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Abstract. A group G has the Ro-property if the number R(¢) of twisted conjugacy
classes is infinite for any automorphism ¢ of G. For such a group G, the Rxo-nilpotency
degree is the least integer ¢ such that G/y.+1(G) still has the Roo-property. In this paper,
we determine the Ro-nilpotency degree of all Baumslag—Solitar groups.

1 Introduction

Any endomorphism ¢ of a group G determines an equivalence relation on G by
setting x ~ y < there exists z € G : x = zy(z)~!. The equivalence classes of
this relation are called Reidemeister classes or twisted conjugacy classes, and their
number is denoted by R(¢). We are most interested in this number when ¢ is an
automorphism.

For information on the development, historical aspects and the relation of this
concept with other topics in mathematics such as fixed-point theory, we refer the
reader to the introduction of [3] and its references. An important concept in this
context is that of groups having the Roo-property.

Definition 1.1. A group G is said to have the R-property if, for every automor-
phism ¢: G — G, the number R(¢) is infinite.

A central problem is to decide which groups have the Roo-property. The study
of this problem has been a quite active research topic in recent years. Several
families of groups have been studied by many authors. A non-exhaustive list of
references is [1-9,13,15,17].

Of particular interest for this paper is the fact that, in [5], it was proved that the
Baumslag—Solitar groups BS(m, n) have the R o-property except form =n =1
(or m = n = —1, which is the same group). Recently, in [3], motivated by the

K. Dekimpe is supported by long term structural funding — Methusalem grant of the Flemish Govern-
ment. D. L. Gongalves is partially supported by Projeto Tematico Topologia Algébrica, Geométrica
e Diferencial FAPESP no. 2016/24707-4.



546 K. Dekimpe and D. Lima Gongalves

results of [1], new examples of groups which have the R,-property were obtained
by looking at quotients of a group which has the Ro-property by the terms of the
lower central series as well the derived central series. So it is natural to ask the
same question for the groups BS(m, n).

Related to this approach, we introduced in [3] the following notion.

Definition 1.2. Let G be a group. The R-nilpotency degree of a group G is the
least integer ¢ such that G/y.+1(G) has the Roo-property. If no such integer exists,
then we say that G has Rxo-nilpotency degree infinite.

In this work, we determine the Ro-nilpotency degree for all the Baumslag—
Solitar groups BS(m, n). The main results of this work are the following two the-
orems.

Theorem 4.5. Let m,n be integers with 0 < m < |n| and gcd(m,n) = 1. Let p
denote the largest integer such that 2P | 2m + 2. Then the Rso-nilpotency degree r
of BS(m, n) is given by the following conditions.

e Ifn<0andn # —1, thenr = 2.

e I[fn=—1(som = 1), thenr = oc.

e I[fn=m(son=m = 1), thenr = oc.

e Ifn—m =1, thenr = oo.

e Iffn—m =2, thenr = p + 2.

e Ifn—m >3, thenr = 2.

Theorem 5.4. Let 0 < m < |n|withm # n, and take d = gcd(m,n). Let p denote

the largest integer such that 27 | 2% + 2. Then the Rso-nilpotency degree r of
BS(m, n) is given by the following conditions.

e Ifn <0andn # —m, thenr = 2.
e Ifn = —m, thenr = oc.

e Ifn = m, then r = o0.

e Ifn—m =d, thenr = oc.

e Ifn—m=2d,then2 <r <p+2.
e Ifn—m>3d, thenr = 2.
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At this point, we would also like to mention one interesting family of groups
which naturally extends the class of Baumslag—Solitar groups, namely the family
of GBS groups, the generalized Baumslag—Solitar groups. In [14], the following
strong result about the Reidemeister number of a homomorphism of such groups
is proved.

Proposition ([14, Proposition 2.7]). Let «: G — G be an endomorphism of a non-
elementary GBS group. If one of the following conditions holds, then R(x) is
infinite.

