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Abstract

Carbon dots in biosensing have advanced significantly, adding improvements to different detection techniques. In this
study, an amperometric immunosensor for Salmonella Thyphimurium was designed using antibodies labeled with car-
bon dots (Cdots) from pequi almond (Caryocar brasiliensis). Cdots were synthesized by pyrolysis and characterized by
FTIR, UV/fluorescence, electrochemistry, zeta potential, and transmission electron microscopy (TEM). A particle size of
6.80+2.13 nm was estimated, and the zeta potential was —47.4 mV, indicating the preponderant presence of acidic groups,
as confirmed by FTIR. The impedance evaluation of the response of biosensors assembled for live (Ret=13.4 kQ) and
dead (Rct=499.7 Q) Salmonella showed a significant difference in their values, in agreement with chronoamperometric
analyses, which had their current values drastically reduced from —2.2 mA (live) to 0 mA (dead). An analytical curve for
Salmonella was established with the limit of detection lower than 1 CFU/mL. This electrochemical biosensor using pequi
carbon dots for antibody labeling showed promising results for detecting the pathogen. Thus, carbon dots can be used as

substitutes for enzymes in labeling antibodies used in the design and production of sensors.
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Introduction

Ensuring access to safe and healthy food for all is a global
challenge [1]. A major factor in food safety is the detec-
tion and prevention of pathogenic contamination, in food
products [2]. It is known that salmonellosis can cause health
risks with symptoms that can last for up to a week [3]. Sal-
monellosis is often associated with symptoms similar to the
stomach flu, including nausea, vomiting, abdominal cramps
and bloody diarrhoea. It can also cause headache, fever and
muscle aches. Prolonged fluid loss can lead to dehydration,
especially in young children and the elderly. In severe cases,
deaths have been reported, especially in vulnerable groups
such as young children, the elderly and people with weak-
ened immune systems [4]. Thus, Salmonella detection in
food samples is an important analysis. The bacteriological
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assay is considered the gold standard for Salmonella detec-
tion, but this assay involves several steps and can take sev-
eral days to complete [5]. Alternative detection methods for
Salmonella Typhimurium have appeared in the literature,
including ELISA [6], polymerase chain reaction (PCR) [7],
surface-enhanced Raman scattering (SERS) [8], and gra-
phene electrochemical immunosensor [9]. However, these
methods often have drawbacks, such as time-consuming
procedures, expensive equipment, and adequate training of
technicians. The need to explore simple, rapid, cost-com-
petitive, high-sensitivity, and specificity detection methods
for pathogenic bacteria has motivated the development of
electrochemical biosensors for Salmonella.

Electrochemical sensors appear as an effective route for
replacing the previously mentioned methods, as they can
detect a single chemical [10, 11] or biological molecule [12,
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13]. Amperometric immunosensors have been preferred
for their easy handling and ability to work with specific
potential, thereby greatly reducing the interference of other
chemical species [14-16]. From a microbiological safety
perspective, the use of these biosensors minimizes the need
for sample handling and reduces the risk of human contami-
nation, making them promising technologies for the food
industry. However, most of these biosensors are still at the
prototype stage [17, 18], and have not yet been approved
by international certification bodies or been implemented on
a large scale. The detection of microorganisms by biosen-
sors can be either direct or indirect. In direct detection, the
bioactive molecule interacts directly with the microorgan-
ism, while indirect detection focuses on monitoring micro-
bial metabolites via biochemical reactions that occur on the
transducer surface'®. Electrochemical biosensors designed
for indirect detection evaluate parameters such as changes
in pH, oxygen consumption, ion concentration, potential
difference, current or resistance. The transducer can detect
oxygen consumption and the formation or degradation of
electrochemically active metabolites [19].

Previous works on immunosensors for Sa/monella detec-
tion have shown high sensitivity without the need for a sam-
ple pre-enrichment step using an enzyme-labeled antibody
[20, 21]. The literature has also shown a variety of func-
tionalization in the construction of immunosensors involv-
ing nanoparticles [22-24], some incorporating carbon dots
as biomarkers, which can be switched “on-off” and highly
sensitive [25], reaching limits of detection in the range of
fg/mL [26].

