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Abstract: Normal linear mixed models are frequently used in repeated measures data analysis. 

However, the assumption of normality for the error and the random effects makes inference 

vulnerable to the presence of outliers, and also depends on the symmetry of the data. Here we 

propose to consider a skew-t distribution for both error and random effect terms. This flexible 

mode) includes as special case severals symmetric and asymmetric models considered in the 

literature. A Bayesian inference approach is adopted using a MCMC algorithms. A robustness 

study is carried out showing that the new model is more robust than the normal and skew­

normal models to estimate the fixed effects parameters. An example about toxicology study in 

rats is analyzed and, using different bayesian model choice criteria, we concluded that the best 

model for this data set considers the skew-t distribution for the residuals. 

Key Words: Skewness, thick-tailed distribution, repeated measures, mixed model, Bayesian 

inference, Gibbs sampling, model choice and robustness study. 

1 Introduction 

Linear mixed models have been used to analyze repeated measures data or when it is assumed 

independence between cluster and dependence between the observations in tbe same cluster 

(within-subjects). The popularity of these models can be explained by the flexibility to model 

the within-subject correlation, by handling of both balanced and unbalanced data. A commonly 

used linear mixed-effects model for continuous response was proposed by Laird & Ware (1982) 

and is given by 

(1) 
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where, Y;(n; x 1) is a vector of observed responses, {3(p x 1) a fixed effects vector, X;(n; x p) 

is a design matrix for the fixed effects, Z;(n; x q) is a design matrix for the random effects, 

b,(q x 1) is a random effects vector and E1(1'1j x 1) a vector of residuals. 

In general a normal distribution is assumed for both the random effects and the residuals. 

The b;'s are assumed to be independent with distribution N9(0, '11) an the E;'s are assumed to be 

independent with distribution N,.. (0, I:;). Here, the I:; matrices depend on a typically small set 

of parameters. A special and common case is the homoscedastic specification I:, = u;I,.., so we 

assume independence between the residuals of the same subject. Some authors have suggested 

the use of thick-tailed distribution to skip the lack of robustness of the normal model. Pinheiro, 

Liu & Wu (2001) suggest to use a joint multivariate t distribution for the random effects and the 

residuals. Using the maximum likelihood approach they proposed efficient algorithms to obtain 

these estimators. Under a Bayesian approach Rosa, Padovani & Gianola (2003) e Rosa, Gianola 

& Padovani (2004) compared multivariate and univariate specifications for the distribution of 

the residuals under some thick-tailed distributions. Their results suggest that unless there is a 

strong reason to believe in the adequacy of normality, it may be safer to use a robust model. 

In another direction, the normality assumption is not reasonable when there is evidence of 

asymmetry in the data set. In this case, a skew distribution can be considered for both random 

effects and residuals. Under this view, some authors have been developing their works. Arellano­

Valle, Bolfarine & Lachos (2005) used the multivariate skew-normal distribution proposed by 

Azzalini & Dalla Valle (1996) to model the random effects and the residuals. The authors 

consider the maximum likelihood approach, which they implement via an EM algorithm. Ghosh, 

Branco & Chakraborty (2007) used the multivariate skew-normal given by Sahu, Dey & Branco 

(2003) and a Bayesian approach. They applied that model for a HIV-RNA data set, MCMC is 

used to carry out the posterior analysis and model comparison . Ma, Genton & Davidian (2004) 

considered a generalized version of the multivariate skew-normal, called flexible skew-normal 

(Ma & Genton, 2004) for the random effects and normal distribution for the residuals. Since 

the skew-normal is not a thick-tailed distribution this is not appropriate for robustness interest. 

An alternative is considered a skew-t distribution, as given by Azzalini & Capitanio (2003), 

which takes care of both robust and asymmetry problems. Ma et al. (2004) also considered a 

flexible skew-t distribution for the random effects. However, they have not given much attention 

for this model, since they concluded that their data set was not well fit for the skew-t and they 

decided in favor of the skew-normal. Also, they used an improper prior for the degree of the 

freedom, so it is not clear if they obtained convergence for the MCMC algorithm. In fact, by 
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analogy to the symmetric t-Student model we should avoid to consider improper prior for the 

degree of freedom (see Ferml.ndez & Steel, 1998). 

The plan of the paper is as follows. In section 2 we present a little overview about the 

multivariate skew-t distribution that will be considered here. Section 3 presents the skew-t 

linear mixed model, and shows how some other models in the literature can be seen as a special 

case of the model proposed here. In section 4 the Bayesian inference methodology is presented. 

