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The aim of this paper is to present a conceptual approach to an augmented intelligence-based worker
assistance system in manual assembly. This approach is designed to address current challenges in global
value networks. We propose a self-learning multi-camera system that (1) provides augmented reality-
based assembly instructions and (2) enables automated real-time in-process testing of complex manual
assembly operations by using visual camera and CAD data, operational experiences and expert knowl-
edge. As the proposed solution is targeted at enabling SMEs, cost-effectiveness is a main goal of the

IoP conceptual approach. Consequently, weak artificial intelligence is applied to realise the algorithmic chain
subject to performance restricted hardware. The approach states a novelty in research and development
and contributes to practical application in the field of augmented intelligence.

© 2020 The Authors. Published by Elsevier B.V.
This is an open access article under the CC BY-NC-ND license
(http://creativecommons.org/licenses/by-nc-nd/4.0/)

1. Introduction

Industry 4.0, grounded on the integration of key technologies
and cyber-physical systems, is expected to profoundly disrupt con-
ventional production approaches (Hellebrandt et al., 2019). These
disruptions will affect the organisation of work on both macro
(i.e., value networks) and micro (i.e., focal company) level. At the
macro level, German companies are increasingly relocating their
production facilities abroad in the course of globalisation for com-
petitive reasons and are thus establishing global value networks
(Marks, 2019). It is anticipated that the relocation of value cre-
ation further increases due to favourable European framework con-
ditions (Lorenzen and Krokowski, 2018) as well as cheaper human
labour (Zanker et al., 2013). However, one of the main challenges
will be the assurance of high product quality within such global
value networks while striving for efficiency optimisation. This chal-
lenge is reinforced by the international differences in the qualifica-
tion levels of employees, especially when comparing high-wage to
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low-wage countries. According to a study by the OECD, employees
from low-wage countries are less educated and with that typically
less qualified (Anon, 2019). These qualification differences arise the
need for error preventing assembly assistance systems (AAS). To
address all levels of qualification, the assembly assistance has to
be provided as easy to understand visualisation. A user-centred de-
sign assures this understandability (Fischer et al., 2017). On a mi-
cro level, various tasks performed by humans are rather difficult
to automate in the near future - such as the assembly of tangling
parts or tasks of high complexity - for economic and/or techno-
logical reasons. Hence, human labour will remain an essential part
in future production (Metzmacher et al., 2019). This consideration
particularly applies for assembly as a major value-adding process
in production (Funk et al., 2018), e.g., in the automotive indus-
try. Assembly is performed manually for complexity or profitability
reasons. Through changing market demands, such as shorter prod-
uct lifecycles, and an individualisation of customer requirements,
highly repetitive tasks decline and highly flexible manufacturing
systems gain importance. Additionally, technological and market
developments will intensify in the next 5 to 10 years. This implies
that workers need to be highly flexible to adapt to fast changing
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assembly tasks (Spena et al., 2016). The assurance of this flexibil-
ity without decreasing the level of quality requires an automatic
adapting, intelligent assistance system. The technique to address
this need is artificial intelligence (Al). The constant interaction be-
tween human and Al that arises in such a system reveals the need
for augmented intelligence models. In this context augmented in-
telligence is defined as “an intelligent model that requires human
interaction” (N-n et al., 2017). The augmented intelligence is an ex-
tension of human abilities and incapable of replacing them alto-
gether. That means humans can and will directly influence the in-
put as well as the outcome of the system based of the confidence
of judgement of the augmented intelligence (N-n et al., 2017).

Bringing the macro and micro perspective together, following
guiding questions can be deduced: (Q1) How can companies as-
sure both a high-level of manual assembly quality and efficiency
in global value networks? (Q2) How can low-skilled workers be
trained for and guided through highly complex assembly tasks?

As a solution to these questions, we propose a multi-camera
system based on augmented intelligence to automatically and
adaptively recognise manual assembly steps and create assembly
instructions (Q1), cognitive-ergonomically project these assembly
instructions with augmented reality (AR) technologies onto work
surfaces and parts to guide workers within assembly (Q2) and
check against deviations of specified processes (Q1). This is as-
sumed to shorten ramp-up and work preparation time, ensures
quality assurance in assembly processes and delivers insights for
Design-for-Assembly engineering through the generated data. Con-
sequently, the economic advantage of our research project in-
cludes the reduction of quality costs by in-process quality assur-
ance through immediate performance feedback to the workers, re-
duction of assembly training costs as well as assembly time by
guiding assembly instructions. In addition, network synergies will
be realised through sharing assembly workflows and data-driven
insights.

