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The R1-property for nilpotent quotients
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Abstract. A group G has the R1-property if the number R.'/ of twisted conjugacy
classes is infinite for any automorphism ' of G. For such a group G, the R1-nilpotency
degree is the least integer c such that G=
cC1.G/ still has the R1-property. In this paper,
we determine the R1-nilpotency degree of all Baumslag–Solitar groups.

1 Introduction

Any endomorphism ' of a group G determines an equivalence relation on G by
setting x � y , there exists z 2 G W x D zy'.z/�1. The equivalence classes of
this relation are called Reidemeister classes or twisted conjugacy classes, and their
number is denoted by R.'/. We are most interested in this number when ' is an
automorphism.

For information on the development, historical aspects and the relation of this
concept with other topics in mathematics such as fixed-point theory, we refer the
reader to the introduction of [3] and its references. An important concept in this
context is that of groups having the R1-property.

Definition 1.1. A group G is said to have the R1-property if, for every automor-
phism 'WG ! G, the number R.'/ is infinite.

A central problem is to decide which groups have the R1-property. The study
of this problem has been a quite active research topic in recent years. Several
families of groups have been studied by many authors. A non-exhaustive list of
references is [1–9, 13, 15, 17].

Of particular interest for this paper is the fact that, in [5], it was proved that the
Baumslag–Solitar groups BS.m; n/ have the R1-property except for m D n D 1
(or m D n D �1, which is the same group). Recently, in [3], motivated by the
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results of [1], new examples of groups which have theR1-property were obtained
by looking at quotients of a group which has the R1-property by the terms of the
lower central series as well the derived central series. So it is natural to ask the
same question for the groups BS.m; n/.

Related to this approach, we introduced in [3] the following notion.

Definition 1.2. Let G be a group. The R1-nilpotency degree of a group G is the
least integer c such thatG=
cC1.G/ has theR1-property. If no such integer exists,
then we say that G has R1-nilpotency degree infinite.

In this work, we determine the R1-nilpotency degree for all the Baumslag–
Solitar groups BS.m; n/. The main results of this work are the following two the-
orems.

Theorem 4.5. Let m; n be integers with 0 < m � jnj and gcd.m; n/ D 1. Let p
denote the largest integer such that 2p j 2mC 2. Then theR1-nilpotency degree r
of BS.m; n/ is given by the following conditions.

� If n < 0 and n ¤ �1, then r D 2.

� If n D �1 (so m D 1), then r D1.

� If n D m (so n D m D 1), then r D1.

� If n �m D 1, then r D1.

� If n �m D 2, then r D p C 2.

� If n �m � 3, then r D 2.

Theorem 5.4. Let 0 < m � jnjwithm ¤ n, and take d D gcd.m; n/. Let p denote
the largest integer such that 2p j 2m

d
C 2. Then the R1-nilpotency degree r of

BS.m; n/ is given by the following conditions.

� If n < 0 and n ¤ �m, then r D 2.

� If n D �m, then r D1.

� If n D m, then r D1.

� If n �m D d , then r D1.

� If n �m D 2d , then 2 � r � p C 2.

� If n �m � 3d , then r D 2.
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At this point, we would also like to mention one interesting family of groups
which naturally extends the class of Baumslag–Solitar groups, namely the family
of GBS groups, the generalized Baumslag–Solitar groups. In [14], the following
strong result about the Reidemeister number of a homomorphism of such groups
is proved.

Proposition ([14, Proposition 2.7]). Let ˛WG ! G be an endomorphism of a non-
elementary GBS group. If one of the following conditions holds, then R.˛/ is
infinite.

(1) ˛ is surjective.

(2) ˛ is injective, and G is not unimodular.

(3) G D BS.m; n/ with jmj ¤ jnj, and the image of ˛ is not cyclic.

Recently, other families of groups, which also naturally extend the class of
Baumslag–Solitar groups, were considered. One generalization goes as follows.
The class of GBS groups coincides with the class of fundamental groups of graphs
all of whose vertex and edge groups are infinite cyclic. So one can generalize this
to the class of fundamental groups of graphs where the vertex and edge groups are
virtually infinite cyclic. In [11], it was shown by Taback and Wong that any group
which is quasi-isometric to a group in this family has the R1-property.