In section 5 a robustness study is considered comparing the normal, skew-normal, t.-Student and 

skew-t models. Finally, in section 6 will be presented an application for reproductive toxicology 

data set and also is developed a model comparison analysis using CPO (Conditional Predictive 

Ordinate), pseudo-Bayes factor and DIC (Deviance Information Criterion). 

2 Skew-t distribution 

A random variable Y has a skew-t distribution if its probability density function (pdf) is given 

by 

2 ( !/ - µ ( V + } ) l/l ) fy(y)=2t1(!1;µ,cr,v)T1 ,\-er- q(y)+v ;0,1,v+l, (2) 

where t1(.;!J,,77,T) and T1(. ;!J,,17,T) are the pd! and cumulated distribution function (cdf) of 

a t-Student distribution centered in iJ, with scale 77 and T degree of freedom, respectively, and 

q(y) = (!I - µ)/cr2 . 

We consider the notation Y ~ St1 (µ, cr2, ,\, v), where µ E 9l, cr2 > 0 are the location and 

scale parameters, respectively. Note that, if,\ = 0 then /y(y) = t1 (y; µ, cr2, v). >. is a shape 

parameter, also called skewness parameter, which gives the direction of the asymmetry ( ,\ < 0 

negative skewness and ,\ > 0 the skewness is positive ). As in the t-Student distribution, the 

degree of freedom v is associated with the thickness of the tail of the distribution. 

A stochastic representation for the skew-t random variable Y with pdf in (2) is given by 

(3) 

where 77 = ~. T = ~. z has a standard normal distribution, u has a positive half 
vl +,\- vl +,\-

normal and w a gamma distribution with parameters v/2 e v/2 ( w ~Gamma(;,,)) . 
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If 11 > 2, the mean and the variance for Y exist and are given, respectively, by 

E[YJ = µ+ E_r (T),, and var[Y) = - 11
-u2 _ ~ (r (T)) 2 

,,2_ y; rb-) 11-2 1r r(~) 

A multivariate version of the skew-t distribution can be constructed using the following 

stochastic representation 

(4) 

Where u is a vector in !ln and each element !Ji has a positive half normal distribution; W = 
diag((w1, ••• ,wn)), and each w; ~ Gammo.(11/2,11/2), i = l , ... ,n; Z has a standard n dimen­

sional normal distribution; A is a positive definitive matrix; fl and µ, are vectors in !ln. 

If A is a diagonal matrix then the elements of Y are mutually independent and have skew-t 

univariate distribution. Several asymmetrical and symmetrical multivariate distributions can 

be represented by (4) depending on the values of !Ji e w;, see table 1, where u has a positive 

half normal and w ~Gamma(;,;). 

Table 1: Special cases of stochastic representation (4) 

U; W; Distribution 

0 1 Normal 

0 w t-Student 

u 1 skew-normal type I 

U; 1 skew-normal type II 

u w skew-t type I 

U; w skew-t type II 

The multivariate skew-normal type I was given by Azzalini & Dalla Valle (1996). The multi­

variate skew-t type I was given by Branco & Dey (2001) and Azzalini & Capitanio (2003). The 

skew-normal and skew-t type II were given by Sahu et al. (2003) . 

We consider here the skew-t type I distribution, for both random effect and residuals. How­

ever, it is not difficult to adapt our results for the skew-t type II distribution. The skew-t type 

I pdf is given by 

4 



Jy(11) = 2tn(11;µ, E,v)T1 ( .\E-112(11-µ) c;~:vr/2 

;v+ 1), ve !l", (5) 

;El/2 A -177 where E =A+ '1'1T,),. = ---;===:c==r= and q(y) = (y- µfE- 1(y - µ) . 
✓1 + 17T A-!'1 

We consider the notation Y ~ St,,(µ, E, J.., v). In this case, the mean and the covariance matrix 
for Y exist if v > 2 and are given by 

;gr(v-1) 
E(Y) = µ+ 2 '7 rm 

and 

V V (r(,-1)) 2 
T Var(Y)=--

2
:E-- -(v) '1'1 , v>2. v- r. r 1 

An important property of this distribution is to be closed by linear transformations. Then, 
any linear combination of a skew-t random vector is also a skew-t random vector. This property 

help us to adopt the skew-t distribution to model an additive error in regression models, as we 
will do in the next section. 