The remaining paper is organised as follows. Section 2 il-
lustrates the applied research methodology. Subsequently,
Section 3 reviews current approaches of and enablers for AASs.
Based on existing theoretical as well as practical approaches,
Section 4 describes the concept of the proposed solution together
with its benefits. Finally, the paper concludes with a discussion of
results and formulates implications for future research.

2. Research methodology

Our research process is based on Ulrich (Ulrich, 1982) and can
be divided into seven sequential steps (A-G). This paper covers
steps A to E. The testing of the proposed solution conducted within
steps F and G are not in scope. Following the process of ap-
plied sciences, problems with practical relevance have to be iden-
tified and structured first (step A). A structured literature review
in the field of intelligent assembly assistance as well as emerging
trends in the context of globalisation, e.g., flexible value networks
(Kagermann et al., 2016), have been the key input for the identi-
fication of the underlying practical problems in Section 1. Subse-
quently, in steps B and C problem-specific theories and approaches
of existing research have to be identified, analysed and interpreted.
Sections 1 and 3 cover these process steps with a review of cur-
rent approaches of AASs in theory and practice as well as enablers
for AASs. Thereby the problem-specific theories and hypotheses
(step B) and problem-specific methods (step C) are considered.
Hereinafter, step D is addressed in Section 4 by conceptualising
the approach of an intelligent AAS that fulfills the requirements
of global value networks. Also covered in Section 4 is step E. This
step addresses the detailed elaboration of the approach by devel-
oping a practical applicable model. Consecutively, this model has
to be validated in practice according to step F. Finally, step G pro-
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poses the application of the finalised model in industrial practice.
Steps F and G are out of this paper’s scope and will be addressed
in future empirical research as outlined in the concluding section.

3. Review of current approaches of and enablers for assembly
assistance systems

Current approaches for AASs focus on increasing the quality of
the assembly as well as reducing the training times. One approach
is to apply AR technologies to guide workers during manual assem-
bly as shown in Alves et al. (2019). Pham and Xiao (2018) devel-
oped a workflow recognition system based on object recognition,
to automatically extract workflows from manual assembly. This
system can be combined with AR-based AASs to enable adaptive
responses to the current state of assembly and thus increase the
accuracy and scalability of AR solutions. Instead of object recogni-
tion (Biittner et al., 2017) used a projection-based AR application
and provided it with an intelligent hand tracking algorithm. The
tracking of hand gestures enables context-sensitivity. Recognising
the hand positions and actions of the worker, the system can draw
the users’ attention to wrong picking actions or errors in the as-
sembly process and can adapt the projection to the current work-
ing situation.

There are several commercialised solutions (Schlauer Klaus
(Optimum GmbH 2020), Assembly Solutions (Assembly Solu-
tions GmbH 2020), Assembly Pro (LAP-Laser 2020), Active As-
sist (Bosch Rexroth AG 2020)) as well as functioning proto-
types from research projects (MonSiKo (Fraunhofer 2020), SWoB
(Niedersteiner et al., 2015)) for manual AASs available. These so-
lutions are already well advanced in their maturity. Each of them
represents a manual assembly station, which has been equipped
with various technologies to provide assembly assistance to work-
ers. As these solutions follow a similar approach, a text-based anal-
ysis is not carried out. Fig. 1 shows the analysis of the introduced
solutions.

