
LOW-RESOLUTION NEURAL NETWORKS

Eduardo Lobo Lustosa Cabral
IPEN - Institute for Energy and Nuclear Research
Mauá Institute of Technology, Engineering School

São Paulo-SP, Brazil
elcabral@ipen.br,elcabral@maua.br

Larissa Driemeier
University of São Paulo

Polytechnic School, Department of Mechatronics and Mechanical Systems Engineering
São Paulo-SP, Brazil
driemeie@usp.br

ABSTRACT

The expanding scale of large neural network models introduces significant challenges, driving efforts
to reduce memory usage and enhance computational efficiency. Such measures are crucial to ensure
the practical implementation and effective application of these sophisticated models across a wide
array of use cases. This study examines the impact of parameter bit precision on model performance
compared to standard 32-bit models, with a focus on multiclass object classification in images. The
models analyzed include those with fully connected layers, convolutional layers, and transformer
blocks, with model weight resolution ranging from 1 bit to 4.08 bits. The findings indicate that
models with lower parameter bit precision achieve results comparable to 32-bit models, showing
promise for use in memory-constrained devices. While low-resolution models with a small number
of parameters require more training epochs to achieve accuracy comparable to 32-bit models, those
with a large number of parameters achieve similar performance within the same number of epochs.
Additionally, data augmentation can destabilize training in low-resolution models, but including
zero as a potential value in the weight parameters helps maintain stability and prevents performance
degradation. Overall, 2.32-bit weights offer the optimal balance of memory reduction, performance,
and efficiency. However, further research should explore other dataset types and more complex and
larger models. These findings suggest a potential new era for optimized neural network models
with reduced memory requirements and improved computational efficiency, though advancements in
dedicated hardware are necessary to fully realize this potential.

Keywords Deep Learning · Low resolution ·Weight quantization

1 Introduction

Deep neural networks (DNNs) are fundamental to numerous recent advancements in Artificial Intelligence (AI), playing
a central role in the emergence of foundation models and generative AI. One of the largest neural networks currently in
use is the Megatron-Turing NGL 530B, a generative language model developed by Nvidia and Microsoft, boasting
530 billion parameters. However, deploying advanced machine learning models poses numerous complex engineering
challenges due to the need for powerful computational devices and large memory storage. This not only affects training
but also renders it unfeasible to run on devices with limited computational resources [1].

The pioneering works by [2] and [3] originated from the idea that leveraging the inherent noise-tolerance of neural
network algorithms could allow for the relaxation of certain constraints on underlying hardware. [2] specifically
explored the use of low-precision fixed-point arithmetic for training deep neural networks, with a particular focus on
the rounding mode used during operations on fixed-point numbers. [3] analysed the performance of a Maxout network

ar
X

iv
:2

50
2.

08
79

5v
1 

 [
cs

.L
G

] 
 1

2 
Fe

b 
20

25



Low-Resolution Neural Networks

in three benchmark datasets with three distinct formats: floating point, fixed point and dynamic fixed point. The authors
compared the performance with results from literature.

Lower precision means each number uses fewer bits, which makes memory smaller, cheaper, and more power-efficient.
Fixed-point arithmetic is simpler and faster than floating-point, especially with low precision. This reduces the load
on processors, allowing them to perform more operations per second and improving overall efficiency. Using less
power extends battery life in portable devices and lowers cooling needs, reducing system costs and complexity. Lower
precision can lead to more affordable and accessible hardware, enabling wider use of neural network applications.

Inspired on the works by [2] and [3], it is natural to quantize parameters to optimize memory usage and improve
computational efficiency, instead of reducing their total number in large AI models. Quantization decreases the bit
width of the values used, thereby reducing the computational cost of floating-point operations. For example, in [4], the
authors explored the accuracy and suitability for real-time applications of a fully quantized ultra-lightweight object
detection network.

Although quantization can significantly decrease computational cost and memory usage, the information loss can
potentially lower overall model performance, particularly in terms of accuracy. The trade-off between quantization and
model performance is a balance between achieving greater efficiency and maintaining acceptable levels of accuracy.
Most algorithms used for quantizing parameters of AI models require a pre-trained model with at least 32-bit precision.
Once a pre-trained model is obtained, techniques such as Post-Training Quantization ([5, 6]) and Quantization Aware
Training ([7, 8, 9]) are applied to ensure effective quantization. However, the lower the quantization, meaning the
fewer bits used, the more degraded the model’s performance becomes. Consequently, these methods typically do not
use fewer than 8 bits to represent parameters after quantization. This limitation results in minimal reduction of the
memory required to store the model and provides little significant improvement in computational efficiency. In [10], a
methodology to train ResNet models with full 8-bit integers is presented.

In [11] the authors address the trade-off between model performance and computational efficiency by adopting a
mixed-precision approach. Their proposal is based on the fact that different layers within neural networks contribute
differently to overall performance and vary in their sensitivity to quantization.

Binarization is a 1-bit quantization where data can only have −1 or +1 values, and the ideia of Binarized Neural
Networks open the possibility of a new era of more efficient neural network models that require less memory and can
be applied to various types of problem [12]. The works by [13] and [14] introduced an efficient method for training
BNNs involving binary weights and activations. During the forward pass, weights and activations are binarized to either
−1 or +1, reducing memory usage and enabling faster bitwise operations to replace most arithmetic computations.
However, binary functions lack gradients necessary for backpropagation during training. To address this, real-valued
weights are utilized to compute gradients and update parameters, facilitated by a hard hyperbolic tangent function that
provides continuous and differentiable gradients. This approach ensures effective propagation of gradients through the
network during backpropagation, enhancing training efficiency. Real-valued weights are subsequently binarized for
use in the forward pass, maintaining computational efficiency during forward and inference while providing accurate
gradient computation and parameter updates in the training phase. Furthermore, the authors devised a binary matrix
multiplication GPU kernel to accelerate execution of the binary network compared to using an unoptimized GPU kernel.
However, the reported findings are confined to a single model with convolutional layers and do not address scalability
or extension of their proposals.

At the same time, [15] studied two different approaches on large-scale datasets like ImageNet: the traditional BNNs
with all weight values are approximated using binary values; and XNOR-Networks, that extends the first concept by
also approximating inputs with binary values. The authors claimed that the last approach provided ≈ 58× speed up and
enabled the possibility of running the inference of state of the art deep neural network on CPU in real-time.

