy problem associated to (1.3) on
H1(R− {0}).
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6 J. ANGULO AND N. GOLOSHCHAPOVA

The fact that the solution preserves oddness follows from the particular form of the kernel
Kβ associated to e−itAβ (in other words, the fundamental solution for (2.1)). In the case
β < 0, Kβ is defined by (see [9])

Kβ(x, y; t) = K(x− y; t) + sign(xy)K(|x|+ |y|; t)− 2

β

∫ ∞

0

sign(xy)e
2
β
sK(s+ |x|+ |y|; t)ds,

where K(·; t) is the fundamental solution to the classical linear Schrödinger equation iut =
−uxx defined by

K(x; t) =
e−x

2/4it

(4iπt)1/2
, t > 0.

Next, we recall that the argument based on the contraction mapping principle above has
the advantage that if F (u, u) = |u|p−1u has a specific regularity, then it is inherited by
the mapping data-solution. Indeed, following the ideas in [14], we consider for (v0, v) ∈
B(u0; ε)× C([−T, T ];H1(R− {0})) the mapping

Γ(v0, v)(t) = v(t)− Jv0 [v](t), t ∈ [−T, T ].

Then Γ(u0, u)(t) = 0 for all t ∈ [−T, T ]. For p− 1 being an even integer, F (u, u) is smooth,
and therefore Γ is smooth. Hence, using the arguments applied for obtaining the local
well-posedness in H1(R − {0}) above, we can show that the operator ∂vΓ(u0, u) is one-to-
one and onto. Thus, by the Implicit Function Theorem there exists a smooth mapping
Λ : B(u0; δ) → C([−T, T ];H1(R − {0})) such that Γ(v0,Λ(v0)) = 0 for all v0 ∈ B(u0; δ).
This argument establishes the smoothness property of the mapping data-solution associated
to equation (1.3) when p− 1 is an even integer.

If p− 1 is not an even integer and p > 2, then F (u, u) is C [p]-function, and consequently
the mapping data-solution is of class C [p] (see [58, Remark 5.7]). Therefore, for p > 2 we
conclude that the mapping data-solution is at least of class C2. This finishes the proof. �

To formulate the stability criterium for the NLS-δ′ equation in the framework of the
Grillakis, Shatah and Strauss theory, we define the following two self-adjoint linear operators




Lβ1,ω = − d2

dx2
+ ω − p|ϕoddω,β|p−1, Lβ2,ω = − d2

dx2
+ ω − |ϕoddω,β|p−1,

dom(Lβj,ω) = Dβ, j ∈ {1, 2}.
(2.3)

The operators Lβ1,ω and Lβ2,ω are associated with the action functional Sβω : H1(R−{0})→ R
defined by

Sβω(ψ) = 1
2
‖ψ′‖2 + ω

2
‖ψ‖2 − 1

p+1
‖ψ‖p+1

p+1 − 1
2β
|ψ(0+)− ψ(0−)|2

in the sense of bilinear forms. Namely, for ϕω,β = ϕoddω,β we have

(Sβω)′′(ϕω,β)(u, v) = 〈Lβ1,ωu1, v1〉+ 〈Lβ2,ωu2, v2〉, (2.4)

where u = u1 + iu2 and v = v1 + iv2. The functions uj, vj, j ∈ {1, 2}, are real valued. With
(Sβω)′′(ϕω,β) we associate the formally self-adjoint operator Hω ≡ (Sβω)′′(ϕω,β),

Hω =

(
Lβ1,ω 0

0 Lβ2,ω

)
. (2.5)

Define the number p(ω0) by

p(ω0) =

{
1, if ∂ω‖ϕω,β‖2 > 0 at ω = ω0,
0, if ∂ω‖ϕω,β‖2 < 0 at ω = ω0,

Jo
ur

na
l P

re
-p

ro
of

Journal Pre-proof



NLS WITH δ′-INTERACTION 7

By Stability/Instability Theorem in [42] we can state.

Theorem 2.3. Suppose that Ker(Lβ2,ω) = [ϕω,β], Ker(Lβ1,ω) = {0}, and the rest of the spec-
trum of Lβ2,ω and Lβ1,ω is bounded away from zero. Then the following assertion hold.

1) If n(Hω) = p(ω), the standing wave eiωtϕω,β is orbitally stable in H1(R− {0}).
2) If n(Hω)−p(ω) is odd, the standing wave eiωtϕω,β is orbitally unstable in H1(R−{0}).

The same result holds in the space H1
odd(R− {0}).

Remark 2.4. We note that it is well known that the condition n(Hω) − p(ω) odd in Theo-
rem 2.3 implies the spectral instability of eiωtϕoddω,β, namely, that the spectrum of the linear
operator

G =

(
0 Lβ2,ω

−Lβ1,ω 0

)
, (2.6)

associated to the linearization of the time-dependent NLS-δ′ model around ϕoddω,β, contains an
eigenvalue with positive real part. To conclude orbital instability due to [42], it is sufficient
to show estimate (6.2) in [42] for the semigroup etG generated by G. In general, it is a
nontrivial issue to be verified in the case of Schrödinger operators with point interactions
(see Ohta [63] and Georgiev&Ohta [39]). However, we conjecture that for the operator G
we have the spectral mapping theorem (that is, σ(eG) = eσ(G)), which would imply estimate
(6.2) in [42]. On the other hand, if we use Theorem 2.2, Remark 2 in Section 2 of [43] and the
property that the mapping data-solution associated to equation (1.3) is of class C2 around
ϕoddω,β for p > 2, we can obtain that the spectral instability results imply nonlinear instability
in Theorem 1.1 (see Angulo&Natali [17] and Angulo&Neves&Lopes [18] where this kind of
strategy has been used for obtaining nonlinear instability results).

In the following sections we study spectral properties of Lβ2,ω and Lβ1,ω required by the
above theorem.

3. Morse index of Hω

The main result of this section is the following.

Theorem 3.1. Let β < 0 and ω > 4
β2 . Let also ω∗ = 4(p+1)

β2(p−1)
and Hω be defined in (2.5).

Then we have:
1) if ω = ω∗, then n(Hω) = 3, and n(Hω|odd) = 1;
2) if ω < ω∗, then n(Hω) = 4, and n(Hω|odd) = 1.

Here Hω|odd denotes the restriction of the operator Hω to the subspace of odd functions in
Dβ.

The proof of Theorem 3.1 is given at the end of this section. First we will estimate
the Morse index of the operators Lβ1,ω and Lβ2,ω using Sturm-Liouville theory, the Perron-
Frobenius property, the extension theory of symmetric operators, and the theory of analytic
perturbations.

3.1. Spectral analysis for Lβ1,ω. In this subsection we study the spectral properties of the
operator Lβ1,ω defined in (2.3). For notational simplicity, throughout the paper we will write
ϕω,β instead of ϕoddω,β.
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8 J. ANGULO AND N. GOLOSHCHAPOVA

Below we establish some properties of the profile ϕω,β for β < 0. Initially, we have that
ϕ′′ω,β(0+) = −ϕ′′ω,β(0−), and ϕ′′ω,β(0+) = 0 if and only if ω = 4(p+1)

β2(p−1)
. Indeed, from (1.5) we

obtain

ϕ′′ω,β(0+) = 0⇔ 0 = ω − (p+ 1)ω

2
sech2

((p− 1)
√
ω

2
y0

)

=
(1− p)ω

2
+

(p+ 1)ω

2
tanh2

(p− 1

2

√
ωy0

)
.

Next, using the definition of y0 in (1.6) and the relation

arctanh(x) =
1

2
Log

(1 + x

1− x
)
, |x| < 1,

we obtain tanh
(
p−1

2

√
ωy0

)
= 2

β
√
ω
, and thus

ϕ′′ω,β(0+) = 0⇔ 0 =
(1− p)ω

2
+

(p+ 1)ω

2

4

ωβ2
⇔ ω =

4(p+ 1)

β2(p− 1)
.

Denoting ω∗ = 4(p+1)
β2(p−1)

, from the above analysis we get

ϕ′′ω,β(0+) > 0, for ω < ω∗, and ϕ′′ω,β(0+) < 0, for ω > ω∗. (3.1)

In particular, for ω = ω∗ we have the crucial properties

ϕ′ω∗,β ∈ Dβ, and ϕ′ω∗,β ∈ H2(R),

while ϕ′ω,β /∈ Dβ for every ω 6= ω∗ (see Proposition 3.2 below).
Next, we consider the following domain (where the one-dimensional Laplacian operator

on the positive half-line remains self-adjoint) Wθ for θ ∈ R

Wθ = {v ∈ H2(0,+∞) : v(0+) = θv′(0+)}. (3.2)

For any ω we have ϕω,β|(0,+∞) ∈ W−β
2
. Now, we determine θ0 ∈ R such that ϕ′ω,β ∈ Wθ0 , for

every ω 6= ω∗, i.e.,

ϕ′ω,β(0+) = θ0ϕ
′′
ω,β(0+)⇔ −

√
ω

θ0

2

β
√
ω

=
(1− p)ω

2
+

(p+ 1)ω

2
tanh2

(p− 1

2

√
ωy0

)

=
(1− p)ω

2
+

(p+ 1)ω

2

4

ωβ2
.

(3.3)

Thus, we obtain the relation

θ0 =
−4β

ωβ2(1− p) + 4(p+ 1)
. (3.4)

Therefore, from (3.1) it follows that θ0 < 0 for ω > ω∗, and θ0 > 0 for ω < ω∗.

3.1.1. Kernel of Lβ1,ω. In this subsection we investigate the structure of the kernel of Lβ1,ω.

Proposition 3.2. Let β < 0, ω > 4
β2 , and ϕω,β = ϕoddω,β. Let also ω∗ = 4(p+1)

β2(p−1)
. Then the

following assertions hold:
1) if ω 6= ω∗, then Ker(Lβ1,ω) = {0};
2) if ω = ω∗, then Ker(Lβ1,ω∗) =

[
d
dx
ϕω∗,β

]
.

Proof. Let v ∈ Dβ such that Lβ1,ωv = 0.
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NLS WITH δ′-INTERACTION 9

1) Suppose ω 6= ω∗. Denoting ϕω,β(x) ≡ sign(x)ψ(x) (see (1.5)), we get from Sturm-
Liouville oscillation theory on the half-line (see [24, Chapter II])

v(x) =

{
µψ′(x), x > 0;
−νψ′(x), x < 0, (3.5)

with µ, ν ∈ R. Since v′(0+) = µψ′′(0+) = v′(0−) = −νψ′′(0−) = −νψ′′(0+), and
ψ′′(0+) 6= 0, then µ+ ν = 0. From v(0+)− v(0−) = −βv′(0) and ψ′(0−) = −ψ′(0+)
follows −βµψ′′(0+) = µψ′(0+) + νψ′(0−) = µ(ψ′(0+) − ψ′(0−)) = 2µψ′(0+). Sup-
pose µ 6= 0, then ψ′(0+) = −β

2
ψ′′(0+), which is false due to ω > 4

β2 . Indeed, from
(1.5) we have

ψ′(0+) = −β
2
ψ′′(0+)⇔ 4

β2
=

(1− p)ω
2

+
(p+ 1)ω

2

4

ωβ2
⇔ ω =

4

β2
.

Therefore, µ = ν = 0, and finally v ≡ 0.
2) Suppose ω = ω∗. From (3.5) and ψ′′(0+) = 0 we obtain (µ − ν)ψ′(0+) = 0, conse-

quently µ = ν. Therefore, v = µϕ′ω∗,β.
�

Remark 3.3. Proposition 3.2 (see also Theorem 5.1 below) shows a very peculiar behavior of
NLS models with singular interactions. Indeed, by the breakdown of translation symmetry
for NLS models in (1.1) would expect that the kernel of the self-adjoint Schrödinger operator
Lβ1,ω was always trivial for any admissible phase-parameter ω (such as in the case of a δ-
interaction ( [31])). We note that there are other settings for NLS models where this kernel
behavior can happen. By instance, in the case of the NLS model in (1.4) with F (u) = |u|p−1u,
p > 1, and with an external real-valued, symmetric potential (even in x) V satisfying:
V (x), xV ′(x) ∈ L∞(R), lim|x|→∞ V (x) = 0, and −V having a non-degenerate maxima at
x = 0 we have that the following linearized operator with domain H2(R)

L+ = − d2

dx2
+ E − V (x) + p|ψE|p−1

has zero as a simple eigenvalue for exactly one value E = E∗ of a solution-curve E ∈ I →
ψE ∈ H2(R) of states for (1.4) (see Theorem 1 in Kirr&Kevrekidis&Pelinovsky [53] for more
details).

