





1. Main definitions and results

We start by recalling the main notation and definitions. Consider a simple exclusion
process in a finite torus Ay = {1,... N}?, N € IV, with periodic boundary conditions.

A configuration is a function n : Ay — {~1,+1}, that is, n € X = {—1,+1}*~ ( space
state ). We say that the site z € Ay is empty if 9(z) = -1 and it is occupied if n(z) = +1.
We denote by o] the process at time ¢ with initial configuration » and the value of the site
z at time t is o] (z).

Definition 1.1. We define the Hamiltonian of the configuration 1 as

1
Hn)=~3 > n(@nw) (1.1)
=yEAN
lja—glj=1
where ||z — y|| = |23 — y1] + |22 — y2|, and the sum, in the Hamiltonian, runs over the pairs

of nearest neighbors sites of Ay, counting each pair only once.

Deflnition 1.2. Given # > 0, 8 inverse temperature, the Markov jump process’s generator

may be written as

Lifmy = Y c=z,u,nlf(n™) ~ f@n)l, 1.2)

z,¥€EAN
acting on cylinders functions f on-X.

In (1.2) n*¥ is the configuration obtained from n when the contents of sites z and y are
interchanged, i.e., j

n(z) fz=y,
n(y) fz==z
The Metropolis rate c(z,y,n) is written as

7(z) fz#zy#z
n°¥(z) =

0, if |lz—yll#1,
c(z,y,n) =4 1, if A;yH(n) <0, (1.3)
exp{~fAzyH(n)} if Az H(n) >0,
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where A;yH(n) = H(n*¥)—H(n). Sometimes we use c(r, ) to denote c(z, y,n) with ¢ = 5*?.

Our dynamics is reversible with respect to the Gibbs measure given by

#(n) = exp{-BH(n)}2;}, (1.4)

with the partition function
Zay = Y exp{-BH(0)},

gEX
in the sense that the rates satisfy the equalities

u(ne(z,y,n) = p(n*)c(z,y,7"Y), Vz,y € An.

We may construct this process in the following way: at each instant of occurrence of a
Poisson Process {N(t),# > 0} which rate is given by A = 2N2, we choose, uniformly, two
neighbors sites z,y € Ay and we interchange their values with probability c(z,y,n); where
7 is the configuration at a time of the jump.

Definition 1.3. ( Contour of a configuration ). For n € X, n without rings of particles
around AN, trace a line between two neighbors sites whose values are different. The union
of this edges results in a set of polygons. The contour of 1) is the union of the boundaries of
these polygons and we denote it by C(n). Note that the vertices of these polygons belong

to the dual space Z > + (4, }). Define |C(n)| the sum of the perimeters of each polygon.

It follows that
H(n) = _('N2 - IC(r’)l)i Vped, (1'5)
and then
H(n"™") — H(n) = |C(n™*)| — |C(n)I-
From (1.4) and (1.5) we have that the Gibbs measure concentrates its mass on the set
of configurations with smaller contour when 8 goes to infinite. For a system with d particles
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we denote the set of configurations with minimum energy by @4 and if £ € Q4 we call it an
equilibrium configuration.

For simplicity, we start with d = d; x d; particles such that v/d = d' ¢ IN.
A configuration is called rectangular if its contour is compound by an unique rectangle.
The goal of our analysis is to study the evolution of this process when it starts from a
rectangular configuration (d; x dz), until it reaches Q.
The notation which follows is used at all text.
- THA)=inf{t>0:0f € A}, VAC X, E€ X.
- <n,( > if exist ¢,y € Ay with ||z — y|] = 1 such that ¢ = n*¥.

- R;; is a rectangle of dimension i x j which vertex are on the dual space Z +(%, 1)
and we assume that i < j,i,7 € IV.

We namely protuberance a particle with only one occupied neighbor, corner a particle
with two occupied neighbors and middle a particle with three occupied neighbors.

Deflnition 1.4. We define the slices of a rectangle R;,; as

»={1,...,i} x {n}, ne{l,...,5},
Hyp ={m} x{1,...,5}, me{1,...,:}
Rati= L'JH =OV,..

m=1 i n=1

The slices V,V;,H1 and H; are called ezternals. Even |Hj| represents the number of
particles in the slice Hy, Yk € {1,...,i}.