In 2018, [16] introduced a novel approach for training DNNs. They addressed memory and computation bottlenecks by
proposing a method to backpropagate through discrete activations and eliminate full-precision hidden weights during
training. The authors constrained weights and activations in the ternary space −1, 0,+1 to form what they called gated
XNOR networks.

In [17], the authors introduced a novel approach for large language models, training the model from scratch with
quantization, diverging from the common practice of applying quantization post-training. They developed BitNet,
which is a 1-bit transformer architecture designed for large language models (llmS). BitNet employs low-precision
binary weights and quantized activations, while maintaining high precision for the optimizer states and gradients during
training. The results from [17] demonstrate that BitNet achieves competitive performance while substantially reducing
memory usage compared to 8-bit quantization methods and 16-bit precision transformers.

2



Low-Resolution Neural Networks

In [18, 19] and [20], different network binarization approaches were proposed to solve the lower prediction accuracy by
using binary weights and fast bitwise operations. More recently, [21] introduced a low-bit variant of llm, named BitNet
1.58, where each model parameter is ternary −1, 0,+1. This model achieves equivalent performance to models with the
same number of parameters but trained with 16-bit precision, using the same number of tokens. Thus, BitNet 1.58 offers
significant advantages including lower latency, reduced memory footprint, and decreased energy consumption. In [21],
the authors suggested that the 1.58-bit LLM model sets a new benchmark and paradigm for training next-generation
high-performance and cost-effective LLMs.

The previous contributions create opportunities for more efficient neural network models that require less memory and
can be applied to various types of problems. Additionally, these advancements support the development of specialized
hardware optimized for low-bit neural networks.

This study study examines the bit precision required for model parameters to match the performance of 32-bit models
in multiclass image classification. It evaluates quantization levels from 1 to 4.08 bits, analyzing their impact on
neural network accuracy and efficiency. Lower-bit quantization (1-1.5 bits) reduces memory and computation but
may harm accuracy, while higher-bit levels (3.17-4.08 bits) balance efficiency and performance. The study considers
fully connected layers (FCNN), convolutional layers (CVNN), and transformer blocks (Visual Transformer - VIT)
models, identifying quantization strategies that optimize computational resources for deployment in edge computing
and embedded systems. Section 2 outlines the parameter quantization method employed, Section 3 presents the data
and training parameters, and Sections 4, 5, and 6 respectively detail the FCNN, CVNN, and VIT models, along with
comparative results across different parameter resolutions. Section 7 introduces a method for storing weights using
fewer bits of resolution. Finally, Section 8 summarizes the conclusions drawn from this study.

2 Quantization method

Since the model weights are the parameters that demand the most memory and computational resources in neural
networks—both in convolutional layers and fully connected and attention layers—only the weights of the connections
are constrained to use low-resolution parameters in the models. The biases of all layers retain a 32-bit resolution.

During training, the connection weights are stored with 32-bit resolution, but the layer activations are calculated using
weights at the specified bit resolution. Therefore, a quantization method is required for the weights during the training
process. The desired number of discrete values is first selected, for example:

1-bit resolution the model weights are constrained to 2 values: −1;+1

1.5-bit resolution the model weights are constrained to 3 values: −1; 0;+1;

2-bit resolution the model weights are constrained to 4 values: −1;−0, 3333;+0.3333;+1;

2.32-bit resolution the model weights are constrained to 5 values: −1;−0.5; 0;+0.5;+1;

and so on.

It is important to note that, to reduce the memory required for storing model weights, they can be represented as positive
integers, with their bit resolution determined by the defined number of possible discrete values. Weight quantization
to the desired resolution is performed layer by layer in the model. Equations (1) to (4) implement the parameter
quantization.

vmax =
Nvalues − 1

2
(1)

Wnorm =
W

βW̄
(2)

Wq =
round (Wnormvmax + vmax)− vmax

vmax
(3)

Wq =

{
+1, if Wq > +1− 1

Nvalues

−1, if Wq < −1 + 1
Nvalues

(4)

where Nvalues is the number of desired values for the layer weights, W is the tensor of weights of the layer, W̄ is
the mean of the layer weights, Wnorm is the tensor of weights normalized by the mean, 1 ≤ β ≤ 2 is a parameter

3



Low-Resolution Neural Networks

Table 1: Hyperparameters used in model training.
Hyperparameter Value

Cost function Categorical Cross Entropy
Optimization method Stochastic Gradient Descendent with Momentum
Momentum rate 0.92
Metrics Accuracy
Learning rate for fully connected and convlutional mod-
els

0.001 (fixed)

Learning rate for models with transformer blocks 0.01 (fixed)
Batch size 256
Number of epochs with original data for fully connected
and convolutional models

200

Number of epochs with data augmentation for fully con-
nected and convolutional models

1000

Number of epochs with original data for models with
transformer blocks

300

Number of epochs with data augmentation for models
with transformer blocks

2000

for regulating the distribution of quantized weight values, Wq is the tensor of quantized weights, and round is a
function performing rounding operation. The value of β in this work is set to 1.4 because this value ensures a uniform
distribution among the three weight values when Nvalues equals 3.

As previously mentioned, during model training, weights are maintained as 32-bit real values. However, in the forward
propagation calculations, quantized weights are employed, computed according to equations (1) to (4). This approach
is essential because if weights were stored in their quantized form, during training the parameter updates would be
eliminated by the quantization function, hindering learning. Note that, most updates during training are typically on
the order of 10−4 to 10−2, which would round to zero in the quantization process, preventing the original parameters
from being updated and thus hindering the model’s learning. To address this issue, we employ a technique inspired by
the implementation of Vector Quantised-Variational AutoEncoder (VQ-VAE) proposed by [22]. This method, which
ensures effective parameter updates despite quantization, is detailed in Section 4.

3 Data and training parameters

Analyzing the number of bits required for a model to achieve the performance of models with 32-bit resolution weights
constitutes a comparative study where the dataset used does not significantly influence the conclusions. Therefore,
the CIFAR-10 dataset [23] is employed. This dataset features a straightforward multiclass classification task with
low-resolution color images (32 × 32 × 3 pixels) across 10 object classes. It is split into a training set with 50, 000
images and a test set with 10, 000 images.