The literature also covers enablers for AASs such as the usabil-
ity in terms of training, the physical flexibility and the presentation
of information within AASs. Oestreich et al. (2019) deal with the
impact of digital assistance systems on the initial learning proce-
dure for novice workers. The study shows that novice workers have
a similar learning curve with a digital assistance system as with
personal explanation. This arises the potential of reducing training
costs through digital AASs. Gewohn et al. (2018) examine the pre-
sentation of information in AASs in accordance with the needs of
the worker. The key insight of this study is that a digital assistance
system should be adaptive to the individual’'s personal needs de-
pending on the position and tasks as well as problem solving skills.
The challenges that come with the design and deployment of in-
teractive worker assistance systems are investigated in Kosch et al.
(2017) based on the AAS motionEAP (Funk et al., 2016). They ob-
served that workers experience auditive and haptical assistance as
disturbing and only visual assistance as beneficial. Additionally, the
system should automatically adapt the amount of assistance the
user needs. Quint et al. (2016) present a flexible system architec-
ture for assistance in manual tasks that integrates different assis-
tance modalities. This system proves the feasibility of flexible and
cost-effective AASs.

Fig. 1 summarises the main findings of the literature review.
For this purpose, we evaluated the reviewed approaches regard-
ing requirements, which we derived and formulated based on the
practical problem statement in Sect. 1:

« Flexibility;

« Augmented Intelligence;
« User-centred design;

+ Visualisation;
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Fig. 1. Comparison of current approaches of and enablers for AASs.

- Worker feedback;

« Optical in-process control;

- Adaptive progress detection;

» Automated creation of digital assembly instructions;

Flexibility is a necessary requirement to quickly adapt an AAS
to changes in complex market environments (e.g. global relocation
of production facilities) and shorter innovation cycles (Spena et al.,
2016). Al algorithms are a fitting tool to enable this flexibil-
ity. But since human labour remains an essential factor in pro-
ductions of the near future, those Al algorithms have to allow
the workers to intervene and overrule them (Metzmacher et al.,
2019). Thus, augmented intelligence systems have to be developed
(N-n et al., 2017). Since humans use the system, the acceptance
of this system is an important factor for a successful implementa-
tion in existing production systems. A user-centred design can be
beneficial to achieve this acceptance (Fischer et al., 2017). Further,
Kosch et al. (2017) explain that visual assistance is the only bene-
ficial form of assembly assistance. That makes visualisation a cru-
cial requirement for an effective AAS. In-process quality assurance
can be achieved through real-time worker feedback, as errors dur-
ing the assembly process can be eliminated or prevented imme-
diately. This reduces the quality costs significantly (Ténnes et al.,
2016). The requirements for real-time worker feedback are opti-
cal in-process control and adaptive progress detection (Pham and
Xiao, 2018; Biittner et al., 2017). Furthermore, an automated cre-
ation of assembly instructions reduces the ramp-up time as well
as the personnel costs as no human interaction is needed. Addi-
tionally, the overall quality level constantly improves through au-
tomated optimisation of the assembly instructions.

Taking into account the analysis of the described approaches
and enablers (Fig. 1), current research considers AR as a suitable
tool to assist workers in manual assembly. AR can be used in or-
der to adapt faster to changing demands in assembly procedures,
improve assembly time as wells as lower failures during the as-
sembly process. Additionally, several authors (see Funk et al. (2019)
or Gewohn et al. (2018)) highlight the potential usage for an in-
process quality assurance during the manual assembly process. The
combination of these applications with Al to create augmented in-
telligence solutions and therefore highly flexible systems, was only
examined in the case of context recognition by Pham and Xiao
(2018) and Biittner et al. (2017). None of the approaches used a
combination of object and hand gesture recognition, which would
be beneficial for the accuracy of the context recognition (Pham and
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Xiao, 2018). Consequently, there is no approach for an intelligent
AAS, which can automatically generate assembly instructions and
assure in-process quality. Furthermore, the focus in current ap-
proaches to manual AASs was rather technical. A user-centred de-
sign was not explicitly considered and the acceptance of these
AASs by the users not specifically regarded (Fischer et al., 2017).

Finally, challenges in context of global relocation, like intercul-
tural aspects and location-independent use, are not addressed in
any of the current solutions. The applications do not enable an
integration into flexible global value networks (Kagermann et al.,
2016). To overcome those challenges, an AAS has to allow location-
interdependent in-process quality assurance. It has to adjust as-
sembly instructions automatically to different user needs, depend-
ing on the corresponding cultural circumstances, by processing
user feedback in real time.

