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Abstract: This article presents a methodology for the classification of electric faults in induction
motors through the treatment of search harmonic reference signals injected into the machine’s
power supply. The proposal is based on the observation by intelligent sistems of the electric
current signals of the motor, preprocessed by the FFT and with the analysis of the signature
components of the machine. However, the supply voltage signals are multiplexed with harmonic
reference signals inserted by the frequency converter module of the machine itself. In order to
improve accuracy in fault classification and diagnose degradation status, as well as to attest to
the functionality of the method, the practical data of the actual application of the system in
the laboratory are processed by different intelligent systems. In this aspect of generalization of
the proposal the results are validated by different algorithms whose performances are compared
between the following methods: k-nearest neighbors, Naive Bayes, Support Vector Machine,
Multilayer Perceptron and Decision tree.

Resumo: Este artigo apresenta uma metodologia para a classificação de falhas elétricas em
motores de indução através do tratamento de sinais harmônicos de referência de busca injetados
pela fonte de alimentação da máquina. A proposta baseia-se na observação por sistemas
inteligentes dos sinais de corrente elétrica do motor, pré-processados pela FFT e com a análise
das componentes de assinatura da máquina. Para tanto, os sinais de tensão de alimentação
são multiplexados com sinais de referência harmônica inseridos pelo próprio módulo inversor de
frequência da máquina. Buscando melhorar a precisão na classificação de falhas e diagnosticar
o estado de degradação, bem como atestar a funcionalidade do método, dados práticos da
aplicação real do sistema em laboratório são processados por sistemas inteligentes distintos.
Neste aspecto de generalização da proposta os resultados são validados por diferentes algoritmos
cujos desempenhos são comparados entre os seguintes métodos: k -vizinhos mais próximos, Naive
Bayes, Máquina de Vetor de Suporte, Perceptron multicamadas e Árvore de Decisão.
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1. INTRODUÇÃO

A hegemonia dos Motores de Indução (MI) na indústria
como a principal fonte de transformação de energia elétrica
em mecânica motriz é incontestável por diversos fatores,
entre eles robustez e baixo custo, como apresenta de Jesus
Romero-Troncoso (2017). Adjacentes a crescente aplicação
das técnicas avançadas de controle e o uso de inversores de
frequência encontra-se como resultado o seu uso em inú-
meras aplicações industriais, de acordo com Martin-Diaz
et al. (2017). Preceitos apontados por Bellini et al. (2008)
e Irfan et al. (2017), apontam que esta alta performance
exigida e a necessidade da garantida funcionalidade fazem
com que a maquinaria em geral necessite de modelos atu-
alizados e técnicas precisas de diagnóstico de falhas. Não
diferentes, os motores de indução estão sujeitos a falhas
elétricas e mecânicas e estas por suas vezes providas de
variadas origens como exemplificado na Figura 1, baseada
nos trabalhos de Irfan et al. (2015, 2017).

Figura 1. percentual de falhas em MI por origem

Várias técnicas têm sido pesquisadas e demonstradas para
a identificação e classificação de anomalias de operação
de forma preditiva, como demonstrado nos trabalhos de
Mabrouk and Zouzou (2015); Li et al. (2016), e Liu et al.
(2018). A escolha da técnica a ser empregada considera a
dinâmica do processo, a operação do equipamento, o tipo
de acionamento ou controle e os critérios adicionais direta-
mente relacionados às respostas dos métodos, Lakehal and
Ramdane (2017).

Desta forma, uma ferramenta com capacidade de resposta
diagnóstica de falhas de acordo com seu componente
de origem, como mostrado na 1, classificando as falhas
elétricas de estator que correspondem a 37% e de rotor com
10%, corresponde a uma ferramenta multi-classificadora de
falhas elétricas abrangendo 47% dos problemas de MI.