(1) « is surjective.
(2) « is injective, and G is not unimodular.
(3) G = BS(m,n) with |m| # |n|, and the image of «a is not cyclic.

Recently, other families of groups, which also naturally extend the class of
Baumslag—Solitar groups, were considered. One generalization goes as follows.
The class of GBS groups coincides with the class of fundamental groups of graphs
all of whose vertex and edge groups are infinite cyclic. So one can generalize this
to the class of fundamental groups of graphs where the vertex and edge groups are
virtually infinite cyclic. In [11], it was shown by Taback and Wong that any group
which is quasi-isometric to a group in this family has the Ro-property.

Another family was considered by Taback and Whyte in [10], generalizing
the solvable Baumslag—Solitar groups BS(1,#) to another class of groups that
are also solvable. These are split extensions fitting into a short exact sequence
1 —> Z[rll] — I' - Z¥ — 1. For this second family, Taback and Wong showed
in [12] that any group quasi-isometric to one of these group has the R,-property.

As a generalization of the results of this paper, it would be natural to study the
Rso-nilpotency degree for the families of groups above.

This work is divided into three sections besides the introduction. In Section 2,
we provide some preliminary results about the description of the terms of the
lower central series and the corresponding quotients of BS(m, n) when the integers
(m,n) are coprime. In Section 3, we construct certain specific nilpotent groups in
a format which is convenient for our study. Then we identify these groups with
the ones that we want to study, namely the quotients BS(m, n)/yc+1(BS(m, n)).
In Section 4, we then show the main result for the BS(m, n) groups, where m and n
are coprime. Finally, in Section 5, we provide a proof for the remaining cases.

2 Baumslag-Solitar groups

Let BS(m,n) = {a,b | a='b™a = b™) for m,n integers. It suffices to consider
1 < m < |n|. We will use the notation [x, y] = x " 1y~lxy.
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Lemma 2.1. Considerc}i Baumslag—Solitar group BS(m, n). For all positive inte-
gers k, we have b™"—" ¢ Vi+1 (BS(m, n)).

Proof. Since a~'b™™a = b™", we have b " = [a, b™] € y»(BS(m,n)), which
proves the lemma for k = 1. .
Now, we assume that k > 1 and that """ € y; 1 (BS(m, n)). Then we find

b= ¢y (BS(m.n))
— g 1pmm=n)  gpmm=n) o\ (BS(m, n))
= (a"'b"a) T ey (BS(m. )
— pnln=m)f pmm=n)t _ pn=m T, (BS(m,n)),
which proves the lemma, by induction. |

As we will be dealing with nilpotent quotients of the Baumslag—Solitar groups,
we introduce the notation

BS(m,n)
Ye+1(BS(m,n))’

For a nilpotent group N, we use TN to indicate its torsion subgroup.

BS.(m,n) =

Lemma 2.2. Let m # n. For all positive integers c, the nilpotent group BS.(m, n)
has Hirsch length 1, and if we denote by b the natural projection of b in BS.(m, n),
we have tBS.(m,n) = (b, y2(BS¢(m, n))).

Proof. We first consider the case ¢ = 1. Note that
BS1(m,n) = {(a,b|[a,bl=1, """ =1) = Z & Zjm—p-

So tBS{(m,n) = (b).
Now, let ¢ > 1. From the case ¢ = 1, it follows that

tBS¢(m,n) C (b, y2(BSc(m,n))),

and hence it suffices to show that y»(BS.(m, n)) is a torsion group. To obtain this
result, we prove by induction on i > 2 that

Vi(BSc(m,n))/yi+1(BSc(m,n)) = yi(BS(m,n))/yi+1(BS(m,n))

is finite.
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The group y2(BS(m, n))/y3(BS(m, n)) is generated by [a, b]y3(BS(m,n)). By
the previous lemma, we know that 5™~" € y,(BS(m, n)), using this we find

[a, b]" " y3(BS(m, n)) = [a.b™ "]y3(BS(m.n)) = 1y3(BS(m.n)),
and so [a, b]y3(BS(m,n)) is of finite order (< |m — n|) in

y2(BS(m.n))/y3(BS(m.n)).