Another family was considered by Taback and Whyte in [10], generalizing
the solvable Baumslag–Solitar groups BS.1; n/ to another class of groups that
are also solvable. These are split extensions fitting into a short exact sequence
1! ZŒ1

n
�! � ! Zk ! 1. For this second family, Taback and Wong showed

in [12] that any group quasi-isometric to one of these group has the R1-property.
As a generalization of the results of this paper, it would be natural to study the

R1-nilpotency degree for the families of groups above.
This work is divided into three sections besides the introduction. In Section 2,

we provide some preliminary results about the description of the terms of the
lower central series and the corresponding quotients of BS.m; n/when the integers
.m; n/ are coprime. In Section 3, we construct certain specific nilpotent groups in
a format which is convenient for our study. Then we identify these groups with
the ones that we want to study, namely the quotients BS.m; n/=
cC1.BS.m; n//.
In Section 4, we then show the main result for the BS.m; n/ groups, wherem and n
are coprime. Finally, in Section 5, we provide a proof for the remaining cases.

2 Baumslag–Solitar groups

Let BS.m; n/ D ha; b j a�1bma D bni for m; n integers. It suffices to consider
1 � m � jnj. We will use the notation Œx; y� D x�1y�1xy.
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Lemma 2.1. Consider a Baumslag–Solitar group BS.m; n/. For all positive inte-
gers k, we have b.m�n/

k

2 
kC1.BS.m; n//.

Proof. Since a�1b�ma D b�n, we have bm�n D Œa; bm� 2 
2.BS.m; n//, which
proves the lemma for k D 1.

Now, we assume that k � 1 and that b.m�n/
k

2 
kC1.BS.m; n//. Then we find

b�m.m�n/
k

2 
kC1.BS.m; n//

H) a�1b�m.m�n/
k

abm.m�n/
k

2 
kC2.BS.m; n//

H) .a�1bma/�.m�n/
k

bm.m�n/
k

2 
kC2.BS.m; n//

H) b�n.m�n/
k

bm.m�n/
k

D b.m�n/
kC1

2 
kC2.BS.m; n//;

which proves the lemma, by induction.

As we will be dealing with nilpotent quotients of the Baumslag–Solitar groups,
we introduce the notation

BSc.m; n/ D
BS.m; n/


cC1.BS.m; n//
:

For a nilpotent group N , we use �N to indicate its torsion subgroup.

Lemma 2.2. Letm ¤ n. For all positive integers c, the nilpotent group BSc.m; n/
has Hirsch length 1, and if we denote by Nb the natural projection of b in BSc.m; n/,
we have �BSc.m; n/ D h Nb; 
2.BSc.m; n//i.

Proof. We first consider the case c D 1. Note that

BS1.m; n/ D hNa; Nb j Œ Na; Nb� D 1; Nbm�n D 1i Š Z˚ Zjm�nj:

So �BS1.m; n/ D h Nbi.
Now, let c > 1. From the case c D 1, it follows that

�BSc.m; n/ � h Nb; 
2.BSc.m; n//i;

and hence it suffices to show that 
2.BSc.m; n// is a torsion group. To obtain this
result, we prove by induction on i � 2 that


i .BSc.m; n//=
iC1.BSc.m; n// D 
i .BS.m; n//=
iC1.BS.m; n//

is finite.



The R1-property for nilpotent quotients of Baumslag–Solitar groups 549

The group 
2.BS.m; n//=
3.BS.m; n// is generated by Œa; b�
3.BS.m; n//. By
the previous lemma, we know that bm�n 2 
2.BS.m; n//, using this we find

Œa; b�m�n
3.BS.m; n// D Œa; bm�n�
3.BS.m; n// D 1
3.BS.m; n//;

and so Œa; b�
3.BS.m; n// is of finite order (� jm � nj) in


2.BS.m; n//=
3.BS.m; n//:

Now, assume that 
i .BS.m; n//=
iC1.BS.m; n// is finite. The group


iC1.BS.m; n//=
iC2.BS.m; n//

is generated by all elements of the form Œx; y�
iC2.BS.m; n// for x 2 BS.m; n/
and y 2 
i .BS.m; n//. By our assumption, there is some k > 0 such that we have
yk 2 
iC1.BS.m; n//. As before, it then follows that

Œx; y�k
iC2.BS.m; n// D Œx; yk�
iC2.BS.m; n// D 1
iC2.BS.m; n//;

from which we deduce that 
iC1.BS.m; n//=
iC2.BS.m; n// is finite.
The fact that BSc.m; n/ has Hirsch length 1 follows from the fact that

BSc.m; n/=
2.BSc.m; n// Š BS1.m; n/

has Hirsch length 1 and 
2.BSc.m; n// has Hirsch length 0.

