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0. Introduction 

An Exclusion Process with Metropolis Rate 

Claudia Peixoto 1 

The exclusion process was introduced by Spitzer (1970) and its principal characteristic 

is the conservation of number of particles. Here we deal with an exclusion process with 

speed change, i.e., when the particles are on any finite set A c JN2
, the rate of jump of each 

one depends on its position with respect to the others. 

We consider the Metropolis dynamics ( see (1.3) below ) for an exclusion process with 

nearest neighbors interaction enclosed in a finite torus AN c JN2
• This process is reversible 

with respect to the Gibbs measure that concentrates its mass, on limit where the temperature 

goes to zero, on configurations that minimize the number of differents neighbors sites. 

We start from a configuration with d = d' x d' particles arranged as a rectangle d1 x d2 

d1 < d2 E IN. We analyze the evolution of the system, at low temperatures, until it reaches 
a configuration where the particles form a. square d' x d' ( .,quare configuration ). 

This system presents three differents mechanisms of evolution, namely: creation, rear­

range and filling. We estimate the necessary time to each mechanism to be effected and the 

total time that the process spends to reach a .,quare configuration. Even, we present some 

results about the drift of the process. 

The proofs a.re simple and this is the interesting of this model. The next section presents 

the foJ'lllal definitions and the main results and in the second section are the proofs. 
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1. Main defl.nitions and results 

We start by recalling the ma.in notation and definitions. Consider a simple exclusion 

process in a finite torus AN = {l, ... N}2
, N E JN, with periodic boundary conditions. 

A configuration is a function 17: AN-+ {-1,+l}, that is, '7 EX= {-1,+l}AN ( space 

state). We say that the site x E AN is empty if '7(x) = -1 and it is occupied if 17(x) = +1. 

We denote by a: the process at time t with initial configuration '7 and the value of the site 

x at time tis af (x). 

Definition 1.1. We define tbe Hamiltonian of tbe connguratioll '7 a.s 

1 
H('l) = - 2 L 17(x)17(11), 

•,tEAN 
11•-•ll•l 

(1.1) 

where llx -1111 = lx1 - 1111 + lx2 - 1121, and tbe sum, in the Hamiltonian, runs over the pairs 

of nearest neighbors sites of AN, countillg each pair only once. 

Definition 1.2. Given fJ > 0, a in11erae temperature, the Markov jump process's generator 

may be written as 

Lf(17) = L c(:t,!1,'1)(/(17"')-!('1)], (1.2} 

actillg on cylinders functions f on-X. 

In (1.2) 17"• is the configuration obtained from 17 when the contents of sites x and y are 
interchanged, i.e., 

{ 

17(z) if X =/: z, 1/ =/: Z 1 

11"'{z) = '7(x) ~ z = II, 
11(11) if z = x. 

The Metropolis rate c( x, y, '7) is written as 

{ 

0, 
c(x,y,17) = 1, 

exp{-,8Az,H('7)} 

2 

if llx-yll=/:1, 
if A,.,H(17) ~ 0, 
if A,.,H('7) > 0, 

(1.3) 



., 

where ~:r,H(17) = H(11"'')-H(11), Sometimes we use c(11, () to denote c(x,y, 11) with ( = r}"''. 

Our dynamics is reversible with respect to the Gibbs measure given by 

(1.4) 

with the partition function 

in the sense that the rates satisfy the equalities 

We may construct this process in the following way: at each instant of occurrence of a 

Poisson Process {N(t), t ~ O} which rate is given by ,\ = 2N2 , we choose, uniformly, two 

neighbors sites x,y E AN and we interchange their values with probability c(x,y,71); where 

17 is the configuration at a time of the jump. 

Definition 1.3. ( Contour of a configuration ). For 17 E X, 17 without rings of particles 

around AN, trace a line between two neighbors sites whose values are different. The union 

of this edges results in a set of polygons. The contour of 71 is the union of the boundaries of 

these polygons and we denote it by C(17). Note that the vertices of these polygons belong 

to the dual space ~ 2 + ( ½, ½). Define IC ( 71) I the sum of the perimeters of each polygon. 