Now we define two important set of configurations: semi-solids (A3) and solids (Xs).

Definition 1.5. Consider1 a configuration which contour is compound by only one polygon
and R(n) the smaller rectangle that contains this polygon. Suppose that R(n) = R;;. We
say that n is semi-solid, n € X, if i), i) and iii), below, are satisfied.
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i) |He| 22, VE=2,...,i—1;

i) Vil22, Vi=2,...,-1;

ii) Kn(z) =1andn(z + key) =1,k < j thennp(z +me;) =1, Ym=1,..., k- 1.
KFn(z)=1andn(c + kex) =1L,k <ithenn(z+mel)=1, VYm=1,...,k—1;
where ey, ez are the vectors (1,0) and (0, 1) respectively.

Definition 1.6. Consider n € X5. We say that 1 is solid, 1 € X, if i) and ii), below, are
satisfied.

D) |H| 22, Yk=1,...,i

i) Vil 22, Vk=1,...,5
Note that

XSCX‘gCX

and if n € Xg\Xs then 5 has at least one protuberance.

Definition 1.7. For n € A, with R(n) = R, ;, we define envelope of n, £(n), as a large
rectangle inside of R(n) such that all its externals slices have at least two particles.

Note that for n € Xs,E(y) = R(n).

The next two lemmas will be used many times in this paper and to prove them we
introduce a dynamics restricted to the connected set S. We say that a set S of configurations
is connected if for any pair of configurations n,{ € & exist a sequence of configurations
So=mn, £1,---, € =(, for some k € IV, with < £;,€,41 >, £ €8, fori=1,...,k—1. We
present the idea in a general fashion.

The dynamics restricted to S is defined by the rates

- _ Jelz,y,m) ifn,n* €S,
&z,y,m) _{ ,, otherwise .



Denote the restricted process by &, and consider j the measure defined by

s(n :
(o) = { wg 1TES

(€S
0 otherwise ;

where u is the Gibbs measure associated to the process. We know that &; is reversible with
respect to ji and we remark that IP(68 = 1) = (y), Vn € X.
‘We use two types of coupling:

- Coupling A: The process {5;} and {07} jump together until the latter escapes
from &; at this moment the former process stays still and afterwards they evolve
independently.

- Coupling B: The process {57} and {5} evolve independently until they meet and
afterwards they jump together.

For T7(¢) =inf{t > 0: 5] = ¢}, Vn,£ € X, and TH(¢) = inf{t > 0: 5 = ¢}, we have
that

Lemma 1.8.([NS)) Let n € 8, S a connected set such that for all £ € S\{n} we have that
H(¢) > H(n). Then, forall £ € S and € > 0,

ﬁli_{golp(f"(f) < exp{B(H(£) — H(n) - €)}) = 0. (1.6)

Proof: Using coupling B to 57 and ¥ on S and stationarity of the process 57 we have that
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P(T"(€) < exp{B(H(€) — H(n) - €)}) = P(T"(€) < exp{B(H (&) — H(n) - )}, 57 # &%)
+ P(T() < exp{B(H(¢) - H(n) - €)},5] = 5%)
S P(57 # 57)
+IP(5f = ¢ for some t € {871,287, [Bexp{B(H(¢) — H(n) — ©)}187})
+ IP(&! jumps between the times T%(¢) and T#(¢) + 8~1)
< (1~ alm)) + (Bexp{B(H(E) — H(n) — )} + 1) (¢)
+ (1 —exp{—g~12N%}),
where [k] is the smaller integer large or equal to k.

Taking the limit when 8 — co we get the result.
[ ]

Next we define, to semi-solids configurations, what we call of movement of external

slice.

Let n € X5 and consider Py, P, P3, Py the vertex of R(n) and I,,n > 4 the sides of
C(ﬂ) contained in P1P2, Png,P3P4,P4P1 respectively.

A movement of ezternal slice is characterized by a shift of lenght 1 of some I,, via jumps
of rate large or equal to exp{fZﬁ}.