In this paper, the situation where gcd.m; n/ D 1 will play a rather crucial role.
For these groups, the structure of BSc.m; n/ is easier to understand than in the
general case. For example, we have the following lemma.

Lemma 2.3. Suppose that gcd.m; n/ D 1 and m ¤ n. For any c > 1 and k > 1,
we have 
k.BSc.m; n// D h Nb.m�n/

k�1

i. Again, Nb denotes the projection of b in
BSc.m; n/.

Proof. For sake of simplicity, we will write �i instead of 
i .BSc.m; n// in the rest
of this proof. We will prove by induction on k � 2 that Nb.m�n/

k�1

�kC1 generates
�k=�kC1.

For k D 2, we have that Œ Na; Nb��3 generates �2=�3, and from Lemma 2.1, we
know that Œ Na; Nb�m�n 2 �3; hence the order of Œ Na; Nb��3 in �2=�3 is a divisor of
m � n. As gcd.m; n/ D 1, also gcd.m;m � n/ D 1, and therefore also Œ Na; Nb�m�3
is a generator of �2=�3. Now, Œ Na; Nb�m�3 D Œ Na; Nbm��3 D Nbm�n�3, from which we
find that Nbm�n�3 generates �2=�3.
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Now, we assume that k > 2 and that �k�1=�k is generated by Nb.m�n/
k�2

�k .
The next quotient �k=�kC1 is then generated by Œ Na; Nb.m�n/

k�2

��kC1. Again, by
Lemma 2.1, we have

Œ Na; Nb.m�n/
k�2

�m�n�kC1 D Œ Na; Nb
.m�n/k�1

��kC1 D 1�kC1;

and so the order of the generator Œ Na; Nb.m�n/
k�2

��kC1 divides m � n. As before, it
follows that also Œ Na; Nb.m�n/

k�2

�m�kC1 generates �k=�kC1. In BS.m; n/, we have
Œa; bkm� D bk.m�n/, which we now use to obtain

Œ Na; Nb.m�n/
k�2

�m�kC1 D Œ Na; Nb
m.m�n/k�2

��kC1 D Nb
.m�n/k�1

�kC1;

which finishes the proof.

Corollary 2.4. Suppose that gcd.m; n/ D 1 and m ¤ n. Then, for all c � 1, we
have �BSc.m; n/ D h Nbi.

3 Some nilpotent quotients of Baumslag–Solitar groups

For the rest of this section, we assume that m ¤ n. For any positive integer c,
we will construct a nilpotent group Gc.m; n/ of class � c which can be seen as
a quotient of BS.m; n/. To construct this group, we fix m, n and c and consider
the morphism 'WZc ! Zc , which is represented by the matrix0BBBBBBBBB@

n �m 0 0 � � � 0 0

�m n �m 0 � � � 0 0

0 �m n �m � � � 0 0
:::

:::
:::

: : :
:::

:::

0 0 0 � � � n �m 0

0 0 0 � � � �m n �m

1CCCCCCCCCA
: (3.1)

Here we use the convention that elements of Zc are written as columns, so also in
the matrix above, the image of the i -th standard generator of Zc is given by the
i -th column of that matrix. We now consider the abelian group

Ac.m; n/ D
Zc

Im'
:

So Ac.m; n/ is a finite group of order jn �mjc .
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We consider also the morphism  WZc ! Zc , which is represented by

M D

0BBBBBBBBB@

1 0 0 � � � 0 0

1 1 0 � � � 0 0

0 1 1 � � � 0 0
:::

:::
:::
: : :

:::
:::

0 0 0 � � � 1 0

0 0 0 � � � 1 1

1CCCCCCCCCA
:

We have ' D  ', and therefore induces an automorphism ofAc.m; n/, which
we will also denote by the symbol  .

Now, we are ready to define the group Gc.m; n/, which is given as a semi-
direct product Gc.m; n/ D Ac.m; n/ Ì hti, where hti is the infinite cyclic group
and where the semi-direct product structure is given by the requirement that, for
all a 2 Ac.m; n/, we have t�1at D  .a/.