A diversidade de métodos diagnósticos pode ser vista
em Thomson and Fenger (2001) com as ferramentas de
processamento de sinais como a Transformada Rápida de
Fourier (FFT) aplicada em sinais de corrente elétrica,
ı́ndices de vibração e rúıdos acústicos. Considerando a
empregabilidade maior da Análise dos Sinais das Correntes
do estator do Motor (MCSA), as mudanças de padrões

de amplitude no espectro do sinal ou nos componentes
espectrais da FFT permitem caracterizar e acompanhar
a evolução das falhas espećıficas desde o seu ińıcio até
inoperância da máquina, Li et al. (2016); de Jesus Romero-
Troncoso (2017); Mata-Castrejón et al. (2015).

Pontos adicionais das particularidades da aplicação do
motor são tratados como dificuldades extras e intensifi-
cam a complexidade desta metodologia, uma vez que há
necessidade de estar definida a velocidade de operação
da máquina e estabelecida a frequência espećıfica a se
observar, além de necessidade de um processamento de
alta resolução dos sinais para um diagnóstico mais preciso,
como são afirmados em Saddam et al. (2017) e Martin-Diaz
et al. (2017). Ainda, em Bellini et al. (2008) fica evidenci-
ado que este método funciona corretamente quando o MI
está em estágio avançado de deterioração.

Dentre outras complexidades atribúıdas ao diagnóstico
correto por este método existe também a interferência
ou alteração das caracteŕısticas dos sinais por: variação
dos ńıveis de carga no eixo da máquina, Mabrouk and
Zouzou (2015); alternância de velocidade de operação,
Martin-Diaz et al. (2017); relação Sinal-Rúıdo, Singh et al.
(2015); indução de componentes de frequência próximos ao
componente fundamental com sobreposição de sinais ca-
racteŕısticos, Naha et al. (2016) e a modulação e distorção
dos sinais de alimentação pelos inversores de frequência
atuando no controle da máquina, Rajeswaran et al. (2018).

Buscando alternativas as complexidades já citadas diversas
ferramentas utilizam-se de Sistemas Inteligentes (SI) como
o agente classificador de padrões, como é tratado por Liu
et al. (2018) onde os seguintes algoritmos são mencionados:
k-NN, NB, SVM, ANN e DeepLearning. Essa referência
também mostra uma revisão bibliográfica dos algoritmos
de Inteligência Artificial com aplicações industriais, rela-
tando vantagens, limitações e implicações práticas de suas
implementações.

Tendo por enfoque contornar essas limitações este trabalho
apresenta uma estratégia para identificação e classificação
de falhas em MI baseada no processamento de dados com
análise espectral dos sinais de corrente da máquina, pro-
vidos de uma fonte de alimentação do sinal fundamental
multiplexado a uma série de Sinais Harmônicos de Refe-
rência de Busca (SHRB).

Este estudo propõe então o uso da injeção de SHRS
com ferramenta no desenvolvimento de um sistema para
detecção de falhas elétricas (rotor e estator), monitorando
as grandezas elétricas aplicadas a um MI. Uma técnica
multiplataforma que promove uma série de dados que
possam ser interpretados por vários SI para diagnosticar
as correntes amostradas no domı́nio da frequência.

Trabalhos correlatos como os de Cusido et al. (2006b)
eCusido et al. (2006a), propõem a injeção de um único
sinal de tensão adicional em uma única frequência distinta
à fundamental de alimentação do MI através de uma cone-
xão paralela de outro inversor de frequência modulador da
alimentação da máquina. Além disso, as referências men-
cionadas utilizam análise e comparação das amplitudes
dos sinais por meio da observação direta da resposta em
frequência e não por SI.
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A metodologia proposta neste trabalho coleta os sinais
das correntes do estator e observa, através de um sistema
inteligente, as FFTs dos sinais da máquina operando em
regime permanente. Sendo o sinal de tensão de alimentação
multiplexado com uma série de SHRS pelo mesmo módulo
inversor de frequência, independente da velocidade de ope-
ração do motor e da carga mecânica aplicada à máquina.

Resultados práticos dos sinais obtidos em laboratório são
apresentados a cinco classificadores de padrões inteligen-
tes, a saber: k-NN, NB, SVM, MLP e C4.5.