Now, assume that y; (BS(m,n))/yi+1(BS(m,n)) is finite. The group

Vi+1(BS(m.n))/yi+2(BS(m,n))

is generated by all elements of the form [x, y]y;+2(BS(m,n)) for x € BS(m, n)
and y € y;(BS(m,n)). By our assumption, there is some k > 0 such that we have
yk € Yi+1(BS(m,n)). As before, it then follows that

[x, Y1¥yi42(BS(m, n)) = [x, y*1yi 12(BS(m, n)) = 1yi12(BS(m, n)),

from which we deduce that y; 1 (BS(m,n))/yi+2(BS(m, n)) is finite.
The fact that BS. (m, n) has Hirsch length 1 follows from the fact that

BSc(m,n)/y2(BS¢(m,n)) = BSy(m,n)
has Hirsch length 1 and y,(BS¢ (12, 1)) has Hirsch length 0. |

In this paper, the situation where ged(m,n) = 1 will play a rather crucial role.
For these groups, the structure of BS.(m, n) is easier to understand than in the
general case. For example, we have the following lemma.

Lemma 2.3. Suppose that ged(m, n 2 = land m # n. For any ¢ > 1 and k > 1,
we have yi (BS¢(m, n)) = (b= ) Again, b denotes the projection of b in
BS.(m,n).

Proof. For sake of simplicity, we will write I'; instead of y; (BSC (m,n)) in the rest
of this proof. We will prove by induction on k > 2 that H("~ mt! 'y 41 generates
U/ Th1- .

For k = 2, we have that [a, b]T'3 generates I'/ '3, and from Lemma 2.1, we
know that [@, 5] € I's; hence the order of [a,b]T'3 in I'»/ T3 is a divisor of
m —n. As ged(m,n) = 1, also ged(m,m —n) = 1, and therefore also [a, b]™T'3
is a generator of T’/ T'3. Now, [@, b]" '3 = [a, b™]T's = b T3, from which we
find that " T3 generates I'»/ I's.
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Now, we assume that k > 2 and that I'y_;/ g is generafd2 by plm—ny—2 Iy.
The next quotient Iy / Ty is then generated by [@, 5" " "I’y ;. Again, by
Lemma 2.1, we have

[d?b_(m_n)k_z]m_nrk-l,—] — [d75(m—n)k—l]rk+l _ 1Fk+1,
and so the order of the generator [a, B(m_”)k_z]FkH divides m — n. As before, it
follows that also [a, b(m—"" 1"k 41 generates 'y / k1. InBS(m, n), we have
[a, bk’”] = pk(m=n) which we now use to obtain

)k—2 )k—2

(@, b= Yy = (@ b Ty = b T

which finishes the proof. m|

Corollary 2.4. Suppose that gcd(m,n) = 1 and m # n. Then, for all ¢ > 1, we
have tBS.(m,n) = (b).

3 Some nilpotent quotients of Baumslag—Solitar groups

For the rest of this section, we assume that m # n. For any positive integer c,
we will construct a nilpotent group G.(m,n) of class < ¢ which can be seen as
a quotient of BS(m, n). To construct this group, we fix m, n and ¢ and consider
the morphism ¢: Z¢ — Z°, which is represented by the matrix

n—m 0 0 0 0
—-m n—m 0 0 0
0 —-m n—m 0 0
. 3.1)
0 0 0 n—m 0
0 0 0 -m n—-m

Here we use the convention that elements of Z¢ are written as columns, so also in
the matrix above, the image of the i-th standard generator of Z¢ is given by the
i -th column of that matrix. We now consider the abelian group

c

Ac(m,n) = Img’

So A.(m,n) is a finite group of order |n — m|°.
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We consider also the morphism ¥: Z¢ — Z°, which is represented by

1 00 -~ 00
0O --- 00
o111 - 00
M =
000 - 10
000 - 1

We have ¢ = Y ¢, and therefore i induces an automorphism of A, (m, n), which
we will also denote by the symbol .

