

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

SIAM J. OPTIM. c© 2012 Society for Industrial and Applied Mathematics
Vol. 22, No. 3, pp. 1109–1135

TWO NEW WEAK CONSTRAINT QUALIFICATIONS AND
APPLICATIONS∗

ROBERTO ANDREANI† , GABRIEL HAESER‡ , MARÍA LAURA SCHUVERDT§ , AND

PAULO J. S. SILVA¶

Abstract. We present two new constraint qualifications (CQs) that are weaker than the re-
cently introduced relaxed constant positive linear dependence (RCPLD) CQ. RCPLD is based on
the assumption that many subsets of the gradients of the active constraints preserve positive lin-
ear dependence locally. A major open question was to identify the exact set of gradients whose
properties had to be preserved locally and that would still work as a CQ. This is done in the first
new CQ, which we call the constant rank of the subspace component (CRSC) CQ. This new CQ
also preserves many of the good properties of RCPLD, such as local stability and the validity of an
error bound. We also introduce an even weaker CQ, called the constant positive generator (CPG),
which can replace RCPLD in the analysis of the global convergence of algorithms. We close this
work by extending convergence results of algorithms belonging to all the main classes of nonlinear
optimization methods: sequential quadratic programming, augmented Lagrangians, interior point
algorithms, and inexact restoration.

Key words. constraint qualifications, error bound, algorithmic convergence

AMS subject classifications. 90C46, 90C30

DOI. 10.1137/110843939

1. Introduction. Let us consider a nonlinear optimization problem in the form

min f0(x)

s.t. fi(x) = 0, i = 1, . . . ,m,(NOP)

fj(x) ≤ 0, j = m+ 1, . . . ,m+ p,

where the functions fi : R
n → R, i = 0, . . . ,m + p, are continuously differentiable.

We denote its feasible set by F . The constraints that hold as equalities in a point x
are said to be active at x. If x is a feasible point, then the active constraints contain
all the equality constraints together with a possibly empty subset of inequalities. We

will denote by A(x) the index set of the active inequality constraints A(x)
def
= {i |

fi(x) = 0, i = m+ 1, . . . ,m+ p}.
One of the main subjects in the theory of nonlinear optimization is the char-

acterization of optimality, which is often achieved through conditions that use the
derivatives of the constraints at a prospective optimum. Among such conditions,

∗Received by the editors August 9, 2011; accepted for publication (in revised form) May
29, 2012; published electronically September 13, 2012. This work was supported by PRONEX-
Optimization (PRONEX-CNPq/FAPERJ E-26/171.510/2006-APQ1), Fapesp (grants 2006/53768-0,
2009/09414-7, and 2010/19720-5), and CNPq (grants 300900/2009-0, 303030/2007-0, 305740/2010-5,
and 474138/2008-9).

http://www.siam.org/journals/siopt/22-3/84393.html
†Department of Applied Mathematics, Institute of Mathematics, Statistics and Scientific Com-

puting, University of Campinas, Campinas, SP, Brazil (andreani@ime.unicamp.br).
‡Institute of Science and Technology, Federal University of São Paulo, São José dos Campos, SP,

Brazil (gabriel.haeser@unifesp.br).
§CONICET, Department of Mathematics, FCE, University of La Plata, CP 172, 1900 La Plata

Bs. As., Argentina (schuverd@mate.unlp.edu.ar).
¶Institute of Mathematics and Statistics, University of São Paulo, São Paulo, SP, Brazil (pjssilva@

ime.usp.br).

1109

D
ow

nl
oa

de
d

03
/1

5/
24

 to
 1

43
.1

07
.4

5.
1

. R
ed

is
tr

ib
ut

io
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

s:
//e

pu
bs

.s
ia

m
.o

rg
/te

rm
s-

pr
iv

ac
y

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

1110 ANDREANI, HAESER, SCHUVERDT, AND SILVA

arguably the most important is the Karush–Kuhn–Tucker (KKT) condition, which is
extensively used in the development of algorithms to solve (NOP) [8, 35].

In order to ensure that the KKT conditions are necessary for optimality a con-
straint qualification (CQ) is needed. CQs are properties of the algebraic description
of the feasible set that allow its local geometry at a feasible point x to be recovered
from the gradients of the active constraints at x. In order to make this sentence clear
we need to recall some definitions.

Definition 1.1. Let x be a feasible point of (NOP), that is, x ∈ F . The tangent
cone of F at x is defined as

T (x)
def
=

{
y ∈ R

n

∣∣∣∣ ∃xk ∈ F, xk → x
xk−x

‖xk−x‖ → y
‖y‖

}
∪ {0}.

This cone is composed by the limit of directions that move inward of the feasible
set. It is inherently a geometric object, as it captures the local “shape” of the set
around x. Using it, we can easily present a geometric necessary optimality condition
for local optimality at x:

(1.1) −∇f0(x) ∈ T (x)◦,

where T (x)◦ is the polar of T (x) [8].
However, the tangent cone is not an algebraic object, and hence it cannot be

directly used in algorithms. CQs are conditions that ensure that T (x)◦ can be recast
using the algebraic information of the gradients. More specifically, we may try to
approximate the tangent cone using the linearized cone of F at x, which uses only
information of the gradients and is given by

(1.2) F(x)
def
= {y | ∇fi(x)

′y = 0, i ∈ 1, . . . ,m, ∇fj(x)
′y ≤ 0, j ∈ A(x)}.

Note that this cone always contains the tangent cone; that is, T (x) ⊂ F(x).
The polar of F(x) can be computed easily and is given by

(1.3) F(x)◦ =

⎧⎨⎩y

∣∣∣∣ y =

m∑
i=1

λi∇fi(x) +
∑

j∈A(x)

μj∇fj(x), μj ≥ 0

⎫⎬⎭ .

If F(x)◦ = T (x)◦, then the optimality condition (1.1) can be rewritten as

−∇f0(x) ∈ F(x)◦,

which is exactly the KKT condition. The condition F(x)◦ = T (x)◦ was introduced
by Guignard [15], and the discussion above suggests that it is the most general CQ
possible. In fact, Gould and Tolle proved in [13] that it is equivalent to the necessity
of the KKT condition for all possible objective functions.

Another possibility is to require directly that F(x) = T (x). Even though this
condition is more stringent than Guignard’s CQ, it is in some cases easier to work
with since it does not involve the polar operation. Such a CQ was introduced by
Abadie in [1], and it is widely used in optimization theory [41, 7, 9, 26].

Clearly both Guignard’s and Abadie’s CQs are enforcing the equality between
geometric objects that capture the local structure of the feasible set around x, namely,

D
ow

nl
oa

de
d

03
/1

5/
24

 to
 1

43
.1

07
.4

5.
1

. R
ed

is
tr

ib
ut

io
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

s:
//e

pu
bs

.s
ia

m
.o

rg
/te

rm
s-

pr
iv

ac
y

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

NEW CONSTRAINT QUALIFICATIONS AND APPLICATIONS 1111

T (x) and its polar, with objects that use gradient information at the point x. The
gradients have local information of the respective constraint functions, but they cannot
always express the interrelationship among all functions while defining the feasible
set. In this sense, we can say that a CQ is a condition that tries to restrict how the
gradients, and hence the constraints themselves, vary together in a neighborhood of x.
Such variation should be well behaved enough to assert Guignard’s condition.

The simplest CQ, called the linear independence CQ (LICQ), asks for linear in-
dependence of the gradients of the active constraints at the point of interest x. This
condition is still important today and is required in many special cases, especially
when connected to convergence results for numerical algorithms [8, 35]. When the
problem has inequality constraints it is usually better to consider the Mangasarian–
Fromovitz CQ (MFCQ), which asks that the gradients of the active constraints be
positively linearly independent,1 relaxing the LICQ [27, 40]. Even though these two
conditions appear to be pointwise conditions, they actually constrain how the gradi-
ents may vary together in a neighborhood of x, as linear independence and positive
linear independence are conditions that are preserved locally.

The LICQ was relaxed by Janin in [22] while studying the directional derivative
of the marginal function associated with the right-hand side of (NOP). In particular,
Janin showed that if the ranks of all subsets of the gradients of the active constraints
remain constant in a neighborhood of x, then the KKT conditions are necessary for
optimality. This condition is known as the constant rank CQ (CRCQ). Clearly, LICQ
is a particular case of CRCQ.

The CRCQ was further relaxed by Qi and Wei [38] in the context of study-
ing sequential quadratic programming algorithms. The authors introduced the con-
stant positive linear dependence (CPLD) condition, which was shown to be a CQ by
Andreani, Mart́ınez, and Schuverdt [6]. In [2, 3] Andreani et al. showed that this CQ
was enough to ensure the convergence of an augmented Lagrangian method to a KKT
point. The CPLD condition asks that the positive linear dependence of any subset of
the active gradients be preserved locally.

More recently, Minchenko and Stakhovski showed that the CRCQ can be relaxed
to consider only the full set of the equality constraints [32]. More precisely, they
showed that the following condition is a CQ.

Definition 1.2. We say that the relaxed constant rank CQ (RCRCQ) holds at
a feasible point x if there is a neighborhood N(x) of x, where for all subsets J ⊂ A(x)
and all y ∈ N(x) the set of gradients {∇fi(y) | i ∈ {1, . . . ,m} ∪ J } has constant
rank.

Interesting relations between this condition and the original constant rank condi-
tion were unveiled in [24]. The relaxed constant rank condition was further extended
to take into account positive linear independence in the place of the rank in [5],
where a relaxed version of the CPLD, called RCPLD, is introduced. This work also
shows that RCPLD is enough to ensure the validity of an error bound and the global
convergence of an augmented Lagrangian method.

These last developments are interesting as they do not take into account all the
subsets of the gradients of the equality constraints. Only the full set of gradients
{∇f1(x), . . . ,∇fm(x)} is important. So, if the problem has only equality constraints,
these conditions basically require that the linearized cone of F must have constant
dimension locally, only tilting to support the feasible set at each point. This is a
strong geometric condition that is easy to understand and visualize.

1For a precise definition of positive linear independence in this context, see section 2.

D
ow

nl
oa

de
d

03
/1

5/
24

 to
 1

43
.1

07
.4

5.
1

. R
ed

is
tr

ib
ut

io
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

s:
//e

pu
bs

.s
ia

m
.o

rg
/te

rm
s-

pr
iv

ac
y

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

1112 ANDREANI, HAESER, SCHUVERDT, AND SILVA

Fig. 1.1. Linear space and pointed cone components of F(x)◦. The subspace is generated by
the gradients of the equality constraints together with the gradients of constraints with indexes in
J−. The pointed cone is generated by the gradients of the active inequality constraints that are not
in J−.

However, if the problem has inequalities, the results described above still require
local conditions on all subsets of the gradients of the active inequalities. The simplicity
of considering only one set of gradients whose properties must be stable is lost. The
main purpose of this paper is to fill this gap, showing that only a single subset of the
inequality constraints needs to be considered.

When the feasible set is described with inequalities, the rank preservation of the
gradients is not the right concept to describe its structure. For example, consider the
constraints y ≥ 0, y − x2 ≥ 0. They conform to MFCQ at 0, but their rank increases
locally. The rank is a tool that is better suited to dealing with the gradients of the
equality constraints as they generate a subspace contained in F(x)◦ where the notion
of dimension can be applied.

For inequality constraints the idea of CPLD looks like the best choice. On the
other hand, in some cases, inequality constraints may behave like, or even be, equality
constraints in disguise. For example, x ≥ 0 and x ≤ 0, which together mean x = 0.
In this case, rank preservation is the right concept.

How do we reconcile these two possibilities? One way is to try to identify which in-
equalities actually behave like equalities in the description of the polar of the linearized
cone. With this objective in mind, let us consider the maximal subspace contained in
F(x)◦, which we call its subspace component. The description given in (1.3) seems to
suggest that this subspace is generated by the gradients of the equalities. The other
term in the sum, associated with the gradients of the inequalities, is expected to be
a pointed cone. Most of the problems arise when this division is not clear, that is,
when gradients of inequality constraints fall into the subspace component of the polar
of the linearized cone. See Figure 1.1. Formally this happens whenever the set

(1.4) J−
def
= {j ∈ A(x) | −∇fj(x) ∈ F(x)◦}

is nonempty. This index set appears implicitly in the MFCQ, which is equivalent
to requiring that J− be empty, while the gradients of the equality constraints that
generate the linear space component of the polar of the linearized cone must be linearly
independent, thus preserving its dimension locally.