It follows that 

H(71) = -(N2 
- IC(71)1), v,, EX, 

and then 

From (1.4) and (1.5) we have that the Gibbs measure concentrates its mass on the set 

of configurations with smaller contour when /3 goes to infinite. For a system with d particles 
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we denote the set of configurations with minimum energy by Qc1 and if ~ E Qc1 we call it an 

equilibrium configuration. 

For simplicity, we start with d = d1 x d2 particles such that v'ii = d' E JN. 

A configuration is called rectangular if its contour is compound by an unique rectangle. 

The goal of our analysis is to study the evolution of this process when it starts from a 

rectangular configuration (d1 x d2}, until it reaches Qc1. 

The notation which follows is used at all text. 

- Te(A) = inf{t ~ 0: oJ EA}, VA c x,~ EX. 

- < '1, (>if exist x, y E AN with llx - 1111 = 1 such that ( = 11"'· 

- R;,; is a rectangle of dimension i x j which vertex a.re on the dual space 7.l + ( ½, ½) 
and we assume that i :5 j, i,j E IN. 

We namely protuberance a particle with only one occupied neighbor, corner a particle 

with two occupied neighbors and middle a particle with three occupied neighbors. 

Definition 1.4. We define the slices of a rectangle R;,; as 

V,. = {l, ... ,i} x {n}, n E {l, ... ,j}, 

Hm = {m} x {1, ... ,j}, m E {1, ... ,i}. 
i ; 

R;,; = LJ Hm_ = LJ V,.. 
m=l n=l 

The slices Vi, V;, H 1 and H; are called external!. Even IH 1c I represents the number of 

particles in the slice H1,, Yk E {1, ... , i}. 

Now we define two important set of configurations: &emi-&oli,u (X5) and &olid& (Xs). 

Definition 1.5. Consider '1 a configuration which contour is compound by only one polygon 

and R(17) the smaller rectangle that contains this polygon. Suppose that Rf..'1) = R;,;. We 

say that '1 is &emi-,olid, '1 E X8, if i), ii) and iii), below, are satisfied. 
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i) IHtl ~ 2, Vk = 2, ... ,i-1; 

ii) l½I ~ 2, Vl = 2, ... ,j - 1; 

iii) Hri(x) = 1 and rJ(x + ke1) = 1,k 5: j then rJ(x +me1) = 1, Vm = l, ... ,k-1. 

HrJ(x) = 1 and rJ(x + ke2) = 1,k 5: i then rJ(x +me2) = 1, Vm= 1, ... ,k-1; 

where e1, e2 ai-e the vectors (1, 0) and (0, 1) respectively. 

Definition 1.6. Consider rJ E X8 . We say that T/ is aolid, '7 E Xs, if i) and ii), below, a.re 

satisfied. 

i) IH1:l~2,Vk=l, ... ,i. 

ii) IV.Cl ~ 2, Vk =I, ... ,j. 

Note that 

Xs C X:sc X 

and if '7 E X8\Xs then '7 has at least one protuberance. 

Definition 1.7. For '7 E X5, with R(rJ) = R;,;, we define envelope ofri, &(q), as a large 

rectangle inside of R('1) such that all its externals slices have at lea.st two particles. 

Note that for '7 E Xs,&(q) = R(rJ). 

The next two lemmas will be used many times in this paper and to prove them we 

introduce a dynamics restricted to the connected set S. We say that a set S of configurations 

is connected if for any pair of configurations T/, ( E S exist a sequence of configurations 

eo = T/, 6,- .. , e1: =(,for some k E IN, with< ei,ei+i >, e; ES, for i = 1, ... , k-1. We 

present the idea in a general fashion. 