4. Concept
4.1. Setup characteristics

In order to meet the flexibility requirement, the proposed sys-
tem (Fig. 2) will be developed in a modular approach. It consists of
a software and hardware module, which can be adapted to the re-
spective application and further developed independently of each
other. Different applications are for example automotive or switch-
board assembly, which differ in size and complexity of the assem-
bled parts.

4.1.1. Hardware module

The hardware module allows to create the assembly instruc-
tions at the development sites of a company. The preparation of
cognitive-ergonomic assembly instructions is based on expert as-
sembly and fully automated. To achieve this, hardware is required
that can capture the necessary data of an expert assembly (visual
data) and has the necessary interfaces to the CAD programs in use.
Additionally, the same setup can be implemented in the assem-
bly lines to guide the assembly workers and assure real-time in-
process quality. To capture the necessary visual data, the hardware
module consists of five cameras (3 x Raspberry Pi Camera Module
v2; 2 X Longrunner Wide Angle 160°Fisheye Lens). Microcontrollers
(Raspberry Pi 3B) control the cameras and send the data to a cen-
tral computer, which processes them. A projector controlled by
the central computer provides assembly instructions. The camera
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Fig. 2. Description model of the proposed concept.

system works as the receiving part of the human machine inter-
face as it captures the necessary information to adapt to the envi-
ronment, whereas the projector is the communicating part, which
presents information to the user. When selecting hardware, cost-
effectiveness is of high relevance, so that the system is feasible for
small and medium sized enterprises (SME). This enables SMEs to
take part in the trend of globalisation (Kagermann et al., 2016).

4.1.2. Software module

The software module is the centre of the proposed system
and incorporates the necessary Al algorithms for the system to
work. Those algorithms ensure the workflow as well as three-
dimensional parts recognition and generate cognitive-ergonomic,
AR assembly instructions. This guidance will be automatically ad-
justed to the user’s needs to broaden his or her skillset.

4.2. Approach

The proposed technological implementation of the hardware
module is a multi-camera system (Fig. 2). The concept is designed
like an assembly workstation and equipped with optical image
acquisition systems (cameras) and a projector. Placed directly in
the development department, it is used to train the Al (training
phase) with expert assembly of new parts to generate process data.
Then the Al algorithms can process the captured visual times-
tamped position data (worker movements and part positions) to-
gether with available CAD data and create AR-based assembly in-
structions through graph translation.

Implemented in the operative assembly process, the camera
system is capable of recognising the parts used and the assem-
bly steps executed three-dimensionally. Together with the under-
lying information about the assembly process, generated through
CAD data and expert assembly, the software module generates the
situation-based cognitive-ergonomic assembly instructions and en-
sures in-process quality through real-time assembly progress eval-
uation. To prevent assembly errors, workers are provided with AR
assembly instructions and receive real-time visual feedback on the
quality of their assembly progress. The instructions will be pro-
jected on the work surface and/or the product itself. This way the
assembly worker stays free from wearables. Based on the problems
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that occur during the assembly of a product, the software mod-
ule will automatically optimise the assembly instructions (learning
phase) with the help of MTM comparison and BPMN compilation
(see Fig. 2). Thus, augmented intelligence algorithms improve over-
all process and product quality. The augmented intelligence system
reduces the time necessary for assembly training by providing de-
tailed situation-based assembly instructions of new products and
thus guides the assembly worker through new processes.

With respect to the technical development of the multi-camera
system, following aspects play an important role in the software
module: (1) Image recognition and machine vision, (2) state esti-
mation of tracked objects and (3) clustering and comparison al-
gorithm. Additionally, (4) the use of performance restricted and
low-cost hardware. With regard to (1), many weak Al algorithms
of the machine learning domain can be facilitated, such as YOLO
V3 Network to detect parts and workers (Redmon et al., 2016).
For state estimation (2), common algorithms like solvePNP can be
used to estimate 3D positions via multiple camera perspectives
and the previously detected objects of interest (Lee et al.,, 2018).
With the timestamped data, clustering algorithms (3) such as DB-
SCAN (Ester et al., 1996) are used to define prominent movements.
With the help of process mining algorithms, those sequences of
prominent movements are translated into a graph structure. From
here on, the data can be either compared to predefined processes
to detect deviations for quality assurance or used to deduce the
succeeding assembly step to guide workers via AR-projected as-
sembly instructions. The corresponding technological research gap
lies within the robustness, applicability and combination of exist-
ing algorithms with respect to performance-restricted hardware.