Carbon dots are nano-sized carbon-based materials that
have gained significant attention in nanotechnology and
materials science. These tiny dots, typically ranging from a
few to a few dozen nanometers in size, exhibit unique opti-
cal, electronic, and chemical properties, including their easy
surface functionalization, low-cost synthesis, and visible
light absorption [27, 28]. Recently, pequi carbon dot was
developed and tested for identification of bacteria by flow
cytometry [29]. This kind of carbon dot in electrochemical
biosensors is being reported for the first time in this work.

In particular, an electrochemical immunosensor function-
alized with nanoparticles synthesized from pequi nut can
be advantageous due to possibility of adding value to this
agricultural product and because it provides facile electron
transfer paths and has adequate conductivity characteristics
[30]. These features open the possibility of developing sen-
sitive devices with detection limits equivalent to or lower
than those needed for identifying Salmonella or similar
pathogens [9, 14, 31]. In this work, carbon dot was used as
a marker of secondary antibody in the analytical response
of an immunosensor for Sa/monella detection. This proce-
dure is necessary for amperometric analysis given that the
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antigen-antibody interaction does not involve redox reac-
tions to have measurable current variations correlating to
the presence of the analyte.

Materials and methods
Preparation and characterization of Carbon dots

Pequi fruits were purchased from a local market in For-
taleza. The pequi almonds were first separated manually
from the fruit. Carbon dots synthesis from pequi almonds
followed the bottom-up approach through the microwave
pyrolysis. 2 g pequi almond was macerated with H,PO,
(40%) and heated in the microwave for 1.5 min at 600 W.
Then, 20 mL of ethanol and 1 mL of 2 M NaOH were added,
filtered on a filter paper, and centrifuged at 11,000 rpm for
20 min. The supernatant was discarded, and the precipitate
dialyzed in distilled water for 48 h. The dialyzed sample
was filtered using a 22-pum pore filter and then lyophilized.
For the quantitative determination of the chemical elements
C, H, N, and S present in a sample, a ThermoScientific Ele-
mental Analyzer (model FlashSmart) was used, with exter-
nal calibration involving methionine, BBOT, sulfanilamide
and cystine as calibration standards.

The synthesized material was characterized by Fourier
transform infrared spectroscopy (FTIR) using an attenu-
ated total reflectance detector in the wavelength range of
400-4000 cm ™! and resolution of 4 cm™ ! on an FTLA 2000-
102-ABB- BOMEN spectrometer (ABB Group, Quebec,
Canada).

The particle size analysis was performed using a trans-
mission electron microscope (TEM), model Vega 3, made
by Tescan (Brno, Czech Republic). The sample was diluted
1:50 v/v, gridded for 3 min, and stained with phospho-
tungstic acid for 3 min. The particle size calculation was
achieved by imagelJ software.

UV-Vis analyses were performed using a Shimadzu UV-
26001 UV-visible spectrophotometer, and the measured
wavelength range was 190-800 nm.

Fluorescence analysis was carried out on a Shimadzu
RF-6000 spectrofluorimeter with excitation frequency at
200—400 nm, and emission in the range of 400 to 800 nm,
with a scanning speed of 6000 nm/s and excitation and
emission slits of 5.0 nm.

The quantum yield (QY), a parameter for comparing the
photoluminescence of Cdots, was calculated by the ratio
between the number of photons absorbed and the number of
photons emitted by a material through Eq. 1.

2
() (%) (2



Brazilian Journal of Microbiology

where I is the integrated emission intensity, A is the absorp-
tion intensity at the excitation wavelength, n is the refractive
index of the solvent, and the subscript s is related to the
value of the standard fluorescent molecule.

Antibody purification and carbon dot-labeled antibodies

Polyvalent anti-Sa/monella serum Poli A-I and Vi purchased
from Difco® were purified by precipitation with (NH,),SO,
with 45% saturation. The serum was reconstituted in 3 mL
of NaCl (0.85%) followed by the addition of 1.662 g of
(NH,),SO,. The obtained solution was kept under stirring
for 30 min, refrigerated for 24 h, and subsequently centri-
fuged at 10,000 rpm (15,303 x g) for 30 min at 4 °C. The
precipitate was dialyzed against PBS (10 mM pH 7.4) for
24 h. After dialysis, its concentration was determined in a
NanoDrop 2000 spectrophotometer (Thermo Scientific).