3.1.2. Morse index of Lβ1,ω∗ for ω∗ = 4(p+1)
β2(p−1)

. In this subsection we obtain an estimate
for the Morse index of Lβ1,ω∗ defined on Dβ. We start with the following result which is a
consequence of the Cauchy uniqueness principle.

Lemma 3.4. Let β < 0 and ω > 4
ωβ2 . Let also L

β
1,ω be defined by (2.3). Suppose that λ is a

simple eigenvalue of Lβ1,ω, then the associated eigenfunction is either even or odd.

Proof. Let v ∈ Dβ − {0} such that Lβ1,ωv = λv. Define ξ(x) = v(−x), for x 6= 0. Then
ξ ∈ Dβ and Lβ1,ωξ = λξ. Thus, by simplicity of λ, there is µ ∈ R such that ξ(x) = µv(x) for
every x 6= 0, hence v(−x) = µv(x). Consider two cases.

1) Suppose v′(0+) 6= 0. Then since −v′(0+) = −v′(0−) = µv′(0+), we have µ = −1,
and therefore v is odd.

2) Suppose v′(0+) = 0. Then v(0+) = v(0−) and v ∈ H2(R). Thus, v(−x) = µv(x)
on all x ∈ R. Hence v(0−) = µv(0+) = µv(0−), and by the Cauchy uniqueness
principle, v(0) 6= 0. Therefore, µ = 1, and consequently v is even.
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10 J. ANGULO AND N. GOLOSHCHAPOVA

�
The following two statements follow from Sturm-Liouville oscillation results on the half-

line (see [24]) and from the Perron-Frobenius property satisfied by the Schrödinger operators
with a δ′-interaction defined in (2.3) for β < 0 (see Lemma 6.5 below).

Lemma 3.5. Let β < 0 and ω∗ = 4(p+1)
β2(p−1)

. Consider the operator Lβ1,ω∗ on the domain (with
Neumann type condition at 0)

S0 = {f ∈ H2(0,+∞) : f ′(0+) = 0}.
Then the Morse index of such operator Lβ1,ω∗ equals one.

Proof. Define φ = d
dx
ϕω∗,β|(0,+∞). Then φ ∈ S0 and Lβ1,ω∗φ(x) = 0 for all x > 0. Moreover,

since φ has exactly one zero on (0,+∞), then λ = 0 is the second simple eigenvalue, and con-
sequently there is a unique negative simple eigenvalue with positive associated eigenfunction.
This finishes the proof. �
Proposition 3.6. Let β < 0 and ω∗ = 4(p+1)

β2(p−1)
. Then the Morse index of the operator Lβ1,ω∗

defined on the domain Dβ satisfies n(Lβ1,ω∗) = 2. Moreover, there are at least two different
negative eigenvalues λ0,ω∗ < λ1,ω∗ < 0, where λ0,ω∗ is the first simple eigenvalue with an
associated positive and even eigenfunction.

Proof. By item 2) in Proposition 3.2, the function ϕ′ω∗ = d
dx
ϕω∗,β belongs to Dβ, and

Lβ1,ω∗ϕ
′
ω∗ = 0. Moreover, since ϕ′′ω∗(0) = 0 then ϕ′ω∗ ∈ H2(R).

Consider the operator Lβ1,ω∗ defined on the domain H2(R), then ϕ′ω∗ ∈ Ker(Lβ1,ω∗). Since
ϕ′ω∗ has two different zeros, there exist exactly two negative simple eigenvalues λ0 < λ1 <
0, besides ψ0,ω∗ ∈ H2(R) being a positive-even eigenfunction corresponding to λ0. The
eigenfunction ψ1 ∈ H2(R) associated with λ1 need to have exactly one zero at x = a.
Next, by Lemma 3.4 (with Dβ substituted by H2(R)), the function ψ1 needs to be odd, and
therefore a = 0.

Below we will analyze if the eigenfunctions ψ′0,ω∗ and/or ψ1 belong to domain Dβ. First,
since ψ1(0) = 0 and ψ′1(0) > 0 (without loss of generality), then ψ1 /∈ Dβ, and thus ψ1 can
not be an eigenfunction for Lβ1,ω∗ defined on Dβ. Further, by ψ0,ω∗(0+) = ψ0,ω∗(0−) and
ψ′0,ω∗(0+) = ψ′0,ω∗(0−) = 0, we can conclude that λ0,ω∗ := λ0 is a negative eigenvalue for
Lβ1,ω∗ acting on Dβ with ψ0,ω∗ ∈ H2(R) being associated positive and even eigenfunction.

Consider the quadratic form Fω∗ : H1(R− {0})→ R associated with Lβ1,ω∗ acting on Dβ

Fω∗(v) =

∫

R
(v′)2 + (ω∗ − p|ϕω∗,β|p−1)v2dx− 1

β
|v(0+)− v(0−)|2.

Using that Fω∗(ψ0,ω∗) = 〈Lβ1,ω∗ψ0,ω∗ , ψ0,ω∗〉 = λ0,ω∗‖ψ0,ω∗‖2 < 0 and

Fω∗(ϕω∗,β) = 〈Lβ1,ω∗ϕω∗,β, ϕω∗,β〉 = (1− p)
∫

R
|ϕω∗,β|p+1dx < 0,

by orthogonality of ψ0,ω∗ and ϕω∗,β, we obtain that Fω∗ is negatively defined on a two-
dimensional subspaceM = [ψ0,ω∗ , ϕω∗,β] ⊂ Dβ. Then the Morse index of Lβ1,ω∗ acting on Dβ

satisfies n(Lβ1,ω∗) = 2.
Finally, since ψ0,ω∗ is positive, we obtain from the Perron-Frobenius property in Lemma

6.5 that λ0,ω∗ is the smallest negative eigenvalue for Lβ1,ω∗ defined on Dβ, and therefore λ0,ω∗

is simple. This finishes the proof. �
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NLS WITH δ′-INTERACTION 11

Remark 3.7. By using Krein&von Neumann extension theory, we can show the estimate
n(Lβ1,ω∗) 5 3 (see Remark 3.14 below). Moreover, via perturbation analysis, we will establish
in Lemma 3.17 that n(Lβ1,ω∗) = 2. In Corollary 3.18 we show that eigenvalue λ1,ω∗ has an
associated odd eigenfunction.

3.1.3. Morse index of Lβ1,ω for ω > ω∗ = 4(p+1)
β2(p−1)

. In this subsection we show that the
Morse index of Lβ1,ω acting on Dβ for ω > ω∗ is exactly two. Our approach is based on the
analysis of quadratic forms and the extension theory of symmetric operators. As we will
see in Subsection 2.1.4, this result is basic for calculating (via a perturbation analysis) the
Morse index for Lβ1,ω acting on Dβ in the case ω 5 ω∗.

Theorem 3.8. Let β < 0 and ω > ω∗ = 4(p+1)
β2(p−1)

. The Morse index of Lβ1,ω defined on
Dβ equals two. Moreover, there are two different negative eigenvalues λ1,ω > λ0,ω of this
operator, and the associated eigenfunctions are even and odd, respectively.

The proof of this theorem is not so immediate and therefore we will divide it into several
lemmas. We start with the following observations. By Proposition 3.2 and (3.1), we get for
ϕω ≡ ϕω,β, that ϕ′ω /∈ Dβ, and ϕ′′ω(0+) < 0 for ω > ω∗. Thus, by (3.3)-(3.4), there is θ0 < 0
such that ϕ′ω ∈ Wθ0 , where Wθ0 is defined by (3.2), and

Lβ1,ωϕ
′
ω(x) = 0, for x > 0.

Therefore, since ϕ′ω has exactly one zero in (0,+∞), it follows that there are an unique
negative eigenvalue γ0,ω and χ0,ω ∈ Wθ0 such that

Lβ1,ωχ0,ω = γ0,ωχ0,ω, on (0,+∞).

Moreover, χ0,ω can be chosen strictly positive on [0,+∞), and from (3.2) it follows that
χ′0,ω(0+) < 0. Next, from the Spectral Theorem we obtain for f ∈ H1(0,+∞) such that
f⊥χ0,ω

Qθ0(f) =

∫ +∞

0

(f ′)2 + (ω − pϕp−1
ω )f 2dx+

1

θ0

|f(0+)|2 = 0. (3.6)

Here Qθ0 denotes quadratic form associated with Lβ1,ω acting on Wθ0 . Thus, the above
analysis provides us the following result.

Lemma 3.9. Let β < 0 and ω > ω∗ = 4(p+1)
β2(p−1)

. Then the Morse index of the operator Lβ1,ω
defined on the domain W−β

2
equals one. Moreover, for λ1,ω < 0, ψ1,ω ∈ W−β

2
such that

Lβ1,ωψ1,ω(x) = λ1,ωψ1,ω(x) for x > 0, we have ψ′1,ω(0+) > 0.

Proof. Consider the quadratic form Q−β
2
associated to Lβ1,ω defined on W−β

2

Q−β
2
(f) =

∫ +∞

0

(f ′)2 + V1(x)f 2dx− 2

β
|f(0+)|2

where V1(x) = ω − pϕp−1
ω . By (3.6), for f ∈ H1(0,+∞) such that f⊥χ0,ω we have

Q−β
2
(f) = Qθ0(f)−

( 1

θ0

+
2

β

)
|f(0+)|2 = 0,

since θ0 < 0 by (3.4). Thus, by the min-max principle, the Morse index of Lβ1,ω acting on
W−β

2
, n1(Lβ1,ω), satisfies n1(Lβ1,ω) 5 1. Moreover, since ϕω ∈ W−β

2
and Q−β

2
(ϕω) < 0, we get

n1(Lβ1,ω) = 1. Therefore, n1(Lβ1,ω) = 1, and consequently there are λ1,ω < 0, ψ1,ω ∈ W−β
2
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12 J. ANGULO AND N. GOLOSHCHAPOVA

such that Lβ1,ωψ1,ω(x) = λ1,ωψ1,ω(x) for x > 0. Finally, since ψ1,ω(0+) = −β
2
ψ′1,ω(0+)

and assuming that ψ1,ω(0+) > 0 (recall that ψ1,ω > 0 or ψ1,ω < 0 on (0,+∞)), then
ψ′1,ω(0+) > 0. �

Lemma 3.10. Let β < 0 and ω > ω∗ = 4(p+1)
β2(p−1)

. Then the Morse index of the operator Lβ1,ω
defined on S0 = {v ∈ H2(0,+∞) : v′(0) = 0} equals one. Moreover, for λ0,ω < 0, ψ0,ω ∈ S0

such that Lβ1,ωψ0,ω(x) = λ0,ωψ0,ω(x) for x > 0, we have ψ0,ω > 0.

Proof. Let Q∗0 be the quadratic form associated with Lβ1,ω acting on S0

Q∗0(f) =

∫ +∞

0

(f ′)2 + V1f
2dx,

where V1(x) = ω− pϕp−1
ω . Then, from (3.6) we obtain for f ∈ H1(0,+∞) such that f⊥χ0,ω,

Q∗0(f) = Qθ0(f)− 1
θ0
|f(0+)|2 = 0, and therefore the Morse index of Lβ1,ω, n0(Lβ1,ω), acting on

S0 satisfies n0(Lβ1,ω) 5 1. From Lemma 3.9 follows that

Q∗0(ψ1,ω) = Q−β
2
(ψ1,ω) +

2

β
|ψ1,ω(0+)|2 = λ1,ω‖ψ1,ω‖2 +

2

β
|ψ1,ω(0+)|2 < 0.

Therefore, n0(Lβ1,ω) = 1. This finishes the proof. �

Lemma 3.11. Let λ1,ω, λ0,ω be the negative eigenvalues for Lβ1,ω obtained in Lemmas 3.9-
3.10, respectively, with associated positive eigenfunctions ψ1,ω, ψ0,ω, such that ψ1,ω ∈ W−β

2

and ψ0,ω ∈ S0. Then, λ1,ω > λ0,ω.

Proof. From the proofs of Lemmas 3.9-3.10 it follows that without loss of generality we can
assume ψ1,ω > 0 and ψ0,ω > 0. Integrating by parts, we obtain

λ1,ω〈ψ1,ω, ψ0,ω〉 = 〈Lβ1,ωψ1,ω, ψ0,ω〉 = ψ′1,ω(0+)ψ0,ω(0+)− ψ1,ω(0+)ψ′0,ω(0+) + 〈ψ1,ω, L
β
1,ωψ0,ω〉

= ψ′1,ω(0+)ψ0,ω(0+) + λ0,ω〈ψ1,ω, ψ0,ω〉.
Thus, (λ1,ω − λ0,ω)〈ψ1,ω, ψ0,ω〉 = ψ′1,β(0+)ψ0,β(0+) > 0. Therefore, λ1,ω > λ0,ω. �

Below we show the existence of at least two different negative eigenvalues of Lβ1,ω defined
on Dβ by (2.3).

