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In the bi-dimensional parameter space of an impact-pair system, shrimp-shaped periodic windows are
embedded in chaotic regions. We show that a weak periodic forcing generates new periodic windows
near the unperturbed one with its shape and periodicity. Thus, the new periodic windows are parameter
range extensions for which the controlled periodic oscillations substitute the chaotic oscillations. We
identify periodic and chaotic attractors by their largest Lyapunov exponents.
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1. Introduction

For experimental [1,2] and theoretical [3-5] classical dynami-
cal systems, parameters with chaotic and periodic attractors are
usually represented in bi-dimensional parameter spaces. Generally,
in these spaces periodic windows with typical shape [6], called
shrimps [7], embedded in chaotic regions have been observed for
several systems such as the CO, laser model [8], the Colpitts os-
cillator [9], the associative memory model [10], the Rossler system
[11], the mesoscopic electroencephalogram model [12], the induc-
torless Chua’s circuit [13], and the impact-pair system [14]. Each
periodic window has a central isoperiodic body with superstable
lines where the largest Lyapunov exponent reaches its minimum.
In the parameter space, the transitions to chaos can be identified
as routes from the shrimp central body to the chaotic region [3].

One desirable property associated with periodical attractors is
the facility for the prediction of the future state of the system,
in contrast with chaotic attractors. Whenever this inherent dif-
ficulty is regarded as undesirable, chaotic attractors are usually
avoided in many systems designed for technological applications.
It turns out, however, that chaotic behavior, if properly handled,
can be of practical interest in real-world applications. To accom-
plish that, two main methods have been applied to control chaos
and avoid undesirable chaotic effects in classical systems [15], i.e.,
to generate controlled periodical attractors from chaotic attractors.
One method is the Ott, Grebogi, and Yorke (OGY) [16], applied to
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stabilize unstable periodic orbits embedded in a chaotic attractor.
Another method is the chaos control by the application of addi-
tional small periodic perturbations [17-19]. In these methods, the
attention is usually focused on adequate limited ranges of con-
trol parameters. However, besides the assessment of the control
in large parameter ranges, the onset of periodic windows of con-
trolled orbits, in bi-dimensional parameter spaces, have not been
investigated yet.

In this work, we investigate the alterations, in the parame-
ter space, due to a small perturbation in an impact oscillator,
known as impact-pair [20]. The impact oscillators appear in a wide
range of practical problems in the engineering context [21-25]. In
physics, the well-know Fermi-Ulam model [26,27] is the classi-
cal example of an impact oscillator. For the impact-pair system,
a wide variety of nonlinear phenomena have been identified like
diverse kinds of bifurcations, chaotic regimes, crises, coexisting of
attractors, basins of attraction with fractal boundaries, basins of
attraction with band accumulations, basin hopping, and shrimp-
shaped windows in the parameter space [14,28]. In addition, the
OGY method was applied to control chaotic regimes [29].

By applying a small perturbation we control orbits for param-
eters in the chaotic region near an unperturbed shrimp. In the
parameter space, a new shrimp-shaped periodic window arises in
the region with controlled periodic orbits. This new window has a
shape similar to the original one, is localized in its neighborhood
and presents the same periodicity and similar superstable lines.
Thus, the new controlled periodic windows extend the parameters
range for which the system can have periodic oscillations.

This Letter is organized as follows: In Sections 2 and 3 we in-
troduce a dynamical description of the impact-pair model. In Sec-
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Fig. 1. Schematic of the impact oscillator.

tion 4 we present the changes observed in the parameter space
due to the applied small perturbation. In Section 5 we summarize
our main conclusions.

2. Impact oscillator

In this section, we describe the theoretical model of the impact-
pair system [21]. The system, shown schematically in Fig. 1, is
composed of a point mass m and one-dimensional box with a gap
of length v. The mass displacement is denoted by x, in the labo-
ratory coordinates system, and y with reference to the box middle
point. The mass m is free to move inside the gap and the motion
of the box is described by a periodic function, e(t) = A sin(wot).

An equation of motion and an impact law govern the dynamics
of the point mass inside the box.