The dynamics restricted to S is defined by the rates 

c(x,y,q) = {c
0
(x,y,rJ) ifq,ri"' ES, 

otherwise . 
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Denote the restricted process by itt, and considerµ the measure defined by 

if,,es, 

otherwise 

whereµ is the Gibbs measure associated to the process. We know that u1 is reversible with 

respect toµ and we remark that JP(itf ='I)= µ('I), v,, EX. 

We use two types of coupling: 

- Coupling A: The process {it?} and {o-;'} jump together until the latter escapes 

from S; at this moment the former process stays still and afterwards they evolve 

independently. 

- Coupling B: The process {it;'} and {af} evolve independently until they meet and 

afterwards they jump together. 

For T"(e) = inf{t ~ O: u'/ = 0, 'v'I,{ EX, and 1';,(e) = inf{t ~ O: itf ={},we have 
tha.t 

Lemma 1.8.((NS]) Let 'IE S, S a connected set such that for all { E S\{'1} we have that 
H(() > H(f/). Then, for all (ES and e > O, 

lim JP(T"({) < exp{,B(H({} - H('I} - e)}) = 0. 
/J-oo 

(1.6} 

Proof: Using coupling B to it'/ and uf on S and stationarity of the process itf we have that 
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JP(T"({) < exp{,B(H({) - H(r,) - i)}) = .IP(T"({) < exp{/3(H(O - H(11) - i)}, u;J i= a-t) 
+ .IP('I"'(e) < exp{,8(H(e) - H(T1) - f}}, u;J = a-t) 
::; .IP(a;J ::/ at) 

+ JP(a-f = { for some t E {P-1, 2,a-1' ... ' r.Bexp{,B(H(e) - H(T/) - E}}l,B-1 }) 

+ JP(a-f jumps between the times f'i>(e) and f'P-({) + ,a-1) 

::; (1- Ji.(T1)) + (,Bexp{,8(H({) -H(T/) - E)} + l)µ({) 

+ ( 1 - exp{ -P-12N2
}), 

where r kl is the smaller integer large or equal to k. 

Talcing the limit when {3 --t oo we get the result. 

■ 
Next we define, to Jemi-aoliiu configurations, what we call of movement of external 

Jlice. 

Let T/ E X5 and consider Pi,Pi,P3 ,P4 the vertex of R(T/) and ln,n ~ 4 the sides of 

C('1) contained in PiPi.PiP3,P3P,1.,P,Pi respectively. 

A movement of external Jlice i8 characterized by a shift of lenght 1 of some In via jumps 

of rate large or equal to exp{-:-2/3}. 

Formally, for T/ E X5 consider 

{ 

all configurations e E X5, H({) = H(T/), obtained } 
x., .. = from T/ via jumps of rate large or equal to . 

exp{-2,8} with one movement of external slice 
(1.7) 
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Example: 

--+++++-- --++++++-
-+++++++- -+++++++-
-+++++++- -+++++++-
-+++++++- -+++++++-
-+++++++- -+++++++-
-+++++++- -+++++++-
-+++++++- -+++++++-
-+++++++- -+++++++-
-+++++++- -++++++--

,, 
Remark: For '7 E Xs a rectangular configuration we have that x,, .. = 0. 

Lemma 1.9. For '7 E Xs, x.,. -::/:- 0 and 'v6 > 0 we have that 

fun JP(T"(X,,.) < exp{,8(2 + 6)}) = 1, 
fJ-oc, 

(1.8) 

Proof: First note that if an external slice has only one particle, this jumps to site by side 

with rate 1 and thus the result is immediate. 

Now fix '7 E Xs with x,,. -::/:- 0 and consider s,, a connected set of configurations such 

that 

- X,,. C X,,. 

- fore E X,, .. ,3'7 = '10, r11, ... , '71 = e, l E IN, "Ii EX,,, 

< 7/i, '7i+i > , c("li, '1i+1) ~ e-2/J, and c(rJi+i, "Ii) ~ e-2/J, Vi E {1, ... , l - 1}. 