Proposition 3.12. Let β < 0 and ω > ω∗ = 4(p+1)
β2(p−1)

. Consider the negative eigenvalues
λ1,ω, λ0,ω for Lβ1,ω determined in Lemmas 3.9-3.10. Then λ1,ω, λ0,ω are simple eigenvalues for
Lβ1,ω defined on the domain Dβ. Moreover, the associated eigenfunctions are odd and even,
respectively, and λ0,ω is the first negative eigenvalue.

Proof. We divide the proof into several steps.
1) Let λ1,ω < 0 and ψ1,ω ∈ W−β

2
such that Lβ1,ωψ1,ω = λ1,ωψ1,ω on (0,+∞). Recall that

ψ′1,ω(0+) > 0. Then the odd function

Φ1,ω(x) =

{
ψ1,ω(x), x = 0,
−ψ1,ω(−x), x < 0

belongs to H2(R− {0}) and satisfies the relation

Φ1,ω(0+)− Φ1,ω(0−) = ψ1,ω(0+) + ψ1,ω(0+) = −βψ′1,ω(0+) = −βΦ′1,ω(0+) = −βΦ′1,ω(0−).
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NLS WITH δ′-INTERACTION 13

Hence Φ1,ω ∈ Dβ. Moreover, Lβ1,ωΦ1,ω(x) = λ1,ωΦ1,ω(x) for x < 0. Therefore, λ1,ω is an
eigenvalue of Lβ1,ω defined on Dβ with the associated odd eigenfunction Φ1,ω.

2) Let λ0,ω < 0 and ψ0,ω ∈ S0 such that Lβ1,ωψ0,ω = λ0,ωψ0,ω on (0,+∞). Recall that
ψ′0,ω(0+) = 0 and ψ0,ω(0+) > 0. Then the even function

Φ0,ω(x) =

{
ψ0,ω(x), x = 0,

ψ0,ω(−x), x < 0

belongs to H2(R) and satisfies the relations Φ′0,ω(0) = 0, and

Φ0,ω(0+)− Φ0,ω(0−) = 0 = −βΦ′0,ω(0).

Moreover, Lβ1,ωΦ0,ω(x) = λ0,ωΦ0,ω(x) for x < 0. Therefore, λ0,ω is the eigenvalue for Lβ1,ω
defined on Dβ with the associated even positive eigenfunction Φ0,ω ∈ H2(R). Therefore,
λ0,ω is the first negative eigenvalue of Lβ1,ω acting on Dβ by the Perron-Frobenius property
established in Lemma 6.5.

3) Let us show that λ1,ω is a simple eigenvalue for Lβ1,ω acting on Dβ. Indeed, take f ∈ Dβ

such that Lβ1,ωf = λ1,ωf . In what follows we use the decomposition f = feven + fodd.
Since f ′(0+) = f ′(0−), it follows that f ′even(0+) = 0, and therefore f0 ≡ feven|(0,+∞) ∈

S0 = {v ∈ H2(0,+∞) : v′(0) = 0}. Noting that Lβ1,ω maps even (odd) functions into even
(odd) functions, we obtain Lβ1,ωfeven = λ1,ωfeven and Lβ1,ωfodd = λ1,ωfodd on all the line.
Therefore, if f0 6= 0, then λ1,ω < 0 is an eigenvalue for Lβ1,ω defined on S0, and consequently,
by Lemma 3.10, we get λ1,ω = λ0,ω which contradicts with Lemma 3.11. Therefore, feven ≡ 0
and f ≡ fodd.

The last equality induces that f(0−) = −f(0+). Then, by definition of Dβ, we get
f(0+) = −β

2
f ′(0+), and therefore f |(0,+∞) ∈ W−β

2
, and it is the eigenfunction for Lβ1,ω acting

on W−β
2
. Therefore, by Lemma 3.9, we obtain f(x) = θψ1,ω(x) for x > 0. Thus, from the

definition of Φ1,ω follows f = θΦ1,ω on the line. This finishes the proof. �

In the following Proposition we estimate the Morse index of Lβ1,ω from above.

Proposition 3.13. Let β < 0 and ω > ω∗ = 4(p+1)
β2(p−1)

. Then the Morse index of Lβ1,ω defined
on the domain Dβ satisfies the estimate n(Lβ1,ω) 5 3.

Proof. Our strategy of proof is based in the Krein&von Neumann extension theory of sym-
metric operators. Let µ be the unique positive zero of ϕ′ω,β. From Proposition 6.4 follows
that the symmetric operator L defined by

L = − d2

dx2
+ ω − p|ϕω,β|p−1, D(L) = {v ∈ H2(R) : v′(0) = 0, v(±µ) = 0},

has deficiency index n±(L) = 3.
Moreover, the operator (Lβ1,ω, Dβ) belongs to the 9-parameter family of self-adjoint exten-

sions of L. Let us show that L is non-negative for β < 0. Indeed, it is easy to verify that for
v ∈ D(L) the following identity holds

Lv =
−1

ϕ′ω,β

d

dx

[
(ϕ′ω,β)2 d

dx

(
v

ϕ′ω,β

)]
, x 6= 0,±µ. (3.7)
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14 J. ANGULO AND N. GOLOSHCHAPOVA

Integration by parts yields

〈Lv, v〉 =

−µ−∫

−∞

(ϕ′ω,β)2

(
d

dx

(
v

ϕ′ω,β

))2

dx+

0−∫

−µ+

(ϕ′ω,β)2

(
d

dx

(
v

ϕ′ω,β

))2

dx

+

µ−∫

0+

(ϕ′ω,β)2

(
d

dx

(
v

ϕ′ω,β

))2

dx+

+∞∫

µ+

(ϕ′ω,β)2

(
d

dx

(
v

ϕ′ω,β

))2

dx

−
[
v′v − v2

ϕ′′ω,β
ϕ′ω,β

]−µ−

−∞
−
[
v′v − v2

ϕ′′ω,β
ϕ′ω,β

]0−

−µ+

−
[
v′v − v2

ϕ′′ω,β
ϕ′ω,β

]µ−

0+

−
[
v′v − v2

ϕ′′ω,β
ϕ′ω,β

]+∞

µ+

.

(3.8)

Noting that v(±µ) = 0, and ±µ are the first-order zeroes for ϕ′ω,β (indeed, ϕ′′ω,β(±µ) 6= 0),
we have, for instance, for the eighth term in (3.8)

−
[
v′v − v2

ϕ′′ω,β
ϕ′ω,β

]∞

µ+

= −ϕ′′ω,β(µ) lim
x→µ+

v2(x)

ϕ′ω,β(x)
= −2ϕ′′ω,β(µ) lim

x→µ+
v(x)v′(x)

ϕ′′ω,β(x)
= 0.

Analogously the fifth term in (3.8) is zero. Next, since ϕ′ω,β(0+) = ϕ′ω,β(0−) and ϕ′′ω,β(0−) =
−ϕ′′ω,β(0+) > 0 for ω > ω∗, we obtain

−
[
v′v − v2

ϕ′′ω,β
ϕ′ω,β

]0−

−µ+

−
[
v′v − v2

ϕ′′ω,β
ϕ′ω,β

]µ−

0+

= −v2
ϕ′′ω,β
ϕ′ω,β

∣∣∣
x=0+

x=0−
= v2(0)

ϕ′′ω,β(0−)− ϕ′′ω,β(0+)

ϕ′ω,β(0+)
= 0.

(3.9)

Therefore, we get L = 0 on D(L), and consequently the family of self-adjoint extension Lβ1,ω
has discrete spectrum in (−∞, 0) that consists of at most of n±(L) = 3 eigenvalues counting
multiplicities (see Proposition 6.3). In particular, the Morse index of Lβ1,ω acting on Dβ

satisfies n(Lβ1,ω) 5 3. This finishes the proof. �

Remark 3.14. 1) Observe that, when we deal with deficiency indices, the operator L
is assumed to act on complex-valued functions which however does not affect the
analysis of negative spectrum of Lβ1,ω acting on real-valued functions.

2) The strategy used in the proof of Proposition 3.13 does not work for the case ω < ω∗.
Indeed, ϕ′′ω,β(0+) > 0 and ϕ′′ω,β(0−) < 0 for ω < ω∗ (see (3.1)), hence the term
in (3.9) turns to be negative. However, the extension theory still can be applied
for estimating the Morse index. Indeed, by adding the condition v(0) = 0 in the
definition of D(L) we obtain the “rough” estimate n(Lβ1,ω) 5 4.

3) The proof of Proposition 3.13 can be adapted to obtain the estimate n(Lβ1,ω∗) 5 3 for
ω∗ = 4(p+1)

β2(p−1)
. Indeed, considering the profile ϕω∗,β in equality (3.9), we obtain

v2(0)
ϕ′′ω∗,β(0−)− ϕ′′ω∗,β(0+)

ϕ′ω∗,β(0+)
= 0,

by ϕ′′ω∗,β(0−) = ϕ′′ω∗,β(0+) = 0.

Now we are ready to prove Theorem 3.8.
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NLS WITH δ′-INTERACTION 15

Proof. [Theorem 3.8] From Propositions 3.12 and 3.13 we have 2 5 n(Lβ1,ω) 5 3, and there
are at least two simple negative eigenvalues λ0,ω < λ1,ω < 0.

Suppose that n(Lβ1,ω) = 3. Since λ1,β, λ0,β are simple, there exists one more simple eigen-
value λ < 0 such that λ1,β 6= λ and λ2,β 6= λ. Thus, there is φ ∈ Dβ satisfying Lβ1,ωφ = λφ.
By Lemma 3.1, the function φ is either even or odd.

1) Assume that φ is even. Then φ|(0,+∞) ∈ S0, and, by Lemma 3.10, we obtain λ2,β = λ,
which is a contradiction.

2) Assume that φ is odd. Then φ(0−) = −φ(0+), and, by the definition of Dβ, we have
φ(0+) = −β

2
φ′(0+). Therefore, φ|(0,+∞) ∈ W−β

2
, and it is the eigenfunction for Lβ1,ω

acting on W−β
2
. Then, by Lemma 3.9, we have λ3,β = λ, which is a contradiction.

Finally, n(Lβ1,ω) = 2, and the Theorem is proved. �

3.1.4. Morse index of Lβ1,ω for ω 5 ω∗ = 4(p+1)
β2(p−1)

. Below we use the analytic perturbation
theory and a classical continuation argument based on the Riesz-projection to describe the
Morse index of the family of self-adjoint operators Lβ1,ω as 4

β2 < ω 5 ω∗.
The following Lemma states the analyticity of the family of operators Lβ1,ω as a function

of ω.

Lemma 3.15. Let β < 0. Then, as a function of ω, (Lβ1,ω) is a real-analytic family of
self-adjoint operators of type (B) in the sense of Kato.

Proof. The linear operator Lβ1,ω defined on Dβ by (2.3) is the self-adjoint operator on L2(R)
associated with the following bilinear-symmetric form defined for v, w ∈ H1(R− {0}) by

Bβ
1,ω(v, w) = 〈vx, wx〉+ 〈(ω− p|ϕω,β|p−1)v, w〉 − 1

β
(v(0+)− v(0−))(w(0+)−w(0−)). (3.10)

Thus from [57, Theorem VII-4.2], (Lβ1,ω) will be a real-analytic family of self-adjoint operators
of type (B) in the sense of Kato as long as the family of bilinear-symmetric forms (Bβ

1,ω) is
real-analytic of type (B) on H1(R− {0})×H1(R− {0}), namely,

a) D(Bβ
1,ω) = H1(R− {0})×H1(R− {0}), for all ω,

b) the family (Bβ
1,ω) is bounded from below and closed,

c) the mapping ω → Bβ
1,ω(v, v) is analytic for every v ∈ H1(R− {0}).

The conditions a) and b) above follows immediately from the bounded property of ϕω,β.
Moreover, noting that the mapping

ω ∈ ( 4
β2 ,+∞)→ ω − p|ϕω,β|p−1 = ω − p(p+ 1)ω

2
sech2

(
(p− 1)

√
ω

2
(|x|+ y0(ω))

)

is real-analytic, we obtain the condition c) above. This finishes the proof. �
Further, we obtain the following result which is a consequence of the Kato-Rellich Theorem

(see [66]).