In order to generalize the CQs described above, we need to generalize the notion of
a basis of a subspace to deal with cones spanned by linear combinations using signed

D
ow

nl
oa

de
d

03
/1

5/
24

 to
 1

43
.1

07
.4

5.
1

. R
ed

is
tr

ib
ut

io
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

s:
//e

pu
bs

.s
ia

m
.o

rg
/te

rm
s-

pr
iv

ac
y

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

NEW CONSTRAINT QUALIFICATIONS AND APPLICATIONS 1113

coefficients. We then require that such special spanning sets be preserved locally.
The precise definition of this new CQ is given in section 3. In particular, we show
that many of the CQs discussed above imply that the subspace component of the
polar of the linearized cone has the same dimension locally, which in turn implies the
new CQ.

The preservation of the dimension of the subspace component is an intermediate
CQ that plays a fundamental role in the applications. Let us formalize it below.

Definition 1.3. Let x be a feasible point of (NOP), and define the index set
J− as in (1.4). We say that the constant rank of the subspace component (CRSC)
condition holds at x if there is a neighborhood N(x) of x such that the rank of {∇fl(y) |
l ∈ {1, . . . ,m} ∪ J−} remains constant for y ∈ N(x).

Note that the fact that CPLD CQs, in particular RCPLD, imply CRSC as proved
in Theorem 4.3 is somewhat surprising. In particular, this fact reconciles constant
rank and CPLD CQs: both are actually ensuring that the subspace spanned by the
gradients of the equality constraints and the gradients of the inequality constraints
with indexes in J− has constant dimension locally. The fact that the dimension of
the linear space component is locally constant has deep geometrical consequences: it
basically says that the polar of the linearized cone has the same shape locally; it can
only tilt preserving its structure. Moreover, this condition is clearly more general than
RCPLD, as the simple feasible set {x | x ≤ 0,−x ≤ 0, x2 ≤ 0} conforms to CRSC at
its only point, the origin, while RCPLD fails.

The rest of this paper is organized as follows. Section 2 introduces the notion
of positively linearly independent spanning pairs, which replaces the idea of a basis
for cones. Section 3 uses this idea to introduce a new CQ that we call the constant
positive generator (CPG) condition and that generalizes CRSC and many of the CQs
described above. Section 4 shows the relation among RCPLD, CRSC, and CPG.
It shows that CPG implies Abadie’s CQ. Finally, section 5 shows some important
applications of CRSC and CPG. We discuss when an error bound holds and also
show that many algorithms converge under the weak CPG condition.

2. Positively linearly independent spanning pairs. One of the main objects
in the study of CQ is F(x)◦, the polar of the linearized cone of the feasible set at
a feasible point x; see (1.3). This cone is spanned by the gradients of the active
constraints at x with some sign conditions on the combination coefficients. This notion
of spanning cones using vectors and coefficients with sign conditions is fundamental
in our development. Let us formalize it in the next definition.

Definition 2.1. Let V = (v1, v2, . . . , vK) be a tuple2 of vectors in R
n, and

let I,J ⊂ {1, 2, . . . ,K} be a pair of index sets. We call a positive combination of
elements of V associated with the (ordered) pair (I,J) a vector in the form∑

i∈I
λivi +

∑
j∈J

μjvj , μj ≥ 0, ∀j ∈ J .

The set of all such positive combinations is called the positive span of V associated
with (I,J), and it is denoted by span+(I,J ;V). It is clearly a cone. If the tuple
V is clear from the context, we may omit it and use positive combinations of (I,J),
positive span of (I,J), and write span+(I,J). On the other hand, if the set I = ∅,

2We use a tuple instead of a regular set to allow for vectors to appear more than once. It is
natural to consider this possibility in our discussion as the gradients of different constraints may be
equal in a given point.

D
ow

nl
oa

de
d

03
/1

5/
24

 to
 1

43
.1

07
.4

5.
1

. R
ed

is
tr

ib
ut

io
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

s:
//e

pu
bs

.s
ia

m
.o

rg
/te

rm
s-

pr
iv

ac
y

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

1114 ANDREANI, HAESER, SCHUVERDT, AND SILVA

that is if all coefficients are supposed to be nonnegative, we may talk about positive
combinations of V and positive span of V .

The vectors v�, � ∈ I ∪ J , or the pair (I,J) when V is clear from the context,
are said to be positively linearly independent if the only way to write the zero vector
using positive combinations is to use trivial coefficients. Otherwise we say that the
vectors, or the pair, are positively linearly dependent.

Let I ′,J ′ ⊂ {1, 2, . . . ,K} be another pair of indexes. We say that (I ′,J ′) posi-
tively spans span+(I,J ;V) if span+(I ′,J ′;V) = span+(I,J ;V). We may also say
that (I ′,J ′) is a positive spanning pair for such a cone.

Now, let us recall the definition of the polar of the linearized cone F(x)◦ given
in (1.3). If we set I as the indexes of the equality constraints {1, 2, . . . ,m}, J as
the indexes of the inequality constraints that are active at x, that is A(x), and V as
the tuple of gradients with indexes in I ∪ J , then F(x)◦ is the positive span of V
associated with the pair (I,J).

Next, let us try to generalize the idea of a basis from linear spaces to positive
spanned cones in the form span+(I,J ;V). In other words, we want to define a
“minimal” spanning pair for such a cone. A first attempt is to look for a positively
linearly independent spanning pair for it; however, the usual technique for finding
such a pair may not apply. For example, for V = {v1 = −1, v2 = 1} ⊂ R, I = ∅, and
J = {1, 2}, it is not possible to obtain such a pair simply by removing vectors from
I and J , as is possible in the linear case. In order to find such a spanning pair we
need to remove vectors from J and put them into I. In fact, I ′ = {1} and J ′ = ∅
form a positively linearly independent spanning pair for the same cone. We make this
procedure clear in the next result.

Theorem 2.2. Let V = (v1, v2, . . . , vK) be a tuple of vectors in R
n and I,J ⊂

{1, 2, . . . ,K} such that the pair (I,J) is positively linearly dependent. Then the pair
(I ′,J ′) defined below positively spans span+(I,J ;V).

1. If I is associated with linearly dependent vectors, define I ′ as a proper subset
of I such that span{vi | i ∈ I ′} = span{vi | i ∈ I} and set J ′ = J .

2. Otherwise, I is associated with linearly independent vectors, and there is a
j′ ∈ J such that −vj ∈ span+(I,J). Define I ′ = I ∪{j′} and J ′ = J \{j′},
a proper subset of J .

Proof. In the first case it is trivial to see that the cones coincide.
In the second case, as (I,J) is positively linearly dependent, there must be coef-

ficients λ̄i, for i ∈ I, and nonnegative μ̄j , for j ∈ J , such that

(2.1)
∑
i∈I

λ̄ivi +
∑
j∈J

μ̄jvj = 0.

Note that not all μ̄j , j ∈ J , are zero; otherwise, vi, i ∈ I, would not be linearly
independent. Then there is at least one j′ ∈ J such that μ̄j′ > 0. Dividing the
equation above by μ̄j′ , we get∑

i∈I

λ̄i

μ̄j′
vi +

∑
j∈J\{j′}

μ̄j

μ̄j′
vj = −vj′ .

Now define the index sets I ′ def
= I ∪{j′} and J ′ def

= J \{j′}. Clearly, span+(I ′,J ′) ⊃
span+(I,J). On the other hand, let∑

i∈I′
λivi +

∑
j∈J ′

μjvj

D
ow

nl
oa

de
d

03
/1

5/
24

 to
 1

43
.1

07
.4

5.
1

. R
ed

is
tr

ib
ut

io
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

s:
//e

pu
bs

.s
ia

m
.o

rg
/te

rm
s-

pr
iv

ac
y

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

NEW CONSTRAINT QUALIFICATIONS AND APPLICATIONS 1115

be an element of span+(I ′,J ′). Then, it clearly belongs to span+(I,J) if the coeffi-
cient of vj′ is nonnegative. Otherwise,∑

i∈I′
λivi +

∑
j∈J ′

μjvj =
∑
i∈I

λivi + λj′vj′ +
∑
j∈J ′

μjvj

=
∑
i∈I

λivi + |λj′ |

⎛⎝∑
i∈I

λ̄i

μ̄j′
vi +

∑
j∈J\{j′}

μ̄j

μ̄j′
vj

⎞⎠
+

∑
j∈J ′

μjvj ,

and we see that it is actually in span+(I,J).
We can then easily construct positively linearly independent spanning pairs.
Corollary 2.3. Let V = (v1, v2, . . . , vK) be a tuple of vectors in R

n, and let
I,J ⊂ {1, 2, . . . ,K} be a pair of index sets. Then there exist I ′,J ′ ⊂ {1, 2, . . . ,K}
such that (I ′,J ′) is positively linearly independent and span+(I ′,J ′;V) = span(I,
J ;V). We call such pairs positively linearly independent spanning pairs of
span+(I,J ;V).

Proof. Start with (I,J) and apply the construction given in Theorem 2.2 while
possible. Clearly this can be done only a finite number of times, and the resulting
pair (I ′,J ′) is positively linearly independent.

The second case in Theorem 2.2 simply states that if both vj and −vj belong
to span+(I,J) for some index j ∈ J , then this index may have been misplaced
and should be moved to I. If we recall the natural definitions I, J , and V when
considering F(x)◦, moving an index from J to I is associated with stating that an
inequality constraint should be viewed as an equality, something which is not usual
in optimization.

To see why this is acceptable, let us recall that F(x)◦ is the polar to the linearized
cone. The fact that an inequality constraint fj has both∇fj(x) and−∇fj(x) in F(x)◦

implies that F(x), and hence T (x), lies in the subspace orthogonal to ∇fj(x). That
is, if we consider the feasible set F , fj is interacting with the other constraints that
define it and behaving more closely like an equality constraint than like an inequality
constraint.

We end this section with an alternative characterization of the positively linearly
independent spanning pairs given above. We start with a definition, already suggested
in the introduction.

Definition 2.4. Let V = (v1, v2, . . . , vK) be a tuple of vectors in R
n, and let

I,J ⊂ {1, 2, . . . ,K} be a pair of index sets. Define

J−
def
= {j ∈ J | − vj ∈ span+(I,J ;V)} and J+

def
= J \ J−.

Lemma 2.5. Let V = (v1, v2, . . . , vK) be a tuple of vectors in R
n, and let I,J ⊂

{1, 2, . . . ,K} be a pair of index sets. If (I ′,J ′) is a positively linearly independent
spanning pair for span+(I,J ;V), then

1. J ′ ⊂ J+;
2. (I ′,J+) is also a positively linearly independent spanning pair for span+(I,J ;V);
3. I ′ ⊂ I ∪J−, and it is composed of indexes of a basis of the subspace spanned

by {v� | � ∈ I ∪ J−}.

D
ow

nl
oa

de
d

03
/1

5/
24

 to
 1

43
.1

07
.4

5.
1

. R
ed

is
tr

ib
ut

io
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

s:
//e

pu
bs

.s
ia

m
.o

rg
/te

rm
s-

pr
iv

ac
y

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

1116 ANDREANI, HAESER, SCHUVERDT, AND SILVA

Proof.
1. Let � ∈ J ′. Suppose, by contradiction, that �
∈ J+; in other words, −v� ∈

span+(I,J ;V) = span+(I ′,J ′;V). In this case,

−v� =
∑
i∈I′

λivi +
∑

j∈J ′\{�}
μjvj + μ�v�, μj ≥ 0 ∀j ∈ J ′,

which implies

0 =
∑
i∈I′

λivi +
∑

j∈J ′\{�}
μjvj + (μ� + 1)v�, μj ≥ 0 ∀j ∈ J ′.

As (μ� + 1) > 0, this is a contradiction to the assumption that (I ′,J ′) is
positively linearly independent.

2. First, observe that as J ′ ⊂ J+, span+(I,J ;V) = span+(I ′,J ′;V) ⊂
span+(I ′,J+;V) ⊂ span+(I,J ;V). Hence, (I ′,J+) is also a spanning pair.
Now, suppose in contradiction that it is positively linearly dependent; that
is, there are coefficients λi for i ∈ I ′ and μj ≥ 0 for j ∈ J+, not all zero, such
that ∑

i∈I′
λivi +

∑
j∈J+

μjvj = 0.

Since (I ′,J ′) is positively linearly independent, the vectors with indexes in I ′

are linearly independent. Hence, at least one of the coefficients μj′ , j
′ ∈ J+,

is strictly positive. We can then rearrange the above equality to solve for
−vj′ and get a contradiction to the definition of J+.

3. If j ∈ I ′, then −vj ∈ span+(I,J ;V). Hence, j must belong to either I or
J− by definition of such index sets. Now, clearly, the vectors with indexes
in I ′ are linearly independent, as (I ′,J ′) is positively linearly independent.
We need only show that any v�, � ∈ I ∪ J−, is a linear combination of the
vectors with indexes in I ′. Now, as both v�,−v� ∈ span+(I ′,J ′), there must
be coefficients λ+

i , λ
−
i , i ∈ I ′, and nonnegative μ+

j , μ
−
j , j ∈ J ′, such that

v� =
∑
i∈I′

λ+
i vi +

∑
j∈J ′

μ+
j vj ,(2.2)

−v� =
∑
i∈I′

λ−
i vi +

∑
j∈J ′

μ−
j vj .