4.3. Outcome

The novel approach of a self-learning multi-camera system for
representation of the assembly process and subsequent generation
of assembly instructions uses state of the art in weak Al (i.e.,, ma-
chine learning algorithms). This replaces the need for manually
recording and mapping process steps and cycle times during work
planning. Moreover, the system is capable of providing assembly
instructions with AR projection and enables automated real-time
in-process quality assurance. Current approaches rely on prede-
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fined assembly instructions, based on CAD data. The expected tech-
nological outcome is new as the system automatically generates
assembly instructions. Those instructions are based on camera and
CAD data as well as operational experiences and expert knowledge.
They will be automatically improved throughout the whole prod-
uct life cycle. Furthermore, applying process-mining approaches to
physical processes states a novelty in terms of research and devel-
opment.

60% of the total quality costs originate from manual assem-
bly processes. These costs consist of failure costs, failure preven-
tion costs and testing costs (Tonnes et al., 2016). With the help
of real-time AR assembly instructions and automated in-process
quality control, the developed system is able to ensure high qual-
ity and efficient assembly operations in global value networks. On
the one hand, training for assembly processes can easily be shared
and reproduced with the system in a global value network. On
the other hand, AR assembly instructions reduce the qualification
requirements of the assembly workers and thus enable the inte-
gration of low-skilled workers for the assembly of complex parts.
This allows company locations in global value networks to focus
on their core competencies to increase efficiency and remain com-
petitive. Application of Al ensures the continuous improvement of
the assembly processes and thus of the overall quality. In addi-
tion, time for the creation of assembly instructions can be de-
creased through automating this process with the help of Al The
proposed system will therefore reduce quality costs in all three ar-
eas (Niedersteiner et al., 2015; Falck et al., 2010).

5. Discussion and future research

The developed concept states a novelty in research and de-
velopment as it uses weak Al to create a highly flexible and
adaptive AAS. It represents a possible solution for the identified
challenges of globalisation. The research questions raised can be
answered in theory, as the system can take over in-process quality
assurance (Q1) and reduces training and ramp-up times (Q2).
Due to the user-centred design combined with Al, the developed
AAS can adapt itself to the needs and qualification level of the
user allowing location-independent and intercultural use. Thereby
the system meets the requirements for an integration into global
value networks and enables the relocation of assembly plants into
low-wage countries.

The developed model is based on recent literature and the lat-
est state of the art. The studies on which the concept is based
show a consensus in the use of visual aids for manual assembly ac-
tivities. Context-sensitive assistance, based on the work steps per-
formed, is also repeatedly listed as necessary and beneficial. Based
on previous work, it can be concluded that the above-mentioned
Al algorithms are capable of performing the operations for cre-
ating assembly instructions and context-sensitive assembly assis-
tance using AR.

Nevertheless, the proposed concept is a complex theoretical
model, the functionality of which has not been tested and there-
fore not been proven. The complex interrelationships between the
individual components of this system (such as the different Al al-
gorithms) offer a wide scope for errors and difficulties. A purely
theoretical model cannot adequately capture those flaws. Addition-
ally, it has not yet been sufficiently considered what cognitive er-
gonomics and a user-centred design means in the context of man-
ual assembly.

In future research, the following steps have to be taken in order
for the presented concept to achieve its intended benefits. A first
prototype consisting of the presented modules has to be developed
and its basic functionality ensured in practice. The prototype has to
allow automatic in-line process control as well as a creation of dig-
ital assembly instructions. Furthermore, it has to be studied which
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features are inherent to a user-centred design of a manual AAS and
the fundamental aspects of cognitive-ergonomic AR assembly guid-
ance have to be examined. This analysis should also cover cultural
differences and language issues in global value networks. Regard-
ing the managerial aspects, organisational processes for sharing the
assistance system data in a global value network have to be devel-
oped. Finally, it has to be investigated how the collected data can
be anonymised in order to guarantee personal and data security.
Although the concept is a theoretical model, the highlighted po-
tentials justify further research activities as well as a prototypical
implementation.
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