For any z 2 Zc , let z D z C Im' denote its natural projection in Ac.m; n/. We
use e1; e2; : : : ; ec to denote the standard generators of Zc , so ei is the column
vector having a 1 on the i -th spot and 0’s on all other positions. Obviously, we
have that e1; e2; : : : ; ec generate Ac.m; n/. For sake of simplicity, sometimes, we
will write G instead of Gc.m; n/.

Remark. It is easy to see that from the fact that

e2 D t
�1e1te1

�1; e3 D t
�1e2te2

�1; : : :

follows

2.G/ � he2; e3; : : : ; eci


3.G/ � he3; e4; : : : ; eci

:::


c.G/ � heci


cC1.G/ D 1:

Hence Gc.m; n/ is nilpotent of class � c.

Lemma 3.1. There is a surjective morphism of groups f WBS.n;m/! Gc.m; n/

which is determined by f .a/ D t and f .b/ D e1.

Proof. In order for f to be a morphism, we need to check that f preserves the
defining relation of BS.n;m/, that is, the relation t�1e1mt D e1n should hold.
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This follows from the computation

t�1e1
mt D  .e1

m/ D e1
me2

m
D e1

n.e1
m�ne2

m/ D e1
n'.�e1/ D e1

n:

To prove that f is a surjective map, it is enough to show that e1 and t generate
Gc.m; n/. This follows from the fact that

e2 D t
�1e1te1

�1; e3 D t
�1e2te2

�1; : : :

As Gc.m; n/ is nilpotent of class � c, f induces a surjective morphism

BSc.m; n/ D
BS.m; n/


cC1.BS.m; n//
! Gc.m; n/:

For Gc.m; n/, we have �G D A, and so Œ�G; �G� D 1.

Proposition 3.2. The morphism f WBS.m;n/!Gc.m;n/ induces an isomorphism

�W
BSc.m; n/

Œ�BSc.m; n/; �BSc.m; n/�
! Gc.m; n/:

Proof. As already explained, f induces a morphism �WBSc.m; n/! Gc.m; n/.
Of course, �.�BSc.m; n// � �G, and so

�Œ�BSc.m; n/; �BSc.m; n/� � Œ�G; �G� D 1:

Therefore, there is an induced morphism

�W
BSc.m; n/

Œ�BSc.m; n/; �BSc.m; n/�
! Gc.m; n/:

As f is surjective, we know that � is surjective too. In Lemma 2.2, we showed
that BSc.m; n/ has Hirsch length 1. Then also the quotient

BSc.m; n/=Œ�BSc.m; n/; �BSc.m; n/�

has Hirsch length 1 since we take the quotient by a finite subgroup. As also, by
construction, Gc.m; n/ has Hirsch length 1 and � is surjective, we must have that
the kernel of � has Hirsch length 0, i.e., the kernel of � has to be finite. For sake
of simplicity, we introduce the notation

H D
BSc.m; n/

Œ�BSc.m; n/; �BSc.m; n/�
:

We already know, by Lemma 2.2, that �H is generated by Nb and 
2.H/. (Here
Nb denotes the image of b in H .) As � is surjective and has finite kernel (so
Ker.�/ � �H ), we know that �.�H/ D �Gc.m; n/. Therefore, in order to prove
that � is injective, it is enough to show that #�H � #�Gc.m; n/ D jm � njc .
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To be able to find a bound on #�H , we look at the quotients 
i .H/=
iC1.H/.

� 
2.H/=
3.H/ is generated by Œ Na; Nb�
3.H/.

� Then 
3.H/=
4.H/ is generated by Œ Na; Œ Na; Nb��
4.H/ and Œ Nb; Œ Na; Nb��
4.H/. InH ,
however, we have Œ Nb; Œ Na; Nb��D 1 (since we divide out Œ�BSc.m;n/; �BSc.m;n/�).
So 
3.H/=
4.H/ is generated by Œ Na; Œ Na; Nb��
4.H/.

� Continuing by induction, we find that 
i .H/=
iC1.H/ is a cyclic group gener-
ated by

Œ Na; Œ Na; Œ Na; : : : ; Œ Na; Nb����
iC1.H/ .with i � 1 times Na/:

We already know that #�H=
2.H/ D jm � nj (so Nbm�n
2.H/ D 1
2.H/; see the
proof of Lemma 2.2). Let c1 D Nb, and for i > 1, we let ci D Œ Na; Œ Na; Œ Na; : : : ; Œ Na; Nb����
(with i � 1 times Na). Then 
i .H/=
iC1.H/ is generated by ci
iC1.H/ for i > 1,
and �.H/=
2.H/ is generated by c1
2.H/.