Summing up these two inequalities, we get

0 =
∑
i∈I′

(λ+
i + λ−

i)vi +
∑
j∈J ′

(μ+
j + μ−

j)vj .

As (I ′,J ′) is positively linearly independent, we know that all coefficients in
the summation above are zero. Since for all j ∈ J ′, μ+

j , μ
−
j ≥ 0 we conclude

that for all j ∈ J ′, μ+
j = μ−

j = 0. It follows from (2.2) that v� is spanned by
the vectors in I ′.

D
ow

nl
oa

de
d

03
/1

5/
24

 to
 1

43
.1

07
.4

5.
1

. R
ed

is
tr

ib
ut

io
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

s:
//e

pu
bs

.s
ia

m
.o

rg
/te

rm
s-

pr
iv

ac
y

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

NEW CONSTRAINT QUALIFICATIONS AND APPLICATIONS 1117

Corollary 2.6. The positively linearly independent spanning pairs given by
Corollary 2.3 have the form

I ′ ⊂ I ∪ J−, J ′ = J+,

where I ′ is composed by indexes of a basis of the space spanned by {v� | � ∈ I ∪J−}.
Proof. This is an immediate consequence of the lemma above and the fact that the

procedure described in Corollary 2.3 never moves vectors from J+ to the set I ′.
Corollary 2.7. The set span+(I,J−) is a subspace.
Proof. By definition, vj ∈ J− if and only if −vj is a positive linear combination

of the other vectors in I ∪J . But in this positive combination the vectors in J+ can
appear only with zero coefficients; otherwise they would belong to J−.

3. Constant positive generators. Now we are ready to introduce a new CQ.
Definition 3.1. Consider the nonlinear optimization problem (NOP). For y ∈

R
n define the tuple Gf(y)

def
= (∇f1(y),∇f2(y), . . . ,∇fm+p(y)). Let x be a feasible

point, and define the index sets I def
= {1, 2, . . . ,m} and J def

= A(x), the set of active
inequality constraints.

We say that the CPG condition holds at x if there is a positively linearly inde-
pendent spanning pair (I ′,J+) of span+(I,J ;Gf(x)) such that

(3.1) span+(I ′,J+;Gf(y)) ⊃ span+(I,J ;Gf(y))

for all y in a neighborhood of x.
Note that we implicitly used Lemma 2.5 in this definition. Actually, if (I ′,J ′)

is a positively linearly independent spanning pair for span+(I,J ;Gf(x)), the lemma
says that (I ′,J+) is also a spanning pair. As J+ ⊃ J ′, it may be easier to show that
the inclusion (3.1) holds using J+ in the place of a smaller J ′. Hence, we decided to
state the definition already using the larger index set J+.

Note also that if the inclusion required in CPG holds, then it must hold as an
equality. This is not always true. For example, consider the feasible set

F = {(x1, x2) ∈ R
2 | x3

1 − x2 ≤ 0, x3
1 + x2 ≤ 0, x1 ≤ 0}

at the origin. At this point CPG holds with the inclusion holding in the proper sense.
See Figure 3.1.

Finally, an extension of this example can also be used to show that it is possible
for inclusion (3.1) to hold only for a specific choice for I ′. In order to see this, let us
add a constraint to the feasible set above and consider

F = {(x1, x2) ∈ R
2 | x3

1 − x2 ≤ 0, x3
1 + x2 ≤ 0, x1 ≤ 0, x3

2 ≤ 0}

at the origin. Here, the constraints associated with J− are the first, second, and
fourth; that is, J− = {1, 2, 4}, while J+ = {3} and I = ∅. There are two possible
choices for I ′ that are associated with positively linearly independent spanning pairs
at the origin. Either I ′ = {1}, which shows that CPG holds, or I ′ = {2}, where the
inclusion in the CPG definition is not valid. See Figure 3.2.

Now we move to proving that CPG is actually a CQ. First let us recall the
definition of approximate KKT points [4].

Definition 3.2. We say that a feasible point x of (NOP) conforms to the
approximate KKT (AKKT) condition if there exist sequences xk → x, εk → 0, and

D
ow

nl
oa

de
d

03
/1

5/
24

 to
 1

43
.1

07
.4

5.
1

. R
ed

is
tr

ib
ut

io
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

s:
//e

pu
bs

.s
ia

m
.o

rg
/te

rm
s-

pr
iv

ac
y

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

1118 ANDREANI, HAESER, SCHUVERDT, AND SILVA

Fig. 3.1. Consider F = {(x1, x2) ∈ R
2 | f1(x1, x2) = x3

1 − x2 ≤ 0, f2(x1, x2) = x3
1 + x2 ≤

0, f3(x1, x2) = x1 ≤ 0} at the origin. Then we can take I′ = {1} and J+ = {3} in the definition of
CPG. Then, for all y �= 0, span+({1}, {3};Gf(y)) is a semispace, pictured in light gray above, that
properly contains the pointed cone span+(∅, {1, 2, 3};Gf(y)), positively generated by the gradients.

Fig. 3.2. Consider F = {(x1, x2) ∈ R
2 | f1(x1, x2) = x3

1 − x2 ≤ 0, f2(x1, x2) = x3
1 + x2 ≤

0, f3(x1, x2) = x1 ≤ 0, f4(x1, x2) = x3
2 ≤ 0} at the origin. Then, span+({1}, {3};Gf(y)) is the light

gray semispace and contains all the gradients. On the other hand, ∇f4(y) �∈ span+({2}, {3};Gf(y))
whenever y �= 0.

D
ow

nl
oa

de
d

03
/1

5/
24

 to
 1

43
.1

07
.4

5.
1

. R
ed

is
tr

ib
ut

io
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

s:
//e

pu
bs

.s
ia

m
.o

rg
/te

rm
s-

pr
iv

ac
y

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

NEW CONSTRAINT QUALIFICATIONS AND APPLICATIONS 1119

{λk} ⊂ R
m, {μk} ⊂ R

p, μk ≥ 0, such that

∇f0(x
k) +

∑
i∈I

λk
i∇fi(x

k) +
∑

j∈A(x)

μk
j∇fm+j(x

k) = εk.

In this case, we may also say that x is an AKKT point.
It is well known from [4] that if x is a local minimum, then it must be an AKKT

point. Therefore, to prove that CPG is a CQ, all we need to show is that if CPG holds
at an AKKT point, then it has to be a KKT point. Another important property is
that many methods for nonlinear optimization are guaranteed to converge to AKKT
points. Hence, it will be a corollary of Theorem 3.3 below that if one of such algorithms
generates a sequence converging to a point where CPG holds, then such a point has
to be a KKT point. This will be the main tool used in section 5.2, where we describe
applications of CPG to the convergence analysis of nonlinear optimization methods.

Theorem 3.3. Let x be a feasible point of (NOP) that satisfies the AKKT
condition. If x also satisfies CPG, then x is a KKT point.

Proof. Let xk, εk, λk, and μk be the sequences given by the AKKT condition. Let
(I ′,J+) be the positively linearly independent spanning pair given by CPG. Then,
for each sufficiently large k there must be λ̄k

i , i ∈ I ′, and μ̄k
j ≥ 0, j ∈ J+, such that

(3.2) ∇f0(x
k) +

∑
i∈I′

λ̄k
i ∇fi(x

k) +
∑
j∈J+

μ̄k
j∇fj(x

k) = εk.

Define Mk = max{|λ̄k
i |, i ∈ I ′; μ̄k

j , j ∈ J+}. There are two possibilities:
1. If Mk has a bounded subsequence, we can assume, by possibly extracting

a further subsequence, that for all i ∈ I ′ and j ∈ J+ the subsequences of
λ̄k
i and μ̄k

j have limits λ̄∗
i and μ̄∗

j ≥ 0, respectively. Then, taking the limit
at (3.2), we arrive at

∇f0(x) +
∑
i∈I′

λ̄∗
i∇fi(x) +

∑
j∈J+

μ̄∗
j∇fj(x) = 0.

As ∑
i∈I′

λ̄∗
i∇fi(x) +

∑
j∈J+

μ̄∗
j∇fj(x

k) ∈ span+(I,J ;Gf(x)),

we see that x is KKT.
2. If Mk → ∞, we can divide (3.2) by Mk for k large enough and get

(3.3)
1

Mk
∇f0(x

k) +
∑
i∈I′

λ̄k
i

Mk
∇fi(x

k) +
∑
j∈J+

μ̄k
j

Mk
∇fj(x

k) =
εk

Mk
.

We can then take the limit in the equation above and derive a contradiction
to the fact that (I ′,J+) is positively linearly independent.

Corollary 3.4. The CPG condition is a CQ.

4. Relation with other constraint qualifications. Now that we know that
CPG is a CQ, it is natural to ask what its relation is to other CQs in the literature.
Let us start with its relation to RCRCQ, which is naturally connected to CRSC as
defined in the introduction.

D
ow

nl
oa

de
d

03
/1

5/
24

 to
 1

43
.1

07
.4

5.
1

. R
ed

is
tr

ib
ut

io
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

s:
//e

pu
bs

.s
ia

m
.o

rg
/te

rm
s-

pr
iv

ac
y

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

1120 ANDREANI, HAESER, SCHUVERDT, AND SILVA

Theorem 4.1. The constant rank of the subspace component (CRSC) condition
implies CPG.

Proof. Let (I ′,J+) be a positively linearly independent spanning pair of the
cone span+(I,J ;Gf(x)). It suffices for us to show that in a neighborhood of x,
∇f�(y) ∈ span{∇fi(y) | i ∈ I ′} for all � ∈ I ∪ J−. We know from Lemma 2.5 that
I ′ is the set of indexes of a basis for span{∇fi(x) | i ∈ I ∪ J−}. As the rank of
{∇fi(y) | i ∈ I ∪ J−} remains constant in a neighborhood of x, this basis has to
remain a basis in a (possibly smaller) neighborhood of x.

Note that, in particular, the theorem above shows that RCRCQ implies CPG,
as RCRCQ implies CRSC. Moreover, CRSC successfully eliminates the need to test
all subsets involving the gradients of active inequality constraints. CRSC simplified
RCRCQ as the latter simplified Janin’s CQ for feasible sets with only equality con-
straints.

Another CQ in the same family is RCPLD, which is related to RCRCQ as CPLD
is related to the original constant rank. That is, RCPLD trades the constant rank
assumption in RCRCQ by the local preservation of positive linear dependence, a
weaker condition.

Definition 4.2. Let x be a feasible point of (NOP). Let Ĩ be the set of indexes
of a basis of span{∇fi(x) | i ∈ I}. We say that x satisfies RCPLD if there is a
neighborhood N(x) of x, where

1. for all y ∈ N(x), {∇fi(y) | i ∈ I} has constant rank;
2. for all subsets of indexes of active inequality constraints J̃ ⊂ A(x), if (Ĩ, J̃) is

positively linearly dependent at x, then it remains positively linearly dependent
(or, equivalently, linearly dependent) in N(x).

We prove below that the RCPLD, just as RCRCQ, also locally preserves the rank
of {∇fi(y) | i ∈ I ∪ J−}; that is, it also implies CRSC.

Theorem 4.3. RCPLD implies CRSC.
Proof. From Corollary 2.7 we know that if j ∈ J−, then −∇fj(x) can be positively

spanned by the other vectors in the pair (I,J−). By the definition of RCPLD, this
fact remains true in N(x), and hence span+(I,J−;Gf(y)) is actually a subspace for
all y ∈ N(x). What we want to show is that these subspaces have the same dimension
as the subspace span+(I,J−;Gf(x)) in a smaller neighborhood of x.

Let Ñ(x) be a neighborhood of x contained in N(x) such that the dimension of
span+(I,J−;Gf(y)) is greater than or equal to the dimension of span+(I,J−;Gf(x)),
which exists as linear independence is preserved locally. We thus need to show that
the dimension cannot increase, remaining constant.

We start by noting that if Ĩ is as in the definition of RCPLD, then for all y ∈ Ñ(x),
span+(I,J−;Gf(y)) = span+(Ĩ,J−;Gf(y)). Let m̃ = #Ĩ, the cardinality of Ĩ,
n− = #J−, Ĩ = {i1, i2, . . . , im̃}, and J− = {j1, j2, . . . , jn−}. Define

vl(y)
def
= ∇fil(y), l = 1, . . . , m̃,

vm̃+l(y)
def
= −∇fil(y), l = 1, . . . , m̃,

v2m̃+l(y)
def
= ∇fjl(y), l = 1, . . . , n−,

and define the set A def
= {1, 2, . . . , 2m̃+ n−}.