Lemma 3.16. There exist δ0 > 0 and two analytic functions Π : (ω∗− δ0, ω
∗+ δ0)→ R and

Ω : (ω∗ − δ0, ω
∗ + δ0)→ L2(R) such that

1) Π(ω∗) = 0 and Ω(ω∗) = d
dx
ϕω∗,β.

2) For all ω ∈ (ω∗− δ0, ω
∗+ δ0), Π(ω) is a simple isolated eigenvalue of Lβ1,ω, and Ω(ω)

is an associated eigenvector for Π(ω).
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16 J. ANGULO AND N. GOLOSHCHAPOVA

3) δ0 can be chosen small enough to ensure that for ω ∈ (ω∗ − δ0, ω
∗ + δ0) the spectrum

of Lβ1,ω is positive, except at most the first n(Lβ1,ω∗) + 1 eigenvalues.

Proof. We divide the proof into several steps.
a) There is M > 0 such that σ(Lβ1,ω)∩ (−∞,−M ] = ∅ for ω ∈ [ω∗−a, ω∗+a] and a > 0

small enough.
b) Using item 2) of Lemma 3.2 and Proposition 3.6, we define σ0 = {0} ∪ N with N

being a finite set of negative eigenvalues of Lβ1,ω∗ . Recall that this set consists of at
most three negative eigenvalues due to n(Lβ1,ω∗) 5 3 (see Remark 3.14). Thus, we
can separate the spectrum σ(Lβ1,ω∗) of Lβ1,ω∗ into two parts σ0, σ1 by a closed curve
Γ ⊂ ρ(Lβ1,ω∗) such that σ0 belongs to the inner domain of Γ and σ1 to the outer
domain of Γ. Indeed, such curve could be chosen a circle passing through the points
−M and θω∗− ε, where ε < θω∗/2 and θω∗ = inf{λ : λ ∈ σ(Lβ1,ω∗), λ > 0}. Note that
σ1 ⊂ [θω∗ ,+∞).

c) Observe that Lβ1,ω converges to Lβ1,ω∗ as ω → ω∗ in the generalized sense. Indeed,
denoting Wω = ω − p|ϕω,β|p−1, we obtain

δ̂(Lβ1,ω, L
β
1,ω∗) = δ̂(Lβ1,ω∗ + (Wω −Wω∗), L

β
1,ω∗)

5 ‖Wω −Wω∗‖ → 0, as ω → ω∗,

where δ̂ is the gap metric (see [57, Chapter IV]). By [57, Theorem 3.16, Chapter IV]
and Lemma 3.15, we have Γ ⊂ ρ(Lβ1,ω) for ω ∈ [ω∗ − δ1, ω

∗ + δ1] and δ1 > 0 small
enough. Moreover, σ(Lβ1,ω) is likewise separated by Γ into two parts so that the part
of σ(Lβ1,ω) inside Γ consists of a finite number of eigenvalues with total multiplicity
(algebraic) n(Lβ1,ω∗) + 1 (recall that zero is not an eigenvalue of Lβ1,ω for ω 6= ω∗).

d) For ε small enough define Γ0 = {z ∈ C : |z| = ε} such that Γ0 ∩N = ∅, Γ0 ⊂ int(Γ),
therefore from the non-degeneracy of 0 for Lβ1,ω∗ , we obtain that there exists δ2 < δ1

such that for ω ∈ (ω∗ − δ2, ω
∗ + δ2) − {ω∗} we get σ(Lβ1,ω) ∩ int(Γ0) = {λω}, where

λω is a non-zero simple eigenvalue of Lβ1,ω, and λω → 0 as ω → ω∗.
e) Considering the contour Γ0 above and applying Kato-Rellich Theorem (see [66, The-

orem XII.8]), we get the existence of 0 < δ0 < δ2 and two analytic functions Π,Ω
defined in the neighborhood of ω∗, (ω∗ − δ0, ω

∗ + δ0), such that 1), 2) and 3) hold.
�

Below we analyze how the simple perturbed eigenvalue Π(ω) moves depending on the
relative position of ω and ω∗.

Lemma 3.17. Let β < 0. Then
1) there exists 0 < δ < δ0 such that Π(ω) > 0 for any ω ∈ (ω∗, ω∗ + δ), and Π(ω) < 0

for any ω ∈ (ω∗ − δ, ω∗);
2) for ω = ω∗ we have n(Lβ1,ω∗) = 2, and consequently n(Lβ1,ω) = 3 for ω ∈ (ω∗ − δ, ω∗).

Proof. 1) As the proof of this part is a bit tedious we divide it into several steps.
a) From Taylor’s theorem we have the following expansions

Π(ω) = γ(ω−ω∗)+O(|ω−ω∗|2), and Ω(ω) =
d

dx
ϕω∗,β+φ0(ω−ω∗)+O(|ω−ω∗|2), (3.11)
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NLS WITH δ′-INTERACTION 17

where γ = Π′(ω∗) ∈ R and φ0 = Ω′(ω∗) ∈ L2(R). The desired result will follow if we show
that γ > 0.

Observe that there exists χ0 ∈ H1(R− {0}) such that for ω close to ω∗ we have

ϕω,β = ϕω∗,β + (ω − ω∗)χ0 +O(|ω − ω∗|2). (3.12)

Denote ϕω = ϕω,β. To find γ we compute 〈Lβ1,ωΩ(ω), d
dx
ϕω∗〉 in two different ways. Since

Lβ1,ωΩ(ω) = Π(ω)Ω(ω), it follows from (3.11)

〈Lβ1,ωΩ(ω), ϕω∗〉 = γ(ω − ω∗)
∥∥∥ d
dx
ϕω∗
∥∥∥

2

+O(|ω − ω∗|2). (3.13)

From Proposition 3.2 it follows that d
dx
ϕω∗ ∈ Ker(Lβ1,ω∗) for all β, hence

Lβ1,ω

( d
dx
ϕω∗
)

= Lβ1,ω∗
( d
dx
ϕω∗
)

+ (ω − ω∗) d
dx
ϕω∗ + p(|ϕω∗|p−1 − |ϕω|p−1)

d

dx
ϕω∗

= (ω − ω∗) d
dx
ϕω∗ + p(|ϕω∗ |p−1 − |ϕω|p−1)

d

dx
ϕω∗ .

(3.14)

Using the relation

|ϕω|p−1 = |ϕω∗ |p−1 + (p− 1) sign(x)|ϕω∗|p−2χ0(x)(ω − ω∗) +O(|ω − ω∗|2),

self-adjointness of Lβ1,ω, (3.14) and (3.11), we obtain
〈
Lβ1,ωΩ(ω),

d

dx
ϕω∗

〉

=

〈
Ω(ω), (ω − ω∗) d

dx
ϕω∗ − p(p− 1) sign(x)|ϕω∗|p−2χ0

d

dx
φω∗(ω − ω∗)

〉
+O(|ω − ω∗|2)

= (ω − ω∗)‖ d
dx
ϕω∗‖2 − p(p− 1)

〈
d

dx
ϕω∗ , sign(x)|ϕω∗|p−2χ0

d

dx
ϕω∗(ω − ω∗)

〉
+O(|ω − ω∗|2)

= (ω − ω∗)‖ d
dx
ϕω∗‖2 − p(p− 1)

〈
χ0, |ϕω∗|p−3ϕω∗(

d

dx
ϕω∗)

2

〉
(ω − ω∗) +O(|ω − ω∗|2).

(3.15)

b) The next step in is to study the expression 〈χ0, |ϕω∗|p−3ϕω∗(
d
dx
ϕω∗)

2〉 in (3.15). Observe
that for every ψ ∈ H1(R− {0}) the quadratic form Bβ

1,ω∗ defined by (3.10) satisfies

Bβ
1,ω∗(χ0, ψ) = −〈ϕω∗ , ψ〉+O(|ω − ω∗|). (3.16)

Indeed, since Lβ2,ωϕω = 0, we induce that for any ψ ∈ H1(R− {0})
0 = 〈Lβ2,ωϕω, ψ〉 = Bβ

2,ω(ϕω, ψ), ω > 4/β2,

where Bβ
2,ω is the quadratic form associated with Lβ2,ω defined by (2.3). Let us analyze the

integral term of Bβ
2,ω(ϕω, ψ). From (3.12) we obtain

I :=

∫

R
ϕ′ωψ

′dx =

∫

R
(ϕ′ω∗ψ

′ + (ω − ω∗)χ′0ψ′)dx+O(|ω − ω∗|2),

and

II :=

∫

R
(ω − |ϕω(x)|p−1)ϕωψdx =

∫

R

[
(ω − |ϕω∗ |p−1)ϕωψ + (|ϕω∗|p−1 − |ϕω|p−1)ϕωψ

]
dx

=

∫

R

[
(ω − |ϕω∗|p−1)(ϕω∗ + (ω − ω∗)χ0)ψ − (p− 1)(ω − ω∗)|ϕω∗ |p−1χ0ψ

]
dx+O(|ω − ω∗|2).
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18 J. ANGULO AND N. GOLOSHCHAPOVA

Therefore, I + II = A+B where

A =

∫

R

[
ϕ′ω∗ψ

′ + (ω − |ϕω∗|p−1)ϕω∗ψ
]
dx

=〈Lβ2,ω∗ϕω∗ , ψ〉+
1

β
[ϕω∗(0+)− ϕω∗(0−)][ψ(0+)− ψ(0−)] + (ω − ω∗)

∫

R
ϕω∗ψdx

=
1

β
[ϕω∗(0+)− ϕω∗(0−)][ψ(0+)− ψ(0−)] + (ω − ω∗)

∫

R
ϕω∗ψdx,

and

B =

∫

R

[
(ω − ω∗)χ′0ψ′ + (ω − ω∗)χ0ψ(ω − p|ϕω∗|p−1)

]
dx

=(ω − ω∗)
∫

R

[
χ′0ψ

′ + χ0ψ(ω∗ − p|ϕω∗|p−1)
]
dx+O(|ω − ω∗|2).

Now, on the other hand, we obtain

I + II =Bβ
2,ω(ϕω, ψ) +

1

β
[ϕω(0+)− ϕω(0−)][ψ(0+)− ψ(0−)]

=
1

β
[ϕω(0+)− ϕω(0−)][ψ(0+)− ψ(0−)]

=
1

β
[ϕω∗(0+)− ϕω∗(0−)][ψ(0+)− ψ(0−)]

+
1

β
(ω − ω∗)[χ0(0+)− χ0(0−)][ψ(0+)− ψ(0−)] +O(|ω − ω∗|2),

thus, we obtain for every ψ ∈ H1(R− {0}),

Bβ
1,ω∗(χ0, ψ) =

∫

R

[
χ′0ψ

′ + (ω∗ − p|ϕω∗|p−1χ0ψ
]
dx− 1

β
[χ0(0+)− χ0(0−)][ψ(0+)− ψ(0−)]

=− 〈ϕω∗ , ψ〉+O(|ω − ω∗|).
(3.17)

Finally, (3.16) is proven.
Using the above analysis, we conclude that there is g0 ∈ H1(R− {0}) with ‖g0‖+ ‖g′0‖ =

O(|ω − ω∗|) and such that Bβ
1,ω∗(χ0, ψ) = 〈−ϕω∗ + g0, ψ〉. Therefore, χ0 ∈ D(Lβ1,ω∗) and

Lβ1,ω∗χ0 = −ϕω∗ + g0.
Next we show that for ψ ∈ H1(R− {0})

Bβ
1,ω∗(ω

∗ϕω∗ − |ϕω∗|p−1ϕω∗ , ψ) = p(p− 1)〈ϕω∗|ϕω∗|p−3(ϕ′ω∗)
2, ψ〉

− p− 1

β
|ϕω∗(0+)|p−1[ϕω∗(0+)− ϕω∗(0−)][ψ(0+)− ψ(0−)].