Formally, for n € Xz consider

from 7 via jumps of rate large or equal to (1.7)

all configurations £ € Xz, H(£) = H(y), obtained
Xgx =
exp{—23} with one movement of external slice



Example:
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Remark: For € X5 a rectangular configuration we have that Xy = 0.

Lemma 1.9. Forn € X5, X, #0 and V6 > 0 we have that
Jim P(I"(%) < exp{B(2+8)}) = 1, 19

where T"(X,+) = inf{t > 0: 5] € Xpu}.

Proof: First note that if an external slice has only one particle, this jumps to site by side
with rate 1 and thus the result is immediate.

Now fix n € X's with X« # 0 and consider S, a connected set of configurations such
that '
- X C A,
- for £ € Xye,In =m0y 11, ..,m =&, € IN, 75 € Xy,
< Wi it1 > 5 e(i,miv1) 2 €728, and c(niga,m) > e Vie {1,...,1 -1}

For &7 the process restrict to S, and using coupling A,
plgrgo IP(5] # o}, for some t < f(4=9)) = 0, Ve > 0. (1.9)
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On the another hand,
ﬂlim IP(5] € X, for some t < £2+9) =1 V5> 0; (1.10)

because {57 }:>o i8 a finite Markov chain with m'ilyl'c(z,y,q) =28,
- z,¥,

By (1.9) and (1.10) the result follows.
]

The process presents three differents mechanisms: Rearrange, Creation and Filling. To
explain them we decompose Xs into Xs,, Xs, and Xs,.

Rearrange

This mechanism transfers particles of an external slice to another one with Jjumps of
rate large or equal to =25,

Let n € X's with £(n) = Ri ;4,5 € IN. We say that a rearrange occurred if the process
starting from 7 reached a new configuration { € Xs via successives movements of external
slices plus jumps of protuberances and £(¢) has one dimension ( : or j ) reduced and
H(() < H(n). f H(¢) < H(n) we say that a rearrange is successful.

Definition 1.10. Consider n € Xs with £(n) = R;,;,i,j € IN. We say that n € Xs, if

) d<i(i-1),
ii) 3 a sequence of configurations np = 1,71, . .., M for some k € IN with
< i, Niv+1 >, C(ﬂ.',l].'+1) > e_zﬂ, Vie {0,. k- 1},7”: € Xs and S(ﬂk) = Rm,n:
whereny <i—lorny <j-—1.

Theorem 1. Suppose that n € X's, and () = R, j,i,j € IN. For
i =inf{t>0:0] € Xsand E(o]) =R fork<i—1lorl<j—1},
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we have that
lim P(ef@-9 < Ty <)) =1, V6> 0.

f—ro0

Creation

We say that a new slice was created if the process, starting from n € &'s, with £(r) =
R;j,i,j € IN, reached a configuration { € X's such that £({) bas one dimension ( i or j )
increased. In this manner, it is need that two particles to take place in a new external slice.

Definition 1.11. Consider n € Xs with £(n) = Ri;,t,j € IN. We say that n € Xg, If
d>i(j—-1).

For a simple example consider a rectangular configuration.
Theorem 2. Suppose that n € Xg, and () = R; j,i,j € IN. For

Ty=inf{t >0:0] € Xg, and E(o]) =R fork2i+1orl2>j+1},

we have that
lim P49 < T) < fUH9) =1, V6> 0.

B—oo

Filling
Definition 1.12. Consider n € Xs with £(n) = Rij,i,j € IN. We say that € Xs, if
1 € Xs\{Xs. Uds, }.
In fact, if n € A's, with £(n) = Ri;j,i,j € IN, we have that d < i(; — 1) but it is
not possible to change its envelope with jumps of rate large or equal to e~24. For these

configurations the process has two alternatives: to fill the empty sites of R{.) with corner
particles or, if possible, to create a new slice.
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Theorem 3. Consider ) € X5, and &(n) = R, j,i,j € IN. For
T3 =inf{t > 0: 0] € Xs and E(0]) # R;;},

we have that
lim P(PU-0) < Ty < SUHD) =1 5> 0.