A critical aspect of AI models is their generalization capability. Training with original data often leads to overfitting.
To evaluate the generalization capacity of models with low-resolution weights, data augmentation is also used during
training. Minor transformations are applied to the images to avoid significant distortion, including the following:

• horizontal shift: ±10%;

• vertical shift: ±10%;

• zoom in/out: ±20%;

• horizontal flip (left/right);

• rotation: ±5o.

In addition to using data augmentation to mitigate overfitting, models were trained with dropout layers. However, the
inclusion of dropout was found to be ineffective in reducing overfitting, so results from models with dropout are not
presented. The hyperparameters used in training the models are listed in Table 1.

4



Low-Resolution Neural Networks

4 Models with only fully connected layers

Algorithm 1 illustrates the forward propagation process in a fully connected layer with low-resolution connection
weights. The function quant performs the weight quantization defined by equations (1) to (4), no_gradient is a
placeholder function that prevents gradient calculation for its argument during model training, activation represents
the chosen activation function for the layer, and b is the bias vector of the layer.

Algorithm 1 Forward propagation calculation process in a fully connected layer with low-resolution weights.

Require: Input x, weights W, bias b, scaling factor β, weight mean W̄ , trainable flag trainable
Ensure: Activations a

1: Calculate weights adjust factor: γ = βW̄
2: Calculate normalized weights: Wnorm = W

γ

3: if trainable then
4: Quantize weights for training: Wq = Wnorm + no_gradient(quant(Wnorm)−Wnorm)
5: else
6: Quantize weights for inference: Wq = quant(Wnorm)
7: end if
8: Calculate activations: a = activation(γWq · x+ b)
9: return a

The quantized weights used to compute layer activations remain consistent during both training and inference. However,
during training, when trainable variable is set to True, the calculated gradients and corresponding weight adjustments
are stored in the normalized weight matrix (Wnorm), ensuring no information is lost. This method allows for weight
updates during training without sacrificing precision. The technique of adjusting parameters without information loss
while using quantized weights in forward propagation calculations was adapted from [24].

4.1 Configuration of the models with fully connected layers

Two simple models are configured with differences in the number of layers and units per layer. Algorithm 2 outlines the
forward propagation process for the simpler fully connected layers model (FCNN1), while Algorithm 3 presents the
more complex model with a larger number of parameters (FCNN2).

Algorithm 2 Forward propagation process in the simpler fully connected layers model (FCNN1).

Require: Input image x, number of weight values Nvalues

Ensure: Predicted output ypred
1: xf = Flatten(x)
2: a1 = FCL(units = 512, Nvalues, activation = relu)(xf)
3: a2 = FCL(units = 256, Nvalues, activation = relu)(a1)
4: a3 = FCL(units = 128, Nvalues, activation = relu)(a2)
5: ypred = FCL(units = 10, Nvalues, activation = softmax)(a3)

Algorithm 3 Forward propagation process in the more complex fully connected layers model (FCNN2).

Require: Input image x, number of weight values Nvalues

Ensure: Predicted output ypred
1: xf = Flatten(x)
2: a1 = FCL(units = 1024, Nvalues, activation = relu)(xf)
3: a2 = FCL(units = 512, Nvalues, activation = relu)(a1)
4: a3 = FCL(units = 256, Nvalues, activation = relu)(a2)
5: a4 = FCL(units = 128, Nvalues, activation = relu)(a3)
6: ypred = FCL(units = 10, Nvalues, activation = softmax)(a4)

In Algorithms 2 and 3, FCL represents the fully connected layer defined in Algorithm 1, and Flatten is a function
that converts an image into a vector. The number of units in the output layers is set to 10 due to the presence of 10
object classes. Given the multiclass classification problem, the output layer employs a softmax activation function,
while relu is used in other layers. The number of values used for each weight, which is proportional to the number

5



Low-Resolution Neural Networks

of bits, is determined by the parameter Nvalues. In both models, weight connections and layer biases are initialized
using standard methods: Glorot Uniform for weights and zeros for biases. No regularization techniques or parameter
constraints are applied.

The number of units used in the layers of the simpler model (FCNN1) are respectively 512, 256, 128, and 10, totaling
1, 738, 890 weights and biases. In the more complex model (FCNN2), the numbers of units in the layers are respectively
512, 256, 128, and 10, totaling 3, 837, 066 weights and biases.

4.2 The results of the models with fully connected layers

We utilize models with low-resolution weights set to 2, 3, 4, 5, 8, 9, 16, and 17 different values, corresponding to
resolutions of 1, 1.5, 2, 2.32, 3, 3.17, 4, and 4.08 bits per weight, respectively. It is important to clarify that the reported
results are examples from individual training runs. However, extensive repetitions were conducted for each model under
identical conditions, consistently producing similar outcomes. Therefore, presenting a single example result for each
model is highly indicative.

(a) Training Loss (b) Validation Loss

(c) Training Accuracy (d) Validation Accuracy

Figure 1: Training and validation results for the simpler models with only fully connected layers (FCNN1) for various
resolutions used in the weights.

Figure 1 shows the training results for the models featuring only fully connected layers with the simpler configuration
(FCNN1), while Figure 2 presents the results for the more complex models with various resolutions used for the weights.
The results of a standard 32-bit parameter network is included as a benchmark reference.

The results depicted in Figures 1 and 2 reveal several crucial findings:

6



Low-Resolution Neural Networks

(a) Training Loss (b) Validation Loss

(c) Training Accuracy (d) Validation Accuracy

Figure 2: Training and validation results for the more complex models with only fully connected layers (FCNN2) for
various resolutions used in the weights.

1. Training the simpler model (FCNN1) with 1-bit weights (Nvalues = 2) proves ineffective, resulting in
unsatisfactory performance.

2. Models with lower-resolution parameters require more epochs to achieve adequate training.

3. Models with a higher number of parameters in the low-resolution configuration progressively approach the
performance level of the standard model.

4. All models, including the standard model, demonstrate overfitting issues, leading to inferior performance on
validation data compared to training data.

Figures 3 and 4 illustrate the training outcomes for both simpler (FCNN1) and more complex (FCNN2) models with
data augmentation over 1000 training epochs. The specific image transformations used during training are detailed in
Section 3.

It is important to note that multiple training runs were conducted for all models, consistently yielding similar results.