For u'2 the process restrict to s,, and using coupling A, 

lim 1P(u'2 =I- u'2, for some t < efl<4-•>) = O, Ve> 0. 
fJ-oo 

(1.9) 
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On the another hand, 

/J
lim IP(u'/ Ex,,., for some t < efl<2H>) = 1, Ve> O; 
--+oo 

(1.10) 

because {u'/h>o is a finite Markov chain with min c(x,y, '1) = e-2/J. 
- s~~ 

By (1.9) and (1.10) the result follows. 

■ 

The process presents three differents mechanisms: Rearrange, Creation and Filling. To 
explain them we decompose Xs into Xs., Xs. and Xs,. 

Rearrange 

This mechanism transfers particles of an external slice to another one with jumps of 
rate large or equal to c 2/J. 

Let r, E it's with C(r,) = R;,;, i,j E BV. We say that a rearrange occurred if the process 
starting from 17 reached a new configuration ( E Xs via successives movements of external 
slices plus jumps of protuberances and t"( () has one dimension ( i or j ) reduced and 
H((} s H(17). H H(() < H(11) we say that a rearrange is successful. 

Definition 1.10. Consider '1 E Xs with e(17) = R;,;, i,j E BV. We say that '1 E Xs. if 

i) d s i(j - 1), 

ii) 3 a sequence of configurations '70 = '7, '71, ... , T/k for some k E BV with 

< f/i, T/i+l >, c(77;, '7i+t) ;::: e-2/J' Vi E {O, ... , k - 1}, T/k E Xs and e(771:) = Rn,,n, 
where n1 :S i - 1 or n2 S j - 1. 

Theorem 1. Suppose that '1 E Xs. and e(17) = R;,;,i,j E IN. For 

T1 = inf{t ~ 0: u'/ E Xs and e(u'/) = Rt,l fork Si -1 or l $ j -1}, 
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we have that 

lim IP(efl<2- 6> $ T1 $ e11<2Hl) = 1, V6 > 0. 
fl-+oo 

Creation 

We say that a new slice was created if the process, starting from 17 E Xs, with £(17) = 
~.;,i,j E IN, reached a configuration ( E Xs such that e(() has one dhnension ( i or j ) 

increased. In this m&nDer, it is need that two particles to take place in a new external slice. 

Definition 1.11. Consider 17 E Xs with £('7) = R.;,;,i,j E IN. We say that r, E Xs. if 

d > i(j -1). 

For a simple example consider a rectangular configuration. 

Theorem 2. Suppose that '1 E Xs. and !(17) = Ri,;,i,j E IN. For 

T2 = inf{t ~ 0: u7 E Xs, and t(u:) = R1:,1 fork~ i + 1 orl ~ j + l}, 

we have that 

lim IP(efl<4
-

6> ~ Ti ~ efl(H6l) = 1, ~6 > 0. 
fl-+oo 

Definition 1.12. Consider 17 E Xs with e(17) = ~.;,i,j E IN. We say that T/ E Xs, if 

17 E Xs\{Xs. UXs.}, 

In fact, if '7 E Xs, with e(r,) = ~.;, i,j E IN, we have that d < i(j - 1) but it is 

not possible to change its envelope with jumps of rate large or equal to e-211. For thes(l_ 

configurations the process has two alternatives: to fill the empty sites of R(.) with corner 

particles or, if possible, to create a new slice. 
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• 

-++++------ ----++----
-++++------ - - - + + + + - .- -
-++++------ --++++++--
-+++++++++- -++++++++-
-+++++++++- -++++++++-
-+++++++++- --++++++--
-+++++++++- ---++++---

----++----
T/ E Xs1 ( E Xs, 

Theorem 3. Consider T/ E Xs, and E(r,) = R;,;, i,j E IN. For 

Ta = inf{t?: 0: u~ E Xs and E(u:) :/: R;,;}, 

we have that 

/J
lim JP(ef1('-6) ~ T3 ~ eP(H6)) = 1, Vo> 0. 
-"" 

Now we present two results about the drift of the process. 