B—oo
Now we present two results about the drift of the process.
Consider C(£;,;) C X the class of configurations whose envelope are rectangles R.,;,
i,j € IN.
Proposition 1.13. For n ¢ Qg a rectangular configuration dy x d3 with 3 < d; < dy we

have that

Jim P(T"C(Ek, x,)) < L) =1, V6> 0, (1.11)

forky=dy+1andk;, =dy — [;:—'_ﬁ] where [k] = the bigger integer smaller or equal to k.
Even
ﬂlim P(TC(Ea, (4y+2)) > D) =1, V& > 0. (1.12)
—o0
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Proposition 1.14. Consider 1 € Xs,\Qq with E() = Rij,i,j € IN; n = inf{t > 0 :
E(0]) # Rij} and ry = inf{t > 71 : o] € X5, }. HE(0]) = R, b, and ky < j — 2 then

Jim P(T°%(C(Ei7)) > D) =1, V6> 0.
—00

2. Proofs
2.1 Proof of Theorem 1.

Fix n € Xs, with £(n) = Ry ;,1,j € IN. We consider the following subset of configura-
tions

S =nU all configurations £ obtained from 7 via jumps
" ="\ of rates large or equal to exp{—28} with H(¢) < H(n) +2

Note that, by definition 1.11 and by (1.8) it follows that

Xy #0C Sy

Consider {67} the process restricted to S, with rates

~ if >e %,
eyun) = { dorwen) Eolegn)2e
,

Using coupling A for {57} and {o}} we have that
hm P(a, # o], for some t < PU4=9) = 0, V5 > 0.

Define
To = 0,
=inf{t 271 :6] £5}, fori>1;
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and consider the Markov chain {67, }i>o. Using Lemma 1.9 it follows that

im P(ri— 7o > /Ty > 1) =0, Ve> 0.

f—o00

As 37 is a finite Markov chain on S, we have the result.

2.2 Proof of Theorem £.

First we consider configurations of Xz\Xs with one protuberance particle. We denote
this set by X5, . It follows that '

Lemma 2.1. For n € X5, we have that
i) pliir;o P(T"(X5,) < PU+D) = 1,V6 > 0.

11) ﬂ].i_IgoP(T"(Xgl) < Tz) =1.

Proof: i) It is enough a corner carry out a random walk on Ay and after some jumps
becomes a protuberance for i) to happen.

ii} Starting from 7 € X, to create a new slice without to visit A5 the process needs
that two particles, in the same time, carry out a random walk ( with rate 1 ) on the torus.
But this increase by at least 6 the energy with respect to 5. In this manner, when 3 goes
to infinite we have the result.

|

Now, observe that starting from X , it is enough to put a second particle beside of the
protuberance to change the dimension of the envelope. At this point, the question is Where
13 the second particle fromf The answer is not difficult and we will see that this is possible
by jumps of rate large or equal to =27,
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Consider 7,{ € X3, below

.._.__.I.._...._ __._+ _____

— 4+ +++—- —+++++-—--

—+4+++++- ~++++++--

—++++++- —t++++++-

———t - — —— 4+
n ¢

Note that it is possible to create the second particle, starting from n, with jumps of
rate large or equal to e~?# ( movement of external slice ) but this is not possible starting
from another configuration (.

In this manner, we call n ( above ) a good configuration of &5, ie., starting from a

good configuration the process may change its envelope by jumps of rate large or equal to
-28
[ o

Even, note that the creation of a new slice without to reach a good configuration spends
a time of order large or equal to e#(®=%) V§ > 0, with probability 1 when 8 — oo ( using
Lemma 1.8 ).

Lemma 2.2. Consider n € X5, and T} = inf{t > 0: 0] is a good con figuration of Xz ).
We have that

ﬁlim P(T? < #UH9) = 1,V6 > 0.