Now, we are ready to define the group G.(m,n), which is given as a semi-
direct product G.(m,n) = Ac(m,n) x (t), where (t) is the infinite cyclic group
and where the semi-direct product structure is given by the requirement that, for
alla € Ac(m,n), we have t “lat = ¥ (a).

For any z € Z¢,letZ = z 4+ Im ¢ denote its natural projection in A (m, n). We
use ej,ez,...,e. to denote the standard generators of Z€, so e; is the column
vector having a 1 on the i-th spot and 0’s on all other positions. Obviously, we
have that ey, ez, ..., ec generate A.(m,n). For sake of simplicity, sometimes, we
will write G instead of G, (m,n).

Remark. It is easy to see that from the fact that

1

e =t"terrer!, =171 !

extey

follows
yz(G) g (57%7 e 75)

y3(G) C (e3,eq,....¢c)

Ye(G) C (ec)
Ye+1(G) = 1.

Hence G.(m,n) is nilpotent of class < c.

Lemma 3.1. There is a surjective morphism of groups f:BS(n,m) — G.(m,n)
which is determined by f(a) =t and f(b) = ej.

Proof. In order for f to be a morphism, we need to check that f preserves the
defining relation of BS(n,m), that is, the relation t~'e7™¢ = e;" should hold.
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This follows from the computation
—1— — —_— — JR— — I — ] —] —_—n ;N J—
et =ye™) =er"e” =er" (1" "e") =er"p(—e1) =er".

To prove that f is a surjective map, it is enough to show that ej and ¢ generate

G.(m,n). This follows from the fact that

1 1 1

e =tlteirer !, e=t"lere !, ... o

As G.(m,n) is nilpotent of class < ¢, f induces a surjective morphism

B BS(m,n)
BS.(m,n) = —yc_H(BS(m,n)) — G¢(m,n).

For G.(m,n), we have tG = A, and so [tG,tG] = 1.

Proposition 3.2. The morphism f:BS(m,n) — G.(m,n) induces an isomorphism

BS.(m,n)

o [tBS¢(m,n), tBS.(m, n)] — G¢(m,n).

Proof. As already explained, f induces a morphism v:BS.(m,n) — G¢(m,n).
Of course, v(tBS.(m,n)) € tG, and so

v[tBS.(m,n), tBS.(m,n)] C [tG,tG] = 1.

Therefore, there is an induced morphism

BS.(m,n)

W [tBSc(m,n), tBS.(m,n)] — G¢(m,n).

As f is surjective, we know that u is surjective too. In Lemma 2.2, we showed
that BS¢ (m, n) has Hirsch length 1. Then also the quotient

BS.(m,n)/[tBS¢(m,n), tBS.(m,n)]

has Hirsch length 1 since we take the quotient by a finite subgroup. As also, by
construction, G.(m, n) has Hirsch length 1 and p is surjective, we must have that
the kernel of w has Hirsch length 0, i.e., the kernel of p has to be finite. For sake
of simplicity, we introduce the notation

. BS.(m,n)

B [TBSC (mv n)7 TBSC (mv n)] .
We already know, by Lemma 2.2, that tH is generated by b and y2(H). (Here
b denotes the image of b in H.) As p is surjective and has finite kernel (so

Ker(u) € tH), we know that u(tH) = tG.(m,n). Therefore, in order to prove
that u is injective, it is enough to show that #t H < #tG.(m,n) = |m — n|°.
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To be able to find a bound on #t H, we look at the quotients y; (H)/yi+1(H).
« v2(H)/y3(H) is generated by [a, b]ys(H).

* Then y3(H)/y4(H) is generated by [a, [a, bllys(H) and [b, [a,b]]ys(H).In H,
however, we have [b, [a,b]] = 1 (since we divide out [tBS¢(m,n), TBS. (m,n)]).
So y3(H)/y4(H) is generated by [a, [a, b]]y4(H).