Consider C(£.,;) C Xs the class of confignratiOD.R whose envelope are rectangles R..,;, 

i,j E JN. 

Proposition 1.13. For r, (/: Q,1 a rectangular configuration d1 x d2 with 3 < d1 < ~ we 

have that 

(1.11) 

for k1 = d1 + 1 and k2 = d2 - L,:.i1 J where (k] = the bigger integer smaller or equal to k. 
Even 

(1.12) 
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Proposition 1.14. Consider T/ E Xs
0 
\Qd with &(ri) = R;,;, i,j E IN; T1 = inf{t ~ 0 : 

&(on -IR;,;} ll.lld T2 = inf{t?: T1 : O'i E XsJ- If &(u;',) = R,.,,,., and k2 ~ j - 2 tben 

2. Proofs 

2,1 Proof of Theorem 1. 

Fix T/ E Xs, with e(ri) = R;,1, i,j E IN. We consider the following subset of configura­

tions 

S _ u { all configurations e obtained from T/ via jumps } 
" - T/ of rates large or equal to exp{-2,8} with H(e) ~ H(ri) + 2 

Note that, by definition 1.11 and by (1.8) it follows that 

Consider { u:J the process res~ricted to S., with rates 

-( ) -{ c(x,y,ri) if c(x,y,ri) ~ e-2/J, 
C x, y, T/ - 0 h . , . ot erw1se. 

Using coupling A for {u!'} and {u:} we have that 

lim JP(u? f:. u?, for some t < efJ<4 - 6l) = O, VS> O. 
fJ-oo 

Define 

To= 0, 

Ti= inf{t?: TH : u? "'F u'f-h for i?: 1; 
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and consider the Markov chain { ui_};~o• Usmg Lemma 1.9 it follows that 

As a-: is a finite Markov chain on s,, we have the result. 

• 
2.2 Proof of Theorem !. 

First we consider configurations of X5\Xs with one protuberance particle. We denote 

this set by X51 • It follows that 

Lemma 2.1. For r, E Xs. we have that 

i) Jim 1P(T"(X8 ) < e.BCH6)) = 1, VS> 0. 
/J-+00 l 

ii) lim 1P(T"(X5 ) < T2) = 1. 
,8-oo l 

Proof: i) It is enough a corner carry out a random walk on AN and after some jumps 

becomes a protuberance for i) to happen. 

ii) Starting from r, E Xs., to create a new slice without to visit X5, the process needs 

that two particles, in the same time, carry out a random walk ( with rate 1 ) on the torus. 

But this increase by at least 6 the energy with respect to '1· In this manner, when /3 goes 

to infinite we have the result. 

• 
Now, observe that starting from X51 , it is enough to put a second particle beside of the 

protuberance to change the dimension of the envelope. At this point, the question is Where 

Y th.e &econd particle fromf The answer is not difficult and we will see that this is possible 

by jumps of rate large or equal to e-211. 
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Consider f/, ( E .X81 below 

----+--- ---+-----
-+++++-- -+++++---
-++++++- -++++++--
-++++++- -+++++++-
---+++-- --++++++-

'1 

Note that it is possible to create the second particle, starting from f/, with jumps of 
rate large or equal to e-2/J ( movement of external slice ) but this is not possible starting 
from another connguration (. 

In this manner, we call f/ ( above ) a good configuration of X8,, i.e., starting from a 

good configuration the process may change its envelope by jumps of rate large or equal to 
e-2/J_ 

Even, note that the creation of a new slice without to reach a good configuration spends 
a time of order large or equal to ef1<&-6), Vo > 0, with probability 1 when /3 ➔ oo ( using 

Lemma 1.8 ). 