We now show by induction on i that cm�ni 
iC1.H/ D 1
iC1.H/ and hence
#
i .H/=
iC1.H/ � jm � nj. We already obtained the case i D 1. Now, assume
the result holds for ci�1 (with i > 1). Then ci D Œ Na; ci�1�, and we have

cm�ni 
iC1.H/ D Œ Na; ci�1�
m�n
iC1.H/ D Œ Na; c

m�n
i�1 �
iC1.H/ D 1
iC1.H/:

As a conclusion, we find that

#�.H/ D #
�H


2.H/
� #


2.H/


3.H/
� � � � � #


c.H/


cC1.H/
� jm � njc D #�Gc.m; n/:

We can conclude that � is injective (and hence an isomorphism).

Corollary 3.3. If gcd.m; n/ D 1, the morphism f WBS.m; n/! Gc.m; n/ induces
an isomorphism BSc.m; n/ Š Gc.m; n/.

Proof. It follows from Corollary 2.4 that, in this case,

Œ�BSc.m; n/; �BSc.m; n/� D 1:

4 The case where gcd.m; n/ D 1

In the next lemma, we will make use of Smith normal form, details about which
can be found e.g. in [16]. We remind the reader that Smith normal form is a useful
tool in dealing with quotients of free modules (over PIDs).
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Lemma 4.1. Let a; b 2 Z with gcd.a; b/ D 1. Then the Smith normal form of the
n � n-matrix

An D

0BBBBBBBBBBBB@

a 0 0 0 � � � 0 0

b a 0 0 � � � 0 0

0 b a 0 � � � 0 0

0 0 b a � � � 0 0
:::

:::
:::

:::
: : :

:::
:::

0 0 0 0 � � � a 0

0 0 0 0 � � � b a

1CCCCCCCCCCCCA
is

0BBBBBBBBB@

1 0 0 � � � 0 0

0 1 0 � � � 0 0

0 0 1 � � � 0 0
:::

:::
:::
: : :

:::
:::

0 0 0 � � � 1 0

0 0 0 � � � 0 an

1CCCCCCCCCA
:

Proof. We will prove a slightly more general version of this lemma and consider
for any positive integer k the matrixAn.k/, which is the same matrix asAn, except
that the first entry of An.k/ (so on the first row and the first column) is ak instead
of a. So An D An.1/. We will now show, by induction on n, that the Smith normal
form of An.k/ is 0BBBBBBB@

1 0 � � � 0 0

0 1 � � � 0 0
:::

:::
: : :

:::
:::

0 0 � � � 1 0

0 0 � � � 0 an�1Ck

1CCCCCCCA
:

When n D 1, there is nothing to show, so we assume that n > 1. As gcd.a; b/ D 1,
there exist integers ˛; ˇ 2 Z such that ˛ak C ˇb D 1. Now, consider

P D

 
˛ ˇ

�b ak

!
2 GL.2;Z/ and Q D

 
1 �aˇ

0 1

!
2 GL.2;Z/:

It is now easy to compute that (with In�2 the .n � 2/ � .n � 2/ identity matrix) 
P 0

0 In�2

!
An.k/

 
Q 0

0 In�2

!
D

 
1 0

0 An�1.k C 1/

!
:

By induction, we know the Smith normal form of An�1.k C 1/ and hence also of 
1 0

0 An�1.k C 1/

!
;
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which is then exactly 0BBBBBBB@

1 0 � � � 0 0

0 1 � � � 0 0
:::

:::
: : :

:::
:::

0 0 � � � 1 0

0 0 � � � 0 an�1Ck

1CCCCCCCA
as claimed.

Corollary 4.2. Let m; n be two integers with gcd.m; n/ D 1 and m ¤ n. Then

Ac.m; n/ Š Zjm�njc :

Proof. Recall that Ac.m; n/ D Zc

Im' , where 'WZc ! Zc is represented by the ma-
trix (3.1). The lemma above shows that the Smith normal form of this matrix is0BBBBBBB@

1 0 � � � 0 0

0 1 � � � 0 0
:::

:::
: : :

:::
:::

0 0 � � � 1 0

0 0 � � � 0 jn �mjc

1CCCCCCCA
;

from which the result follows.