 Continuing by induction, we find that y; (H)/y;+1(H) is a cyclic group gener-
ated by
[@.[a.[a,....[a b]lyis1(H) (withi — 1 times a).

We already know that #7 H /y»(H) = |m — n| (5o 8™ " y,(H) = ly2(H); see the
proof of Lemma 2.2). Let ¢y = b, and fori > 1, welete; = [a, [a.[a, ..., [a.b]]]]
(withi — 1 times a). Then y; (H)/y;+1(H) is generated by ¢; y;i+1(H) fori > 1,
and t(H)/y2(H) is generated by c1y2(H).

We now show by induction on i that ¢;*"y;+1(H) = ly;4+1(H) and hence
#yi(H)/yi+1(H) < |m —n|. We already obtained the case i = 1. Now, assume
the result holds for ¢;_q (with i > 1). Then ¢; = [a, ¢;—1], and we have

" Myipi(H) = [a, i) "viv1(H) = [a, /" "lyiv1(H) = lyi1(H).

As a conclusion, we find that

H () ve()

HH) =4 ) T e =

|m —n|¢ = #1G.(m,n).

We can conclude that p is injective (and hence an isomorphism). o

Corollary 3.3. If gcd(m,n) = 1, the morphism f:BS(m,n) — G.(m,n) induces
an isomorphism BS.(m,n) = G.(m,n).

Proof. 1t follows from Corollary 2.4 that, in this case,

[tBS¢(m,n), tBS.(m,n)] = 1. ]

4 The case where ged(m,n) =1

In the next lemma, we will make use of Smith normal form, details about which
can be found e.g. in [16]. We remind the reader that Smith normal form is a useful
tool in dealing with quotients of free modules (over PIDs).
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Lemma 4.1. Let a, b € Z with gcd(a, b) = 1. Then the Smith normal form of the
n X n-matrix

a 000 0 0
100 0 0
b a 0 0 0 0
010 0 0
0 b a0 0 0
001 -0 0
A4, =0 0 b a 0 0 is
000 1
000 a 0
000 0 a”
0000 - b a

Proof. We will prove a slightly more general version of this lemma and consider
for any positive integer k the matrix A, (k), which is the same matrix as A4,, except
that the first entry of A, (k) (so on the first row and the first column) is ak instead
of a. So A, = A, (1). We will now show, by induction on , that the Smith normal
form of A, (k) is

0 0 0
0 1 0 0
1 0

0 an—l-i-k

When n = 1, there is nothing to show, so we assume thatn > 1. As ged(a, b) = 1,
there exist integers «, B € Z such that «a® + b = 1. Now, consider

P = (_“b fk) €GL(2,Z) and O = ((1) _?’3) e GL(2, 7).

It is now easy to compute that (with /,,—5 the (n — 2) x (n — 2) identity matrix)

(o)) 6 i)
0 In-o 0 Ino 0 An—l(k+1)

By induction, we know the Smith normal form of A,—_;(k + 1) and hence also of

1 0
0 Ap—1(k+1))°
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which is then exactly

O -
—- O
oS O
S O

=
—_
=

as claimed. O
Corollary 4.2. Let m, n be two integers with gcd(m,n) = 1 and m # n. Then
Ac(m,n) = Z\m—n|c-

Proof. Recall that A.(m,n) = %, where ¢: Z¢ — Z° is represented by the ma-
trix (3.1). The lemma above shows that the Smith normal form of this matrix is

1 0 0 0
0 1 0 0
00 1 0
00 -+ 0 |[n—m|¢
from which the result follows. O

For the rest of this section, we will assume that m # n and that gcd(m,n) = 1
(so BS.(m,n) = G.(m,n); see Corollary 3.3). Moreover, we will use s = ey to
denote the canonical projection of the first standard generator of Z€ in the group
Ac(m,n). As Ac(m, n) is acyclic group and A, (m, n) is generated as a (¢ )-module
by s, it follows that s is also a generator of A.(m,n) as a cyclic group. So