Este artigo está organizado da seguinte forma: A Seção 2
apresenta a metodologia proposta para injeção do SHRB.
A seção 3 descreve sumariamente as caracteŕısticas distin-
tas e padrões das falhas abordadas, bem como os sistemas
inteligentes e a ferramenta computacional utilizada para
sintonia e teste dos mesmos. Na Seção 4 os resultados ex-
perimentais de laboratório são apresentados e discutidos.
Finalizando, as conclusões deste estudo aparecem na Seção
5.

2. METODOLOGIA PARA INJEÇÃO DE SINAL DE
REFERÊNCIA E PRÉ-PROCESSAMENTO DE

DADOS

A proposta base da pesquisa e aumentar a capacidade de
interpretação dos sinais de alimentação do MI a fim de
identificar, por meio de classificadores inteligentes, falhas
elétricas incipientes nas máquinas. Isto com a inserção de
uma série de SHRB ao sinal de alimentação do motor,
modulado pelo próprio inversor de frequência do motor
em análise. Neste aspecto, para que os sinais não sofram
interferência da ação de controle em malha fechada, optou-
se por trabalhar com controle escalar do tipo V/F cons-
tante através de sinais de modulação por largura de pulso
(PWM).

Muitos métodos podem ser aplicados para os propósitos
deste controle, mas esta estratégia, em modo de malha
aberta, estabelece uma relação constante entre tensão e
frequência de alimentação do MI para garantir o fluxo
magnético máximo no entreferro. Mais especificamente o
algoritmo de modulação usado neste trabalho é baseado
no proposto por van der Broeck et al. (1988), que utiliza
a modulação por largura de pulso vetorial (SVPWM).

Assim, em uma primeira etapa, a tensão de alimentação
da máquina é multiplexada com os SHRB nas frequências
de referências proporcionais a velocidade de operação
desejada do MI. A Figura 2 mostra o esquemático utilizado
para essa injeção.

O sinal de alimentação fundamental é determinado pela
frequência de funcionamento ao qual opera a máquina.
Então, em sequência, são multiplexados um a um os
SHRB proporcionais a esta frequência de funcionamento.
A modulação ocorre no eixo de coordenadas α β, sendo
assim aplicada por igual às três fases da alimentação. As
harmônicas de ordem inteira são injetadas uma de cada vez
para que não sejam tratadas ou geradas sub-harmônicas na
rede com o aumento da complexidade de entendimento e
manipulação por processamento digital.

O intervalo de alcance do SHRB, de acordo com a velo-
cidade de operação do motor é composto de harmônicos

Figura 2. Estratégia de inserção de SHRB

de ordem inteira e ı́mpares, variando nas onze primeiras
frequências harmônicas de injeção. Assim sendo, como
sugerido por Likitjarernkul et al. (2017), do terceiro ao
vigésimo primeiro harmônico (3o ao 21o), onde o limite
inferior do intervalo é próximo da banda de frequências
conhecida para as falhas e o limite superior acima da região
de baixa inferência de outros harmônicos, como sua própria
frequência de comutação.

Os dados utilizados nesta abordagem são oriundos de
falhas elétricas recriadas no laboratório, fornecidas pelas
metodologias que inserem essas falhas de maneira con-
trolada. A bancada de teste é mostrada na Figura 3
onde um hardware dedicado em um kit DSP de Texas
Instruments R© modelo TMS320 C2000TM e processador
F28335 DelfinoTM com um software embarcado é usado
para a modulação aplicada pelo inversor de frequência
trifásico, modelo PS-3 Semikron SKS 80F, com potência
nominal de 22kW.

Figura 3. Bancada de Ensaios Laboratoriais

Esta bancada de testes, usada e descrita em maiores
detalhes nas pesquisas referentes aos trabalhos de Godoy
et al. (2016) e Bazan et al. (2017), monitora os sinais
de tensão, corrente, vibração, torque e velocidade de um
motor de indução trifásico conectado por acoplamento
mecânico a um gerador CC, que impõe torque sobre o
eixo do MI. A aquisição dos sinais é feita por uma placa
de aquisição modelo DAQ da National Instruments R©NI
USB-6221. A taxa de aquisição estabelecida em 30.000
pontos por segundo, com tempo de aquisição definido em 2
segundos com o motor operando em regime e não havendo
transitórios de carga ou de velocidade durante a aquisição.