Cdot-labeled antibodies were preparated from Cdot dis-
persed in buffer solution (pH 7.4) with the antibody using
the proportion 1:6 (antibody: Cdot, w/w).

Bacterial culture

Bacterial culture was prepared according to the method
described by Melo et al. (2021) [32] with modifications. The
strain Salmonella enterica serovar Typhimurium (ATCC®
51812) was cultivated in BHI at 37 °C for 24 h. The resulting
bacterial suspension of unknown concentration was centri-
fuged for 30 min at 5000 rpm, and the supernatant was dis-
carded. The pellet was washed with sterile PBS pH 7.4 and
then used to prepare a suspension with sterile PBS, in which
bacterial concentration was adjusted using the McFarland
turbidimetric method. The standard bacteria suspensions for
the calibration curve were prepared by successive dilution.
The concentrations of standard dispersions were confirmed
using the conventional plate counting method with 10° to
108 CFU mL"! suspension. The standard dispersions were
stored at 4 °C until use, and all the experiments were done
in triplicate.

Biosensor preparation

The assembly of the immunosensor was performed on
the surface of a disposable gold electrode, using the self-
assembled monolayers (SAMs) technique, according to the
method given by Melo et al. [21] with adaptations.

Screen-printed electrodes Dropsense (C220AT®) were
immersed in 10 mM cysteamine ethanolic solution (cys)
for 3 h. Then, the electrode was immersed in a solution of
protein A (protA) 7.5 mg mL™! of Staphylococcus aureus
containing N-hydroxysuccinimide/N- (3-dimethylamino
propyl) -N’-ethylcarbodiimide (EDC/NHS) (2 mM/ 5 mM)
for 1 h. Before immersion, the NHS/EDC solution was
kept for 30 min at room temperature and for 30 min; then,
the prot A was added to react for one hour. The solution
was left for one hour, and the electrode was immersed in
the solution for 1 h, called modified cys-protA electrode.
After that, the electrode was washed with 10 mM phosphate
buffer (PBS) (pH 7.4). The modified electrode was then
immersed overnight in a solution of anti-Sa/monella (AS)
(2 mg mL™ ') under refrigeration. The non-specific binding
was blocked with 1% bovine serum albumin solution (w/v)
for 1 h. Finally, the modified electrode was immersed in an
anti-Sa/monella-Cdot solution in a ratio of 1:6 w/w for 1 h
(Fig. 1).

Electrochemical measurements were made using Auto-
1lab/PGSTAT 12 potentiostat/galvanostat (Ecochemie, Neth-
erlands) coupled to a computer and controlled by NOVA
2.1.3 software (Ecochemie, Netherlands (Metrohm, Swit-
zerland)). Chronoamperometry studies were performed at a
constant potential of 0.4 mV for 120s. The analysis of vari-
ance (ANOVA) [24] was used to analyze the standard curve
for Salmonella concentrations. The limit of detection (LOD)
was calculated using Eq. 2.

LOD = YB + 3.35B (2)

Where Yy is the linear coefficient, and Sy is the standard
deviation of the blank [33].
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Fig. 1 Immunosensor assembly based on anti-Sa/monella-Cdot and the analytical response (ox) oxidation and (red) reduction
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Electrochemical impedance spectroscopy (EIS) data
were acquired with a PGSTAT 302 potentiostat/galvano-
stat (Ecochemie, Netherlands) system, controlled by FRA2
software (Metrohm, Switzerland). EIS experiments were
performed, in 0.1 mol L™' KCI solution containing 5.0
mmol L™ K;[Fe(CN)]/K,[Fe(CN),, under the open circuit
potential (OCP), in the frequency range between 0.1 Hz and
100 kHz with an amplitude of 10 mV and under the open
circuit potential (OCP) conditions in 0.1 mol L' KCl solu-
tion containing 5.0 mmol L} K;[Fe(CN)(J/K4[Fe(CN),]-
The light source was an UV LED (9 W) operated by a lab-
made controller board (UNO) integrated into a relay and
programmed by Arduino software.