3 Skew t Linear Mixed Model 

Let's remember model (1) 

with all terms as before, but now considering 

(6) 

i = l , ... , m and j = 1, ... n;; with b, independent off;; and the f;;'s are mutually independent. 
Using the stochastic representation given in (4), this model ca.n be alternatively written in a 
hierarchical way : 
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(7) 

(v• v•) Wt1J ~ Ga.ma 2 , 2 
(

l'b Vb) 
Wbi ~ Ga.ma. 2 , 2 

Some models in the literature can be seen as a special case of the Skew-t Linear Mixed Model 

(StLMM), depending on the values of WeiJ , Wbi, ue1; and Ubi , For example, when u,,; = uw = 0 

and we;;= Wbi = w,, where w, have independent gamma distributions with parameters v/2 e 

v/2, we obtain a joint multivariate t distribution for the random effects and the residuals, 

( :: ) ~ tn,+q ( (:) , ( u;:ni ; ) , v) 
which is the model proposed by Pinheiro et al. (2001). Other examples can be seen in table 2. 

Table 2: Special cases of StLMM 

u,1; Ubjh Weij Wbjh Model 

0 0 1 1 Normal 

0 0 W; W; Joint multivariate t 0 

0 0 W et Wbj Non-correlated errors t 6 

0 0 Wnj Wbj Independent errors t 6 

Ue1 Ubj l l Skew-normal c 

"Pinheiro et al. (2001) 
1Rosa et al. (2004) 
• Arellano-Valle et al. (2005) 
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Using properties of the skew-t distribution, we can see that 

(8) 

and 

(9) 

where 

and 

4 Bayesian Inference 

To complete the Bayesian specification of the model, it is assumed a prior distribution for all 

the unknown quantities. 

For the univariate skew-normal distribution, Bayes & Branco (2007) in a simulation study 

demonstrated that assumed a prior that.>.~ t1 (0, 1/2, 2) and p(u2) ex I/u2 leads to better point 

and interval estimates. Considering this prior specifications and using usual variable transfor­

mation methods, it induces the following prior distribution for the parametrization used in the 

stochastic representation (3), T/ ~ t 1(0,T2/2,2) and p(T2) ex I/-r3. These prior distributions 

are adopted for the skewness and scale parameters of the error distribution, with a slightly 

modification, we consider a proper distribution for the scale, 

T/e ~ t1 (O, T; /2, 2) 

I 
2 ~ Gamma (ao, bo). 
Te 

(LO) 

For the random effects skewness and scale parameters we assumed a multivariate version of prior 

distribution (10) considering the multivariate t and a Inverse Wishart distributions, 

'1b~tq (o,~llt,2) 
{ll) 

q, ~ Inv - Wishart (a1 , B1). 
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The prior distributions for the degrees of freedom para.meters lie and l'I, are assumed to be 

p(11e) oc 11;2 J(11e > 3), 

p(11b) OC 11;;21(111,°> 3), 
(12) 

a.q in Liu (1995) and Rosa et al . (2003). The truncation point was chosen to assure that the 

mean and variance of the skew-t distribution are finite. 

We assume a multivariate normal distribution for the fixed effects {3, 

(13) 

The augmented joint posterior density is the product of the augmented likelihood function 

that can be found from (7) and the prior distribution given by (10)-(13). We can apply Markov 

Chain Monte Carlo (MCMC) algorithms to draw samples from the posterior density. It is not 

difficult to see that the full conditional distributions have standard form for the prior spec­

ification given by (11), (12) and (13) with exception for the degrees of freedom parameters. 

The Gibbs sampler algorithm also can be easily implemented via BUGS software (Spiegelhalter, 

Thomas, Best & Lunn, 2004). For obtaining the results in the next section we used this software, 

and the programs can be obtained by the authors upon request. 

5 Robustness study 

We considered the data set in Potthoff & Roy (1964) about an orthodontic study of 16 boys 

and 11 girls between 8 and 14 years. It has been analy2ed by Pinheiro et al. "(2001) using a 

joint t-distribution for the random effects and the residuals under a classical approach, and, by 

Rosa et al. (2004) under a Bayesian framework and they assumed independent t distributions 

for the random effects and residuals. The response variable is the distance, in milimeters, from 

the center of the pituitary to the pteryomaxillary fissure, taken at 8, 10, 12 and 14 years. As 

did by Pinheiro et al. (2001), to our study of the influence of a single outlier, we consider only 

the girls from the Potthoff & Roy (1964) data set. The model is given by 

(14) 

where Yii is the distance in milimeters from the center of the pituitary to the pteryomaxillary 

fissure at time j of the subject i; t; iR the age measured in years; /3o e /J1 are the intercept and 
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the slope fixed effects; b1 = (boi, b11)T is the random effects vector for the i-tb subject; and e.; 

is the within-subject error, i = 1, ... , 11 and j = 1, ... ,4. 