Proof: Observe that every time that a corner particle leaves R(y) ( with rate e=*#) it
returns ( with rate 1) as a protuberance or again as a corner ( but not necessarily the same
corner ). In some sense, starting from n € Xg, the process realizes a random walk on the
configurations with the same envelope of 7 until the new slice to be created.
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Thus, without to reach a good configuration the process would spend a time of order
€%? to create a new slice and then the result follows. [ |

Now observe that when the process starts from a good configuration at a time of order
ef(2+e) Ve > 0, the process may

- increases the dimension of the envelope,

- returns to s,

- reaches another configuration of A,
As § > 0 in Theorem 1 and we have independent attempts of realize the above itens and
then the result follows. [ ]

2.3 Proof of Theorem 8.

To prove Theorem 3 it is enough to observe that to fill the holes of R(.) the corner
particles carry out a random walk on the torus and it returns filling a hole that spends a
time of order e*# and by Theorem 2 the process spends the same time to create a new slice.

|

2.4 Proof of Proposition 1.13.

First, we show (1.12) and for this it is enough to use Lemma 1.8 for S a suitable connect
set of configurations. ‘

The construction of $ needs a remark: for the process to reach C(£4,(4,+2)) it first
reaches C(£4, (2,+1)) With probability close to one when § goes to infinite.

Formally,

§ =n{JC'Ena) ) UC Eniarin), (21)
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where ¢ € C'{Ex,k,) I8 a configuration obtained from 7 such that exists at most one site
z ¢ £(n) such that {(z) = +1.

Note that H(y) < H(£), V€ € S\{n}. As H(£) ~ H(n) > 6, V£ € C'(€4,(4,+1)), we have
by Lemma 1.8 that

lim PP(T7(C’(Eay(ay41)) < FHOHD=9) =g,

B—oo
Also the estimate above is true for the original process and therefore we get (1.12).
To show (1.11) we consider the random times

71 =inf{t > 0: £(07) # Ra,d,}
and
T = inf{t > 7 : £(0]) # E(07)}.

Note that o7 € X5, with probability close to one when S goes to infinite. Using

Theorem 1 we have that

- If £(o} ) = Ra, (d;41) then

Bli_x‘lgoP(E(a;’,) =Ry 45 2~ 71 <)) =1, ¥e> 0.
- I £(o" ) = Ry 41),4 then

pl.i_’n;ﬂ’(é'(a:.’,) = R(a,41),(d;-1); T2 — 71 < PCF)) = ¢

and
ﬂﬁ_ﬂop(aﬂz € Xs,) =4

or
ﬂﬁ_{n;oP(E(a,?,) =Ri1a;; m—11 < cﬂ(z"'")) =¢3, Ve,e >0,

where ¢,, c; are positive constants.
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In this way, or the process starts from the same point or it reaches the set X's, and
by rearrange it reaches a configuration which envelope is Ry, x,, k1 and k; as state in
Proposition 1.13.

2.5 Proof of Proposition 1.14

If 07, is a rectangular configuration the result is proved by Proposition 1.13.

For the process, starting from ¢, to reach a configuration with envelope R; j it needs
to visit before some configuration ¢ € Az with R(() = Ry -1y form=iorm =i +1.

Consider
n1=inf{t >0: a::"‘ € Az and R(a::‘) =Ry -1}, form=iorm=i+1.
By definition for X's, we have that
d>i(j—1)and d> (i + 1)(j — 3). (2.2)

But if R(07 ) = R, (j—1) then d < i(j — 1) what is contrary to (2.2).

Observing that, starting from o7, to reach C(£; ;) the process needs to visit some
configuration which contour is formed by a square of side 1 plus a polygon with perimeter
( +1) x (j — 1), what spends a time of order large than ¢#(5—% V6 > 0 when 8 goes to
infinite, and this finishes the proof.

|

2.6 Proof of Theorem 4

Definition 2.1. A block of particles is formed by at least 4 particles where each one has
at least two occupied neighbour.
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Consider B;,i € IN, the set of configurations with ¢ blocks of particles. We have the
following result

Proposition 2.1. Forn € X and § > 0 we have that

lim P(T"(B,) > #¢=9) = 1.

B—~+o0

Proof: It is enough to apply Lemma 1.8 for initial configurations belong to Xs.
[ ]

In this way, using Proposition 2.1 and the precedings results we finish the proof of

Theorem 4.
[ |
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