Upon analyzing the training results of the fully connected neural network models with data augmentation, as depicted
in Figures 3 and 4, several insights emerge:

1. Both models utilizing 1-bit weights exhibit training instability and produce unsatisfactory results.

7



Low-Resolution Neural Networks

(a) Training Loss (b) Validation Loss

(c) Training Accuracy (d) Validation Accuracy

Figure 3: Training and validation results for the simpler models with only fully connected layers (FCNN1) using data
augmentation for various resolutions used in the weights.

2. Interestingly, the 1.5-bit model performs better than the 2-bit model despite the latter having higher resolution,
suggesting that the inclusion of zero among possible weight values plays a crucial role.

3. The more complex model with 2-bit weights achieves satisfactory results and performs comparably to models
with higher-resolution weights, indicating that a large number of parameters allows effective learning even
with lower-resolution weights.

4. Similar to training without data augmentation, models with lower-resolution weights require a greater number
of epochs to achieve results comparable to those of standard 32-bit models.

Note that all models that do not exhibit training instability show overfitting, albeit to a lesser degree than observed
in training without data augmentation. Therefore, this shows that models with low resolution weights are capable of
generalization in the same way as 32-bit models.

5 Models with convolutional layers

The only difference between the convolutional layer and the fully connected layer with low-resolution weights is that in
computing the activations, convolution operation is used between the filters (connection weights) and the input tensor

8



Low-Resolution Neural Networks

(a) Training Loss (b) Validation Loss

(c) Training Accuracy (d) Validation Accuracy

Figure 4: Training and validation results for the more complex models with only fully connected layers (FCNN2) using
data augmentation for various resolutions used in the weights.

of the layer, rather than matrix multiplication. Equation 5 performs convolution operation in calculating activations for
convolutional layers with low resolution weights.

a = activation (conv (γWq,x) + b) (5)

where conv (γWq,x) performs two dimensional convolution of x by γWq. It should be noted that Equation (5)
replaces the activation calculation in Algorithm 1, which implements the forward propagation process in fully connected
layers.

5.1 Configuration of the models with convolutional layers

Two models are configured with differences in the number of layers and units per layer. Algorithm 4 outlines the
forward propagation calculation for the simpler convolutional layer model (CVNN1), while Algorithm 5 details the
calculation process for the more complex model (CVNN2).

In Algorithms 4 and 5, Conv2D denotes a two-dimensional convolutional layer, while MaxPool2D signifies a two-
dimensional max-pooling layer. Each convolutional layer employs 3x3 filters with a relu activation function, a stride
of 1, and padding to preserve the input tensor dimensions in the output tensors. The first fully connected layer also uses

9



Low-Resolution Neural Networks

Algorithm 4 Forward propagation process for the simpler convolutional layer model (CVNN1).

Require: Input image x, number of weight Values Nvalues

Ensure: Predicted output ypred
1: a1 = Conv2D(units = 64, Nvalues, activation = relu, padding = same)(x)
2: a1 = MaxPool2D((2, 2), strides = (2, 2))(a1)
3: a2 = Conv2D(units = 128, Nvalues, activation = relu, padding = same)(a1)
4: a2 = MaxPool2D((2, 2), strides = (2, 2))(a2)
5: a3 = Conv2D(units = 256, Nvalues, activation = relu, padding = same)(a2)
6: a3 = MaxPool2D((2, 2), strides = (2, 2))(a3)
7: a4 = Flatten(a3)
8: a5 = FCL(units = 128, Nvalues, activation = relu)(a4)
9: ypred = FCL(units = 10, Nvalues, activation = softmax)(a5)

Algorithm 5 Forward propagation process for the more complex convolutional layer model (CVNN2).

Require: Input image x, number of weight values Nvalues

Ensure: Predicted output ypred
1: a1 = Conv2D(units = 128, Nvalues, activation = relu, padding = same)(x)
2: a1 = Conv2D(units = 128, Nvalues, activation = relu, padding = same)(a1)
3: a1 = MaxPool2D((2, 2), strides = (2, 2))(a1)
4: a2 = Conv2D(units = 256, Nvalues, activation = relu, padding = same)(a1)
5: a2 = Conv2D(units = 256, Nvalues, activation = relu, padding = same)(a2)
6: a2 = MaxPool2D((2, 2), strides = (2, 2))(a2)
7: a3 = Conv2D(units = 512, Nvalues, activation = relu, padding = same)(a2)
8: a3 = Conv2D(units = 512, Nvalues, activation = relu, padding = same)(a3)
9: a3 = MaxPool2D((2, 2), strides = (2, 2))(a3)

10: a4 = Flatten(a3)
11: a5 = FCL(units = 512, Nvalues, activation = relu)(a4)
12: ypred = FCL(units = 10, Nvalues, activation = softmax)(a5)

relu activation, whereas the output layer adopts softmax activation. The parameter Nvalues defines the number of
possible values for the connection weights.

In both models, connection weights and biases are initialized using standard methods: Glorot Uniform for weights
and zeros for biases. No regularization techniques or parameter constraints are applied. The simpler model (CVNN1)
comprises 896,522 parameters, while the more complex model (CVNN2) includes 8,776,330 parameters, accounting
for both weights and biases.

5.2 Results obtained with the models with convolutional layers

In Figure 5, the training results are displayed for the simpler convolutional layer models (CVNN1), while Figure 6
presents the results for the more complex models (CVNN2), both for various resolutions used in the layer weights. Once
again, results from standard networks with 32-bit parameters are included as a benchmark for the desired performance.
It is important to note that multiple training tests were conducted for all models, and all results are very similar.

Analyzing the training results of the convolutional models shown in Figures 5 and 6, one can observe that the results of
the low-resolution models at the end of training, except for the simpler 1-bit model (CVNN1), are nearly identical to
those of the standard models. Other observations can be done:

• The simpler model (CVNN1) with 1-bit weights exhibits instability throughout all training processes and fails
to learn the data, unlike the more complex 1-bit model, which despite some instability during training, is able
to learn effectively;

• The simpler models (CVNN1) with 1.5 and 2-bit resolutions require more epochs to achieve comparable
results compared to the standard 32-bit model. Conversely, models with resolutions of 2.32, 3, 3.17, 4, and
4.08 bits among the simpler CVNN1 models require fewer training epochs than the standard model. Also, the
low-resolution more complex models (CVNN2) with more than 1-bit require the same number of epochs to
train as the standard model;

10



Low-Resolution Neural Networks

(a) Training Loss (b) Validation Loss

(c) Training Accuracy (d) Validation Accuracy

Figure 5: Training and validation results for the simpler models with Convolutional layer models (CVNN1) for various
resolutions used in the weights.