DOI: 10.17648/sbai-2019-1113921753

http://dx.doi.org/10.17648/sbai-2019-111392


Com este aparato, além da inclusão de defeitos controlados
nos MI, é posśıvel emular as condições de funcionamento
dos motores com variação de conjugado de carga dentro
da faixa de 0,5Nm (torque mı́nimo da bancada, sem carga
adicional) até condições de excedente de torque. Porém,
nesta abordagem para o motor de 1 cv, 100% de torque
com 4Nm (carga nominal).

Ainda, além das condições de variação de carga, temos
as variações das condições de operação de velocidade
com ajuste do inversor modulando o sinal de alimentação
trifásica na frequência de 20Hz (baixa velocidade) a 60Hz
(velocidade nominal).

As frequências harmônicas de referência de busca foram
estabelecidas com amplitudes reduzidas de 10% do valor
da tensão de pico e em um intervalo curto de tempo,
estabelecido heuristicamente em 160 milissegundos. Esse
intervalo de tempo é condizente com um número de ciclos
da senoide modulada completo que permite a realização
da análise por FFT. Outrossim, este intervalo reduzido
tem por objetivo apenas observar a resposta da dinâmica
elétrica da máquina sem afetar a dinâmica mecânica.

2.1 Estruturação da Matriz de Dados

Toda a abordagem foi implementada em um modelo de
classificação off-line. Os dados são tratados e classificados
externamente em relação às frequências injetadas ou ao
controle do MI. Este procedimento divide-se em três fases
distintas e subsequentes como mostrado na Figura 4.

Figura 4. Etapas do processamento dos sinais

Uma vez que a primeira etapa, descrita anteriormente,
esteja realizada, as informações usadas pelo SI provenien-
tes de sinais senoidais das correntes elétricas dos motores
no domı́nio do tempo são lidas, gravados, transformados
em espectros de frequência por FTT e estruturados em
sequência de modo que possam ser utilizados por qualquer

algoritmo de SI. Esses procedimentos para importar e
processar os dados padronizam a implementação da aná-
lise que constituem a segunda etapa da proposta, e são
realizados usando o software MatLab R©.

A estruturação da matriz de dados é realizada pela com-
posição de vetores amostrais, onde a FFT dos sinais de
frequência fundamental mais a injeção de um sinal harmô-
nico são alocados em sequência uma das outras. Sendo
assim, o tipo de falha, grau de deterioração (severidade)
das falhas e condição de operação (velocidade e conjugado
de carga), constituem em uma sequência de frequências
injetadas que geram esse vetor.

Como caracteŕıstica de padronização, cada FFT de um
sinal senoidal acrescido do SHRB dá origem a um sub-
vetor de 1.300 pontos onde cada ponto é a amplitude em
uma frequência no espectro determinado de 1 Hz a 1.300
Hz. Os sub-vetores de uma mesma condição de operação
do MI (n referências harmônicas de busca) são organizados
em sequência, criando assim um único vetor amostral de
14.300 pontos, ou seja, com as 11 frequências harmônicas
injetadas nesta abordagem.

Finalizado o processamento de dados os sinais são apre-
sentados ao classificador inteligente independente que será
capaz de diagnosticar a falha classificando sua origem e
estado de degradação.

3. CLASSIFICADORES INTELIGENTES DE
PADRÕES DE FALHAS

A presença de falha nos MI produz mudança na interação
do fluxo entre o estator e o rotor, que resultam em distúr-
bios nas correntes do estator, tensões, campo magnético,
vibração da máquina, temperatura de operação, entre ou-
tros de Jesus Romero-Troncoso (2017).

Usando o MCSA como um método de tratamento de sinal
para composição de dados a serem analisados para identifi-
cação de falhas é posśıvel distinguir padrões presentes nos
sinais elétricos que caracterizam a especificidade de cada
falha, pois aparecem distorções em frequências diferentes
da frequência fundamental da máquina.