It is clear that the subspace span+(Ĩ,J−;Gf(y)) is the cone positively spanned

by A(y)
def
= {vl(y) | l ∈ A}; in particular, it is linearly spanned by A(y). Moreover,

if a subset of vectors in A(x) is linearly dependent using only nonnegative weights,

D
ow

nl
oa

de
d

03
/1

5/
24

 to
 1

43
.1

07
.4

5.
1

. R
ed

is
tr

ib
ut

io
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

s:
//e

pu
bs

.s
ia

m
.o

rg
/te

rm
s-

pr
iv

ac
y

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

NEW CONSTRAINT QUALIFICATIONS AND APPLICATIONS 1121

then RCPLD asserts that, for y ∈ Ñ(y), the respective vectors in A(y) remain linearly
dependent using only nonnegative weights.

Now let vl′(x) be a vector in A(x) that can be positively spanned by the other
vectors in A(x). Then A(x)\ {vl′(x)} still positively spans the same space. Moreover,
as A(x) spans the space positively, we know that −vl′(x) can be written as a positive
combination of the remaining vectors in A(x); that is, there are αl ≥ 0 such that

−vl′(x) =
∑

l∈A\{l′}
αlvl(x).

Using Carathodory’s lemma [8, Exercise B.1.7], we can reduce this sum to a subset
A′ ⊂ A \ {l′} such that the respective αl > 0 and the vectors vl(x), l ∈ A′, are
positively linearly independent. As RCPLD holds, this fact remains true in Ñ(x),
and hence the vector vl′(y) is not necessary to describe the subspace linearly spanned
by A(y).

Hence, if we iteratively delete from A(x) vectors that can be positively spanned
by the other vectors in the set, delete from A the respective index, and call Ã the
final index set, we can see that

1. the subspace span+(I,J−;Gf(x)) is the cone positively generated by the

vectors in Ã(x)
def
= {vl(x) | l ∈ Ã}, and Ã(x) is a positive basis for this

subspace [39];
2. for all y ∈ Ñ(x), the subspace span+(I,J−;Gf(y)) is the subspace linearly

spanned by Ã(y)
def
= {vl(y) | l ∈ Ã}.

We can then apply Lemma 6 from [39] to Ã(x) to see that there is a partition of
the index set Ã into p pairwise disjoint subsets Ã1 ∪ · · · ∪ Ãp such that the positive

cone generated by {vl(x) | l ∈ Ã1 ∪ · · · ∪ Ãp′} is a linear subspace of dimension

(
∑p′

k=1 #Ãk) − p′ for each p′ = 1, 2, . . . , p. In particular, the dimension of the space

positively spanned by Ã(x) is #Ã − p.
Take p′ = 1. The partition properties ensure that if we delete a vector vl1(x)

from {vl(x) | l ∈ Ã1}, then the remaining ones are linearly independent. Moreover,
vl1(x) not only is linearly dependent with the remaining ones, it is positively linearly
dependent, as its negative has to be positively spanned by the others. This positive
linear dependence is preserved by RCPLD, and hence the space linearly spanned by
{vl(y) | l ∈ Ã1} is the same as the space linearly spanned by {vl(y) | l ∈ Ã1, l
= l1}
for y ∈ Ñ(x).

Now take p′ = 2. There is vector vl2(x) ∈ {vl(x) | l ∈ Ã2} such that {vl(x) |
l ∈ Ã1 ∪ Ã2, l
∈ {l1, l2}} is a basis of the subspace positively spanned by {vl(x) |
l ∈ Ã1 ∪ Ã2}. As this space is positively spanned, we can see that there must be
nonnegative coefficients αl such that

−vl2(x) =
∑

l∈Ã1∪Ã2\{l2}
αlvl(x).

Again using Carathodory’s lemma, we can see that RCPLD ensures that for y ∈
Ñ(y) the vector vl2(y) is not necessary to describe the subspace linearly spanned
by {vl(y) | l ∈ Ã1 ∪ Ã2}. That is, for y ∈ Ñ(x), the subspace linearly spanned by
{vl(y) | l ∈ Ã1∪Ã2} is the same as the one linearly spanned by {vl(y) | l ∈ Ã1∪Ã2, l
=
l2}, which in turn is the same as the one linearly spanned by {vl(y) | l ∈ Ã1 ∪Ã2, l
∈
{l1, , l2}}.

D
ow

nl
oa

de
d

03
/1

5/
24

 to
 1

43
.1

07
.4

5.
1

. R
ed

is
tr

ib
ut

io
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

s:
//e

pu
bs

.s
ia

m
.o

rg
/te

rm
s-

pr
iv

ac
y

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

1122 ANDREANI, HAESER, SCHUVERDT, AND SILVA

This process can be carried on p times, and at the end we conclude that for
all y ∈ Ñ(x) there are p vectors in Ã(y) that are not necessary to describe its
linearly spanned set, which in turn is span+(I,J−;Gf(y)). Hence, the dimension
of span+(I,J−;Gf(y)) is less than or equal to #Ã(y) − p = #Ã − p. This last
value is the dimension of the space linearly spanned by Ã(x), namely, span+(I,J−;
Gf(x)).

Note that the CRSC condition is not equivalent to the CPG condition. Actually,
consider once again the feasible set pictured in Figure 3.1:

{(x1, x2) ∈ R
2 | x3

1 − x2 ≤ 0, x3
1 + x2 ≤ 0, x1 ≤ 0}.

Then, at the origin J− = {1, 2} and the rank of {∇f1(0),∇f2(0)} is 1. On the other
hand, for any y
= 0, the rank increases while CPG holds. In particular, CPG is a
proper generalization of RCPLD.

Finally, let us show that CPG implies Abadie’s CQ. In order to achieve this we
start with a result that can be directly deduced from the proof of Theorem 4.3.1 in [7].

Lemma 4.4. Let x be a feasible point of (NOP) that conforms to the MFCQ; i.e.,
the set {∇fi(x) | i ∈ I} is linearly independent and there is a direction 0
= d ∈ R

n

such that

∇fi(x)
′d = 0, i ∈ I, ∇fi(x)

′d < 0, i ∈ J .

Then, there is a scalar T > 0 and a continuously differentiable arc α : [0, T] → R
n

such that

α(0) = x,(4.1)

α̇(0) = d,(4.2)

fi(α(t)) = 0 ∀t ∈ [0, T], i ∈ I,(4.3)

∇fi(α(t))
′α̇(t) = 0 ∀t ∈ [0, T], i ∈ I,(4.4)

fj(α(t)) < 0 ∀t ∈ (0, T], j ∈ J ,(4.5)

∇fj(α(t))
′α̇(t) < 0 ∀t ∈ [0, T], j ∈ J .(4.6)

Now we use the lemma above to find special differentiable arcs that move inward
the feasible set under CPG.

Lemma 4.5. Let x be a feasible point for (NOP), where CPG holds, and let
(I ′,J+) be the associated positively linearly independent spanning pair. Then there
exists 0
= d ∈ R

n such that

∇fi(x̄)
′d = 0, i ∈ I ′, ∇fj(x̄)

′d < 0, j ∈ J+.

Moreover, for any such d, there is a scalar T > 0 and a continuously differentiable
arc α : [0, T] → R

n such that

α(0) = x̄,(4.7)

α̇(0) = d,(4.8)

fi(α(t)) = 0 ∀t ∈ [0, T], i ∈ I,(4.9)

fj(α(t)) ≤ 0 ∀t ∈ (0, T], j ∈ J .(4.10)

Proof. As (I ′,J+) is positively linearly independent, the feasible set described by

{x | fi(x) = 0, i ∈ I ′, fj(x) ≤ 0, j ∈ J+}

D
ow

nl
oa

de
d

03
/1

5/
24

 to
 1

43
.1

07
.4

5.
1

. R
ed

is
tr

ib
ut

io
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

s:
//e

pu
bs

.s
ia

m
.o

rg
/te

rm
s-

pr
iv

ac
y

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

NEW CONSTRAINT QUALIFICATIONS AND APPLICATIONS 1123

conforms to the MFCQ at x. Therefore the desired direction d exists.
Let α : [0, T] �→ R

n be the curve given by Lemma 4.4, and take 0 < T ′ ≤ T
to ensure that for all t ∈ [0, T ′], α(t) ∈ N(x), where N(x) is the neighborhood of x
given by CPG. We already know that (4.9)–(4.10) hold for constraints with indexes
in I ′ ∪ J+; hence, all we need to show is that they also hold for � ∈ (I ∪ J−) \ I ′.

Fix such an index �. We know that ∇f�(y) belongs to span+(I ′,J+;Gf(y)) for
all y ∈ N(x). That is, there are scalars λi(y), i ∈ I ′, and μj(y) ≥ 0, j ∈ J+, such
that

∇f�(y) =
∑
i∈I′

λi(y)∇fi(y) +
∑
j∈J+

μj(y)∇fj(y).

Define ϕ�(t) = f�(α(t)). It follows that

ϕ′
�(t) = ∇f�(α(t))

′α̇(t)

=
∑
i∈I′

λi(α(t))∇fi(x)
′α̇(t) +

∑
j∈J+

μj(α(t))∇fj(α(t))
′α̇(t)

≤ 0.

The last inequality follows from the sign structure given in Lemma 4.4. Hence, if �
is associated with an inequality constraint, (4.10) is proved. On the other hand, if
� is associated with an equality constraint, we know that −∇f�(x) also belongs to
span+(I ′,J+;Gf(y)) for y ∈ N(x). We can then proceed as above to see that

−ϕ′
�(t) ≤ 0.

And hence we conclude that (4.9) holds.
We are ready to show that CPG implies Abadie’s CQ.
Theorem 4.6. CPG CQ at x implies Abadie’s CQ at x.
Proof. Let d be the direction given in Lemma 4.5. Given

d̄ ∈ {h | ∇fi(x̄)
′h = 0, i ∈ I, ∇fj(x̄)

′h ≤ 0, j ∈ J },

we need to show that d̄ belongs to the tangent cone of the feasible set at x (Defini-
tion 1.1).

Clearly, for arbitrary ε > 0, d̄ + εd inherits from d the properties required to
apply Lemma 4.5. Hence there is a T > 0 and a feasible continuously differentiable
arc α : [0, T] → R

n such that

α(0) = x, α̇(0) = d̄+ εd.

It follows that d̄+ εd belongs to the tangent cone of the feasible set at x. Moreover,
as this cone is closed, d̄ also belongs to it.

In Figure 4.1, we show a complete diagram displaying the relations of CRSC and
CPG with other CQs, including pseudo- and quasi normality, whose definitions can be
found in [8]. To obtain all the relations, we used the results presented here together
with the examples and results from [5].

D
ow

nl
oa

de
d

03
/1

5/
24

 to
 1

43
.1

07
.4

5.
1

. R
ed

is
tr

ib
ut

io
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

s:
//e

pu
bs

.s
ia

m
.o

rg
/te

rm
s-

pr
iv

ac
y

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

1124 ANDREANI, HAESER, SCHUVERDT, AND SILVA

Quasi normality

Abadie

Pseudonormality

LICQ

MFCQ

CPLD

CRCQ

RCRCQ

RCPLD

CRSC

CPG

Fig. 4.1. Complete diagram showing the relations of CRSC and CPG with other well-known
CQs. An arrow between two CQs means that one is strictly stronger than the other, while conditions
that are not connected by a directed path are independent from each other. Note that pseudonormality
does not imply CPG, as Example 3 in [5] shows.

5. Applications of CRSC and CPG.

5.1. Error bound. One interesting question about a CQ is whether it implies
an error bound. That is, we ask whether it is possible to use a natural measure of
infeasibility to estimate the distance to the feasible set F close to a feasible point x.

Definition 5.1 (see [41]). We say that an error bound holds in a neighborhood
N(x) of a feasible point x ∈ F if there exists α > 0 such that for every y ∈ N(x)

min
z∈F

‖z − y‖ ≤ αmax{|fi(y)|, i = 1, . . . ,m;

max{0, fj(y)}, j = m+ 1, . . . ,m+ p}.

This property is valid for many CQs, and in particular, for weak ones such as
RCPLD [5] and quasi normality [34]. It has important theoretical and algorithmic
implications; see, for example, [36, 41].

Unfortunately, such a property does not hold for CPG, as the example in Fig-
ure 3.2 shows. In this case, there is no error bound around the origin. To see this,
consider the sequence xk = (− 3

√
1/k, 1/k). The distance of xk to the feasible set

is exactly 1/k, while the infeasibility measure is 1/k3. Note that, by increasing the
exponent that appears in the definition of the violated constraint f4 and adapting the
sequence accordingly, it is possible to make the infeasibility converge to zero as fast
as 1/k2p+1, for any positive integer p, while the distance to the feasible set remains
1/k. On the other hand, we will now show that the CRSC CQ is enough to ensure
the validity of an error bound.