• The simpler low-resolution models (CVNN1) exhibit occasional sharp fluctuations in the cost function and
accuracy, which quickly stabilize. These fluctuations are likely associated with simultaneous changes in a
large number of weights. Notably, these oscillations do not occur during training of the more complex models
(CVNN2).

Excluding the simpler 1-bit model (CVNN1), all other models demonstrate overfitting problems. To verify the
generalization ability of low-resolution convolutional models, training is repeated with data augmentation. The image
transformations applied are identical to those used in the training of the models with only fully connected layers. Figure
7 presents the training results for the simpler models (CVNN1), while Figure 8 displays the results for the more complex
models (CVNN2), using 1000 training epochs. Multiple training runs were conducted for all models, and consistent
results were observed across all experiments.

Analyzing the results presented in Figures 7 and 8 reveals that data augmentation tends to induce instability in the
training of low-resolution weight models. All the low resolutions models with 1, 2 and 3 bits exhibit training instability
and unsatisfactory results, thus none of these models trained with data augmentation yield satisfactory outcomes.
Furthermore, except for the models experiencing instability, the simpler low-resolution models (CVNN1) generally
show slightly worse results compared to the standard model, whereas the low-resolution more complex models (CVNN2)
exhibit results similar to the standard model. An important observation is that models incorporating zero as a possible

11



Low-Resolution Neural Networks

(a) Training Loss (b) Validation Loss

(c) Training Accuracy (d) Validation Accuracy

Figure 6: Training and validation results for the more complex models with convolutional layer models (CVNN2) for
various resolutions used in the weights.

weight value, specifically the 1.5-bit, 2.32-bit, 3.17-bit, and 4.08-bit models, outperform models where zero is not
included among the possible weight values.

To allow a better analysis of low-resolution convolutional layers, models with 5x5 filters are trained to investigate
whether using larger filters impacts the performance of the model. It is important to note that these models are identical
to the previously analyzed convolutional models, with the only modification being the filter size. Figure 9 shows the
training results with data augmentation for the more complex models using 5x5 filters, employing 1000 training epochs.
Multiple training sessions were conducted for all models, yielding consistent results across all the experiments.

The results presented in Figure 9 shows that using 5x5 filters increases the issue of instability. In this case, aside from
the more complex models (CVNN2) with 1-bit and 2-bit resolutions, the 3-bit model also exhibits instability. This
result reinforces the observation that models with an even number of possible weight values tend to encounter more
training difficulties compared to models with an odd number of possible weight values. Note that models with an odd
number of possible values include weights that can be zero, whereas models with even numbers of possible values do
not. This finding underscores the importance of including weights with values of zero, particularly for low-resolution
weights and models with a few number of parameters.

12



Low-Resolution Neural Networks

(a) Training Loss (b) Validation Loss

(c) Training Accuracy (d) Validation Accuracy

Figure 7: Training and validation results for the simpler models with only fully connected layers (FCNN1) using data
augmentation for various resolutions used in the weights.

6 Models with transformer blocks (Visual Transformer - VIT)

A transformer block, including its attention mechanism, primarily consists of embedding layers, fully connected layers,
and normalization layers. The fully connected layers of a transformer block with low-resolution weights are the same
as those presented in Algorithm 1. Since the embedding and normalization layers have a small number of parameters
compared to the fully connected layers, 32-bits parameters are used in these layers.

6.1 Configuration of the visual transformer models

Two models that differ only in the number of transformer blocks and the units in each fully connected layer are used in
this comparative study. Algorithm 6 presents the forward propagation process in the VIT models.

The components of Algorithm 6 are detailed as follows:

• FLC (Fully Connected Layer): This layer uses low-resolution weights, and its calculation process is described
in Algorithm 1. As previously discussed, the number of possible values for the connection weights is
determined by the parameter Nvalues. Additionally, the Gaussian Error Linear Unit (GELU) activation
function is employed in certain layers to enhance non-linearity.

13



Low-Resolution Neural Networks

(a) Training Loss (b) Validation Loss

(c) Training Accuracy (d) Validation Accuracy

Figure 8: Training and validation results for the MORE complex convolutional layer models (CVNN2) using data
augmentation for various resolutions used in the weights.

• Patches(patch_size): This function generates image patches with dimensions
(batch_size, num_patches_h × num_patches_w, patch_size × patch_size × channels). Here,
batch_size represents the number of examples in a batch, num_patches_h is the number of patches along
the image height, num_patches_w is the number of patches along the image width, patch_size is the size of
each patch in pixels, and channels indicates the number of image channels.

• PatchEncoder(num_patches, emb_dim): This is a standard function used in visual transformers that
performs the embedding encoding of image patches along with their respective positional encodings. The
num_patches parameter denotes the total number of patches per image, while emb_dim represents the
dimensionality of the embedding encoding for the patches. The encoding of image patches is carried out using
a fully connected layer with a linear activation function and 32-bit weight resolution. Positional encoding is
performed using a standard embedding layer.

• LayerNormalization: This is a standard layer that normalizes the features of each example, ensuring that
the output remains stable and centered.

• Dropout(dropout_rate): This is a standard dropout layer where dropout_rate specifies the fraction of
the input units to drop during training to prevent overfitting.

• Attention(emb_dim, num_heads, dropout_rate): This component represents the standard attention mecha-
nism utilized in visual transformer models. The arguments include emb_dim, dropout_rate, and num_heads.

14



Low-Resolution Neural Networks

(a) Training Loss (b) Validation Loss

(c) Training Accuracy (d) Validation Accuracy

Figure 9: Training and validation results for the MORE complex convolutional layer models (CVNN2) using data
augmentation for various resolutions used in the weights.

The last argument indicates the number of attention heads. The calculation process for this attention mechanism
is detailed in Algorithm 7. Within this algorithm, the reshape function resizes a tensor according to the
specified dimensions, while the permute function rearranges the axes of a tensor based on the provided order.
All other terms have been defined in earlier sections.