For the rest of this section, we will assume that m ¤ n and that gcd.m; n/ D 1
(so BSc.m; n/ Š Gc.m; n/; see Corollary 3.3). Moreover, we will use s D e1 to
denote the canonical projection of the first standard generator of Zc in the group
Ac.m; n/. AsAc.m; n/ is a cyclic group andAc.m; n/ is generated as a hti-module
by s, it follows that s is also a generator of Ac.m; n/ as a cyclic group. So

hsi D Ac.m; n/ Š Zjn�mjc and Gc.m; n/ D hsi Ì hti:

Proposition 4.3. Let m ¤ n and gcd.m; n/ D 1. Then Gc.m; n/ D hsi Ì hti, with
t�1st D s� , where � 2 Z is an integer satisfying

� gcd.�; n �m/ D 1,

� �m � n mod jn �mjc .

Proof. We already explained that Gc.m; n/ D hsi Ì hti. As s is a generator of the
cyclic group of order jn �mjc , we must have that also t�1st is a generator of hsi,
which implies that t�1st D s� for some integer � with gcd.�; n �m/ D 1.
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As we already saw in the proof of Lemma 3.1 (recall s D e1), we also have
t�1smt D sn. As t�1smt D s�m, it follows that s�m D sn; hence

�m � n mod jn �mjc :

Let 'WGc.m; n/! Gc.m; n/ be an automorphism. Since hsi D �Gc.m; n/, '
induces an automorphism

N'WGc.m; n/=hsi D hti Š Z! Gc.m; n/=hsi D hti Š Z:

So N'.t/ D t˙1. The following lemma is easy to check.

Lemma 4.4. With the notation above, we have R.'/ <1, N'.t/ D t�1.

It follows that Gc.m; n/ does not have the R1-property if and only if there
exists an automorphism ' of Gc.m; n/ such that N'.t/ D t�1. We are now ready to
prove the main theorem of this section which gives us theR1-nilpotency degree of
any Baumslag–Solitar group which is determined by coprime parametersm and n.

Theorem 4.5. Let m; n be integers with 0 < m � jnj and gcd.m; n/ D 1. Let p
denote the largest integer such that 2p j 2mC 2. Then theR1-nilpotency degree r
of BS.m; n/ is given by the following conditions.

� If n < �1, then r D 2.

� If n D �1 (so m D 1), then r D1.

� If n D m (so n D m D 1), then r D1.

� If n �m D 1, then r D1.

� If n �m D 2, then r D p C 2.

� If n �m � 3, then r D 2.

Proof. Let m and n be as in the statement of the theorem.
Letm D n. Then the fact that gcd.m;n/D 1 andm>0 implies thatmD nD 1.

We have that BS.1; 1/ D Z2 D BSc.m; n/ (for all c) does not have the R1-prop-
erty, from which it follows that, in this case, the R1-nilpotency index is1.

So, from now onwards, we assume thatm ¤ n. We have to examine for which c
the groupGc.m;n/ has theR1-property. So we have to investigate whenGc.m;n/
admits an automorphism ' with N'.t/ D t�1 (Lemma 4.4). Such a morphism '

satisfies
'.s/ D s� and '.t/ D sˇ t�1 for some �; ˇ 2 Z: (4.1)

In fact, given �; ˇ 2 Z, the expressions of (4.1) above determine an endomor-
phism of Gc.m; n/ if and only if the relation t�1st D s� (where � is as in Propo-
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sition 4.3) is preserved, i.e., it must hold that

'.t/�1'.s/'.t/ D '.s/�

m

ts�ˇ s�sˇ t�1 D s��

m

s� D t�1s��t D s��
2

:

Moreover, such a ' is an automorphism if s� is a generator of hsi, i.e. when
gcd.�; jn �mj/ D 1. In this case, the last condition is equivalent to

�2 � 1 mod jn �mjc :

Moreover, as we also have gcd.m; jn �mj/ D 1, this is also equivalent to the re-
quirement that

�2m2 � m2 mod jn �mjc :

Finally, using Proposition 4.3, which says that �m � n mod jn �mjc , we find that

Gc.m; n/ does not have the R1-property

m

n2 � m2 mod jn �mjc

m

nCm � 0 mod jn �mjc�1

So, from now on, we have to examine when the condition

nCm � 0 mod jn �mjc�1 (4.2)

is satisfied.
When c D 1, the equation is always satisfied (reflecting the fact that finitely

generated abelian groups do not have the R1-property). So, from now onwards,
we consider the case c > 1.