D
ow

nl
oa

de
d

03
/1

5/
24

 to
 1

43
.1

07
.4

5.
1

. R
ed

is
tr

ib
ut

io
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

s:
//e

pu
bs

.s
ia

m
.o

rg
/te

rm
s-

pr
iv

ac
y

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

NEW CONSTRAINT QUALIFICATIONS AND APPLICATIONS 1125

Throughout this subsection, we use x to denote a fixed feasible point that verifies
CRSC, and we denote by B ⊂ I an index set such that {∇fi(x)}i∈B is a basis of
span{∇fi(x)}i∈I . We will also need to compute the sets J , J−, and J+ that appear
in the definition of CRSC and CPG in points that are not x. Hence, given a feasible
point y, we will use the following definitions:

J (y)
def
= A(y),

J−(y)
def
= {j ∈ J (x) | −∇fj(y) ∈ F(x)◦},

J+(y)
def
= J (y) \ J−(y).

Using this notation, CRSC ensures that the rank of the vectors {∇fi(y) | i ∈ B ∪
J−(x)} is constant in a neighborhood of x. Moreover, if K is an index set, let us
denote by fK the function whose components are the fi such that i belongs to K.

We start the analysis of CRSC with a technical result.
Lemma 5.2. Let x be a feasible point that verifies CRSC. Then, there exist scalars

λi, i ∈ B, and μj with μj > 0 for all j ∈ J−(x) such that

(5.1)
∑
i∈B

λi∇fi(x) +
∑

j∈J−(x)

μj∇fj(x) = 0.

Proof. We know that for any index l ∈ J−(x) there exist scalars λl
i, i ∈ B, and

μl
j with μl

j ≥ 0 such that

−∇fl(x) =
∑
i∈B

λl
i∇fi(x) +

∑
j∈J−(x)

μl
j∇fj(x).

Thus, adding for all l ∈ J−(x) both sides of the above equality and rearranging the
resulting terms, we get ∑

i∈B

γi∇fi(x) +
∑

j∈J−(x)

θj∇fj(x) = 0,

where γi =
∑

l∈J−(x) λ
l
i and θj = 1 +

∑
l∈J−(x) μ

l
j ≥ 1 > 0.

The next lemma extends an important result from Lu [23] for CRCQ to CRSC.
Namely, it shows that the constraints fj with j ∈ J−(x) are actually equality con-
straints under the disguise of inequalities.

Lemma 5.3. Let x be a feasible point that verifies CRSC. Then, there exists a
neighborhood N(x) of x such that, for every i ∈ J−(x), fi(y) = 0 for all feasible points
y ∈ N(x).

Proof. From the previous lemma there exist scalars λi, i ∈ B, and μj > 0 for all
j ∈ J−(x) such that (5.1) holds.

Since the rank of the vectors {∇fi(y) | i ∈ B ∪ J−(x)} is constant for y in a
neighborhood of x, we can use [23, Proposition 1], defining the index sets K and J0
in [23] as the sets J−(x) and B, respectively, to complete the proof.

Observe that, even though the hypothesis considered in [23, Proposition 1] is the
CRCQ, the proof is obtained by applying the respective Lemma 1, where only the
constant rank of the gradients in K = J−(x) and J0 = B is used. Actually, such a
lemma can be viewed as a variation of the constant rank theorem [25] where only the
rank of all gradients has to remain constant.

D
ow

nl
oa

de
d

03
/1

5/
24

 to
 1

43
.1

07
.4

5.
1

. R
ed

is
tr

ib
ut

io
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

s:
//e

pu
bs

.s
ia

m
.o

rg
/te

rm
s-

pr
iv

ac
y

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

1126 ANDREANI, HAESER, SCHUVERDT, AND SILVA

Now we are ready to show that the CRSC condition is preserved locally. That is,
if it holds at a feasible point x, it must hold at all feasible points in a neighborhood
of x. We start by showing that the index set J− is stable locally.

Lemma 5.4. Let x be a feasible point that verifies CRSC. Then there exists a
neighborhood N(x) of x such that J−(y) = J−(x) for all feasible points y ∈ N(x).

Proof. From Lemma 5.2 we know that there exist scalars λi, i ∈ B, and μj with
μj > 0 for all j ∈ J−(x) such that (5.1) holds.

Let us take a subset Ĵ ⊂ J−(x) such that the set of gradients {∇fi(x)}i∈B∪ ̂J is
a basis of span{∇fi(x)}i∈I∪J−(x). Clearly the set of gradients

(5.2) {∇fi(x)}i∈B∪ ̂J

is linearly independent.
Define the function

h(y) = −
∑

j∈J−(x)\ ̂J
μjfj(y),

and let us consider a new feasible set Fh adding to the original feasible set F the
equality constraint h(y) = 0, which is locally redundant by Lemma 5.3. Let us define
J h−(·) analogously for Fh as we define J−(·) for the original feasible set F . Thus,
we have

1. h(y) = 0 for all y ∈ F ∩N(x);
2. ∇h(x) ∈ J h−(x);
3. the set of gradients

(5.3) {∇h(y),∇fi(y) | i ∈ B ∪ Ĵ }

has constant rank in a neighborhood of x, as ∇h is a combination of ∇fi, i
∈
B ∪ Ĵ , and each of the later gradients are generated by ∇fi, i ∈ B ∪ Ĵ , by
CRSC.

Recalling (5.1), we get

(5.4) ∇h(x) = −
∑

j∈J−(x)\ ̂J
μj∇fj(x) =

∑
i∈B

λi∇fi(x) +
∑
j∈ ̂J

μj∇fj(x),

and therefore, using conditions (5.2)–(5.3), we can apply [23, Corollary 1] to obtain
neighborhoods N(x) of x, Z of (fB(x), f ̂J (x)), with Z being convex, and a continu-
ously differentiable function g : Z → R such that

(5.5) h(x) = g(fB(x), f ̂J (x))

and, for every z ∈ Z,

(5.6) sgn

(
∂g

∂zi
(z)

)
= sgn(λi) ∀i ∈ B,

(5.7) sgn

(
∂g

∂zi
(z)

)
= sgn(μi) ∀i ∈ Ĵ .

D
ow

nl
oa

de
d

03
/1

5/
24

 to
 1

43
.1

07
.4

5.
1

. R
ed

is
tr

ib
ut

io
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

s:
//e

pu
bs

.s
ia

m
.o

rg
/te

rm
s-

pr
iv

ac
y

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

NEW CONSTRAINT QUALIFICATIONS AND APPLICATIONS 1127

Thus, by the definition of h and (5.5), it follows that for all y ∈ F in a neighbor-
hood of x

∇h(y) = −
∑

j∈J−(x)\ ̂J
μj∇fj(y)(5.8)

=
∑
i∈B

∂g

∂zi
(fB(y), f ̂J (y))∇fi(y) +

∑
j∈ ̂J

∂g

∂zj
(fB(y), f ̂J (y))∇fj(y).(5.9)

Using (5.6), (5.7), and (5.9), there are scalars γi(y) =
∂g
∂zi

(fB(y), f ̂J (y)) and θj(y) =
∂g
∂zj

(fB(y), f ̂J (y)) > 0 such that∑
j∈J−(x)\ ̂J

μj∇fj(y) +
∑
i∈B

γi(y)∇fi(y) +
∑
j∈ ̂J

θj(y)∇fj(y) = 0.

From the last expression, Lemma 5.3, and the definition of J−(y) we obtain that
J−(y) = J−(x).

This fact shows that the CQ CRSC is preserved locally, as the set J−(x) is
constant in a neighborhood of a feasible point where CRSC holds. We are ready to
show that CRSC implies an error bound.

Theorem 5.5. If x ∈ F verifies CRSC and the functions fi, i = 1, . . . ,m + p,
defining F admit second derivatives in a neighborhood of x, then an error bound holds
in a neighborhood of x.

Proof. First, let us recall that Lemma 5.3 states that the constraints in J−(x) are
actually equality constraints in a neighborhood of x. Hence, it is natural to consider
the feasible set FE :

FE = {y ∈ R
n | fi(y) = 0 ∀i ∈ I ∪ J−(x), fj(y) ≤ 0 ∀j ∈ J+(x)},

which is equivalent to the original feasible set F close to x. It is trivial to see that the
CRSC point (with respect to F) x verifies RCPLD as a feasible point of the set FE .
Now, using [5, Theorem 7], it follows that there exist α > 0 and a neighborhood N(x)
of x such that for every y ∈ N(x)

(5.10) min
z∈F

‖z − y‖ = min
z∈FE

‖z − y‖ ≤ αrE(y),

with

(5.11) rE(y) = max{‖fI∪J−(x)(y)‖∞, ‖max{0, fJ+(x)(y)}‖∞}.

Now, from Lemma 5.2 we know that there are scalars λi, i ∈ B, and μj , with

μj > 0 for all j ∈ J−(x), such that (5.1) holds. Let Ĵ be as in the proof of Lemma

5.4; that is, Ĵ is a subset of J−(x) such that the set of gradients {∇fi(x)}i∈B∪ ̂J is a
basis for span{∇fi(x)}i∈I∪J−(x). Let us consider also the function

h(y) = −
∑

j∈J−(x)\ ̂J
μjfj(y).

Following the proof of Lemma 5.4, there are a neighborhoodN(x) of x, a neighborhood
Z of (fB(x), f ̂J (x)), with Z being convex, and a continuously differentiable function

D
ow

nl
oa

de
d

03
/1

5/
24

 to
 1

43
.1

07
.4

5.
1

. R
ed

is
tr

ib
ut

io
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

s:
//e

pu
bs

.s
ia

m
.o

rg
/te

rm
s-

pr
iv

ac
y

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

1128 ANDREANI, HAESER, SCHUVERDT, AND SILVA

g : Z → R such that (5.5)–(5.7) holds. By shrinking N(x) if necessary, we can
assume that the partial derivatives of g will preserve the signs at (fB(x), f ̂J (x)).
That is, we may assume the existence of constants 0 < μm ≤ μM and λM such that
μm ≤ ∂g

∂zj
(z) ≤ μM for all j ∈ J−(x) and | ∂g∂zi

(z)| ≤ λM for all i ∈ B and all z ∈ Z.

Thus, from the convexity of Z and the differentiability of g, we can apply the
mean value theorem to see that, for each y ∈ N(x), there exist ξy ∈ Z between
(0, 0) = (fB(x), f ̂J (x)) and (fB(y), f ̂J (y)) such that

g(fB(y), f ̂J (y)) =
∑

i∈B∪ ̂J

∂g

∂zi
(ξy)fi(y).

This implies that

(5.12) −
∑

j∈J−(x)\ ̂J
μjfj(y) =

∑
i∈B∪ ̂J

∂g

∂zi
(ξy)fi(y)

and, for every l ∈ J−(x) \ Ĵ , we can write

−μlfl(y) =
∑

i∈B∪ ̂J

∂g

∂zi
(ξy)fi(y) +

∑
j∈(J−(x)\ ̂J)\{l}

μjfj(y).

Since μl > 0, it follows that

|fl(y)| ≤
1

μl

⎛⎝ ∑
i∈B∪ ̂J

∣∣∣∣ ∂g∂zi (ξy)
∣∣∣∣|fi(y)|+ ∑

j∈(J−(x)\ ̂J)\{l}
|μj |max{0, fj(y)}

⎞⎠
≤ max{μM ; |μj |, j ∈ J−(x) \ Ĵ }

μm

⎛⎝ ∑
i∈B∪ ̂J

|fi(y)|+
∑

j∈J−(x)\ ̂J
max{0, fj(y)}

⎞⎠ .

Thus, for all l ∈ J−(x) \ Ĵ , there is a K > 0 large enough such that

(5.13) |fl(y)| ≤ Kmax{|fi(y)|, i ∈ I; max{0, fj(y)}, j ∈ J }.

If l ∈ Ĵ , from (5.12), we obtain a similar bound,

(5.14) |fl(y)| ≤ K̃max{|fi(y)|, i ∈ I; max{0, fj(y)}, j ∈ J },

for some K̃ > 0.
Using (5.13)–(5.14) and (5.10)–(5.11), we obtain the desired result.

5.2. Algorithmic applications of CPG. In this section, we show how the
CPG condition can be used in the analysis of many algorithms for nonlinear op-
timization. The objective is to show that CPG can replace other more stringent
CQs in the assumptions that ensure global convergence. We will show specific re-
sults for the main classes of algorithms for optimization, namely, sequential quadratic
programming (SQP), interior point methods, augmented Lagrangians, and inexact
restoration.

D
ow

nl
oa

de
d

03
/1

5/
24

 to
 1

43
.1

07
.4

5.
1

. R
ed

is
tr

ib
ut

io
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

s:
//e

pu
bs

.s
ia

m
.o

rg
/te

rm
s-

pr
iv

ac
y

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

NEW CONSTRAINT QUALIFICATIONS AND APPLICATIONS 1129

5.2.1. Sequential quadratic programming. We start by extending the global
convergence result of the general SQP method studied by Qi and Wei [38]. In their
work, Qi and Wei introduced the CPLD CQ and extended convergence results for
SQP methods that previously were based on the MFCQ. In order to do so, their main
tool was the notion of AKKT sequences.