Matematicamente é posśıvel estabelecer por meio das
equações descritas a seguir uma série de frequências
harmônicas de falta que se evidenciam devido a barras
quebradas do rotor 1 e as falhas de curto-circuito no estator
2.

fbrb = ffun

[
k

(
1 − s

p

)
± s

]
(1)

fst = ffun

[
n

p
(1 − s) ± k

]
(2)

O resultado do equacionamento determina essa série de
frequências harmônicas proporcionalmente ao valor da
ordem k, baseados na frequência da operação da máquina
(ffun), no escorregamento (s) e no número de polos do
estator (p). Onde k é um número de ordem inteira e ajusta
as bandas laterais que são igualmente propagadas a partir
da frequência fundamental.
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O uso destas técnicas ou suas combinações podem identifi-
car tanto falhas de origem mecânica quanto falhas de ori-
gem elétrica. Entretanto, a precisão do método é baseada
no conhecimento prévio de diversas informações dinâmicas
do MI, tais como frequência de funcionamento, velocidade
de operação, escorregamento, número de polos, tamanho
e caracteŕısticas espećıficas dos rolamentos, entre outros
para que se saiba a qual frequência caracteŕıstica deve-se
observar de Jesus Romero-Troncoso (2017).

Outras dificuldades com metodologias tradicionais são vis-
tas no trabalho de Martin-Diaz et al. (2017) onde são
relatados os desafios de detectar falhas incipientes do rotor
usando o sinal de corrente do estator sob diferentes fontes
de inversor. Este estudo detecta rupturas incipientes da
barra do rotor em um motor de indução trifásico alimen-
tado pelo inversor sob diferentes condições de carga usando
a técnica de alta resolução conhecida como classificação de
múltiplos sinais (MUSIC).

Assim, a junção das técnicas de extração de caracteŕısticas
por observação das respostas fornecidas pelo MCSA e a
análise dos dados por meio de classificação com sistemas
inteligentes têm se mostrado eficaz conforme observado em
Liu et al. (2018) que apresenta uma revisão bibliográfica
dos trabalhos recentes com aplicação industrial das ferra-
mentas inteligentes no método diagnóstico. O SI é capaz
de perceber as anormalidades, generalizando resultados
e com uma capacidade bem maior de processamento de
informações do que a observação pontual de frequências
distintas.

Um reconhecimento inteligente de falhas consiste em uma
descoberta automática de padrões de distúrbios nos sinais
amostrados por meio de algoritmos computacionais dedu-
tivos, podendo ter sua operação supervisionada ou não
Lawrynowicz (2014). Os algoritmos supervisionados usam
um conjunto de sinais conhecidos para treinamento e clas-
sifica os padrões em análise de acordo com as categorias já
estabelecidas. Para o reconhecimento não supervisionado
dos sinais em análise é criado o conjunto de treinamento e
definidos padrões novos de estratégias, em vez de separar
os dados de acordo com categorias pré-existentes Haykin
(2011).

3.1 Sistemas Inteligentes

Dos métodos de aquisição dos dados, os não invasivos ge-
ralmente utilizam-se de aquisição e pré-processamento de
sinais. No entanto, ferramentas baseadas nessa sistemática
aumentam a quantidade de informações para análise. Por
isso, as técnicas de diagnóstico mais recentes costumam
ter etapas de cálculo e de seleção de recursos ou redução
de dimensionalidade, para então passar ao estágio de clas-
sificação por SI Attoui et al. (2017).

Portanto, para demonstrar uma generalização do método
de injeção de sinais harmônicos de referência, proposto
neste trabalho, são utilizados cinco métodos diferentes de
classificação de padrões com aprendizado supervisionado,
entre eles k-NN, NB, SVM, MLP e C4.5.

3.2 Ferramenta Computacional para Sistemas Inteligentes

Uma vez que o objetivo desta pesquisa seja a inserção de
SHRB para auxiliar na classificação de falhas por sistemas

inteligentes, foi utilizado o software Waikato Environment
for Knowledge Analysis (WEKA) como um compêndio
de algoritmos de inteligência computacional. Baseado na
linguagem JAVA, o software reúne algoritmos de diferentes
abordagens dedicadas ao estudo de aprendizado de má-
quina, análise e estat́ıstica; e através de data mining gera
hipóteses de solução Hall et al. (2009).