The equation of motion of the mass m in the laboratory coordi-
nate system is:

x=0. (1)
This equation can be solved analytically for the initial conditions
X(to) = xo and x(tg) = Xo:

x(t) =xo + (t — to)Xo,

x(t) = Xo. (2)
To determine the mass position at the impact instant we introduce
the coordinate y of a referential in the box:

x(6) = y(t) +e(t). (3)
Substituting Eq. (3) into Eq. (2):

y(t) = yo +e(to) —e(t) + [Jo + é(to)](t — to),

y() = yo +é(to) — e(t). (4)
This solution is valid between successive impacts, that occurs at
|yl = v/2. We use the Newton’s law for impacts to determine the
new initial conditions:

t0=t! Yo=Y, j/(]:_ry' (5)

To calculate the Lyapunov exponents for this system, we use the
transcendental map [30] obtained by introducing Eq. (5) in Eq. (4):

Yn+1 = Yn +e(tn) —e(tar1) + [_r}"n + é(tn)] (ta+1 — tn),

Vnt1 = —1Vn +e(tn) — e(tns1), (6)

where n indicates the variable values just before the impact in-
stant.

The two-dimensional Lyapunov exponents are obtained with
the following expression [30]:

L1 .
Aj= lim Nln|A?’|, ji=1,2, (7)

N—oo

where |A?’ | are the eigenvalues of the matrix M, that is given by:

N
M= ]—[ Jm. (8)
n=1

The J" is the Jacobian matrix of the time interval between the n-th
and (n 4 1)-th impacts of the transcendental map. The product of
the Jacobian matrix above can be impracticable due to numerical
overflow of its elements. Then we applied a rotation to triangulate
it, and the product Eq. (8) is done in the diagonal elements. After
that the Lyapunov exponents are computed by:

N—oo

N
.1 .
Aj= lim NZln|a?|, i=1,2, (9)
n=1
where |a?’ | are the eigenvalues of the triangulated Jacobian.

3. Dynamics of the impact oscillator

We obtain the numerical solutions y(t) and the velocity y(t)
from Egs. (4) and (5). With these solutions we calculate the largest
Lyapunov exponent from Eq. (9). The limit in Eq. (9) is performed
until an adequate convergence of the Lyapunov exponents. To guar-
antee that, we choose in this work a transient scenario where the
60000 first impacts are neglected. To obtain the results presented
in this Letter, we fix the driven frequency wg = 1, the gap length
of the box v =2, and analyze the dynamic changes varying two
control parameters: A, the driven amplitude, and r, the restitution
coefficient.

Initially, we present some dynamical aspects of the model with-
out the control. To do that, we obtain bifurcation diagrams and the
largest Lyapunov exponents for chosen ranges of parameters A, for
which several bifurcations are identified.

To obtain Fig. 2(a), we consider stroboscopic maps (Time — 27),
from solutions of Eqgs. (4) and (5), by varying the parameter A
in the interval 1.400 < A < 1.434 with r = 0.524072, neglecting
the transient as mentioned before. In this figure we only show
the evolution of one attractor. In particular, from A = 1.416 to
A = 1.434, we identify a chaotic attractor with several periodic
windows. Fig. 2(b) shows the largest Lyapunov exponent variation
obtained by the transcendental map given by Eqgs. (6) and (7).

We are interested in controlling chaotic attractors for parame-
ters A and r close periodic windows in the parameter space. For
that, we choose the parameters A = 1.422710 and r = 0.524072
and show, in Fig. 3, for the chaotic attractor to be controlled,
the velocity y(t) and displacement y(t) at the stroboscopic
time.

The periodic windows of the unperturbed system can be better
visualized in the parameter space diagram of Fig. 4. To obtain that,
we evaluate the Lyapunov exponent for a grid (800 x 800) of pa-
rameters A and r. Parameters with chaotic and periodic behavior
are represented, respectively, in yellow (online) and green (online).
The periodic windows consist of shrimp-shaped areas. In Fig. 4
blue points (online) indicate parameters with the lowest Lyapunov
exponents, inside the windows, corresponding to superstable peri-
odic orbits.

We choose two areas indicated by squares in Fig. 4 to bet-
ter investigate some orbit properties considered in this Letter.
Thus, Fig. 5 shows the magnification of the left square indicated
in Fig. 4. The cross in Fig. 5 demarks the parameters corre-
sponding to the chaotic attractor shown in Fig. 3, and the black
point corresponds to a periodic attractor (A = 1.425660 and r =
0.526209) inside the periodic window. These two attractors will
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Fig. 2. (a) Bifurcation diagram for the velocity (Time — 2m) varying the driven amplitude (A), for r = 0.524072. (b) Largest Lyapunov exponent calculated for the same
parameters of (a). wp =1, v = 2. The arrow indicates the parameters (A = 1.422710) of the attractors chosen to be controlled.
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Fig. 3. Stroboscopic map (Time — 27r) of the chaotic attractor (to be controlled) for A =1.422710 and r =0.524072. wp =1, v =2.

be considered to present the control procedure used in this Let-
ter.