Definition 5.6. We say that {xk} is an AKKT sequence of (NOP) if there is
a sequence {(λk, μk, εk, δk, γk)} ∈ R

m × R
p × R

n × R
p × R such that⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

∇f0(x
k) +

∑m
i=1 λi∇fi(x

k) +
∑p

j=1 μj∇fm+j(x
k) = εk,

fm+j(x
k) ≤ δk, j = 1, . . . , p,

μk ≥ 0,

μk
j (fm+j(x

k)− δkj) = 0, j = 1, . . . , p,

|fi(xk)| ≤ γk, i = 1, . . . ,m,

where {(εk, δk, γk)} converges to zero.
It is easy to see that AKKT sequences are closely related to AKKT feasible points

from Definition 3.2. Actually, AKKT (feasible) points are exactly the limit points of
AKKT sequences. Hence we can easily recast the results from [38] in terms of AKKT
points.

In particular, Theorem 2.7 from [38], which ensures that limits of AKKT se-
quences are actually KKT, is just a particular case of Theorem 3.3 above, requiring
CPLD, a more stringent CQ, in the place of CPG. Hence, we may use Theorem 3.3
to generalize some convergence results from [38], replacing CPLD by CPG.

In order to do so, let us recall the general SQP method from [38], as follows.
Algorithm 5.1 (general SQP). Let C > 0, x0 ∈ F , H0 ∈ R

n×n be a symmetric
positive definite matrix.

1. (Initialization.) Set k = 0.
2. (Computation of a search direction.) Compute dk solving the quadratic pro-

gramming problem

min
1

2
d′Hkd+∇f(xk)′d

s.t. fi(x
k) +∇fi(x

k)′d = 0, i = 1, . . . ,m,(QP)

fi(x
k) +∇fi(x

k)′d ≤ 0, i = m+ 1, . . . ,m+ p.

If dk = 0, stop.
3. (Line search and additional correction.) Determine the step length αk ∈ (0, 1)

and a correction direction d̄k such that

‖d̄k‖ ≤ C‖dk‖.

4. (Updates.) Compute a new symmetric positive definite Hessian approxima-
tion Hk+1. Set xk+1 = xk + αkd

k + d̄k and k = k + 1. Go to step 1.
As stated in [38], this algorithm is a general model for SQP methods, where

specific choices for the Hessian approximations Hk, step length αk, and correction
steps d̄k are defined. Moreover, if the algorithm stops at step 2, then xk is a KKT
point for (NOP). Hence, when analyzing such a method we need consider only the
case where it generates an infinite sequence. The result below is a direct generalization
of Theorem 4.2 in [38] where we use CPG instead of CPLD.

D
ow

nl
oa

de
d

03
/1

5/
24

 to
 1

43
.1

07
.4

5.
1

. R
ed

is
tr

ib
ut

io
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

s:
//e

pu
bs

.s
ia

m
.o

rg
/te

rm
s-

pr
iv

ac
y

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

1130 ANDREANI, HAESER, SCHUVERDT, AND SILVA

Theorem 5.7. Assume that the general SQP algorithm generates an infinite
sequence {xk} and that this sequence has an accumulation point x∗. Let L be the
index set associated with it, that is,

lim
k∈L

xk = x∗.

Suppose that CPG holds at x∗ and that the Hessian estimates Hk are bounded. If

lim inf
k∈L

‖dk‖ = 0,

then x∗ is a KKT point of (NOP).
Proof. We just follow the proof of Theorem 4.2 in [38] to see that it shows that

under the assumptions above, {xk}k∈L is an AKKT sequence. Hence, as discussed
before, x∗ is an AKKT point that is KKT whenever CPG holds by Theorem 3.3.

In order to present a concrete SQP algorithm that conforms to the assumptions
of the theorem above, Qi and Wei recover the Panier–Tits SQP feasible algorithm for
inequality constrained problems [37]. As pointed out by Qi and Wei, this method can
be seen as a special case of the general SQP algorithm.

The Panier–Tits method depends on the validity of MFCQ on the computed
iterates to be well defined. However, as pointed out by Qi and Wei, MFCQ does not
need to hold at the limit points, where CPLD suffices. Once again we can generalize
this result using CPG.

Theorem 5.8. Consider the Panier–Tits feasible SQP method described in [38,
Algorithm B]. Let {xk} be an infinite sequence generated by this method, and let Hk be
the respective Hessian approximations. Suppose that MFCQ holds at all feasible points
that are not KKT and that the Hessian estimates Hk are bounded, and let x∗ be an
accumulation point of {xk}, where CPG holds. Then x∗ is a KKT point of (NOP).

Proof. Once again we need only follow the proof from Theorem 5.3 in [38] and
use Theorem 5.7 above instead of its particular case [38, Theorem 4.2].

Note that it is easy to build examples where MFCQ holds at all feasible points
but one, where CPG holds and CPLD does not hold. See Figure 3.1 above. Hence
the theorem above is a real generalization of Qi and Wei’s result.

5.2.2. Interior point methods. Let us now turn our attention to how CPG
can be used in the analysis of interior point methods for nonlinear optimization. In
this context the usual CQ is the MFCQ [10, 12, 14].

It is interesting to consider why the definition of CPLD did not result in the
generalization of the convergence conditions for such methods. To this effect, let
us focus on problems with inequality constraints only. In this case, it is natural to
assume that the optimization problem satisfies a sufficient interior property, that is,
that every local minimizer can be arbitrarily approximated by strictly feasible points.
It is known from [16] that CPLD together with such a sufficient interior property is
equivalent to MFCQ. Hence, it is fruitless to use CPLD to generalize results based on
MFCQ in the context of interior point methods. Moreover, it is possible to replace
CPLD with CRSC in the previous discussion since Lemma 5.3 shows that J−(x) = ∅
whenever CRSC and the sufficient interior property hold at a feasible point x; that
is, MFCQ holds.

On the other hand, the example in Figure 3.2 shows that CPG and the sufficient
interior property can hold together even when other CQs fail, in particular, MFCQ.

D
ow

nl
oa

de
d

03
/1

5/
24

 to
 1

43
.1

07
.4

5.
1

. R
ed

is
tr

ib
ut

io
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

s:
//e

pu
bs

.s
ia

m
.o

rg
/te

rm
s-

pr
iv

ac
y

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

NEW CONSTRAINT QUALIFICATIONS AND APPLICATIONS 1131

Moreover, it was proved in [4] that the classic barrier method generates sequences
with AKKT limit points. Hence, Theorem 3.3 shows that such limit points satisfy the
KKT condition if CPG holds. This fact opens the path toward proving convergence of
modern interior point methods under less restrictive CQs. In particular, we generalize
below the convergence results for the quasi-feasible interior point method of Chen and
Goldfarb [10].

This algorithm consists of applying a log-barrier strategy to solving the general
optimization problem (NOP), yielding a sequence of subproblems (FPζl), where the
barrier sequence {ζl} should be driven to 0:

min f0(x) − ζl

m+p∑
i=m+1

log(−fi(x))

s.t. fi(x) = 0, i = 1, . . . ,m,(FPζl)

fj(x) < 0, j = m+ 1, . . . ,m+ p.

Algorithm I in [10] uses an �2-norm penalization to deal with the equality con-
straints in (FPζl) and tries to solve it approximately employing a Newton-like ap-
proach. More formally, given a barrier parameter ζl > 0 and an error tolerance
εl > 0, Algorithm I tries to find xl ∈ R

n, λl ∈ R
m, and μl ∈ R

p such that
fj(x

l) < 0, j = m+ 1, . . . ,m+ p, and∥∥∥∥∇f0(x
l) +

m∑
i=1

λl
i∇fi(x

l) +

p∑
j=1

μl
j∇fm+j(x

l)

∥∥∥∥ ≤ εl,(5.15)

∀i = 1, . . . ,m, |fi(xl)| ≤ εl,(5.16)

∀j = 1, . . . , p, |fm+j(x
l)μl

j + ζl| ≤ εl,(5.17)

∀j = 1, . . . , p, μl
j ≥ −εl.(5.18)

The conditions above are simply the termination criteria defining a successful run of
Algorithm I as stated in [10, equation (3.13)]. Moreover, system (5.15)–(5.18) is an
approximate version of the KKT conditions for (FPζl).

Algorithm II is then defined in [10] as employing Algorithm I to approximately
solve (FPζl) for a sequence of barrier parameters ζl > 0 and error tolerance εl > 0
both converging to 0. We show below that it is possible to improve the convergence
results of this method using CPG instead of MFCQ.

Theorem 5.9. Assume that the standard assumptions A1–A2 of [10] hold; that
is, there exists a point x0 such that fi(x0) < 0, i = m+1, . . . ,m+p, and the functions
fi, i = 0, . . . ,m+ p, are twice continuously differentiable. Consider Algorithm II with
sequences ζl > 0 and εl > 0 both converging to zero. There are two possibilities:

1. For each ζl and εl > 0, Algorithm I terminates satisfying conditions (5.15)–
(5.18), and in particular, Algorithm II generates a sequence {xl}. If this
sequence admits a limit point x∗, then it is feasible, and if CPG with respect
to (NOP) holds at x∗, it is also a KKT point of (NOP).

2. For some barrier parameter ζl, the termination criteria of Algorithm I are
never met. Let {xl,k} be the sequence computed by Algorithm I with penalty
parameters associated with the equality constraints {rl,k}. Suppose further
that Assumptions A3–A4 of [10] hold; that is, the sequence {xl,k} and the
modified Hessian sequence {Hl,k} used in Algorithm I is bounded. Let x∗ be

D
ow

nl
oa

de
d

03
/1

5/
24

 to
 1

43
.1

07
.4

5.
1

. R
ed

is
tr

ib
ut

io
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

s:
//e

pu
bs

.s
ia

m
.o

rg
/te

rm
s-

pr
iv

ac
y

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

1132 ANDREANI, HAESER, SCHUVERDT, AND SILVA

a limit point of {xl,k}. If CPG with respect to the infeasibility problem

min

m∑
i=1

fi(x)
2

s.t. fi(x) ≤ 0, i = m+ 1, . . . ,m+ p,

holds at x∗ and {∇fi(x
∗)}mi=1 is linearly independent, then x∗ is a KKT point

of such infeasibility problem.
Proof. First let us consider the case where Algorithm I successfully terminates

conforming to (5.15)–(5.18) for all barrier parameters ζl. Let x
∗ be an accumulation

point of {xl}, and let L be the associated index set; that is, xl →L x∗.
To see that x∗ is feasible, we start noting that (5.16) and εl → 0 ensure that x∗

respects all the equality constraints. Moreover, as a limit of points that obey (strictly)
the inequalities, x∗ also conforms to the inequality constraints.

Now we show that x∗ is AKKT. Let us start with the observation that, for each
j = 1, . . . , p, inequality (5.18) implies that either μl

j →L 0 or there is a δj > 0 and

an infinite index set contained in L, where μl
j > δj. Hence, repeating this procedure

p times, we can obtain a disjoint partition I1 ∪ I2 = {1, . . . , p}, an infinite index set
L′ ⊂ L, and a δ > 0 such that for all j ∈ I1, μ

l
j →L′ 0 and for all j ∈ I2, μ

l
j > δ. In

particular, if j
∈ A(x∗), then inequality (5.17) together with ζl → 0 and εl → 0 imply
that μl

j →L 0. That is, j ∈ I1.
Next we recover (5.15) and see that for l ∈ L′∥∥∥∥∇f0(x

l) +

m∑
i=1

λl
i∇fi(x

l) +
∑
j∈I2

μl
j∇fm+j(x

l)

∥∥∥∥ ≤ ε′ζl ,

where ε′ζl is defined as εl + ‖
∑

j∈I1
μl
j∇fm+j(x

l)‖. Using the continuity of the gradi-

ents of the constraints, εl → 0, and for all j ∈ I1, μ
l
j →L′ 0, it follows that ε′ζl →L′ 0

and therefore x∗ is AKKT.
Finally, we can use Theorem 3.3 to assert that the fact that the validity of CPG

with respect to (NOP) holds at x∗ is enough to ensure that x∗ is a KKT point
of (NOP).

Now consider the case where Algorithm I generates an infinite sequence for a fixed
barrier parameter ζl. There are two possibilities:

1. The penalty parameters rl,k are driven to infinity. In this case we follow the
proof of [10, Theorem 3.6]. Dividing [10, equation (3.16)] by the previously
defined αl,k = max{rl,k, ‖μl,k‖∞}, where μl,k is the current multiplier esti-
mate for the inequalities, it follows easily that x∗ is an AKKT point of the
infeasibility problem above. Hence, it is a KKT point of such a problem if it
fulfills CPG.