(s) =Ac(m,n) = Zjp_pmc and  Ge(m,n) = (s) x ().
Proposition 4.3. Let m # n and gcd(m,n) = 1. Then G.(m,n) = (s) x (t), with
t~ st =Y, where v € Z is an integer satisfying
e ged(v,n —m) =1,

e vm =n mod |n —ml°.
Proof. We already explained that G.(m,n) = (s) x (t). As s is a generator of the

cyclic group of order |n — m|¢, we must have that also st is a generator of (s),
which implies that t ~1s¢ = 5" for some integer v with gcd(v,n —m) = 1.
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As we already saw in the proof of Lemma 3.1 (recall s = e1), we also have
t~lsm = " Ast— g™ = V™ it follows that s = s": hence

vm =n mod |n —m|°. O

Let ¢: G¢(m,n) — G.(m,n) be an automorphism. Since (s) = tG.(m,n), ¢
induces an automorphism

@:Ge(m,n)/{s) = (t) = Z — Gc(m,n)/{s) = (t) = Z.
So ¢(t) = t*'. The following lemma is easy to check.

Lemma 4.4. With the notation above, we have R(p) < oo < ¢(t) =t~ L.

It follows that G.(m,n) does not have the Roo-property if and only if there
exists an automorphism ¢ of G (m, n) such that @(¢) = t~!. We are now ready to
prove the main theorem of this section which gives us the R-nilpotency degree of
any Baumslag—Solitar group which is determined by coprime parameters m and n.

Theorem 4.5. Let m,n be integers with 0 < m < |n| and gcd(m,n) = 1. Let p
denote the largest integer such that 2P | 2m + 2. Then the Rso-nilpotency degree r
of BS(m, n) is given by the following conditions.

e Ifn < —1, thenr = 2.

e Ifn=—1(som = 1), thenr = o0.

e I[fn=m(son=m = 1), thenr = oc.

e Ifn—m =1, thenr = oo.

e Ifn—m =2, thenr = p + 2.

e Ifn—m >3 thenr = 2.

Proof. Let m and n be as in the statement of the theorem.

Let m = n. Then the fact that gcd(m,n) = 1 and m > 0 implies thatm =n = 1.
We have that BS(1, 1) = Z? = BS.(m, n) (for all ¢) does not have the Ro-prop-
erty, from which it follows that, in this case, the Rso-nilpotency index is co.

So, from now onwards, we assume that m % n. We have to examine for which ¢
the group G (m,n) has the Roo-property. So we have to investigate when G (m,n)
admits an automorphism ¢ with ¢(¢) = ¢~! (Lemma 4.4). Such a morphism ¢
satisfies

e(s) =s* and @) = sPt=1 for some w,pe’. 4.1)

In fact, given u, B € Z, the expressions of (4.1) above determine an endomor-
phism of G¢(m, n) if and only if the relation t~'s¢ = sV (where v is as in Propo-
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sition 4.3) is preserved, i.e., it must hold that

(1) p(s)e(t) = ¢(s)”
¢

s PshshPyr=1 = gnv

¢

_ 2
sho= gy = ghv”,

Moreover, such a ¢ is an automorphism if s* is a generator of (s), i.e. when
gcd(u, |n — m|) = 1. In this case, the last condition is equivalent to

vZ2 = 1mod |n —m|°.

Moreover, as we also have gcd(m, [n — m|) = 1, this is also equivalent to the re-

quirement that

v2m? = m? mod |[n —m|°.

Finally, using Proposition 4.3, which says that vin = n mod |n — m|€, we find that

G.(m,n) does not have the R ,-property

¢

n?> = m? mod [n —m|°

¢

n—+m=0mod |n —m|!
So, from now on, we have to examine when the condition
n+m=0mod |n —m|°! 4.2)

is satisfied.