(3.18)

Indeed, using that (|ϕω∗ |p−1ϕω∗)
′(x) = p|ϕω∗(x)|p−1ϕ′ω∗(x) for every x 6= 0, we obtain

J1 =

∫

R
(|ϕω∗|p−1ϕω∗)

′ψ′dx = p|ϕω∗(0+)|p−1ϕ′ω∗(0+)[ψ(0−)− ψ(0+)]− p
∫

R
(|ϕω∗|p−1ϕ′ω∗)

′ψdx

= −p
∫

R

[
(|ϕω∗ |p−1ϕ′′ω∗ + (p− 1)|ϕω∗|p−3ϕω∗(ϕ

′
ω∗)

2)ψ
]
dx

+
p

β
|ϕω∗(0+)|p−1[ϕω∗(0+)− ϕω∗(0−)][ψ(0+)− ψ(0−)].
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Therefore, since ϕ′′ω∗(x) = ω∗ϕω∗(x)− |ϕω∗(x)|p−1ϕω∗(x) for x 6= 0, we obtain

J1 +

∫

R
(ω∗ − p|ϕω∗|p−1)|ϕω∗|p−1ϕω∗ψdx

=−
∫

R

[
p(p− 1)|ϕω∗|p−3ϕω∗(ϕ

′
ω∗)

2ψ + (p− 1)ω∗|ϕω∗|p−1ϕω∗ψ
]
dx

+
p

β
|ϕω∗(0+)|p−1[ϕω∗(0+)− ϕω∗(0−)][ψ(0+)− ψ(0−)].

Hence

Bβ
1,ω∗(|ϕω∗|p−1ϕω∗ , ψ) = −

∫

R

[
p(p− 1)|ϕω∗ |p−3ϕω∗(ϕ

′
ω∗)

2ψ + (p− 1)ω∗|ϕω∗|p−1ϕω∗ψ
]
dx

+
p− 1

β
|ϕω∗(0+)|p−1[ϕω∗(0+)− ϕω∗(0−)][ψ(0+)− ψ(0−)].

(3.19)

Thus, combining Bβ
1,ω∗(ϕω∗ , ψ) = 〈Lβ1,ω∗ϕω∗ , ψ〉 = −〈(p− 1)|ϕω∗ |p−1ϕω∗ , ψ〉 and (3.19), we

arrive at (3.18). Therefore, by (3.17) and (3.18),

− p(p− 1)

〈
χ0, |ϕω∗|p−3ϕω∗(

d

dx
ϕω∗)

2

〉
= −Bβ

1,ω∗(ω
∗ϕω∗ − |ϕω∗|p−1ϕω∗ , χ0)

− p− 1

β
|ϕω∗(0+)|p−1[ϕω∗(0+)− ϕω∗(0−)][χ0(0+)− χ0(0−)]

= 〈ϕω∗ , ω∗ϕω∗ − |ϕω∗|p−1ϕω∗〉

− p− 1

β
|ϕω∗(0+)|p−1(ϕω∗(0+)− ϕω∗(0−))(χ0(0+)− χ0(0−)) +O(|ω − ω∗|).

(3.20)

c) Now, from (3.15), (3.20) and using again ϕ′′ω∗(x) = ω∗ϕω∗(x)−|ϕω∗(x)|p−1ϕω∗(x), x 6= 0,
we arrive to

〈Lβ1,ωΩ(ω),
d

dx
ϕω∗〉 = (ω − ω∗)‖ d

dx
ϕω∗‖2

− p(p− 1)〈χ0, |ϕω∗|p−3ϕω∗(
d

dx
ϕω∗)

2〉(ω − ω∗) +O(|ω − ω∗|2)

= (ω − ω∗)‖ d
dx
ϕω∗‖2 + (ω − ω∗)〈ϕω∗ , ω∗ϕω∗ − |ϕω∗|p−1ϕω∗〉

− p− 1

β
|ϕω∗(0+)|p−1(ϕω∗(0+)− ϕω∗(0−))(χ0(0+)− χ0(0−))(ω − ω∗) +O(|ω − ω∗|2)

= β[ϕ′ω∗(0+)]2(ω − ω∗)

− p− 1

β
|ϕω∗(0+)|p−1[ϕω∗(0+)− ϕω∗(0−)][χ0(0+)− χ0(0−)](ω − ω∗) +O(|ω − ω∗|2).

(3.21)

d) Define f(ω) = ϕω(0+). Then from (1.5) we induce

f(ω) =

(
p+ 1

2

) 1
p−1
[
β2ω − 4

β2

] 1
p−1

.
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20 J. ANGULO AND N. GOLOSHCHAPOVA

Thus, by (3.12) and Taylor’s theorem, we obtain

(χ0(0+)− χ0(0−))(ω − ω∗) = 2ϕω(0+)− 2ϕω∗(0+) +O(|ω − ω∗|2)

= 2f ′(ω∗)(ω − ω∗) +O(|ω − ω∗|2).

Therefore, from (3.21) we have

〈Lβ1,ωΩ(ω),
d

dx
ϕω∗〉 = β[ϕ′ω∗(0+)]2(ω − ω∗)

− 4(p− 1)

β
|ϕω∗(0+)|p−1ϕω∗(0+)f ′(ω∗)(ω − ω∗) +O(|ω − ω∗|2).

(3.22)

Combining (3.13), (3.22) and −βϕ′ω∗(0+) = 2ϕω∗(0+), we obtain

γ
∥∥∥ d
dx
ϕω∗
∥∥∥

2

= β[ϕ′ω∗(0+)]2 − 4(p− 1)

β
|ϕω∗(0+)|p−1ϕω∗(0+)f ′(ω∗) +O(|ω − ω∗|)

=
4ϕω∗(0+)

β

[
ϕω∗(0+)− (p− 1)|ϕω∗(0+)|p−1f ′(ω∗)

]
+O(|ω − ω∗|).

Therefore, from the definition of f we get

ϕω∗(0+)− (p− 1)|ϕω∗(0+)|p−1f ′(ω∗) =
1− p

2
f(ω∗),

and consequently the relation

γ
∥∥∥ d
dx
ϕω∗
∥∥∥

2

=
4(1− p)ϕω∗(0+)

2β
f(ω∗) +O(|ω − ω∗|) (3.23)

implies that γ > 0 for |ω − ω∗| small enough. This finishes the proof of item 1).
2) Let ω = ω∗. By Propositions 3.12 and 3.13, 2 5 n(Lβ1,ω∗) 5 3. Suppose that n(Lβ1,ω∗) =

3. From the analyticity of the mapping ω → Lβ1,ω we get that n(Lβ1,ω) 6= 2 for ω close enough
to ω∗ such that ω > ω∗, which is the contradiction with the statement of Theorem 3.8. Thus,
n(Lβ1,ω∗) = 2, and therefore, by item 1), for ω < ω∗ we have n(Lβ1,ω) = 3.

�
Corollary 3.18. Let β < 0 and ω∗ = 4(p+1)

β2(p−1)
. Then the second negative eigenvalue λ1,ω∗ of

Lβ1,ω∗ is simple with an associated odd eigenfunction.

Proof. By Propositions 3.6 and 3.17, the second negative eigenvalue λ1,ω∗ for Lβ1,ω∗ is simple,
and, by Lemma 3.4, the associated eigenfunction ψ1,ω∗ is either even or odd. Suppose that
ψ1,ω∗ is even, then ψ ≡ ψ1,ω∗|(0,+∞) ∈ S0 and Lβ1,ω∗ψ(x) = λ1,ω∗ψ(x) for x > 0. Therefore,
from Proposition 3.6 it follows that the Morse index of Lβ1,ω∗ acting on S0 is two. This
contradicts with Lemma 3.5. �

Now we are the in position to investigate the Morse index of Lβ1,ω for any ω > 4
β2 . We use

the classical continuation argument based on the Riesz-projection.

Theorem 3.19. Let β < 0 and 4
β2 < ω < ω∗. Then the Morse index of Lβ1,ω defined on the

domain Dβ equals three. Moreover, Π(ω) is the third negative simple eigenvalue.

Proof. Let ω < ω∗. We define ω̃ by,

ω̃ = inf
{
r : r ∈ ( 4

β2 , ω
∗) s.t. Lβ1,ω has three negative eigenvalues for all ω ∈ (r, ω∗)

}
.
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Lemma 3.17 implies that ω̃ is well defined, and ω̃ ∈ [ 4
β2 , ω

∗). We claim that ω̃ = 4
β2 . Suppose

that ω̃ > 4
β2 . Let N = n(Lβ1,ω̃), and Γ be a closed curve such that 0 ∈ Γ ⊂ ρ(Lβ1,ω̃), and all

the negative eigenvalues of Lβ1,ω̃ belong to the inner domain of Γ. The existence of such Γ can
be deduced from the lower semi-boundedness of the quadratic form associated to Lβ1,ω̃. Next,
using Lemma 3.15 and steps a) and b) of the proof of Lemma 3.16, we deduce that there is
ε > 0 such that for ω ∈ [ω̃− ε, ω̃+ ε] we have Γ ⊂ ρ(Lβ1,ω), and the mapping ω → (Lβ1,ω−ξ)−1

is analytic for ξ ∈ Γ. Therefore, the existence of an analytic family of Riesz-projections
ω → P (ω) given by

P (ω) = − 1

2πi

∮

Γ

(Lβ1,ω − ξ)−1dξ

implies that dim(RanP (ω)) = dim(RanP (ω̃)) = N for all ω ∈ [ω̃ − ε, ω̃ + ε]. Further,
there is r0 ∈ (ω̃, ω̃ + ε), and Lβ1,ω has exactly three negative eigenvalues for all ω ∈ (r0, ω

∗).
Therefore, Lβ1,ω̃+ε has three negative eigenvalues and N = 3, hence Lβ1,ω has three negative
eigenvalues for ω ∈ (ω̃ − ε, ω∗), which contradicts with the definition of ω̃. Thus, ω̃ = 4

β2 .
This finishes the proof. �

Proposition 3.20. Let β < 0. The function Ω(ω) defined in Lemma 3.16 and associated to
the third eigenvalue of Lβ1,ω can be extended to ( 4

β2 ,+∞). Moreover, Ω(ω) is an even function
for ω > 4

β2 .

Proof. By Lemma 3.15 and Theorem XII.7 in [66], the set G0 = {(ω, λ)|ω > 4
β2 , λ ∈ ρ(Lβ1,ω)}

is open, and (ω, λ) ∈ G0 → (Lβ1,ω − λ)−1 is an analytic function in both variables. Thus,
we can repeat the arguments of Lemma 3.16 and Lemma 3.17 at each point ω and on
each neighborhood of ω to see that the functions Ω(ω) and Π(ω) are analytic for every
ω ∈ ( 4

β2 ,+∞).
Below we consider the case of ω > ω∗ (the case 4

β2 < ω < ω∗ is similar). We know
from Lemma 3.4 and Lemma 3.16 that the eigenvectors Ω(ω) are even or odd, and Ω(ω∗) =
d
dx
ϕω∗,β is even. Therefore, from the equality lim

ω→ω∗+
〈Ω(ω),Ω(ω∗)〉 = ‖Ω(ω∗)‖2 6= 0 one has

〈Ω(ω),Ω(ω∗)〉 6= 0 for ω close to ω∗ and ω > ω∗. Thus, Ω(ω) is even for ω ∈ [ω∗, ω∗ + δ).
Let η be defined by

η = sup{r : r > ω∗,Ω(ω) is even for any ω ∈ [ω∗, r)}.
Suppose that η <∞. If Ω(η) is even, then by continuity there exists δ0 > 0 such that Ω(ω)
is even for ω ∈ (η − δ, η + δ). Thus, from the definition of η we obtain that Ω(ω) is even for
ω ∈ [ω∗, η + δ), which is a contradiction. Therefore, from Lemma 3.4 it follows that Ω(η)
is odd. Since Ω(η) is the limit of even functions, Ω(η) is even. Hence Ω(η) ≡ 0, which is a
contradiction since Ω(η) is an eigenvector. Therefore, η = +∞. �

The following result completes the study of the parity of the eigenfunctions to Lβ1,ω in the
case ω < ω∗.

Proposition 3.21. Let β < 0 and ω < ω∗. Then the associated eigenfunctions for the three
negative simple eigenvalues of Lβ1,ω are even, odd and even, respectively.

Proof. From the Perron-Frobenius property of Lβ1,ω established in Lemma 6.5, we obtain that
the eigenfunction associated to the first negative eigenvalue is positive and even. Moreover,

Jo
ur

na
l P

re
-p

ro
of

Journal Pre-proof



22 J. ANGULO AND N. GOLOSHCHAPOVA

by Theorem 3.19 and Proposition 3.20, the eigenfunction associated to the third negative
eigenvalue is also even.