Este software gera as estruturas do algoritmo inteligentes
de forma autônoma, mas algumas caracteŕısticas foram
configuradas conforme descrito na Tabela 1.

Tabela 1. Ajuste de Parâmetros por SI no
WEKA

SI Parâmetro Ajuste

k-NN Nr Neighborhoods 1

MLP Hidden layers 20-15-5
Learning 0.03

Para as abordagens com os algoritmos NB, SVM e C4.5,
foram utilizadas as configurações padrões do software, não
sendo ajustado nenhum parâmetro.

A utilização do software compreende a terceira etapa do
processo de classificação, pegando os dados já estruturados
em matrizes distintas para cada tipo de falha e estado
de degradação. Sendo que cada vetor das matrizes corres-
ponde a junção para todos os harmônicos injetados e uma
determinada condição de operação de velocidade e carga
do MI.

4. RESULTADOS EXPERIMENTAIS

Vendo a aplicação prática de uma ferramenta capaz de
detectar 47% das falhas de IM, buscou-se a realidade da
indústria, recriando duas condições distintas de falha elé-
trica. Também sendo abordada a gravidade das falhas com
a inclusão de dados de teste em duas condições diferentes
da mesma falha, conforme apresentado na Tabela 2.

Tabela 2. Amostras do banco de dados

Classe Local Descrição Amostras

a sem falhas 240

b Rotor 2 barras quebradas (consecutivas) 120

c Rotor 4 barras quebradas (2 e 2) 120

d Estator curto-circuito - 3% da bobina 120

e Estator curto-circuito - 5% da bobina 120

Portanto, todas as abordagens de SI trabalharam com a
classificação em cinco classes diferentes de um universo de
dados com 720 amostras. Cada um dos cinco classificadores
inteligentes usa o mesmo banco de dados e não executa
nenhuma pré-classificação de falha ou nenhuma análise
antes de determinar a degradação. Quando o algoritmo
aponta a presença de anomalia, já estará determinando o
tipo de falha e sua severidade.

4.1 Comparativo entre algoritmos SI

A descrição dos resultados e apresentada na Tabela 3
onde se comparam os melhores percentuais de classificação
assertiva de cada classificador inteligente.

As cinco propostas de algoritmos inteligentes resultaram
na classificação com acertos superior a 93%, sendo que
estes percentuais de acerto se baseiam na classificação das
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Tabela 3. Comparativo de Resultados

SI PMC k-NN SVM C4.5 NB

Nr Classes 5 5 5 5 5
Nr Amostras 720 720 720 720 720
Class. Incorreta 37 0 0 64 28
Class. Correta 683 720 720 656 692
Acurácia (%) 94,86 100 100 91,11 96,11
EQM 0,125 0,003 0,002 0,175 0,123
EMA 0,052 0,002 0,001 0,040 0,015
kappa 0,939 1 1 0,885 0,950

EQM- Erro Quadrático Médio

EMA- Erro Médio Absoluto

instâncias em 5 classes distintas que são separadas tanto
em tipo de falha como em severidade de falha.

O coeficiente kappa, que aponta a relação entre o valor ver-
dadeiro e o valor estimado para a sáıda do classificador não
apresenta grande divergência nos resultados, mostrando
que os valores de sáıda dos classificadores, mesmo quando
imprecisos, estão próximos aos valores verdadeiros, mesmo
nas abordagens em que o ı́ndice difere de 1.

Observando os resultados pelos valores dos erros médios de
previsão de modelo em unidades da variável de interesse,
temos que todas as métricas são tratadas indiferentes
em relação à direção dos erros, ou seja, são pontuadas
e orientadas negativamente, o que significa que valores
mais baixos são melhores. Sobre esta perspectiva, o ı́ndice
EMA mostra que o algoritmo NB se destaca entre os pares
que não atingem 100% de classificação. Isso representa
que para este algoritmo há uma distribuição mais coesa
entre os valores classificados referenciados nos padrões
apresentados.

Ao observar os resultados pela métrica EQM, em que os
erros são elevados ao quadrado antes da média, tem-se que
o cálculo potencializa os erros absolutos de cada amostra.
Este ı́ndice similar a variância significa que mesmo onde
o EMA é mais baixo e o EQM percentual pode ter
valores consideráveis à medida que a variância associada à
distribuição de frequência das magnitudes de erro também
aumenta.