4. Changes in parameter space by a small perturbation

In this section, we investigate the control of chaotic attractors
of the impact-pair system by using an external harmonic forc-
ing with small amplitude. This nonfeedback method is applied for
chaotic orbits with parameters near a periodic window. Our main
interest is to verify the robustness of the controlled orbit in the
parameter space, i.e., the observation of a periodic window in the
region where the unperturbed chaotic attractor was.

In order to control a chaotic orbit, we modify the original forc-
ing by adding a second term:

e(t) = Asin(wot) + B sin(wt), (10)

where B is the control amplitude and w is the control frequency.

To show the applicability of the small amplitude control, we
obtain the bifurcation diagram of Fig. 6(a), in terms of the per-
turbing amplitude, for the fixed chaotic parameter A = 1.422710
and r = 0.524072 corresponding to the crossed point of Fig. 5. This
bifurcation diagram and the corresponding largest Lyapunov expo-
nent in Fig. 6(b) were obtained in a similar way as that of Fig. 2.
In Fig. 6 we observe that the parameter B variation technique con-
ducts the system to a 4-period orbit. However, larger values of the
parameter B (not shown in Fig. 6) can lead the system to low pe-
riodic orbits.

Other values of w could be used to control the chaotic attrac-
tor driven by the original forcing with the frequency wo = 1. To
show that we present in Fig. 7 a parameter space wp x @ obtained
by calculating the Lyapunov exponent of the perturbed attractor. In
this figure, points in the green line represent parameters with neg-
ative Lyapunov exponent while points in the yellow area represent
parameters for which the perturbed attractors remain chaotic.
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Fig. 4. (Color online.) Bi-dimensional parameter space diagram of the unperturbed system for a grid of parameters A and r. wp =1, v = 2. Periodic (chaotic) attractors are in

green (yellow). The squares indicate the area amplified in Fig. 5 and in Fig. 9.

1.45

1.43

Driven Amplitude A

0.52 0.55

Restitution Parameter r

Fig. 5. (Color online.) Magnification of the left square indicated in Fig. 4. The cross indicates the parameter values of the chaotic attractor to be controlled and the black point

indicates a periodic attractor inside a shrimp.

Next, we present in Fig. 8, the perturbed parameter space di-
agram, in terms of A and r, where the color representations are
the same of Fig. 4. The cross mark indicates the A and r parameter
values of Fig. 3 chaotic attractor chosen to be controlled.

Fig. 8 shows parameter spaces for two different values of
forcing amplitude control B. In the first case (a) the parame-
ter space is obtained for B = 0.0025. We observe that the cho-
sen chaotic attractor is not yet controlled, but even so a new
shrimp-shaped periodic window arises in the neighborhood of
the point correspondent to the analyzed orbit chosen to be con-
trolled. In other words, the chosen parameters still remains out-
side the generated shrimp formed by controlled orbits. We ob-
served that, increasing B, the new shrimp approaches the cho-
sen point and the control is achieved. This result can be seen in
the second case (b), for B = 0.0045, for which the chosen pa-
rameters are in the superstable orbit region of the new shrimp

and, consequently, the controlled orbit has the same period of
the superstable orbit of the generated shrimp. We note that the
old periodic window is displaced as B is varied, and points
representing a periodic attractor change their color to represent
chaotic attractors, as the black point marked in Fig. 8(a) and in
Fig. 8(b).

A magnification of the right square of Fig. 4 is shown in
Fig. 9(a). This parameter space amplified area contains periodic and
chaotic attractors. The attractor alterations resulting from applica-
tion of a weak periodic forcing (with B = 0.0007 and w = 2) are
shown in Fig. 9(b). In this last figure we observe another exam-
ple of a new periodic window arising. Namely, the main shrimp
in Fig. 9(a) appears duplicated in Fig. 9(b) around its unperturbed
place. In Fig. 9, the cross indicates the parameters of the chaotic
attractor to be controlled (A = 1.523030 and r = 0.782943) and
the parameters of a periodic attractor (A = 1.527820 and r =
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Fig. 6. (a) Bifurcation diagram for the velocity (Time — 27) varying the external control forcing (B), for A =1.422710 and r = 0.524072. (b) Largest Lyapunov exponent
calculated for the same parameters of (a). wp =1, @ = 0.5 and v = 2. The arrows indicate the control parameters values (B =0.0025 and B = 0.0045) used in Fig. 8.
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Fig. 7. (Color online.) Parameter space wp x w of the natural and driven frequencies. Controlled periodic (chaotic) attractors are in green (yellow). A =1.422710, r = 0.524072

and B =0.0045.