In Table 2, the hyperparameters used in the two VIT models implemented in this study are presented. For both models,
the weights of the connections and biases of the fully connected layers are initialized using the standard method, i.e.,
Glorot Uniform initialization for weights and zeros for the biases where applicable. No regularization techniques are
used, and there are no parameter constraints. The total number of parameters for the simpler model (VIT1) is 4,766,282,
while for the more complex model (VIT2) it is 10,573,770.

6.2 Results obtained with the VIT models

Figure 10 shows the training results for the simpler VIT models (VIT1) while Figure 11 presents the results for the
more complex VIT models (VIT2) for several resolutions used in the weights. Once again, the results for standard
models with 32-bit parameters are provided as a reference for the desired performance. Again, it is important to note
that multiple training tests were conducted for all models, and all results are highly consistent.

15



Low-Resolution Neural Networks

Algorithm 6 Forward propagation process of the VIT models.
Require: Input image x, patch dimension patch_size, number of patches num_patches embedding dimension emb_dim, number of transformer blocks transformer_layers,

vector with numbers of units in the fully connected layers of the transformer blocks transformer_units, number of weight values Nvalues , number of heads num_heads
Ensure: Predicted output ypred

1: # Create patches
2: patches = Patches(patch_size)(x)
3: # Encode patches
4: encoded_patches = PatchEncoder(num_patches, emb_dim)(patches)

5: # Create multiple layers of Transformer Blocks.
6: for i = 1 to transformer_layers do
7: # Normalization layer 1
8: x1 = LayerNormalization(encoded_patches)

9: # Create a multi-head attention layer.
10: attention_output, _ = Attention(emb_dim, num_heads, dropout_rate = 0.1)([x1,x1])

11: # Skip connection 1
12: x2 = Add(attention_output, encoded_patches)

13: # Normalization layer 2
14: x3 = LayerNormalization(x2)
15: # MLP
16: x3 = FCL(units = transformer_units[0], N_values, activation = gelu)(x3)
17: matbfx3 = Dropout(dropout_rate = 0.1)(x3)

18: x3 = FCL(units = transformer_units[1], N_values, activation = gelu)(x3)
19: x3 = Dropout(dropout_rate = 0.1)(x3)

20: # Skip connection 2.
21: encoded_patches = Add(x3,x2)
22: end for
23: # Create a [batch_size, projection_dim] tensor.
24: representation = LayerNormalization(encoded_patches)

25: representation = Flatten(representation)

26: representation = Dropout(dropout_rate = 0.5)(representation)

27: # MLP
28: features = FCL(units = mlp_head_units[0], N_values, activation = gelu)(representation)

29: features = Dropout(dropout_rate = 0.5)(features)

30: features = FCL(units = mlp_head_units[1], N_values, activation = gelu)(features)

31: features = Dropout(dropout_rate = 0.5)(features)

32: # Classify outputs.
33: ypred = FCL(units = num_classes,N_values, activation = softmax)(features)

Table 2: Hyperparameters used in model training
Hyperparameter Value
patch_size 4
num_patches
(image_size/patch_size)2 64
emb_dim 64
num_heads 4
transformer_units
[emb_dim× 2, emb_dim] [128, 64]
transformer_layers 2 (simpler model)

4 (complex model)
mlp_head_units [1024, 512] (simpler model)

[2048, 1024] (complex model)
Loss function Categorical Cross Entropy
Optimization method Gradient Descent with Momentum

The training results of the VIT models presented in Figures 10 and 11, show that the models with 1-bit weights exhibit
poorer results compared to other models, but they are capable of learning the data, however, all other models, both
simpler (VIT1) and more complex (VIT2), show results similar to those of the standard 32-bit resolution models. Also,
for the VIT-type models, the parameter resolution appears to have less influence on the results quality compared to
models with fully connected and convolutional layers.

All models exhibit overfitting problems regardless of the resolution of their weights. To verify the generalization
capability of the low-resolution models, training is repeated with data augmentation. The image transformations applied
are identical to those used in training models with fully connected and convolutional layers. Figure 12 presents the
training results for the simpler models (VIT1), while Figure 13 presents the results for the more complex models (VIT2)

16



Low-Resolution Neural Networks

Algorithm 7 Calculation process for Attention Mechanism

Require: Inputs x, embedding dimension emb_dim, number of weight values Nvalues, number of heads num_heads,
dropout rate dropout_rate

Ensure: Predict output output
1: # Retrives query, key and value from input list
2: query,key,value← x
3: # Calculate n_key and batch_size values
4: n_key = emb_dim

num_heads
5: batch_size = key.shape[0]
6: # Calculate Q, K and V matrices
7: Q = FLC(units = emb_dim,Nvalues, activation = linear, use_bias = False)(query)
8: K = FLC(units = emb_dim,Nvalues, activation = linear, use_bias = False)(key)
9: V = FLC(units = emb_dim,Nvalues, activation = linear, use_bias = False)(value)

10: # Reshape and permute Q, K and V
11: Q = reshape(Q, [batch_size,−1, num_heads, n_key])
12: Q = permute(Q, [0, 2, 1, 3])
13: K = reshape(K, [batch_size,−1, num_heads, n_key])
14: K = permute(K, [0, 2, 1, 3])
15: V = reshape(V, [batch_size,−1, num_heads, n_key])
16: V = permute(V, [0, 2, 1, 3])
17: # Calculate dot product Q by K
18: QK = matmul(Q, permute(K, [0, 1, 3, 2]))/

√
n_key

19: # Calculate attention probabilities
20: attn_prob = softmax(QK, axis = −1)
21: # Calculate attention
22: A = matmul(dropout(dropout_rate)(attn_prob),V)
23: A = permute(A, [0, 2, 1, 3])
24: A = reshape(A, [batch_size,−1, num_heads · n_key])
25: # Calculate output using FCL
26: output = FLC(units = emb_dim,Nvalues, activation = linear, use_bias = False)(A)

with data augmentation across 2000 training epochs. It is noted that multiple trainings were conducted for all models
and all results are consistent.