Statistical analysis
Three replications were performed in the assays and used

to obtain mean and standard deviation results. The linearity
was confirmed by ANOVA using Origin 8.0.
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Results and discussion
Carbon dots characterization

The synthesis of Cdots from the pequi almond showed a
reaction yield of 5%. Its quantum yield, calculated from
fluorescence and UV-Vis spectra, was 9% (Fig. 2b). Since
the elemental analysis indicated a nitrogen content of 11%
and a carbon/nitrogen ratio of 1/3, nitrogen in Cdot signifi-
cantly affected the quantum yield value. From a compari-
son of the Cdots obtained from the pequi almond with other
Cdots obtained from natural sources, this QY value was
higher than or compatible with the quantum yield of Cdots
synthesized from the Cissus quadrangularis leaf, which
was above 5% [34], cellulose fibers where QY reached
the value of 1% [35], and quantum dots extracted from fig
leaves with 3% QY [36]. According to fluorescence spec-
troscopy, the increase in the excitation wavelength (Fig. 2a)
increased the luminescent intensity of the Cdots. It shifted
the maximum emission to a region closer to red, known as
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Fig. 2 (a) Fluorescence emission spectra of Cdots; (b) UV-Vis and fluorescence spectra at A=270 nm; (¢) FT-IR spectrum of Cdots
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the bathochromic effect [37]. This excitation wavelength-
dependent photoluminescence behavior is characteristic of
Cdots based on natural sources [38, 39] and may be linked
to the nitrogen content of the Cdots sample [40, 41].

The Fig. 2a shows that in 290 nm region approximately,
excitation occur and its observed a decrease in luminescent
intensity, fact that may be related to quantum confinement,
size distribution, or the presence of emitting traps on the
Cdot’s surface [42]. At wavelength of 340 nm the maximum
emission peak occurred, representing an average fluores-
cence intensity of 23,314 a.u. Groups on the Cdots surface,
especially those containing oxygen, nitrogen, and hydrogen
atoms, can have different energy levels that make the emis-
sion dependent on the excitation energy. In addition, the
fluorescence emission can change due to particles of differ-
ent sizes and emissive sites’ distribution on its surface [43].

The UV-vis absorption spectrum (Fig. 2b) showed maxi-
mum absorption in the UV region, which decreased in the vis-
ible region. Cdots have characteristic peaks (UV) at 300 nm
in the w - @* electronic transition region corresponding to
sp® and n - * carbon bonds of surface carbons with struc-
tures containing nitrogen and/or oxygen [44], agreeing with
the emission spectrum at region between 325 and 340 nm,
indicating that the blue band in the photoluminescence

Total Counts

g

Frequency
—
[6)]

0 2 4 6 8 10 12 14 16
D, nm

Fig. 3 (a) Transmission electron micrograph of carbon dots diluted in
water at a ratio of 1:50 v/v, deposited on a grid for 3 min and stained
with phosphotungstic acid for 3 min; (b) probable structure of the car-

results from transitions in the Cdots core and defect surface
with sp? hybridization, respectively [45].

The infrared spectrum (Fig. 2c) showed intense -OH
bands at 3400 cm™!. The presence of C=0 bonds of the
carboxylate ion and C=C of the carbon structure was con-
firmed by absorptions at 1654 and 1391 cm™ !, respectively.
Another high-intensity band was observed at 2930 cm ™!,
which can be attributed to the asymmetric stretching of C-H
bonds in the aliphatic portion of the Cdot’s surface. The col-
lapsed band can characterize the amino groups at 3200 cm ™!
and the region with several peaks at 600500 cm ™!, corre-
sponding to the N-H bonds of primary amine [29].