When ¢ = 1, the equation is always satisfied (reflecting the fact that finitely
generated abelian groups do not have the Rso-property). So, from now onwards,
we consider the case ¢ > 1.

Letn = —m. Inthis case,n = —1 and m = 1 since gcd(m,n) = 1; then equa-
tion (4.2) is always satisfied. This shows that BS(—1, 1) (which is the funda-
mental group of the Klein bottle) has an infinite R.o-nilpotency degree (although
BS(—1, 1) does have the Rso-property [9, Theorem 2.2]).

Letn < —1. Then|n —m|~! = (|n| + m)¢~! > |n 4+ m| # 0. This implies that
equation (4.2) is never satisfied. This means that, in this case, the Rso-nilpotency
degree of BS(n,m) is 2.
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Now, we consider the case of positive n, where we already treated the case
when n = m. So we have n = m + k for k > 0. Moreover, as gcd(n,m) = 1, we
also have gcd(k,m) = 1. If equation (4.2) is satisfied, then |n —m| = k divides
n+m=2m+k,sok | 2m,andas gcd(k,m) = 1, we musthave k | 2,s0k =1
ork =2.

Letn = m + k for k > 3. From the considerations of the paragraph above, we
have that the Ro-nilpotency degree of BS(m + k, k) is 2.

Letn = m + 1. Inthis case, equation (4.2) is again satisfied for all ¢, and hence
the Roo-nilpotency degree of BS(m + 1,m) is oo.

Let n = m + 2. Then equation (4.2) is of the form 2m + 2 = 0 mod 27!,
This equation is satisfied exactly when ¢ < p + 1. It follows that the Ry-degree
of BS(m + 2, m) (where m is odd) is p 4 2. This finishes the proof. ]

5 The case where ged(m,n) # 1

Lemma 5.1. Let m, n be non-zero integers with m # n. If d = gcd(m, n), then
Ac(m,n) = ZZ" D Z‘%l(

Proof. Note that the matrix (3.1) is

. (N 0 0
—m n-mo 0
oo-w o 0 0
0 0 0 .. zmo
0 0 o ... -5 =
with gcd(%, = ) = 1. It follows that the Smith normal form of (3.1) is
d 0 --- 0 0
0 d --- 0 0
0 0 --- d 0
0 0 0 el
from which the result follows. O

It follows that dA.(m,n) =~ Z|%|C is a cyclic subgroup of A.(m,n), and
since this subgroup is invariant under the action of (¢), the semi-direct product
(dAc(m,n)) x (t) is a subgroup of G (m, n).
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Lemma 5.2. Let 0 < m < |n| withm # n, and take d = gcd(m, n). Then we have
that (dAc(m,n)) x (t) is a subgroup of G.(m,n) and

m n
dAc(m, 1) = Gel == )
(@actm.m) 1) = Ge (5.5
Proof. The fact that (dAc(m,n)) x (t) is a subgroup of G.(m,n) was already

discussed before the statement of the lemma. Let ¢’: Z¢ — Z¢ be the morphism
represented by the matrix

L (| 0 0
—mnmm 0 0
0 -m n-m o o |
0 0 nom
o 0 0 ... —m n-m

then ¢ = d¢’. We have

c c (4
dAc(m,n)de G C(m n).

Img dimg’  Img' d d

It is now easy to see that, under the identification dA.(m,n) = Ac(%, %), the
action of ¢ is still the same as what we had before, and so

(dAc(m,n)) x () = Gc(%, %) o
Lemma 5.3. Let 0 < m < |n| with m # n, and take d = gcd(m, n). Ich(%, %)
has property Reo, then also G.(m,n) has property Roo.

Proof. First let us remark that, for any @ € A.(m, n), there is an automorphism
Vg of Ge(m,n) = Ac(m,n) x (t) with

Yola) =a foralla € Ac(m,n) and Yu(t) = ta.