Results of Figures 12 and 13 show that training with data augmentation introduces instability in the results of several
low-resolution models. For the simpler models (VIT1), instability occurs in models with 1, 1.5, 2, 2.32, and 3-bit
resolution weights. Among the more complex models, instability is observed in models with 1 and 2-bit resolution
weights. For the low-resolution models that do not exhibit training instability, the results are very similar to those
obtained with standard 32-bit models. Furthermore, as expected, training with data augmentation reduces the problem
of overfitting but does not completely eliminate it, however, the overfitting behavior of the low resolution models is the
same as the standard 32-bit models.

Comparing the results of the VIT models with models using convolutional layers, it is observed that both types of
models yield similar results. However, the VIT models appear to have less training instability without data augmentation
and more instability with data augmentation. Additionally, the VIT models require a larger number of epochs to achieve
comparable results.

7 Memory Reduction for Models with Low-Resolution Weights

The architecture of current computers does not facilitate efficient multiplications involving both integers and real
numbers. Therefore, for low-resolution weight models to achieve greater computational efficiency, it is essential to
develop optimized hardware capable of performing operations with low-bit integers. Nevertheless, even with existing
hardware, low-resolution models offer a significant advantage by requiring substantially less memory.

For instance, consider a model with 1.5-bit weights, which can take on three possible values: −1, 0, and +1. In this
case, there are 243 (or 35) possible combinations of five weights using these values. This implies that five weights of
1.5 bits can be stored within a single byte (8 bits). In comparison with storing weights in a 32-bit format (4 bytes),
results in a memory reduction factor of 20.

17



Low-Resolution Neural Networks

(a) Training Loss (b) Validation Loss

(c) Training Accuracy (d) Validation Accuracy

Figure 10: Training and validation results for the simpler VIT models (VIT1) for various resolutions used in the weights.

Table 3: Reduction in memory usage of low-resolution weight models compared to 32-bit weight models
Number Nvalues Weights Stored Memory
of Bits by Byte Reduction

1 2 1 32
1.5 3 5 20
2 4 4 16

2.32 5 3 12
3 8 2 8

3.17 9 2 8
4 16 2 8

4.08 17 1 4

Table 3 presents the memory reduction for each of the low-resolution models analyzed in this study compared to 32-bit
weights, assuming a byte is the minimum memory unit. It is important to note that this memory reduction only considers
the weights of the connections.

Analyzing the memory reduction achieved alongside the comparative performance of low-resolution weight models, we
find that the optimal balance between performance and memory requirements is exhibited by the model with 2.32-bit

18



Low-Resolution Neural Networks

(a) Training Loss (b) Validation Loss

(c) Training Accuracy (d) Validation Accuracy

Figure 11: Training and validation results for more complex VIT models (VIT2) for various resolutions used in the
weights.

weights (Nvalues = 5). This model demonstrates a 12-fold reduction in memory usage while maintaining stability during
training across all model types, including fully connected layers, convolutional models, and transformer models.

8 Conclusion

In this study, we analyze the numbers of bits required for representing layer weights to achieve performance comparable
to 32-bit resolution models. The focus is on multiclass object classification in images, examining models that utilize
fully connected layers, convolutional layers, and transformer blocks, with weight resolutions ranging from 1 bit to 4.08
bits.

Our approach deliberately avoids employing complex models aimed at maximizing performance or entirely eliminating
overfitting. The primary goal is to determine whether low-resolution weight models can achieve similar performance
levels to 32-bit models and generalize learning effectively through comparative analysis. It is important to note that
no specialized algorithms were implemented to optimize the use of fewer bits in the weights, which remains an area
for future exploration, especially with advancements in computer architectures capable of efficiently handling both
small-bit integers and real numbers.

Several key conclusions emerge from this research:

19



Low-Resolution Neural Networks

(a) Training Loss (b) Validation Loss

(c) Training Accuracy (d) Validation Accuracy

Figure 12: Training and validation results for the simpler VIT models (VIT1) using data augmentation for various
resolutions used in the weights.

1. Performance of Low-Resolution Models: Initially, low-resolution models with small number of parameters
yield results comparable to standard 32-bit models, although they require more training epochs. Despite this
increased training time, low-resolution weight models can potentially be trained more rapidly, as calculations
may be executed more efficiently due to the reduced bit representation. However, realizing this advantage
requires the development of dedicated hardware capable of performing operations with numbers represented
by fewer than 8 bits.

2. Impact of Data Augmentation: Data augmentation appears to induce instability in the training of low-
resolution weight models, particularly those with a small number of parameters. In contrast, models with a
greater number of parameters demonstrate more stable training outcomes with data augmentation, especially
those that accommodate zero as a possible weight value.

3. Preference for Odd Weight Values: A significant finding is that using an odd number of possible weight
values in low-resolution models—ensuring the inclusion of zero—yields better performance outcomes. Models
with even Nvalues, particularly those utilizing convolutional layers and transformer blocks, tend to exhibit
training instability.

4. Computational Optimization: Current computing systems are optimized for a minimum resolution of 8
bits (1 byte), indicating no computational speed advantage when comparing 1-bit to 8-bit resolution weights.
However, training models with 8-bit weights can deliver performance comparable to models with 16 or 32-bit

20



Low-Resolution Neural Networks

(a) Training Loss (b) Validation Loss

(c) Training Accuracy (d) Validation Accuracy

Figure 13: Training and validation results for more complex VIT models (VIT2) using data augmentation for various
resolutions used in the weights.

weights. It is crucial to note that post-training quantization from 16 or 32 bit weights to 8 bits often leads to
performance degradation.

5. Advantages of Low-Resolution Models: Low-resolution weight models present a significant advantage by
enabling the development of more complex models with higher processing units while using substantially
less memory compared to 32-bit resolution models or even quantized 8-bit models. These models hold great
promise for facilitating the deployment of large language models in embedded devices.

In summary, our findings indicate that using weights with 2.32 bits (Nvalues = 5) strikes the best balance between
memory reduction, model performance, and efficiency. However, these conclusions should be regarded as preliminary
and future studies should investigate other dataset types (language, time series, and image generation) and evaluate
models with very large number of parameters (order of billions).

References

[1] Hao Dai, Jiashu Wu, Yang Wang, Jerome Yen, Yong Zhang, and Chengzhong Xu. Cost-efficient sharing algorithms
for dnn model serving in mobile edge networks. IEEE Transactions on Services Computing, 16(4):2517–2531,
2023.