Let n D �m. In this case, n D �1 andm D 1 since gcd.m; n/ D 1; then equa-
tion (4.2) is always satisfied. This shows that BS.�1; 1/ (which is the funda-
mental group of the Klein bottle) has an infinite R1-nilpotency degree (although
BS.�1; 1/ does have the R1-property [9, Theorem 2.2]).

Let n < �1. Then jn�mjc�1D .jnj Cm/c�1 > jnCmj ¤ 0. This implies that
equation (4.2) is never satisfied. This means that, in this case, the R1-nilpotency
degree of BS.n;m/ is 2.
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Now, we consider the case of positive n, where we already treated the case
when n D m. So we have n D mC k for k > 0. Moreover, as gcd.n;m/ D 1, we
also have gcd.k;m/ D 1. If equation (4.2) is satisfied, then jn �mj D k divides
nCm D 2mC k, so k j 2m, and as gcd.k;m/ D 1, we must have k j 2, so k D 1
or k D 2.

Let n D mC k for k � 3. From the considerations of the paragraph above, we
have that the R1-nilpotency degree of BS.mC k; k/ is 2.

Let n D mC 1. In this case, equation (4.2) is again satisfied for all c, and hence
the R1-nilpotency degree of BS.mC 1;m/ is1.

Let n D mC 2. Then equation (4.2) is of the form 2mC 2 � 0 mod 2c�1.
This equation is satisfied exactly when c � p C 1. It follows that the R1-degree
of BS.mC 2;m/ (where m is odd) is p C 2. This finishes the proof.

5 The case where gcd.m; n/ ¤ 1

Lemma 5.1. Let m; n be non-zero integers with m ¤ n. If d D gcd.m; n/, then

Ac.m; n/ Š Zcd ˚ Zjn�m
d
jc :

Proof. Note that the matrix (3.1) is

d

0BBBBBBBBB@

n�m
d

0 0 � � � 0 0

�
m
d

n�m
d

0 � � � 0 0

0 �
m
d

n�m
d

� � � 0 0
:::

:::
:::

: : :
:::

:::

0 0 0 � � �
n�m
m

0

0 0 0 � � � �
m
d

n�m
d

1CCCCCCCCCA
:

with gcd
�
m
d
; n�m
d

�
D 1. It follows that the Smith normal form of (3.1) is0BBBBBBB@

d 0 � � � 0 0

0 d � � � 0 0
:::

:::
: : :

:::
:::

0 0 � � � d 0

0 0 � � � 0 d
ˇ̌
n�m
d

ˇ̌c

1CCCCCCCA
;

from which the result follows.

It follows that dAc.m; n/ Š Zjn�m
d
jc is a cyclic subgroup of Ac.m; n/, and

since this subgroup is invariant under the action of hti, the semi-direct product
.dAc.m; n// Ì hti is a subgroup of Gc.m; n/.
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Lemma 5.2. Let 0 < m � jnj withm ¤ n, and take d D gcd.m; n/. Then we have
that .dAc.m; n// Ì hti is a subgroup of Gc.m; n/ and

.dAc.m; n// Ì hti Š Gc
�
m

d
;
n

d

�
:

Proof. The fact that .dAc.m; n// Ì hti is a subgroup of Gc.m; n/ was already
discussed before the statement of the lemma. Let '0WZc ! Zc be the morphism
represented by the matrix0BBBBBBBBB@

n�m
d

0 0 � � � 0 0

�
m
d

n�m
d

0 � � � 0 0

0 �
m
d

n�m
d

� � � 0 0
:::

:::
:::

: : :
:::

:::

0 0 0 � � �
n�m
m

0

0 0 0 � � � �
m
d

n�m
d

1CCCCCCCCCA
I

then ' D d'0. We have

dAc.m; n/ D d
Zc

Im'
D

.dZ/c

d Im'0
Š

Zc

Im'0
D Ac

�
m

d
;
n

d

�
:

It is now easy to see that, under the identification dAc.m; n/ Š Ac
�
m
d
; n
d

�
, the

action of t is still the same as what we had before, and so

.dAc.m; n// Ì hti Š Gc
�
m

d
;
n

d

�
:

Lemma 5.3. Let 0 < m � jnj with m ¤ n, and take d D gcd.m; n/. If Gc
�
m
d
; n
d

�
has property R1, then also Gc.m; n/ has property R1.