Through transmission electron microscopy (TEM) analy-
sis (Fig. 3), the Cdots were found to have a spherical shape
in the regions where they appeared dispersed. The measured
particle size was 6.80+2.13 nm. The size and form of the
Cdots are in agreement with other studies [46, 47]. The zeta
potential of Cdots in aqueous media was —47.4+0.3 mV,
suggesting the preponderant presence of carboxylic acid
groups on the surface, and other oxygenated functional
groups [48]. The highly negative value of the zeta potential
means that the electrostatic forces are predominantly repul-
sive, indicating that the system has a high stability against
aggregation. These results agree with the TEM image,

o) OH
(a) NH, NH, (b)
OH o)
o) = OH
HO NH,
HO o)

OH
o HN OH

. (d)

-100 0 100 200
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bon dot with carboxylic acid groups around it; (¢) statistical particle
size distribution; (d) distribution graph of the zeta potential of the car-
bon dots solution in water
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where Cdots were observed to be well dispersed, in agree-
ment with the earlier findings of [49].

Performance and characterization of the biosensor
Chronoamperometry analysis

The chronoamperometric behavior (Fig. 4a) for the biosen-
sor assembled and tested with live and dead Salmonella
showed a drop in the electrical signal from —2.2 mA to zero.
This observation is reasonable, as Salmonella is a filamen-
tous bacterium that, when alive, has its flagella always in
movement, capable of interacting with the antibody. After
slow pasteurization, the bacteria cannot interact with the
antibody and may precipitate out of the medium; thus, the
device cannot present any electrical signal. Biosensor per-
formance evaluation tests were carried out on samples with
different concentrations of Salmonella, simulating a con-
taminated sample at concentrations of 1-107 CFU.mL ™! as
represented in Fig. 4b. The mass ratio of Cdots and antibody
for the assembly of the immunosensor in the proportion of
6:1 (m/m) made it possible to visualize the decrease in the
electrical signal with the increase in the concentration of
Salmonella. Thus, it was possible to construct an analytical
curve with an amperometric response of the immunosen-
sor at different concentrations of S. Typhimurium, thereby
establishing a relationship between the current signal (A)
and the analyte concentration (CFU.mL™ ') with a correla-
tion index (R) equal to 0.98 [24].

The immunosensor was able to distinguish between dif-
ferent concentrations of Sa/monella (p<0.05). ANOVA [50]
confirmed its linearity, so the quantitative behavior of the
biosensor for the pathogen could be confirmed. The LOD of

0,000 (a)
‘\(ipss - iDead> =
0,001
-0,002
< 1 Alipe -i,,,) =22 MA
~  -0,003
-0,004 |
——PBS
——Dead
-0,0054 ——Live
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0 20 40 60 80 100 120

Time (s)

Fig. 4 (a) Amperometric response for biosensors in live and dead Sal/-
monella. The chronoamperogram of the inactive Salmonella biosensor
coincided with the PBS curve, providing zero difference; (b) Analyti-
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the device was <1 CFU/mL, indicating a good sensitivity of
the device, compared to biosensors assembled with the per-
oxidase enzyme with LOD 10 CFU/mL [21] and compared
to syringe actuation biosensors using nuclear membrane
filtration and nanozyme signal amplification, which despite
its simpler assembly obtained a LOD of 12 CFU/mL [51].
Similar behavior to this study was seen in a paper on a gold
nanocluster colorimetric aptasensor that was developed for
the detection of S. Thiphymurium in eggs and exhibited a
broad linear response in the concentration range of 10'~10°
CFU/mL with a detection limit as low as 1 CFU/mL [52].

Electrochemical impedance spectroscopy (EIS)
analysis

The manufacturing process of the electrochemical biosensor
was elucidated by EIS in [Fe(CN),]* /*" at 5.0 mM. After
assembling the biosensor with live Salmonella at a concen-
tration of 1 CFU/mL and with dead Salmonella, previously
pasteurized at 65°C for 30 min [53, 54]., the impedimetric
data for the two situations were collected and are shown in
Fig. 5. Figure 5a shows the Rct measurements for ant-Sal-
monella (Rct=10.4 KQ), Salmonella (Rct=61.7 KQ), and
the last step with ant-Salmonella-Cdot (Rct=20.5 KQ). As
the electrode surface was modified, the Rct did not increase
in an orderly fashion due to the non-conducting proper-
ties of these protein structures as well as the small size of
molecules in each assembly step, e.g., cysteamine [55, 56].
However, a trend is observed in which there is an increase in
resistance in Salmonella at low frequency and at the end of
the assembly in ant-Salmonella-Cdot, where the resistance
drops to 20.5 KQ, giving evidence that Cdot has semicon-
ductor properties. Various types of carbon (and quantum)