By Corollary 3.18 and Kato-Rellich theorem, there are δ3 > 0 small and two analytic
functions Π1 : (ω∗ − δ3, ω

∗ + δ3) → R and Ω1 : (ω∗ − δ3, ω
∗ + δ3) → L2(R) such that

Π1(ω∗) = λ1,ω∗ and Ω1(ω∗) = ψ1,ω∗ , where ψ1,ω∗ is an odd eigenfunction associated to λ1,ω∗ .
Following the ideas in the proof of Theorem 3.19, we obtain that Π1 and Ω1 are holomorphic
for every ω > 4

β2 . Moreover, Π1(ω) represents the second simple negative eigenvalue of Lβ1,ω
for ω < ω∗. Thus, by Lemma 3.4, the eigenfunction Ω1(ω) is even or odd. Then, by the
equality lim

ω→ω∗−
〈Ω1(ω),Ω1(ω∗)〉 = ‖Ω1(ω∗)‖2 6= 0, one gets that 〈Ω1(ω),Ω1(ω∗)〉 6= 0 for ω

close to ω∗. Thus, Ω1(ω) is odd. �

3.1.5. Spectral analysis for Lβ2,ω. In this subsection we describe the spectral properties of
the self-adjoint operator Lβ2,ω defined by (2.3). Our principal result is the following.

Theorem 3.22. Let β < 0, ω > 4
β2 , and L

β
2,ω be defined by (2.3). Then Ker(Lβ2,ω) = [ϕω,β],

and the Morse index of Lβ2,ω is exactly one. In particular, the eigenfunction associated to the
negative eigenvalue is even and positive.

Proof. Following the ideas in the proof of Proposition 3.2, we obtain Ker(Lβ2,ω) = [ϕω,β].
To determine the Morse index, we divide the analysis into several steps.
1) Let us show n(Lβ2,ω) = 1. Consider the quadratic form F associated to Lβ2,ω

F (u) = ‖u′‖2 + ω‖u‖2 − 〈|ϕω,β|p−1u, u〉 − 1

β
|u(0+)− u(0−)|2, u ∈ H1(R− {0}).

For u = |ϕω,β| ∈ H1(R), we obtain by |ϕω,β(0+)| = |ϕω,β(0−)|, formula (1.2), and integration
by parts,

F (|ϕω,β|) = (ϕω,β(0−)− ϕω,β(0+))ϕ′ω,β(0+) +

∫ 0−

−∞
ϕω,β(−ϕ′′ω,β + ωϕω,β − |ϕω,β|p−1ϕω,β)dx

+

∫ +∞

0+

ϕω,β(−ϕ′′ω,β + ωϕω,β − |ϕω,β|p−1ϕω,β)dx = β|ϕ′ω,β(0+)|2 < 0.

Thus, the mini-max principle yields n(Lβ2,ω) = 1.
2) Let us show n(Lβ2,ω) 5 2. Consider the symmetric operator Lmin defined by

Lmin = − d2

dx2
+ ω − |ϕω,β|p−1, D(Lmin) = {v ∈ H2(R) : v(0) = v′(0) = 0}.

The deficiency numbers of Lmin are n±(Lmin) = 2 (see [11, Chapter I.4]). Moreover, the
following von Neumann decomposition holds

D(L∗min) = H2(R− {0}) = D(Lmin)⊕ [v1
i , v

2
i ]⊕ [v1

−i, v
2
−i],

where

v1
±i =

{
ei
√
±ix, x > 0;

0, x < 0.
, v2

±i =

{
0, x > 0;
e−i
√
±ix, x < 0.

, =(
√
±i) > 0.

Thus, all the self-adjoint extensions of Lmin are given by a 4-parameter family of self-adjoint
operators. In particular, (Lβ2,ω, Dβ) belongs to this family.
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Let us show that Lmin is non-negative for β < 0. Indeed, it is easy to verify that for β < 0
and v ∈ D(Lmin) the following identity holds

Lminv =
−1

ϕω,β

d

dx

[
ϕ2
ω,β

d

dx

(
v

ϕω,β

)]
, x 6= 0. (3.24)

Using (3.24) and integrating by parts, we get

〈Lminv, v〉 =

+∞∫

−∞

ϕ2
ω,β

(
d

dx

(
v

ϕω,β

))2

dx+

[
v′v − v2

ϕ′ω,β
ϕω,β

]0+

0−
. (3.25)

The integral terms in (3.25) are non-negative and equal zero if and only if v ≡ 0. Due to the
conditions v(0) = v′(0) = 0, non-integral term vanishes, and we get Lmin = 0 on D(Lmin).
Thus, the Morse index of Lβ2,ω on Dβ satisfies n(Lβ2,ω) 5 2 (see Proposition 6.3).

3) Operator Lβ2,ω defined on the domain W−β
2
has Morse index equal to zero. Indeed,

since Lβ2,ωϕω,β(x) = 0 for all x 6= 0, ϕω,β|(0,+∞) ∈ W−β
2
, and ϕω,β|(0,+∞) > 0, we obtain from

the classical oscillation theory on the half-line that Lβ2,ω defined on W−β
2
has not negative

eigenvalues.
4) Since β < 0, we have from Lemma 6.5 (Perron-Frobenious property) that the first

negative eigenvalue for Lβ2,ω on Dβ, λ0, it is simple with an associated positive and even
eigenfunction φ0 (after replacing φ0 by −φ0 if necessary). Thus, φ0 ∈ H2(R) (since φ′0(0) =

0). Next, we suppose that n(Lβ2,ω) = 2, and λ1 is the second negative simple eigenvalue with
λ0 < λ1 < 0. Let φ1 ∈ Dβ be such that Lβ2,ωφ1 = λ1φ1. Then from Lemma 3.4 it follows that
φ1 is either even or odd. Suppose that φ1 is even, then φ1 ∈ H2(R), and it has at least two
zeros. Thus, considering Lβ2,ω defined on H2(R), we obtain that there is a simple eigenvalue
λ ∈ (λ0, λ1) being the second one, and with an eigenfunction fλ ∈ H2(R) having exactly one
zero. Then since fλ is either even or odd, we obtain that fλ is odd. Further, consider the
quadratic form F−β

2
: H1(0,+∞)→ R associated to Lβ2,ω acting on W−β

2
,

F−β
2
(g) =

∫ +∞

0

(g′)2 + V2g
2dx− 2

β
|g(0+)|2,

where V2(x) = ω − |ϕω,β|p−1. Therefore, since fλ(0) = 0,

F−β
2
(fλ) = −fλ(0+)f ′λ(0+) +

∫ +∞

0

fλ(−f ′′λ + V2fλ)dx = λ

∫ +∞

0

f 2
λdx < 0.

This contradicts with item 3) above. Therefore, φ1 is odd. Then, φ1|(0,+∞) ∈ W−β
2
, and for

every x > 0 we have Lβ2,ωφ1(x) = λ1φ1(x), which is again a contradiction with item 3), and
therefore n(Lβ2,ω) = 1. This finishes the proof of the Theorem. �

Proof. [Theorem 3.1]

1) Let ω = ω∗. From Theorems 3.8, 3.22, and Lemma 3.17 we have n(Lβ1,ω) = n(Lβ1,ω∗) =

2 and n(Lβ2,ω) = 1. Thus, n(Hω) = 3. Further, from Propositions 3.6, 3.12, Corollary
3.18, and Theorem 3.22 we obtain n(Lβ1,ω|odd) = n(Lβ1,ω∗|odd) = 1 and n(Lβ2,ω|odd) = 0.
Thus, n(Hω|odd) = 1.
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24 J. ANGULO AND N. GOLOSHCHAPOVA

2) Let ω < ω∗. From Proposition 3.21 we obtain n(Lβ1,ω) = 3, and therefore from
Theorem 3.22 it follows that n(Hω) = 4. Moreover, since n(Lβ1,ω|odd) = 1, we obtain
n(Hω|odd) = 1.

�

4. Slope analysis

In this subsection we calculate the sign of ∂ω‖ϕω,β‖2. The main result is the following.

Theorem 4.1. Let β < 0 and ω > 4
β2 . Then the following assertions hold.

1) If p ∈ (1, 3], then ∂ω‖ϕω,β‖2 > 0.
2) If p ∈ (3, 5), then there is ω0 ≡ ω0(p) > 4

β2 such that

p− 5

2(p− 1)

∫ +∞

B(p,ω0)

sech
4
p−1 (x)dx =

1

β
√
ω0

[
1− 4

β2ω0

] 3−p
p−1

where B(p, ω0) =
(p−1)

√
ω0

2
y0, and y0 is defined in (1.6). Moreover, ∂ω‖ϕω,β‖2 < 0 for

ω ∈ ( 4
β2 , ω0), and ∂ω‖ϕω,β‖2 > 0 for ω ∈ (ω0,+∞).

3) If p ∈ [5,+∞), then ∂ω‖ϕω,β‖2 < 0.

Remark 4.2. Let ω∗(p) = 4(p+1)
β2(p−1)

, then from numerical simulations (see Remark 4.3 below)
we obtain for p ∈ (3, 5) specific relations between ω∗(p) and ω0(p).

Proof. By (1.5),

‖ϕω,β‖2 = Cpω
5−p

2(p−1)

∫ +∞

B(p,ω)

sech
4
p−1 (x)dx := Cpω

5−p
2(p−1)H(ω),

where B(p, ω) = (p−1)
√
ω

2
y0, and Cp is a positive constant depending only of p. Therefore,

∂ω‖ϕω,β‖2 =
Cp
2
ω

7−3p
2(p−1)

[5− p
p− 1

H(ω) +
2

β
√
ω

[
1− 4

β2ω

] 3−p
p−1
]

:=
Cp
2
ω

7−3p
2(p−1) g(ω). (4.1)

From (4.1) we get immediately that ∂ω‖ϕω,β‖2 < 0 for p = 5. Next, we analyze the behavior
of the function g(ω) for p ∈ (1, 5). We have

g′(ω) =
2

βω3/2

3− p
p− 1

[
1− 4

β2ω

] 4−2p
p−1

,

g′′(ω) =
3− p

(p− 1)2

1

βω5/2

[
1− 4

β2ω

] 5−3p
p−1
[4(5− p)

β2ω
− 3(p− 1)

]
.

(4.2)

Thus, from (4.2) it follows that 4(5−p)
β2ω

− 3(p − 1) < 0 for all p = 2. Further, for p < 5 we
obtain

a0 := lim
ω→+∞

g(ω) =
5− p

2(p− 1)

∫ ∞

0

sech
4
p−1 (x)dx > 0, (4.3)

and

lim
ω→ 4

β2

g(ω) =

{
2a0, p ∈ (1, 3];
−∞, p ∈ (3, 5). (4.4)

Thus, if we consider p ∈ [2, 3], then g′(ω) 5 0 and g′′(ω) = 0. Thus, from (4.3)-(4.4) it
follows that g(ω) > 0 for all ω > 4

β2 . Next, for p ∈ (3, 5) we have g′(ω) > 0 and g′′(ω) < 0.
Therefore, from (4.3)-(4.4) we obtain the existence of a unique ω0 >

4
β2 such that g(ω0) = 0.
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Thus, for ω ∈ ( 4
β2 , ω0) we have g(ω) < 0, and for ω ∈ (ω0,+∞) we have g(ω) > 0. Finally,

for p ∈ (1, 2), the analysis based on (4.2)-(4.3)-(4.4) implies that g(ω) > 0 for all ω > 4
β2 .

This finishes the proof. �

Proof. [Proof of Theorem 1.1]

We divide the analysis into several steps. Let ω∗ = 4(p+1)
β2(p−1)

.

• Case ω 6= ω∗: we have from Lemma 3.2 that Ker(Lβ1,ω) = {0} and Ker(Lβ2,ω) = [ϕω,β].
1) Let p ∈ [5,+∞). Since ∂ω‖ϕω,β‖2 < 0, then we have p(ω) = 0 and consequently:

a) if ω < ω∗, then n(Hω|odd) = 1, and therefore eiωtϕω,β is orbitally unstable
in H1

odd(R− {0}) (and so is in H1(R− {0}));
b) if ω > ω∗, then n(Hω) = 3, and therefore eiωtϕω,β is orbitally unstable in

H1(R− {0});
2) Let p ∈ (1, 3]. Since ∂ω‖ϕω,β‖2 > 0, then we have p(ω) = 1 and consequently:

a) if ω < ω∗, then n(Hω)−p(ω) = 4−1 = 3, and therefore eiωtϕω,β is orbitally
unstable in H1(R− {0});

b) if ω > ω∗, then n(Hω|odd) = 1 = p(ω), and therefore eiωtϕω,β is orbitally
stable in H1

odd(R− {0}).
• Case ω = ω∗: we have from Lemma 3.2 that Ker(Lβ1,ω∗) = [ d

dx
ϕω∗,β] and Ker(Lβ2,ω∗) =

[ϕω∗,β]. Therefore, Ker(Lβ1,ω∗|odd) = {0}.
1) Let p ∈ [5,+∞). From Theorem 4.1 we have p(ω) = 0. Next, from Lemma 3.17,

Corollary 3.18 and Theorem 3.22 we obtain n(Lβ1,ω∗|odd) = 1 and n(Lβ2,ω∗ |odd) =

{0}. Therefore, n(Hω∗|odd) = 1 and so eiωtϕω∗,β is orbitally unstable in H1
odd(R−

{0}) (and so is in H1(R− {0}));
2) Let p ∈ (1, 3]. From Theorem 4.1 we have p(ω) = 1. Thus, since n(Hω∗|odd) = 1,

we obtain eiωtϕω∗,β is orbitally stable in H1
odd(R− {0})

This finishes the proof of the stability theorem. �

Remark 4.3. a) In the case p ∈ (3, 5), we can write the mapping J(ω) = 1
2
g(ω) defined

in (4.1) for ω = ω∗(p) = 4(p+1)
β2(p−1)

as

G(p) ≡ J(ω∗(p)) =
5− p

2(p− 1)

∫ 1

−
√
p−1
p+1

(1− t2)
3−p
p−1dt−

√
p− 1

p+ 1

( 2

p+ 1

) 3−p
p−1
.