2. If the infinite sequence generated by Algorithm I is such that rl,k is bounded,
then we follow the proof of [10, Lemma 3.8] to arrive at a contradiction
with respect to the linear independence of the gradients of equality con-
straints.

Note that the assumption that CPG holds with linear independence of equality
constraint gradients is a real weakening of MFCQ, as can be seen by the example in
Figure 3.2.

5.2.3. Augmented Lagrangians and inexact restoration. Finally, let us
look at augmented Lagrangians algorithms. In particular, we consider the variant

D
ow

nl
oa

de
d

03
/1

5/
24

 to
 1

43
.1

07
.4

5.
1

. R
ed

is
tr

ib
ut

io
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

s:
//e

pu
bs

.s
ia

m
.o

rg
/te

rm
s-

pr
iv

ac
y

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

NEW CONSTRAINT QUALIFICATIONS AND APPLICATIONS 1133

introduced in [3, 2] and show that it converges under CPG. This algorithm can solve
problems in the form

min f0(x)

s.t. fi(x) = 0, i = 1, . . . ,m,(NOP-LA)

fj(x) ≤ 0, j = m+ 1, . . . ,m+ p,

x ∈ X,

where the set X = {x | f
i
(x) = 0, i = 1, . . . ,m, f

j
(x) ≤ 0, j = m+ 1, . . . ,m+ p} is

composed of easy constraints that can be enforced by a readily available solver.
In the original papers, the global convergence of the augmented Lagrangian algo-

rithm was obtained assuming CPLD. Such results were recently extended to require
only RCPLD [5]. In these works, the basic idea was to explore the fact that the algo-
rithm can converge only to AKKT points and then use a special case of Theorem 3.3
above to show that the limit points are actually KKT points. The same line of rea-
soning can then be followed, requiring only CPG and generalizing the convergence
result.

Theorem 5.10. Let x∗ be a limit point of a sequence generated by the augmented
Lagrangian algorithm described in [3, 2]. Then one of the four conditions below holds:

1. CPG with respect to the set X does not hold at x∗.
2. x∗ is not feasible and it is a KKT point of the problem

min

m∑
i=1

f2
i (x) +

m+p∑
j=m+1

max{0, fj(x)}2

s.t. x ∈ X.

3. x∗ is feasible, but CPG fails at x∗ when taking into account the full set of
constraints.

4. x∗ is KKT.
We close this section by mentioning that Theorem 3.3 also proves convergence

of inexact restoration methods [28, 29, 30, 11] to KKT points under CPG, since
limit points of sequences generated by these methods satisfy the LAGP optimality
condition [4, 31], which implies AKKT [17].

6. Conclusion. We presented two new constraint qualifications that are weaker
than the previous CQs based on constant rank and constant positive linear depen-
dence.

The first CQ, which we called constant rank of the subspace component (CRSC),
solves the open problem of identifying the specific set of gradients whose rank must
be preserved locally and still ensure that the constraints are qualified. We achieved
this by defining the set of active inequality constraints that resemble equalities, the
set J−. We proved that under CRSC those inequalities are actually equalities locally
and showed that an error bound holds.

The second CQ is more general and was called the constant positive generator
(CPG) condition. It basically asks that a generalization of the notion of a basis for a
cone be preserved locally. This condition is very weak and can even hold in a point
where Guignard’s CQ fails in a neighborhood. Despite its weakness, we showed that
this condition is enough to ensure that AKKT points conform to the KKT optimality
conditions, and hence CPG can be used to extend global convergence results of many
algorithms for nonlinear optimization.

D
ow

nl
oa

de
d

03
/1

5/
24

 to
 1

43
.1

07
.4

5.
1

. R
ed

is
tr

ib
ut

io
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

s:
//e

pu
bs

.s
ia

m
.o

rg
/te

rm
s-

pr
iv

ac
y

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

1134 ANDREANI, HAESER, SCHUVERDT, AND SILVA

The definition of these two new CQs leads the way for several new research di-
rections. For example, it would be interesting to investigate whether CRSC can be
used to extend results on sensitivity and perturbation analysis that already exist for
RCRCQ and CPLD [22, 23, 24, 33]. Another possibility would be to extend CRSC
to the context of problems with complementarity or vanishing constraints [18, 21],
as was done recently for CPLD in [19, 20]. Another interesting area of research is
to search for alternative proofs or methods that allow us to drop the CQs that are
stronger than CPG and that are still required in the convergence analysis of SQP and
interior point methods presented in section 5.2.

Acknowledgment. The authors would like to thank the anonymous referees
whose comments and suggestions have greatly improved the quality of this work.

REFERENCES

[1] J. Abadie, On the Kuhn-Tucker theorem, in Nonlinear Programming, John Wiley, New York,
1967, pp. 21–36.

[2] R. Andreani, E. G. Birgin, J. M. Mart́ınez, and M. L. Schuverdt, On augmented
Lagrangian methods with general lower-level constraints, SIAM J. Optim., 18 (2007),
pp. 1286–1309.

[3] R. Andreani, E. G. Birgin, J. M. Mart́ınez, and M. L. Schuverdt, Augmented Lagrangian
methods under the constant positive linear dependence constraint qualification, Math. Pro-
gram., 111 (2008), pp. 5–32.

[4] R. Andreani, G. Haeser, and J. M. Mart́ınez, On sequential optimality conditions for
smooth constrained optimization, Optimization, 60 (2011), pp. 627–641.

[5] R. Andreani, G. Haeser, M. L. Schuverdt, and P. J. S. Silva, A relaxed constant positive
linear dependence constraint qualification and applications, Math. Program., to appear.

[6] R. Andreani, J. M. Mart́ınez, and M. L. Schuverdt, On the relation between constant
positive linear dependence condition and quasinormality constraint qualification, J. Optim.
Theory Appl., 125 (2005), pp. 473–483.

[7] M. S. Bazaraa, H. D. Sherali, and C. M. Shetty, Nonlinear Programming: Theory and
Algorithms, 3rd ed., John Wiley, Hoboken, NJ, 2006.

[8] D. P. Bertsekas, Nonlinear Programming, 2nd ed., Athena Scientific, Belmont, MA, 1999.
[9] D. P. Bertsekas, Convex Analysis and Optimization, Athena Scientific, Belmont, MA, 2003.

[10] L. Chen and D. Goldfarb, Interior-point �2-penalty methods for nonlinear programming with
strong global convergence properties, Math. Program., 108 (2006), pp. 1–26.

[11] A. Fischer and A. Friedlander, A new line search inexact restoration approach for nonlinear
programming, Comput. Optim. Appl., 46 (2010), pp. 333–346.

[12] A. Forsgren, P. E. Gill, and M. H. Wright, Interior methods for nonlinear optimization,
SIAM Rev., 44 (2002), pp. 525–597.

[13] F. J. Gould and J. W. Tolle, A necessary and sufficient qualification for constrained opti-
mization, SIAM J. Appl. Math., 20 (1971), pp. 164–172.

[14] C. Grossmann, D. Klatte, and B. Kummer, Convergence of primal-dual solutions for the
nonconvex log-barrier method without LICQ, Kybernetika, 20 (2004), pp. 571–584.

[15] M. Guignard, Generalized Kuhn–Tucker conditions for mathematical programming problems
in a Banach space, SIAM J. Control, 7 (1969), pp. 232–241.

[16] G. Haeser, On the global convergence of interior–point nonlinear programming algorithms,
Comput. Appl. Math., 29 (2010), pp. 125–138.

[17] G. Haeser and M. L. Schuverdt, On approximate KKT condition and its extension to
continuous variational inequalities, J. Optim. Theory Appl., 149 (2011), pp. 125–138.

[18] T. Hoheisel and C. Kanzow, First- and second-order optimality conditions for mathematical
programs with vanishing constraints, Appl. Math., 52 (2007), pp. 495–514.

[19] T. Hoheisel, C. Kanzow, and A. Schwartz, Theoretical and numerical comparison of relax-
ation methods for mathematical programs with complementarity constraints, Math. Pro-
gram., to appear.

[20] T. Hoheisel, C. Kanzow, and A. Schwartz, Mathematical programs with vanishing con-
straints: A new regularization approach with strong convergence properties, Optimization,
61 (2012), pp. 619–636.

D
ow

nl
oa

de
d

03
/1

5/
24

 to
 1

43
.1

07
.4

5.
1

. R
ed

is
tr

ib
ut

io
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

s:
//e

pu
bs

.s
ia

m
.o

rg
/te

rm
s-

pr
iv

ac
y

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

NEW CONSTRAINT QUALIFICATIONS AND APPLICATIONS 1135

[21] A. F. Izmailov and M. V. Solodov, Mathematical programs with vanishing constraints: Opti-
mality conditions, sensitivity and a relaxation method, J. Optim. Theory Appl., 142 (2009),
pp. 501–532.

[22] R. Janin, Directional derivative of the marginal function in nonlinear programming, in Math.
Program. Stud. 21, North–Holland, Amsterdam, The Netherlands, 1984, pp. 110–126.

[23] S. Lu, Implications of the constant rank constraint qualification, Math. Program., 126 (2009),
pp. 365–392.

[24] S. Lu, Relation between the constant rank and the relaxed constant rank constraint qualifica-
tions, Optimization, 61 (2012), pp. 555–566.

[25] P. Malliavin, Géométrie différentielle intrinsèque, Hermann, Paris, 1972.
[26] O. L. Mangasarian, Nonlinear Programming, Classics Appl. Math. 10, SIAM, Philadelphia,

1994.
[27] O. L. Mangasarian and S. Fromovitz, The Fritz John necessary optimality conditions in the

presence of equality and inequality constraints, J. Math. Anal. Appl., 17 (1967), pp. 37–47.
[28] J. M. Mart́ınez, Inexact restoration method with Lagrangian tangent decrease and new merit

function for nonlinear programming, J. Optim. Theory Appl., 111 (2001), pp. 39–58.
[29] J. M. Mart́ınez and E. A. Pilotta, Inexact restoration algorithms for constrained optimiza-

tion, J. Optim. Theory Appl., 104 (2000), pp. 135–163.
[30] J. M. Mart́ınez and E. A. Pilotta, Inexact restoration methods for nonlinear programming:

Advances and perspectives, in Optimization and Control with Applications, L. Q. Qi, K. L.
Teo, and X. Q. Yang, eds., Springer, New York, 2005, pp. 271–292.

[31] J. M. Mart́ınez and B. F. Svaiter, A practical optimality condition without constraint qual-
ifications for nonlinear programming, J. Optim. Theory Appl., 118 (2003), pp. 117–133.

[32] L. Minchenko and S. Stakhovski, On relaxed constant rank regularity condition in mathe-
matical programming, Optimization, 60 (2011), pp. 429–440.

[33] L. Minchenko and S. Stakhovski, Parametric nonlinear programming problems under the
relaxed constant rank condition, SIAM J. Optim., 21 (2011), pp. 314–332.

[34] L. Minchenko and A. Tarakanov, On error bounds for quasinormal programs, J. Optim.
Theory Appl., 148 (2011), pp. 571–579.

[35] J. Nocedal and S. J. Wright, Numerical Optimization, 2nd ed., Springer, New York, 2006.
[36] J.-S. Pang, Error bounds in mathematical programming, Math. Program., 79 (1997), pp. 299–

332.
[37] E. R. Panier and A. L. Tits, On combining feasibility, descent and superlinear convergence

in inequality constrained optimization, Math. Program., 59 (1993), pp. 261–276.
[38] L. Qi and Z. Wei, On the constant positive linear dependence condition and its application to

SQP methods, SIAM J. Optim., 10 (2000), pp. 963–981.
[39] J. R. Reay, Unique minimal representations with positive bases, Amer. Math. Monthly, 73

(1966), pp. 253–261.
[40] R. T. Rockafellar, Lagrange multipliers and optimality, SIAM Rev., 35 (1993), pp. 183–238.
[41] M. V. Solodov, Constraint qualifications, in Wiley Encyclopedia of Operations Research and

Management Science, John Wiley, Hoboken, NJ, 2011.