Assim, ao observar as abordagens em questão, salienta-
se que o ı́ndice baixo de 0,119 para o RMSE do algo-
ritmo PMC está próximo ao valor 0,123 do algoritmo
NB, consolidando uma diferença de apenas 0,004 pontos
percentuais, mesmo com as divergências em seus valores
de EMA em mais de 4 vezes, demonstrando-se que em
ambas as propostas não são encontrados erros de valores
acentuados.

Quando observados estes ı́ndices para os classificadores k-
nn e SVM nota-se uma concordância interessante, pois
tem-se 0,002 atribúıdo ao k-nn e 0,001 ao SVM como valor
do EMA. Este ı́ndice define uma média de erros absolutos
quase nula mas com superioridade ao SVM.

Estas métricas aqui descritas também podem ser indica-
dores de qual é a melhor abordagem classificadora, mesmo
se comparando algoritmos que atingem 100% de acerto.

Colocadas lado a lado, elas representam a precisão em
respostas mais justas e concisas e pode demonstrar a ten-
dência do SI a generalizar e interpretar valores. Isto posto,
mostra uma ligeira vantagem do classificador PMC em

relação aos classificadores C4.5 e NB. Mesmo com a maior
média dos erros absolutos (EMA = 0,063), tem a maior
taxa de acerto e menor ı́ndice EQM das propostas que não
atingiram classificação de 100%. Enfatizando ainda que o
EQM = 0,119 é menor em 0,04 pontos percentuais ao EQM
= 0,159 do algoritmo C4.5, garantindo que suas respostas
não apresentem erros com diferenças grandes dos valores
objetivos.

4.2 Classificador Simples

Aprofundando mais a análise de desempenho das propos-
tas foi realizada, nos algoritmos que não obtiveram 100%
de acerto, a observação dos resultados como um classifica-
dor simples. Utilizando-se dos mesmos resultados obtidos
anteriormente é posśıvel obter o diagnóstico apenas da
presença ou não de falha, ignorando o erro entre classes
de falhas ou do grau de severidade da falha. Desta forma
foi estruturada a Tabela 4.

Tabela 4. Índices para Classificação Simples

Algoritmo PMC C4.5 NB

Verdadeiros Positivos (VP) 476 451 470
Falsos Positivos (FP) 1 29 18
Verdadeiros Negativos (VN) 239 213 222
Falsos Negativos (FN) 4 29 10
Acurácia (%) 99, 30% 91, 84% 96, 11%

A abordagem PMC se destaca novamente, uma vez apre-
sentou apenas 01 falso positivo e 04 falsos negativos, ele-
vando seu ńıvel de acerto para 99, 30%. Isto corresponde
ao percentual classificando de forma direta a presença de
falha. Enquanto o NB permanece com a taxa de 96,11% e
o C4.5 tem um pequeno ganho de cerca de 0,7%.

Assim, este aspecto operacional permite que esta abor-
dagem ofereça uma ferramenta alternativa com 4 dos al-
goritmos inteligentes capazes de detectar a presença de
falhas elétricas em MI com acerto superior a 95%. E
destes classificadores a classificação em origem da falha
e severidade da mesma em mais de 90%.

4.3 Análise por ZeroR

Uma alternativa na análise de desempenho dos SI classifi-
cadores de padrões baseia-se na contraposição com o mé-
todo de classificação ZeroR. Esse método de classificação
simplista prevê a classe majoritária do problema e descon-
sidera os preditores. Embora não tenha a capacidade de
previsibilidade, o algoritmo ZeroR é útil para determinar
o desempenho de referência servindo de ı́ndice comparativo
para os outros métodos de classificação Hall et al. (2009).

Em uma observação mais detalhada, o gráfico apresentado
na Figura 5, demonstra o ganho percentual de cada abor-
dagem de SI em relação ao valor de ZeroR, tanto para clas-
sificação simples como para classificação em severidade.