Proof. First let us remark that, for any ˛ 2 Ac.m; n/, there is an automorphism
 ˛ of Gc.m; n/ D Ac.m; n/ Ì hti with

 ˛.a/ D a for all a 2 Ac.m; n/ and  ˛.t/ D t˛:

Now, suppose that  2 Aut.Gc.m; n// is an automorphism with R. / <1.
This means that .t/D ˛t�1 for some ˛ 2Ac.m;n/. After composing with ˛,
we may assume that .t/ D t�1. Since we also have .dAc.m; n// D dAc.m; n/
(since Ac.m; n/ is a characteristic subgroup of Gc.m; n/), we have that  re-
stricts to an automorphism of .dAc.m; n// Ì hti Š Gc

�
m
d
; n
d

�
with finite Reide-

meister number. This shows that if Gc.m; n/ does not have property R1, then
also Gc

�
m
d
; n
d

�
does not have this property.
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The main result of this section is the following result.

Theorem 5.4. Let 0 < m � jnj, and take d D gcd.m; n/. Let p denote the largest
integer such that 2p j 2m

d
C 2. Then the R1-nilpotency degree r of BS.m; n/ is

given by the following conditions.

� If n < 0 and n ¤ �m, then r D 2.
� If n D �m, then r D1.
� If n D m, then r D1.
� If n �m D d , then r D1.
� If n �m D 2d , then 2 � r � p C 2.
� If n �m � 3d , then r D 2.

Remark. As d D gcd.m; n/, the difference n �m is a multiple of d , so the theo-
rem above does treat all possible cases.

Proof. We will first deal with a few special cases and then treat the general case.
Let n D m. In this case, there is an automorphism  of BS.m;m/ mapping

a to a�1 and b to b�1. This automorphism induces minus the identity map on
BS1.m;m/ D


1.BS.m;m//

2.BS.m;m// Š Z2. It now follows that the induced map N on any

quotient BSc.m;m/ has �1 as an eigenvalue, and hence R. N / <1 (see [3]). It
follows that the R1-nilpotency index of BS.m;m/ is1.

Let n D �m. Now, consider the automorphism  of BS.m;�m/ mapping a
to a�1 and b to b. Then  induces a map on BS1.m;�m/ Š Z˚ Z2m, which is
minus the identity on the Z-factor and the identity on the Z2m factor. The same
argument as in the previous case now allows us to conclude that theR1-nilpotency
index of BS.m;�m/ is1.

Let n D mC d . So m D kd and n D .k C 1/d for some positive integers k
and d . We claim that bd 2 
c.BS.kd; .k C 1/d// for all c � 1. This claim is cer-
tainly correct for c D 1. Now, fix c � 1, and assume that

bd 2 
c.BS.kd; .k C 1/d//:

Then also bkd 2 
c.BS.kd; .k C 1/d//, and hence

Œa; bkd � 2 
cC1.BS.kd; .k C 1/d//:

But as a�1bkda D b.kC1/d , we have

Œa; bkd � D a�1b�kdabkd D b�d 2 
cC1.BS.kd; .k C 1/d//:

By induction, this finishes the proof of the claim.
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It follows that the group BS.kd; .k C 1/d/ and the group

C.d/ D ha; b j a�1bkda D b.kC1/d ; bd i D ha; b j bd i

have isomorphic nilpotent quotients, i.e.,

BS.kd; .k C 1/d/

cC1.BS.kd; .k C 1/d//

Š
C.d/


cC1.C.d//
:

Now, it is easy to see that C.d/ has an automorphism  mapping a to a�1 and
b to b such that  induces an automorphism N on C.d/


cC1.C.d//
with finite Reide-

meister number. It follows that the R1-nilpotency degree of BS.kd; .k C 1/d/ is
infinite.

All the other cases. As a finitely generated abelian group never has the R1-
property, we have r � 2. Now, assume that  is an automorphism of BSc.m; n/
with R. / <1. Then  induces an automorphism N of Gc.m; n/ (since we di-
vide out a characteristic subgroup to go from BSc.m; n/ to Gc.m; n/ by Propo-
sition 3.2) with R. / <1. It follows that the R1-nilpotency degree is bounded
above by the smallest c for which Gc.m; n/ has property R1. In turn, this num-
ber is bounded above by the smallest c such that Gc

�
m
d
; n
d

�
has the R1-property.

This is exactly what we determined in the proof of Theorem 4.5, which finishes
the proof.
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