D
ow

nl
oa

de
d

03
/1

5/
24

 to
 1

43
.1

07
.4

5.
1

. R
ed

is
tr

ib
ut

io
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

s:
//e

pu
bs

.s
ia

m
.o

rg
/te

rm
s-

pr
iv

ac
y

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /CMYK
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /ARA <FEFF06270633062A062E062F0645002006470630064700200627064406250639062F0627062F0627062A002006440625064606340627062100200648062B062706260642002000410064006F00620065002000500044004600200645062A064806270641064206290020064406440637062806270639062900200641064A00200627064406450637062706280639002006300627062A0020062F0631062C0627062A002006270644062C0648062F0629002006270644063906270644064A0629061B0020064A06450643064600200641062A062D00200648062B0627062606420020005000440046002006270644064506460634062306290020062806270633062A062E062F062706450020004100630072006F0062006100740020064800410064006F006200650020005200650061006400650072002006250635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E0635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E>
 /BGR <FEFF04180437043f043e043b043704320430043904420435002004420435043704380020043d0430044104420440043e0439043a0438002c00200437043000200434043000200441044a0437043404300432043004420435002000410064006f00620065002000500044004600200434043e043a0443043c0435043d04420438002c0020043c0430043a04410438043c0430043b043d043e0020043f044004380433043e04340435043d04380020043704300020043204380441043e043a043e043a0430044704350441044204320435043d0020043f04350447043004420020043704300020043f044004350434043f0435044704300442043d04300020043f043e04340433043e0442043e0432043a0430002e002000200421044a04370434043004340435043d043804420435002000500044004600200434043e043a0443043c0435043d044204380020043c043e0433043004420020043404300020044104350020043e0442043204300440044f0442002004410020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200441043b0435043404320430044904380020043204350440044104380438002e>
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /CZE <FEFF005400610074006f0020006e006100730074006100760065006e00ed00200070006f0075017e0069006a007400650020006b0020007600790074007600e101590065006e00ed00200064006f006b0075006d0065006e0074016f002000410064006f006200650020005000440046002c0020006b00740065007200e90020007300650020006e0065006a006c00e90070006500200068006f006400ed002000700072006f0020006b00760061006c00690074006e00ed0020007400690073006b00200061002000700072006500700072006500730073002e002000200056007900740076006f01590065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f007400650076015900ed007400200076002000700072006f006700720061006d0065006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076011b006a016100ed00630068002e>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f006300680077006500720074006900670065002000500072006500700072006500730073002d0044007200750063006b0065002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /ETI <FEFF004b00610073007500740061006700650020006e0065006900640020007300e4007400740065006900640020006b00760061006c006900740065006500740073006500200074007200fc006b006900650065006c007300650020007000720069006e00740069006d0069007300650020006a0061006f006b007300200073006f00620069006c0069006b0065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740069006400650020006c006f006f006d006900730065006b0073002e00200020004c006f006f0064007500640020005000440046002d0064006f006b0075006d0065006e00740065002000730061006100740065002000610076006100640061002000700072006f006700720061006d006d006900640065006700610020004100630072006f0062006100740020006e0069006e0067002000410064006f00620065002000520065006100640065007200200035002e00300020006a00610020007500750065006d006100740065002000760065007200730069006f006f006e00690064006500670061002e000d000a>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /GRE <FEFF03a703c103b703c303b903bc03bf03c003bf03b903ae03c303c403b5002003b103c503c403ad03c2002003c403b903c2002003c103c503b803bc03af03c303b503b903c2002003b303b903b1002003bd03b1002003b403b703bc03b903bf03c503c103b303ae03c303b503c403b5002003ad03b303b303c103b103c603b1002000410064006f006200650020005000440046002003c003bf03c5002003b503af03bd03b103b9002003ba03b103c42019002003b503be03bf03c703ae03bd002003ba03b103c403ac03bb03bb03b703bb03b1002003b303b903b1002003c003c103bf002d03b503ba03c403c503c003c903c403b903ba03ad03c2002003b503c103b303b103c303af03b503c2002003c503c803b703bb03ae03c2002003c003bf03b903cc03c403b703c403b103c2002e0020002003a403b10020005000440046002003ad03b303b303c103b103c603b1002003c003bf03c5002003ad03c703b503c403b5002003b403b703bc03b903bf03c503c103b303ae03c303b503b9002003bc03c003bf03c103bf03cd03bd002003bd03b1002003b103bd03bf03b903c703c403bf03cd03bd002003bc03b5002003c403bf0020004100630072006f006200610074002c002003c403bf002000410064006f00620065002000520065006100640065007200200035002e0030002003ba03b103b9002003bc03b503c403b103b303b503bd03ad03c303c403b503c103b503c2002003b503ba03b403cc03c303b503b903c2002e>
 /HEB <FEFF05D405E905EA05DE05E905D5002005D105D405D205D305E805D505EA002005D005DC05D4002005DB05D305D9002005DC05D905E605D505E8002005DE05E105DE05DB05D9002000410064006F006200650020005000440046002005D405DE05D505EA05D005DE05D905DD002005DC05D405D305E405E105EA002005E705D305DD002D05D305E405D505E1002005D005D905DB05D505EA05D905EA002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E05D005DE05D905DD002005DC002D005000440046002F0058002D0033002C002005E205D905D905E005D5002005D105DE05D305E805D905DA002005DC05DE05E905EA05DE05E9002005E905DC0020004100630072006F006200610074002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E>
 /HRV (Za stvaranje Adobe PDF dokumenata najpogodnijih za visokokvalitetni ispis prije tiskanja koristite ove postavke. Stvoreni PDF dokumenti mogu se otvoriti Acrobat i Adobe Reader 5.0 i kasnijim verzijama.)
 /HUN <FEFF004b0069007600e1006c00f30020006d0069006e0151007300e9006701710020006e0079006f006d00640061006900200065006c0151006b00e90073007a00ed007401510020006e0079006f006d00740061007400e100730068006f007a0020006c006500670069006e006b00e1006200620020006d0065006700660065006c0065006c0151002000410064006f00620065002000500044004600200064006f006b0075006d0065006e00740075006d006f006b0061007400200065007a0065006b006b0065006c0020006100200062006500e1006c006c00ed007400e10073006f006b006b0061006c0020006b00e90073007a00ed0074006800650074002e0020002000410020006c00e90074007200650068006f007a006f00740074002000500044004600200064006f006b0075006d0065006e00740075006d006f006b00200061007a0020004100630072006f006200610074002000e9007300200061007a002000410064006f00620065002000520065006100640065007200200035002e0030002c0020007600610067007900200061007a002000610074007400f3006c0020006b00e9007301510062006200690020007600650072007a006900f3006b006b0061006c0020006e00790069007400680061007400f3006b0020006d00650067002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /LTH <FEFF004e006100750064006f006b0069007400650020016100690075006f007300200070006100720061006d006500740072007500730020006e006f0072011700640061006d00690020006b0075007200740069002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b00750072006900650020006c0061006200690061007500730069006100690020007000720069007400610069006b007900740069002000610075006b01610074006f00730020006b006f006b007900620117007300200070006100720065006e006700740069006e00690061006d00200073007000610075007300640069006e0069006d00750069002e0020002000530075006b0075007200740069002000500044004600200064006f006b0075006d0065006e007400610069002000670061006c006900200062016b007400690020006100740069006400610072006f006d00690020004100630072006f006200610074002000690072002000410064006f00620065002000520065006100640065007200200035002e0030002000610072002000760117006c00650073006e0117006d00690073002000760065007200730069006a006f006d00690073002e>
 /LVI <FEFF0049007a006d0061006e0074006f006a00690065007400200161006f00730020006900650073007400610074012b006a0075006d00750073002c0020006c0061006900200076006500690064006f00740075002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006100730020006900720020012b00700061016100690020007000690065006d01130072006f00740069002000610075006700730074006100730020006b00760061006c0069007401010074006500730020007000690072006d007300690065007300700069006501610061006e006100730020006400720075006b00610069002e00200049007a0076006500690064006f006a006900650074002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006f002000760061007200200061007400760113007200740020006100720020004100630072006f00620061007400200075006e002000410064006f00620065002000520065006100640065007200200035002e0030002c0020006b0101002000610072012b00200074006f0020006a00610075006e0101006b0101006d002000760065007200730069006a0101006d002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /POL <FEFF0055007300740061007700690065006e0069006100200064006f002000740077006f0072007a0065006e0069006100200064006f006b0075006d0065006e007400f300770020005000440046002000700072007a0065007a006e00610063007a006f006e00790063006800200064006f002000770079006400720075006b00f30077002000770020007700790073006f006b00690065006a0020006a0061006b006f015b00630069002e002000200044006f006b0075006d0065006e0074007900200050004400460020006d006f017c006e00610020006f007400770069006500720061010700200077002000700072006f006700720061006d006900650020004100630072006f00620061007400200069002000410064006f00620065002000520065006100640065007200200035002e0030002000690020006e006f00770073007a0079006d002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /RUM <FEFF005500740069006c0069007a00610163006900200061006300650073007400650020007300650074010300720069002000700065006e007400720075002000610020006300720065006100200064006f00630075006d0065006e00740065002000410064006f006200650020005000440046002000610064006500630076006100740065002000700065006e0074007200750020007400690070010300720069007200650061002000700072006500700072006500730073002000640065002000630061006c006900740061007400650020007300750070006500720069006f006100720103002e002000200044006f00630075006d0065006e00740065006c00650020005000440046002000630072006500610074006500200070006f00740020006600690020006400650073006300680069007300650020006300750020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e00300020015f00690020007600650072007300690075006e0069006c006500200075006c0074006500720069006f006100720065002e>
 /RUS <FEFF04180441043f043e043b044c04370443043904420435002004340430043d043d044b04350020043d0430044104420440043e0439043a043800200434043b044f00200441043e043704340430043d0438044f00200434043e043a0443043c0435043d0442043e0432002000410064006f006200650020005000440046002c0020043c0430043a04410438043c0430043b044c043d043e0020043f043e04340445043e0434044f04490438044500200434043b044f00200432044b0441043e043a043e043a0430044704350441044204320435043d043d043e0433043e00200434043e043f0435044704300442043d043e0433043e00200432044b0432043e04340430002e002000200421043e043704340430043d043d044b04350020005000440046002d0434043e043a0443043c0435043d0442044b0020043c043e0436043d043e0020043e0442043a0440044b043204300442044c002004410020043f043e043c043e0449044c044e0020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200431043e043b043504350020043f043e04370434043d043804450020043204350440044104380439002e>
 /SKY <FEFF0054006900650074006f0020006e006100730074006100760065006e0069006100200070006f0075017e0069007400650020006e00610020007600790074007600e100720061006e0069006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b0074006f007200e90020007300610020006e0061006a006c0065007001610069006500200068006f0064006900610020006e00610020006b00760061006c00690074006e00fa00200074006c0061010d00200061002000700072006500700072006500730073002e00200056007900740076006f00720065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f00740076006f00720069016500200076002000700072006f006700720061006d006f006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076016100ed00630068002e>
 /SLV <FEFF005400650020006e006100730074006100760069007400760065002000750070006f0072006100620069007400650020007a00610020007500730074007600610072006a0061006e006a006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b006900200073006f0020006e0061006a007000720069006d00650072006e0065006a016100690020007a00610020006b0061006b006f0076006f00730074006e006f0020007400690073006b0061006e006a00650020007300200070007200690070007200610076006f0020006e00610020007400690073006b002e00200020005500730074007600610072006a0065006e006500200064006f006b0075006d0065006e0074006500200050004400460020006a00650020006d006f0067006f010d00650020006f0064007000720065007400690020007a0020004100630072006f00620061007400200069006e002000410064006f00620065002000520065006100640065007200200035002e003000200069006e0020006e006f00760065006a01610069006d002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /TUR <FEFF005900fc006b00730065006b0020006b0061006c006900740065006c0069002000f6006e002000790061007a006401310072006d00610020006200610073006b013100730131006e006100200065006e0020006900790069002000750079006100620069006c006500630065006b002000410064006f006200650020005000440046002000620065006c00670065006c0065007200690020006f006c0075015f007400750072006d0061006b0020006900e70069006e00200062007500200061007900610072006c0061007201310020006b0075006c006c0061006e0131006e002e00200020004f006c0075015f0074007500720075006c0061006e0020005000440046002000620065006c00670065006c0065007200690020004100630072006f006200610074002000760065002000410064006f00620065002000520065006100640065007200200035002e003000200076006500200073006f006e0072006100730131006e00640061006b00690020007300fc007200fc006d006c00650072006c00650020006100e70131006c006100620069006c00690072002e>
 /UKR <FEFF04120438043a043e0440043804410442043e043204430439044204350020044604560020043f043004400430043c043504420440043800200434043b044f0020044104420432043e04400435043d043d044f00200434043e043a0443043c0435043d044204560432002000410064006f006200650020005000440046002c0020044f043a04560020043d04300439043a04400430044904350020043f045604340445043e0434044f0442044c00200434043b044f0020043204380441043e043a043e044f043a04560441043d043e0433043e0020043f0435044004350434043404400443043a043e0432043e0433043e0020043404400443043a0443002e00200020042104420432043e04400435043d045600200434043e043a0443043c0435043d0442043800200050004400460020043c043e0436043d04300020043204560434043a0440043804420438002004430020004100630072006f006200610074002004420430002000410064006f00620065002000520065006100640065007200200035002e0030002004300431043e0020043f04560437043d04560448043e04570020043204350440044104560457002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