Estas considerações de análise, além de tudo, mostram
que os algoritmos propostos não são tendenciosos e não
encontram-se saturados de informação ou com baixa ca-
pacidade de generalização ou classificação.
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Figura 5. Comparativo percentual de desempenho ZeroR

5. CONCLUSÃO

Este trabalho apresentou um método alternativo aos con-
vencionais para detecção de dois tipos de falhas elétricas
em motores de indução trifásicos alimentados por meio
de moduladores de tensão como inversores de frequência,
observando e manipulando para tal as grandezas de tensão
e corrente elétrica. Estes sinais foram tratados no domı́nio
da frequência sob a ótica da análise da FFT como resposta
da interações da máquina a sinais harmônicos de referên-
cias injetados juntamente com a alimentação.

Toda a abordagem foi implementada e utilizada em um
modelo de classificação off-line, pois os dados coletados
foram tratados, estruturados e classificados externamente
aos módulos inversores de frequência e controle da má-
quina. Mas, em simples adequação, o algoritmo de controle
pode conter as rotinas de averiguação e varredura para pro-
cessamento e classificação das falhas em uma abordagem
on-line ao sistema.

A avaliação das correntes estatóricas, com as frequências
harmônicas de referências injetadas na alimentação dos
motores mostra-se capaz de evidenciar a existência de
falhas elétricas. Em uma visão mais espećıfica do problema
busca-se a melhoria dos métodos de aquisição e especifi-
cação da falha com a evolução do algoritmo, embasado na
maior capacidade de informações apresentada para proces-
samento.

As matrizes de entradas são compostas de sinais com
injeção de frequências harmônicas de referências escolhidas
de forma heuŕıstica e em sequência harmônica ı́mpar de
ordem inteira, sendo o intervalo selecionado para este
trabalho compreendido por 11 sinais harmônicos entre a
frequência fundamental de funcionamento, iniciando na 3a

até a 21a frequência harmônica.

Com isso, os sub-vetores amostrais no espectro da frequên-
cia, determinado de 1Hz a 1.300Hz nas FFTs, contem-
plam a faixa de frequência conhecida para a identificação
das falhas e permanecem dentro da faixa de frequência con-
siderada de baixa inferência de outras harmônicas, como
as do próprio chaveamento do inversor.

Os resultados práticos para os testes, com simulação con-
trolada das falhas elétricas de quebra de barras de rotor
e curto-circuito em bobina do estator, mostraram a capa-
cidade que a técnica de inserção de sinais harmônicos de
referência de busca tem ao ser empregada como ferramenta
no diagnóstico dos motores de indução trifásicos. Isto

porque todas as abordagens de classificadores inteligentes
encontram sintonia satisfatória junto ao software WEKA
e resultados de classificação condizentes.

As cinco propostas resultaram na classificação com acertos
de 93% à 100%, sendo que estes percentuais de acerto
se baseiam na classificação das instâncias em 5 classes
distintas que são separadas tanto em tipo de falha como
em intensidade de degradação. Destaca-se ainda que destas
cinco abordagens, duas retornaram valor de classificação
em 100% com um erro quadrático médio praticamente
nulo.

Ainda, foi proposto uma análise correlata utilizando-se das
mesmas respostas obtidas dos classificadores mas objeti-
vando a classificação simples da presença ou não de falha.
Nesta condição pôde-se atribuir o acerto superior a 99%
também ao SI tipo PMC e acréscimo na taxa de acerto do
classificador C4.5.

É posśıvel observar que mediante a modulação e inserção
de sinais harmônicos de referência de busca, bem como o
pré-processamento de dados antes da submissão ao sistema
inteligente, é alcançada uma abordagem mais simplificada
de multiclassificação de falhas sem a necessidade de utiliza-
ção de multi-agentes ou subclassificações sequenciais com
redes em cascata.

Desta forma, a análise de falhas pelo método de inserção
de SHRB e o processamento dos sinais empregados para
as análises mostraram a versatilidade do método, uma
vez que são obtidas respostas condizentes e satisfatórias
para a classificação de falhas, salvo especificidades de
cada abordagem de SI. Isso implica uma metodologia
generalista que pode ser empregada adjacente a outras
técnicas de classificação inteligente de falhas que não foram
abordadas neste trabalho.
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