21



Low-Resolution Neural Networks

[2] Suyog Gupta, Ankur Agrawal, K. Gopalakrishnan, and Pritish Narayanan. Deep learning with limited numerical
precision. In International Conference on Machine Learning, 2015.

[3] Matthieu Courbariaux, Yoshua Bengio, and Jean-Pierre David. Binaryconnect: training deep neural networks with
binary weights during propagations. In Proceedings of the 28th International Conference on Neural Information
Processing Systems - Volume 2, NIPS’15, page 3123–3131, Cambridge, MA, USA, 2015. MIT Press.

[4] J. Moosmann, H. Müler, N. Zimmerman, G. Rutishauser, L. Benini, and M. Magno. Flexible and fully quantized
lightweight tinyissimoyolo for ultra-low-power edge systems. IEEE Access, 12:75093–75107, 2024.

[5] Zhenhua Liu, Yunhe Wang, Kai Han, Wei Zhang, Siwei Ma1, and Wen Gao. Post-training quantization for vision
transformer. In Proceedings of the 35th Conference on Neural Information Processing Systems, NeurIPS, 2021.

[6] Ruihao Gong, Yang Yong, Shiqiao Gu, Yushi Huang, Yunchen Zhang, Xianglong Liu, and Dacheng Tao. Llm-
qbench: A benchmark towards the best practice for post-training quantization of large language models. arXiv
preprint arXiv:2405.06001v1, 2024.

[7] M. Kirtas, A. Oikonomou, N. Passalis, G. Mourgias-Alexandris, M. Moralis-Pegios, N. Pleros, and A. Tefas.
Quantization-aware training for low precision photonic neural networks. Neural Networks, 155:561–573, 2022.

[8] João Paulo C. de Lima and Luigi Carro. Quantization-aware in-situ training for reliable and accurate edge ai. In
2022 Design, Automation & Test in Europe Conference & Exhibition (DATE), 2022.

[9] Sangeetha Siddegowda, Marios Fournarakis, Markus Nagel, Tijmen Blankevoort, Chirag Patel, and Abhijit
Khobare. Neural network quantization with ai model efficiency toolkit (aimet). arXiv arXiv:2201.08442v1, 2022.

[10] Yukuan Yang, Lei Deng, Shuang Wu, Tianyi Yan, Yuan Xie, and Guoqi Li. Training high-performance and
large-scale deep neural networks with full 8-bit integers. Neural Networks, 125:70–82, 2020.

[11] Tianshu Chu, Qin Luo, Jie Yang, and Xiaolin Huang. Mixed-precision quantized neural networks with progres-
sively decreasing bitwidth. Pattern Recognition, 111:107647, 2021.

[12] Haotong Qin, Ruihao Gong, Xianglong Liu, Xiao Bai, Jingkuan Song, and Nicu Sebe. Binary neural networks: A
survey. Pattern Recognition, 105:107281, 2020.

[13] Matthieu Courbariaux, Itay Hubara, Daniel Soudry, Ran El-Yaniv, and Yoshua Bengio. Binarized neural networks:
Training neural networks with weights and activations constrained to +1 or 1. arXiv arXiv:1602.02830v3, 2016.

[14] Itay Hubara, Matthieu Courbariaux, Daniel Soudry, Ran El-Yaniv, and Yoshua Bengio. Quantization-aware in-situ
training for reliable and accurate edge ai. In Proceedings of the 30th Conference on Neural Information Processing
Systems, NeurIPS 2016, 2022.

[15] Mohammad Rastegari, Vicente Ordonez, Joseph Redmon, and Ali Farhadi. Xnor-net: Imagenet classification
using binary convolutional neural networks. CoRR, abs/1603.05279, 2016.

[16] Lei Deng, Peng Jiao, Jing Pei, Zhenzhi Wu, and Guoqi Li. Gxnor-net: Training deep neural networks with ternary
weights and activations without full-precision memory under a unified discretization framework. Neural Networks,
100:49–58, 2018.

[17] Hongyu Wang, Shuming Ma, Li Dong, Shaohan Huang, Lingxiao Ma Huaijie Wang, Fan Yang, Ruiping Wang,
Yi Wu, and Furu Wei. Bitnet: Scaling 1-bit transformers for large language models. arXiv arXiv:2310.11453v1,
2023.

[18] Dmitry Ignatov and Andrey Ignatov. Controlling information capacity of binary neural network. Pattern
Recognition Letters, 138:276–281, 2020.

[19] Hanyu Peng and Shifeng Chen. Bdnn: Binary convolution neural networks for fast object detection. Pattern
Recognition Letters, 125:91–97, 2019.

[20] Zhiqiang Tang, Xi Peng, Kang Li, and Dimitris N. Metaxas. Towards efficient u-nets: A coupled and quantized
approach. IEEE Transactions on Pattern Analysis and Machine Intelligence, 42(8):2038–2050, 2020.

[21] Shuming Ma, Hongyu Wang, Lingxiao Ma, Lei Wang, Wenhui Wang, Shaohan Huang, Li Dong, Ruiping
Wang, Jilong Xue, and Furu Wei. The era of 1-bit LLMs: All large language models are in 1.58 bits. arXiv
arXiv:2402.17764v1, 2024.

[22] Aäron van den Oord, Oriol Vinyals, and Koray Kavukcuoglu. Neural discrete representation learning. CoRR,
abs/1711.00937, 2017.

[23] Alex Krizhevsky. Learning multiple layers of features from tiny images. Technical report, Computer Science
Department, University of Toronto, 2009.

[24] Michael A. Alcorn. A minimal pytorch implementation of the VQ-VAE model described in "neural discrete repre-
sentation learning". https://github.com/airalcorn2/vqvae-pytorch?tab=readme-ov-file, 2023.

22

https://github.com/airalcorn2/vqvae-pytorch?tab=readme-ov-file

	Introduction
	Quantization method
	Data and training parameters
	Models with only fully connected layers
	Configuration of the models with fully connected layers
	The results of the models with fully connected layers

	Models with convolutional layers
	Configuration of the models with convolutional layers
	Results obtained with the models with convolutional layers

	Models with transformer blocks (Visual Transformer - VIT)
	Configuration of the visual transformer models
	Results obtained with the VIT models

	Memory Reduction for Models with Low-Resolution Weights
	Conclusion