0.779605) inside the unperturbed shrimp are indicated in Fig. 9(a)
by a black point.

In general, application of feedback control methods stabilizes
unstable periodic orbits embedded in the original chaotic attrac-
tors and, therefore, do not change the attractors of the controlled
systems [15]. In our case, we apply a nonfeedback method that
slightly modifies the chaotic attractor to a periodic one, which is
located (in the parameter space) in the neighborhood of the initial
attractor. This kind of attractor alteration is typical of nonfeedback
methods [15].

To be more specific, we show in the stroboscopic map (Time —
2m) of Fig. 10 that the controlled attractor assumes the period-
icity (6-period) of a pre-existing periodic attractor (black point
of Fig. 5) in the shrimp located in the neighborhood of the cho-
sen chaotic orbit parameters. In fact, as shown in Fig. 10, the

same velocity and displacement are obtained for the controlled or-
bit, for given parameters inside the new generated shrimp, and
the periodic orbit for parameters located in the original shrimp.
These values, shown in Fig. 10, obtained for the superstable or-
bits of the mentioned shrimps, are indistinguishable. The observed
correspondence is due to the shrimps resemblance observed in
Fig. 8.

Next, in Fig. 11(a) we present in phase space a piece of the un-
perturbed chaotic attractor (observed for parameters indicated by
the cross of Fig. 5), in black, superposed to the unperturbed peri-
odic attractor in red (for parameters indicated by the black point
of Fig. 5). Complementary, we show in Fig. 11(b) how these two
attractors are modified by the applied small perturbation. Thus, we
can recognize that both periodic orbits of Fig. 11 are embedded in

chaotic attractors.
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Fig. 8. (Color online.) Perturbed parameter space for the area indicated by the left square of Fig. 4. The parameters of the chaotic orbit to be controlled are indicated by a
cross mark (also shown in Fig. 3). (a) For external control forcing B = 0.0025 a new periodic window arises. (b) For B = 0.0045, the central new shrimp body reaches the

cross mark. wp =1, w=0.5 and v =2.
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Fig. 9. (Color online.) (a) Parameter space magnification of the area indicated by the right square of Fig. 4. The parameters of the chaotic orbit to be controlled are indicated
by a cross mark. (b) Perturbed parameter space of the same area of (a), for external control forcing B = 0.0007, where a new periodic window arises. wp =1, @ = 2.0 and

v=2.

5. Conclusions

We investigate the control of chaos for impact-pair system
driven by a small harmonic forcing. To identify periodic and
chaotic regions in the parameter space diagram, we compute the
largest Lyapunov exponents for the attractors in the considered
parameter ranges. We identify shrimp-shaped periodic windows
immersed into a chaotic region.

The parameter space is much modified whenever the small am-
plitude forcing is applied. New similar periodic windows arise in
the neighborhood of the original windows. We verify that periodic
orbits are similar (and with the same periodicity) for parameters
inside the original and the new periodic windows.

Moreover, we show how the chaotic attractors change with
the increasing amplitude forcing until they become controlled and
reach periodic orbits existing for parameters in the unperturbed
window. This evolution corresponds to a displacement of the new
window until it reaches the parameters of the chosen chaotic orbit
to be controlled.

One relevant aspect we did not analyze is how the shrimp-
shaped windows form and evolve; in particular it would be worth-
while to investigate the possible stabilization, by the parametric
driven, of the unstable periodic orbits embedded in the chaotic
attractors.

As far we have found in the literature, shrimps are very com-
mon in dissipative systems with periodic and chaotic attractors.
We believe that our results concerning the periodic window aris-
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Fig. 10. Superposition of velocity and displacement at the stroboscopic time for the controlled periodic attractor (triangle symbol) for B = 0.0045 and another pre-existing
periodic attractor (plus symbol) with parameters close to those of the controlled attractor. wp =1, w =0.5, v =2.
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Fig. 11. (Color online.) (a) Superposition of the chaotic attractor (black) to be controlled (A = 1.422710 and r = 0.524072) and an unperturbed periodic attractor (red)
(A =1.425660 and r = 0.526209). (b) Superposition of these attractors modified by the perturbation (the modified attractors are indicated by the same colors they have in

(). wp=1, w=0.5 and v =2.

ing will be verified even in more sophisticated controlled models
as those assuming a friction law between the mass and the box
surface or considering an accurate impact law such as the Poisson
law or energetic laws.
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