Then, by considering the Gamma function Γ(·) and the Gauss hypergeometric func-
tion 2F1(·, ·, ·, ·) (see [1]) we obtain that

G(p) =
5− p

2(p− 1)

[√πΓ( 2
p−1

)

2Γ( p+3
2(p−1)

)
+

√
p− 1

p+ 1
2F1

(1

2
,
p− 3

p− 1
,
3

2
,
p− 1

p+ 1

)]
−
√
p− 1

p+ 1

( 2

p+ 1

) 3−p
p−1
. (4.5)

Thus, by using the Mathematical software we obtain the graph for the mapping G(p),
p ∈ (1, 5.6), in Figure 2 below. Now, from a more accurate analysis we have G(p) = 0
if and only if p = 3.15743 ≡ p0. Thus, for p ∈ (3, p0) we have J(ω∗(p)) > 0 and
therefore from the increasing property of g follows that ω∗(p) > ω0(p). For p ∈ (p0, 5)
we have J(ω∗(p)) < 0 and so ω∗(p) < ω0(p). Lastly, since G(p0) = J(ω∗(p0)) = 0
then ω∗(p0) = ω0(p0).

Then, from Theorems 2.3-3.1-4.1 we can conclude the following stability results:
i) Let p ∈ (3, p0). Then, for ω0 ≡ ω0(p):
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1 2 3 4 5
p

-2

2

4

6

G(p)

Figure 2. Graph of G in (4.5)

• if ω ∈ ( 4
β2 , ω0), then ∂ω‖ϕω,β‖2 < 0. Thus, p(ω) = 0, and by n(Hω|odd) = 1,

we obtain eiωtϕω,β is orbitally unstable in H1
odd(R − {0}) (and so is in

H1(R− {0}));
• if ω ∈ (ω0, ω

∗(p)), then ∂ω‖ϕω,β‖2 > 0. Thus, p(ω) = 1, and consequently
n(Hω)− p(ω) = 4− 1 = 3 which implies that eiωtϕω,β is orbitally unstable
in H1(R− {0});
• if ω > ω∗(p), then ∂ω‖ϕω,β‖2 > 0. Thus p(ω) = 1, and by n(Hω|odd) = 1,
we obtain that eiωtϕω,β is orbitally stable in H1

odd(R− {0}).
ii) Let p ∈ (p0, 5). Then, for ω0 ≡ ω0(p):

• if ω ∈ ( 4
β2 , ω

∗(p)), then ∂ω‖ϕω,β‖2 < 0. Thus, p(ω) = 0, and by n(Hω|odd) =

1, we obtain eiωtϕω,β is orbitally unstable in H1
odd(R − {0}) (and so is in

H1(R− {0}));
• if ω ∈ (ω∗(p), ω0), then ∂ω‖ϕω,β‖2 < 0. Thus, p(ω) = 0, and consequently
n(Hω) − p(ω) = 3 which implies that eiωtϕω,β is orbitally unstable in
H1(R− {0});
• if ω > ω0, then ∂ω‖ϕω,β‖2 > 0. Thus p(ω) = 1, and by n(Hω|odd) = 1, we
obtain that eiωtϕω,β is orbitally stable in H1

odd(R− {0}).
iii) Let p = p0. Then, ω∗(p0) = ω0(p0) and so we obtain:

• if ω ∈ ( 4
β2 , ω

∗(p0)), then ∂ω‖ϕω,β‖2 < 0. Thus, p(ω) = 0, and by n(Hω|odd) =

1, we obtain eiωtϕω,β is orbitally unstable in H1
odd(R − {0}) (and so is in

H1(R− {0}));
• if ω > ω∗(p0), then ∂ω‖ϕω,β‖2 > 0. Thus, p(ω) = 1, and by n(Hω|odd) = 1,
we obtain that eiωtϕω,β is orbitally stable in H1

odd(R− {0}).
iv) For p ∈ (3, p0) and ω = ω∗ > ω0(p), we obtain that eiω∗tϕω∗,β is orbitally

stable in H1
odd(R − {0}). In fact, this is deduced from Ker(Lβ1,ω∗|odd) = {0},

Ker(Lβ2,ω∗|odd) = [ϕω∗,β], n(Hω∗|odd) = 1 and ∂ω‖ϕω,β‖2|ω=ω∗ > 0.
v) For p ∈ (p0, 5) and ω = ω∗ < ω0(p), we obtain that eiω∗tϕω∗,β is orbitally

unstable in H1(R − {0}). In fact, this is deduced from n(Hω∗|odd) = 1 and
∂ω‖ϕω,β‖2|ω=ω∗ < 0.

b) If n(Hω)−p(ω) is even, the criterium in Theorem 2.3 does not provide any information
about the stability of eiωtϕω,β in all H1(R−{0}). For instance, in the cases p ∈ (1, 3]

Jo
ur

na
l P

re
-p

ro
of

Journal Pre-proof



NLS WITH δ′-INTERACTION 27

and ω > ω∗, p ∈ (3, p0) and ω > ω∗(p), p ∈ (p0, 5) and ω > ω0(p), and p = p0 and
ω > ω∗(p0).

c) For p ∈ (3, 5) and due to the ideas in [63], we conjecture that in the case ω = ω0(p)
(namely, ∂ω‖ϕω,β‖2|ω=ω0 = 0), the standing wave eiωtϕω,β is orbitally unstable.

5. Extension theory and tail stability properties

In this section, we will show that the approach for studying the stability of the bump-
like profiles ϕω,β can also be applied for the tail-type standing waves in the case β > 0
(attractive δ′-interaction) in the model (1.3). We note that an stability analysis for this
case was elaborated in [3]. Our proof does not use variational tools. Further, we improved
Proposition 6.3 and Proposition 6.11 in [3]. In particular, we obtain an stability property of
the standing wave for the case ω = 4(p+1)

β2(p−1)
.

Next, we establish the spectral properties of the operators Lβj,ω, j ∈ {1, 2}, defined by
(2.3) for β > 0 with ϕω,β = ϕoddω,β (see Figure 3 below) having tail-like profile. Our study give
a complete picture of the spectrum of these self-adjoint operators.

Figure 3. ϕoddω,β for β > 0

Theorem 5.1. Let β > 0 and ω > 4
β2 . Let also Lβj,ω, j ∈ {1, 2}, be defined by (2.3). Then

the following assertions hold.
1) If ω∗ = 4(p+1)

β2(p−1)
, then Ker(Lβ1,ω∗) =

[
d
dx
ϕω∗,β

]
, and n(Lβ1,ω∗) = 1. Moreover, the

eigenfunction associated to the negative eigenvalue is odd.
2) If ω 6= ω∗, then Ker(Lβ1,ω) = {0}.
3) If ω > ω∗, then n(Lβ1,ω) = 2. Moreover, the eigenfunctions associated to the negative

eigenvalues are odd and even, respectively.
4) If ω < ω∗, then n(Lβ1,ω) = 1. Moreover, the eigenfunction associated to the negative

eigenvalue is odd.
5) Ker(Lβ2,ω) = [ϕω,β] and Lβ2,ω = 0.

Proof. 1) For ω∗ = 4(p+1)
β2(p−1)

we have ϕ′′ω∗(0+) = 0. Thus, repeating the arguments
from the proof of Proposition 3.2, we obtain Ker(Lβ1,ω∗) =

[
d
dx
ϕω∗,β

]
. Further, from

〈Lβ1,ω∗ϕω∗,β, ϕω∗,β〉 < 0 follows n(Lβ1,ω∗) = 1. Using the extension theory, we deduce
n(Lβ1,ω∗) 5 1. Indeed, the symmetric operator L0

L0 = − d2

dx2
+ ω − p|ϕω∗,β|p−1, D(L0) = {v ∈ H2(R) : v′(0) = 0},
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has deficiency numbers n±(L0) = 1 (see [11]). By the von Neumann decomposition
(see Theorem 6.1), we have

D(L∗0) = {v ∈ H2(R− {0}) : v′(0+) = v′(0−)} = D(L0)⊕ [vi]⊕ [v−i],

where v±i are defined in the proof of Proposition 3.13. All self-adjoint extensions of
L0 are given by the one-parameter family (Lβ1,ω∗ , Dβ), β ∈ R. Next, we show that
L0 = 0 on D(L0) for β > 0. Indeed, for v ∈ D(L0) we obtain (see (3.7) and (3.8))

〈L0v, v〉 =

+∞∫

−∞

(ϕ′ω∗,β)2

(
d

dx

(
v

ϕ′ω∗,β

))2

dx−
[
v′v − v2

ϕ′′ω∗,β
ϕ′ω∗,β

]0−

−∞
−
[
v′v − v2

ϕ′′ω∗,β
ϕ′ω∗,β

]+∞

0+

.

(5.1)

The non-integral term in (5.1) admits the form

v2(0)
ϕ′′ω∗,β(0−)− ϕ′′ω∗,β(0+)

ϕ′ω∗,β(0+)
= 0,

since ϕ′ω∗,β(0+) = ϕ′ω∗,β(0−) < 0 and ϕ′′ω∗,β(0+) = −ϕ′′ω∗,β(0−) = 0. Therefore,
〈L0v, v〉 = 0. Thus, from Proposition 6.3 it follows n(Lβ1,ω∗) 5 1.

Next, let λω∗ < 0 and ψω∗ ∈ Dβ be such that Lβ1,ω∗ψω∗ = λω∗ψω∗ . Let us show that
ψω∗ is odd. By Lemma 3.4 for the case β > 0, we deduce that ψω∗ is either even or
odd. Suppose that it is even, then ψω∗ ∈ H2(R), and ψω∗(0+) = 0.

Consider the operator Lβ1,ω∗ defined on S0 = {v ∈ H2(R+) : v′(0+) = 0}. Since
φ = ϕ′ω∗,β|(0,+∞) satisfies Lβ1,ω∗φ = 0, and φ < 0 with φ′(0+) = 0, it follows Lβ1,ω∗ = 0

on S0. From the other hand, ψω∗ |(0,+∞) ∈ S0, and n(Lβ1,ω∗) = 1 on S0, which is the
contradiction with the positivity of Lβ1,ω∗ Therefore, ψω∗ is odd.

2) The proof is similar to the one of Proposition 3.2.
3) and 4) Combining the analytic perturbation theory arguments, item 1), and Lemma

3.17 applied to ϕω∗,β, for β > 0, we obtain from relation (3.23) that γ < 0 in
decomposition (3.11) (due to ϕω∗,β(0+) < 0). Thus, from (3.11) we obtain that the
second simple eigenvalue Π1(ω) is negative for ω > ω∗, and Π1(ω) is positive for
ω < ω∗. Moreover, the associated eigenfunction Ω1(ω) is even, and the eigenfunction
associated to the first negative eigenvalue is an odd function for all ω 6= ω∗.