Now, suppose that ¢ € Aut(G.(m,n)) is an automorphism with R(y) < oo.
This means that ¥ (f) = at ~! for some o € A.(m,n). After composing ¥ with ¥,
we may assume that (1) = ¢~ L. Since we also have ¥ (dAc(m,n)) = dAc(m,n)
(since A.(m,n) is a characteristic subgroup of G.(m,n)), we have that i re-
stricts to an automorphism of (dA¢(m.,n)) x (1) = G¢(%. %) with finite Reide-
meister number. This shows that if G.(m,n) does not have property R, then
also G (%, %) does not have this property. o
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The main result of this section is the following result.

Theorem 5.4. Let 0 < m < |n|, and take d = gcd(m,n). Let p denote the largest
integer such that 2P | 2% + 2. Then the Roo-nilpotency degree r of BS(m,n) is
given by the following conditions.

e Ifn <0andn # —m, thenr = 2.
e Ifn = —m, thenr = oo.

e Ifn = m, then r = oo.

e Ifn—m=d, thenr = oc.

e Ifn—m=2d,then2 <r <p+2.
e Ifn—m > 3d, thenr = 2.

Remark. As d = gcd(m, n), the difference n — m is a multiple of d, so the theo-
rem above does treat all possible cases.

Proof. We will first deal with a few special cases and then treat the general case.

Let n = m. In this case, there is an automorphism v of BS(m, m) mapping
atoa ' and b to b~1. This automorphism induces minus the identity map on
BSi(m,m) = % =~ Z?. It now follows that the induced map ¥ on any
quotient BS. (m, m) has —1 as an eigenvalue, and hence R(/) < oo (see [3]). It
follows that the Rso-nilpotency index of BS(m, m) is oo.

Let n = —m. Now, consider the automorphism v of BS(m, —m) mapping a
toa~! and b to b. Then v induces a map on BS{(m, —m) = Z & Zop,, which is
minus the identity on the Z-factor and the identity on the Z,,, factor. The same
argument as in the previous case now allows us to conclude that the Roo-nilpotency
index of BS(m, —m) is oo.

Letn =m+d. Som =kd and n = (k 4+ 1)d for some positive integers k
and d. We claim that b? € y.(BS(kd, (k + 1)d)) for all ¢ > 1. This claim is cer-
tainly correct for ¢ = 1. Now, fix ¢ > 1, and assume that

4 ¢ y.BS(kd, (k + 1)d)).
Then also b¥? ¢ y.(BS(kd, (k 4+ 1)d)), and hence
[a.b%9] € yey1(BS(kd. (k + 1)d)).

1pkd , — pk+1)d

Butasa™ , we have

[a, bk = a7 1% gp*d = p=? ¢ .1 (BS(kd, (k + 1)d)).

By induction, this finishes the proof of the claim.
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It follows that the group BS(kd, (k + 1)d) and the group
C(d) = (a,b|a'bka = p*+tDd pdy = (4. b | b?)
have isomorphic nilpotent quotients, i.e.,
BS(kd,(k+1)d) = C(d)
Ye+1(BS(kd, (k + 1)d)) — ye+1(C(d))

Now, it is easy to see that C(d) has an automorphism  mapping a to a™~ and
b to b such that ¥ induces an automorphism ¥ on % with finite Reide-
meister number. It follows that the Roo-nilpotency degree of BS(kd, (k + 1)d) is
infinite.

1

All the other cases. As a finitely generated abelian group never has the Rso-
property, we have r > 2. Now, assume that v is an automorphism of BS. (m, n)
with R() < oo. Then v induces an automorphism y of G (m,n) (since we di-
vide out a characteristic subgroup to go from BS.(m,n) to G.(m,n) by Propo-
sition 3.2) with R(y) < oo. It follows that the Roo-nilpotency degree is bounded
above by the smallest ¢ for which G.(m,n) has property Roo. In turn, this num-
ber is bounded above by the smallest ¢ such that G (% %) has the Ro-property.
This is exactly what we determined in the proof of Theorem 4.5, which finishes
the proof. |
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