Lemma 2.2. Consider f/ E .Xs. ~d Tl= inf{t 2!: 0: u: is a good configuration of .X5 , }. 
We have that 

Proof: Observe that every time that a corner particle leaves R(fJ) ( with rate e-4.B) it 
returns ( with rate 1 ) as a protuberance or again as a corner ( but not necessarily the same 
corner). In some sense, starting from f/ E .Xs. the process realizes a random walk on the 
configurations with the same envelope of '7 until the new slice to be created. 
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Th118, without to reach a. good eon.figuration. the process would spend a time of order 

e0/J to create a new slice and then the result follows. ■ 

Now observe that when the process starts from a good configuration at a time of order 

e/JC2+•J, Ve > 0, the process may 

- increases the dimenBion of the envelope, 

- returns to Xs, , 

- reaches another configuration of X5;, . 

As o > 0 in Theorem 1 and we have independent attempts of realize the above itens and 

then the result follows. ■ 

2.3 Proof of Theorem 9. 

To prove Theorem 3 it is enough to observe that to fill the holes of R(.) the corner 

particles carry out a random walk on the torus and it returns filling a hole that spends a 

time of order e•/J and by Theorem 2 the process spends the same time to create a new slice. 

■ 

2.4 Proof of Propo.,ition 1.13. 

First, we show (1.12) and for this it is enough to use Lemma 1.8 for S a suitable connect 

set of configurations. 

The construction of S needs a remark: for the process to reach C(t".i,(d,+2)) it first 

reache.s C(t",1,(,1,+i)) with probability close to one when /J goes to infinite. 

Formally, 

(2.1) 
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where ( E C' ( £,.1 "•) is a configuration obtained from T/ such that exists at most one site 

x </. C(T/) such that ((x) = +l. 

Note that H(T/) < H(!), V! E S\{'7}- As H(!)-H(11) ~ 6, V! E C'(fc1,(c12+1)), we have 

by Lemma. 1.8 that 

Also the estimate above is true for the original process and therefore we get (1.12). 

To show (1.11) we consider the random times 

and 

Note that u~ E Xs. with probability close to one when /3 goes to infinite. l:'sing 
Theorem 1 we have that 

• If £(cr~1 ) = R.i,,(d,+1) then 

and 

lim IP(cr'!-., E Xs.) = 1 
fJ-oo 

or 

11
~

00
1P(E:(u~2 ) = Rc1,1c12 ; T2 -T1 < efl(2+••l) = c2, Ve1,f2 > 0, 

where c1, c2 are positive constants. 
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In this way, or the process starts from the same point or it reaches the set Xs, and 

by rearrange it reaches a con.figuration which envelope is R1c1 ,1c., k1 and k2 as state in 

Proposition 1.13. 

■ 

2.5 Proof of Propo&ition 1.1,4 

H <1';, is a rectangular con.figuration the result is proved by Proposition 1.13. 

For the process, starting from <1';,, to reach a con.figuration with envelope R;,; it needs 

to visit before some con.figuration ( E X5 with R(C) = Rm,(j-I) form= i or m = i + 1. 

Consider 

u" w" 
-r1 = inf{t > 0: ut ' 2 E X5 and R(<1t ' 2

) = Rm,U-iJ}, form= i or m = i + 1. 

By definition for Xs. we have that 

d > i(j - 1) and d > (i + l)(j - 3) . (2.2) 

But if R(u~) = Ri,(j-I) then d $ i(j - 1) what is contrary to (2.2). 

Observing that, starting from u;?,, to reach C(t:;,;) the process needs to visit some 

configuration which contour is formed by a square of side 1 plus a polygon with perimeter 

(i + 1) x (j - 1), what spends a time of order large than et1<6- 6l, 'vo > 0 when fJ goes to 

in.finite, and this finishes the proof. 

■ 

2.6 Proof of Theorem -4 

Definition 2.1. A block of particles is formed by at least 4 particles where eacli one has 

at least two occupied neighbour. 
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Consider B,, i e IN, the set of configurations with i blocks of particles. We have the 

following result 

Proposition 2,1. For T/ E Xs and 6 > 0 we have that 

Proof: It is enough to apply Lemma 1.8 for initial configurations belong to Xs. 

■ 

In this way, using Proposition 2.1 a.nd the precedings results we finish the proof of 

Theorem 4. 

■ 
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