5) Repeating the arguments from the proof of Proposition 3.2, we obtain Ker(Lβ2,ω) =
[ϕω,β]. Further, by (3.24), (3.25) and inequality ϕω,β(0+)ϕω,β(0−) < 0,

〈Lβ2,ωv, v〉 = A+

[
v′v − v2

ϕ′ω,β
ϕω,β

]0+

0−
= A− |ϕω,β(0+)v(0−)− ϕω,β(0−)v(0+)|2

βϕω,β(0+)ϕω,β(0−)
= 0,

where v ∈ Dβ, and A = 0 is the integral term.
�

Recall the operator Hω defined by (2.5). Thus, from Theorem 5.1 we obtain the following:
1) if ω > ω∗ then n(Hω) = 2, and n(Hω|odd) = 1;
2) if ω < ω∗, then n(Hω) = 1.
3) if ω = ω∗, then n(Hω∗|odd) = 1 and Ker(Lβ1,ω∗|odd) = {0}

Finally, we can establish the stability result for the NLS-δ′ equation in the case β > 0 (see
Proposition 6.11 and Theorem 6.13 in [3]).
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Theorem 5.2. Let β > 0, ω > 4
β2 , and ω∗ = 4(p+1)

β2(p−1)
. Then

1) if ω < ω∗ and p > 1, the standing wave eiωtϕω,β is orbitally stable in H1(R− {0});
2) Let ω > ω∗. For p ∈ (1, 2], the standing wave eiωtϕω,β is linearly unstable in H1(R−
{0}). For p > 2, the standing wave eiωtϕω,β is nonlinearly unstable in H1(R− {0}).

3) if ω = ω∗ and p > 1, the standing wave eiωtϕω∗,β is orbitally stable in H1
odd(R−{0}).

Proof. a) By Theorem 5.1, for ω 6= ω∗ we get Ker(Lβ2,ω) = [ϕω,β], Lβ2,ω = 0, and
Ker(Lβ1,ω) = {0}. Thus, we obtain the following:
1) for every p > 1 and ω < ω∗ from Proposition 6.5 in [3] we have ∂ω‖ϕω,β‖2 >

0. Thus, since n(Hω) = 1, the standing wave eiωtϕω,β is orbitally stable in
H1(R− {0}),

2) let ω > ω∗. In this case we have n(Hω) = 2. If p ∈ (1, 5], by Proposition 6.5
in [3], we deduce ∂ω‖ϕω,β‖2 > 0. Thus, since

n(Hω)− p(ω) = 2− 1 = 1,

by Theorem 2.3 and Remark 2.4 we obtain that the standing wave eiωtϕω,β is
linearly unstable in H1(R−{0}) for p ∈ (1, 2] and orbitally unstable in H1(R−
{0}) for p ∈ (2, 5].
Let p > 5. The sign of ∂ω‖ϕω,β‖2 was established in Proposition 6.5 of [3]. If
∂ω‖ϕω,β‖2 > 0, the instability of eiωtϕω,β follows immediately. Suppose now that
∂ω‖ϕω,β‖2 < 0. Then, since n(Hω|odd) = 1, we conclude that eiωtϕω,β is orbitally
unstable in H1

odd(R−{0}) and, a fortiori, it is orbitally unstable in H1(R−{0}).
b) By Theorem 5.1, for ω = ω∗ we get Ker(Lβ2,ω∗) = [ϕω∗,β], Lβ2,ω∗ = 0, and Ker(Lβ1,ω∗|odd) =
{0}. Thus, we obtain the following:
3) let ω = ω∗. From the proof of Proposition 6.5 in [3] (see (6.22)-(6.23)-(6.32))

we deduce ∂ω‖ϕω,β‖2|ω=ω∗ > 0. Thus, since n(Hω∗ |odd) = 1, the standing wave
eiω
∗tϕω∗,β is orbitally stable in H1

odd(R− {0}).
�

6. Appendix

In this Appendix, we prove some non-standard results used in the body of the manu-
script. In particular, we prove a Perron-Frobenius property for δ′-interactions. We start by
convenience of the reader establishing some results of the extension theory.

6.1. Extension theory. Let A be a densely defined symmetric operator on a Hilbert space
H with adjoint A∗. Consider the deficiency subspaces N±(A) = Ker(A∗ ∓ i) of A and the
deficiency numbers n±(A). Then, we have the following two results that have been used in
this work (see [62]).

Theorem 6.1. (von Neumann decomposition) Let A be as above, then

D(A∗) = D(A)⊕N+(A)⊕N−(A). (6.1)

Therefore, for u ∈ D(A∗) such that u = f + fi + f−i, with f ∈ D(A), f±i ∈ N±(A),

A∗u = Af + ifi − if−i.
Remark 6.2. The direct sum in (6.1) is not necessarily orthogonal.

The second result reads as follows.
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Proposition 6.3. Let A be a densely defined lower semi-bounded symmetric operator (that
is, A ≥ mI) with finite deficiency indices n±(A) = k <∞ in the Hilbert space H, and let Ã
be a self-adjoint extension of A. Then the spectrum of Ã in (−∞,m) is discrete and consists
of at most k eigenvalues counting multiplicities.

The result below was used in the proof of Proposition 3.13.

Proposition 6.4. Let ω > 4
β2 and β ∈ R. Then, the operator Lβ1,ω in (2.3) belongs to the

family of self-adjoint extensions of the following symmetric operator L

L = − d2

dx2
+ ω − p|ϕω,β|p−1, D(L) = {v ∈ H2(R) : v′(0) = 0, v(±µ) = 0},

where µ denotes the unique positive zero of even function ϕ′ω,β.

Proof. It is not difficult to see that the following symmetric operator L̃,

L̃ = − d2

dx2
, D(L̃) = {v ∈ H2(R) : v′(0) = 0, v(±µ) = 0},

has deficiency numbers n±(L̃) = 3. Indeed, by classical arguments from the theory of ODE’s,
the deficiency subspaces of L̃ are given by

N−(L̃) = Ker(L̃∗ + i) =
[
vi, e

i
√
i|x−µ|, ei

√
i|x+µ|

]

and N+(L̃) = Ker(L̃∗ − i) =
[
v−i, ei

√
−i|x−µ|, ei

√
−i|x+µ|

]
, where

v±i =

{
ei
√
±ix, x > 0,

−ei
√
±ix, x < 0,

, =(
√
±i) > 0.

Thus, since ϕω,β ∈ L∞(R) follows from extension theory that n±(L) = n±(L̃) = 3 and
D(L∗) = D(L̃∗). Then by the von Neumann decomposition (see Theorem 6.1) we have

D(L∗) = {v ∈ H2(R− {0,±µ}) ∩H1(R− {0}) : v′(0+) = v′(0−)}.
Thus, all the self-adjoint extensions of L are given by a 9-parameter family. Here we restrict
ourselves to the case of separated boundary conditions at each point 0,±µ. Therefore,
there exists a 3-parameter family of self-adjoint operators (Lν,Z± , D(Lν,Z±)) depending on
ν, Z± ∈ R, and given by




Lν,Z± = − d2

dx2
+ ω − p|ϕω,β|p−1

D(Lν,Z±) =

{
H2(R− {0,±µ}) ∩H1(R− {0}) : v(0+)− v(0−) = −νv′(0),

v′(0+) = v′(0−), v′(±µ+)− v′(±µ−) = −Z±v(±µ)

}
.

It is easily seen that we arrive at (Lβ1,ω, Dβ) for Z± = 0, ν = β. This finishes the proof.
�

6.2. Perron-Frobenius property for the repulsive δ′-interactions. In this subsection
we show that the Schrödinger operators with a repulsive δ′-interaction defined in (2.3) satisfy
the following Perron-Frobenius property.

Lemma 6.5. Let β < 0, ω > 4
β2 . Let also L

β
j,ω, j ∈ {1, 2}, be defined by (2.3). Assume that

λj,ω,β = inf σ(Lβj,ω) is the smallest eigenvalue. Then λj,ω,β is simple, and its corresponding
eigenfunction ψj,ω,β is positive (after replacing ψj,ω,β by −ψj,ω,β if necessary) and even.
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Remark 6.6. For β > 0, the profile ϕoddω,β is of tail-type and Theorem 5.1 shows that the
Perron-Frobenius property for the associated operators Lβj,ω, j ∈ {1, 2}, remains to be false
on the domain Dβ defined by (2.3).

Proof. This result follows by a slight twist of standard abstract Perron-Frobenius arguments.
We prove the assertion for λ1,ω,β, the proof for λ2,ω,β is similar. We divide the proof into
several steps.

1) Let µ > 0. Denote −∆β = − d2

dx2
− β〈·, δ′〉δ′(x). From the Krein formula follows the

representation for the resolvent (−∆β + µ)−1 as µ is sufficiently large (see [10,11])

(−∆β + µ)−1f = (−∆0 + µ)−1 f +
−2βµ

2− β√µ〈f, J̄µ〉Jµ,

where −∆0 = − d2

dx2
denotes the classical 1-dimensional Laplacian with domain H2(R)

and (−∆0 + µ)−1 denotes its resolvent which exists for any µ > 0. Jµ is defined by

Jµ(x) =
1

2
√
µ
sign(x)e−

√
µ|x|.

Thus, since (−∆0 + µ)−1f = 1
2
√
µ
e−
√
µ|·| ∗ f , we obtain

(−∆β + µ)−1f(x) =

∫

R
K(x, y)f(y)dy,

with

K(x, y) =
1

2
√
µ
e−
√
µ|x−y| − β

2

1

2− β√µ sign(xy)e−
√
µ(|x|+|y|).

Moreover, for every x fixed, K(x, ·) ∈ L2(R). Thus, the existence of the integral is
guaranteed by Holder’s inequality.

2) Let us show that K(x, y) > 0 for (x, y) ∈ R× R. Indeed, since K(x, y) = K(y, x), it
is sufficient to consider the following cases.
a) Let x > 0 and y > 0 or x < 0 and y < 0. Since −β

2
1

2−β√µ > 0, we obtain

K(x, y) =
1

2
√
µ
e−
√
µ|x−y| − β

2

1

2− β√µe
−√µ|x+y| > 0.

b) Let x > 0 and y < 0. Since 1
2
√
µ

+ β
2

1
2−β√µ > 0, we obtain

K(x, y) =
[ 1

2
√
µ

+
β

2

1

2− β√µ
]
e−
√
µ(x−y) > 0.

Moreover, by K(x, y) = K(y, x), we get K(x, y) > 0 for x < 0 and y > 0.
3) Applying standard Perron-Frobenious-type arguments (see, e.g., Lemma 5 in [8]),

we conclude that there is µ1 > 0 sufficiently large such that the operator R =
(Lβ1,ω+µ1)−1 exists, is bounded on L2(R), and is positivity improving, i.e., if f ∈ L2(R)
and f(x) = 0 almost everywhere in R, and f 6= 0, then Rf(x) > 0 almost everywhere
in R.

Note the spectrum σ(R) of R is the image of σ(Lβ1,ω) under the mapping λ →
(λ + µ1)−1. Denote the greatest eigenvalue of R by λ0 = (λ1,ω,β + µ1)−1, and let ψ0

be an eigenfunction corresponding to λ0. Thus,

〈Rψ0, ψ0〉 = 〈R|ψ0|, |ψ0|〉 = 〈Rψ0, ψ0〉,
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where in the last inequality was used the positivity improving property of R. There-
fore, 〈R|ψ0|, |ψ0|〉 = 〈Rψ0, ψ0〉. Hence for ψ+

0 = |ψ0|+ψ0

2
and ψ−0 = |ψ0|−ψ0

2
being the

positive and negative parts of ψ0 follows 〈Rψ+
0 , ψ

−
0 〉 = 0. Therefore, ψ−0 must vanish

almost everywhere. Indeed, suppose that ψ−0 (x) > 0 for all x ∈ E with |E| > 0, while
Rψ+

0 (x) > 0 almost everywhere in R. In particular, we can assume that there exists
ε > 0 such that Rψ+

0 (x) > ε for all x ∈ E. Thus,

0 = 〈Rψ+
0 , ψ

−
0 〉 =

∫

E

ψ−0 (x)Rψ+
0 (x)dx > 0,

but this is a contradiction. Therefore, we have that any eigenfunction ψ0 of R corre-
sponding to λ0 is positive almost everywhere.

It is easy to see that ψ0 is the eigenfunction of Lβ1,ω corresponding to the smallest
eigenvalue λ1,ω,β.

Further, suppose that ψ1 and ψ2 are two different eigenfunctions corresponding to
λ1,ω,β, then the preceding analysis shows that

〈ψ1, ψ2〉 =

∫

R
ψ1(x)ψ2(x)dx 6= 0,

because ψ1(x)ψ2(x) > 0 for a.e. x ∈ R. Therefore, λ1,ω,β is simple.
4) From Lemma 3.4 follows immediately that the eigenfunction corresponding to λ1,ω,β

is even.
�
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• The nonlinear Schrödinger model with the repulsive δ′-interaction on the
line.

• Orbital (in)stability of standing waves with discontinuous bump-like pro-
file.

• Extension theory of symmetric operators by Krein-von Neumann.

• Morse index of self-adjoint operators, Sturm oscillation results and ana-
lytic perturbation theory.

• Perron-Frobenius property for the repulsive δ′-interaction.
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