.(b)
-3 4
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| }
24
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cal curve for immunosensor assembled with Cdots-labeled antibody at
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Fig. 5 (a) The typical Nyquist diagram for the biosensor formation
steps; (b) Nyquist diagram for biosensors with live and dead Salmo-
nella with a Randles circuit, for live only, comprising the uncompen-

dots with semiconductor characteristics have become poten-
tial new platforms for application as fluorescent probes [57].
For this system, the earlier literature reported that the value
of quantum yield is directly related to charge transfer, as
high quantum yield offers greater resistance to charge trans-
fer because it has fewer electrons in the excited state to con-
tribute to conductivity [58].

Additionally, unlike cysteamine, the BSA immobili-
zation step (used as a blocking molecule for non-specific
antibody sites during biosensor assembly) caused a signifi-
cant increase in charge transfer resistance (curve not shown
- Ret=74.0 kQ). This high resistance to electrical conduc-
tivity is due to the lack of electrons available in the excited
state, and the protein forms a blocking barrier for the diffu-
sion process on the modified electrode surface [59]. Thus,
the protein layer is considered a porous insulating layer and
can work like a capacitive element. Furthermore, the high
protein adsorption density on the electrode surface leads to
a small interface area (Rs), so the solution resistance within
the protein layer interface is not negligible (Huang et al.,
2019).

Figure 5b shows that the resistance of the biosensor for
dead Salmonella (Rct=499.7 Q) gives a lower Rct value
than the live bacteria (Rct=13.4-20.5 K in Fig. 5b, which
gives the Nyquist diagram in the Randles circuit for the
biosensor assembled with live Salmonella). The dead Sal-
monella shows that the bond between the pathogen and the
antibody conjugated to Cdots is lost, thereby interrupting
the passage of electrons. This behavior allows the device
to avoid false-negative results that can be generated by the
PCR technique, where its detection mechanism by DNA
may cause a false-positive response even to dead bacte-
ria [60]. Therefore, the biosensor described in this work
becomes extremely important for applications in indus-
trial processes for checking food quality, as it would not
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sated electrolyte resistance (Rs), in series with the dielectric layer
capacitance (CPE), transfer resistance load (Rct) and Warburg imped-
ance (W), in circuit form

invalidate an entire batch of food materials because it dif-
ferentiates between living and dead microorganisms [61].

Given the mandatory absence of Salmonella in food
determined by health surveillance authorities, the biosen-
sor developed in this research presents itself as an excellent
alternative for rapid and accurate detection, allowing indus-
tries to quickly and safely make the food produced available
to consumer markets. Thinking about the industrial sector,
its use would bring benefits to food safety, quality control,
speed up delivery logistics and ultimately make the industry
more competitive in the food market.

Conclusions

Carbon dot technology represents an exciting new opportu-
nity for innovation involving biobased materials. This arti-
cle used antibodies labeled with Cdots from pequi almond
to build a biosensor designed for Salmonella detection. The
synthetic route to obtaining Cdots from pequi almonds was
simple and quick, with a process yield of 5%. The size of the
Cdots was 6.8 nm, compatible with the range determined
for materials of this nature, with a spherical appearance
and good dispersion. The quantum yield of 9% was satis-
factory when compared to other similar materials in litera-
ture. The immunosensor developed with pequi Cdots could
distinguish between different concentrations of live Sa/mo-
nella (p<0.05) if quantitative behavior for the pathogen
was assumed. The LOD calculated for this device was ten
times more sensitive relative to biosensors developed with
the peroxidase enzyme, which places the biosensor in this
work on the list of ultrasensitive devices. Another important
aspect is that this device distinguishes live and dead Sa/mo-
nella, and this is an advantage over other detection methods,
like PCR analysis. The developed device has features such
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as portability, ease of handling, fast response and accurate
results, demonstrating great potential for application in the
food production chain, from the field to the final product.
Consequently, consumers would benefit from healthy and
affordable products due to the shortening of production
time, thanks to the agility of the production process with the
use of biosensors as tools for monitoring food safety.
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