Four models were considered: skew-t (St), skew-normal (SN), t and normal(N). In all of them 

the same distribution was considered for both random effects and residuals. Since the parameters 

/3o e /31 do not have the same interpretation for all models, to make the models comparable we 

consider 

where the expression for /30 and /Ji are in table 3. 

Table 3: Corrected fixed effects parameters 

Model /Ji 

St 

SN 

f3o /31 

N f3o 

We consider the influence of a change of a units in a single measurement on the posterior 

distribution of the corrected fixed effects parameters. That is, we replace a single data point 

Y1; by the contaminated value y;;(A) = y;; + A, re-estimate the model and record the posterior 

mean and HPD interval with probability of 95%. In this example, we contaminated the fourth 

observation (age of 14 years) of the first girl, and varied A between -20mm and 20mm by 

increments of 2mm. 

Figures 1 and 2 present the posterior mean and the 95o/o-HPD interval for the four models. 

As expected, the skew-t and t models are less sensitive to variations in A than the normal and 

skew-normal models. The variations in A have considerable impact, for the normal models, in 
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h t • ean and HPD Note that, the size of the interval increases as It.I increases. both t e pos enor m · 
Table 4 shows the DIC (Spiegelhalter, Best, Carlin & Van der Linde, 2002) and CPO product 

(Gelfand, 1996) for the four models for the non-contaminated data set; both criteria choose the 

skew-normal model (bigger CPO's product and smaller DIC). Therefore, a skew model should 

be considered for this data set. 
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Figure 1: Posterior mean (dashed line) and 95%-HPD interval (solid line) for (30 under 

Skew-t, Skew-normal, t and normal distibution for different contaminations of t::. of a 

single observation 

Table 5 presents the posterior mean and a 95o/o-HPD interval for /30 and /Ji, we note that 

the estimates are very close. This suggests that there is not much difference between the mod­

els to estimate the fixed effects, however for the skew-normal and the normal models a single 

outlier observation could have a considerable impact on these estimates. Since this behavior 

was not observed under the skew-t models, it could be safer to use a robust model instead the 

skew-normal model. 
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Figure 2: Posterior mean (dashed line) and 95o/o-HPD interval (solid line) for /Ji under 

Skew-t, Skew-normal, t and normal distibution for different contaminations of fl of a 

single observation 

Table 4: Model comparison measures for the orthodontic data set 

Distribution prod CPO DIC 

St 2.39 X 10-:ie 111.45 

SN 4.00 X 10-26 106.17 

2.06 X 10-26 115.18 

N 2.60 X 10-26 112.51 
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Table 5: Posterior mean and 953/o-HPD interval for the corrected fixed effects. 

St SN N 

Po 17.53 17.39 17.54 17.37 

(16.01 I 18.98) {}5.98 I 18.84) (16.07 , 18.97) (15.93 , 18.74) 

{Jj 0.45 0.47 0.48 0.48 

(0.19 , 0.72) (0.22 , 0.73) (0,23 I 0,73) {0.24 ,0. 73) 

6 Application 

The data set considered in this section was analyzed by Dempster, Patel, Selwyn & Roth (1984) 

and Rosa et al. (2003). The data are from a reproductive toxicology study in rats, the outcome 

variable is birth weights (in grams) of rat pups. In this experiment, 30 dams were randomly 

allocated into three equal size treatment groups: control, a low dose, and a high dose of the test 

substance. Data from only 7 litters were available for the high dose group, and the number of 

pups per litters range from 2 to 18. These data were analyzed according to a mixed model with 

two sources of random variation: between and within litters. The model also considered the 

following fixed effects: litter size, sex and treatment. We adopted the same linear mixed model 

used by Dempster et al. (1984) and Rosa et al. (2003), given by 

111; = fJo + f}iLD; + /hH D; + -,L, + 6S;; + b; + e;;, (15) 

where 111; is birth weights (in grams) of rat pup j of litter i; LD; is a dummy variable for the 

low dose of the test substance for the litter i; HD; is a dummy variable for the high dose of the 

test substance for the litter i; L; is the size of litter i; S;; is a variable indicator for male rat 

pups; /Jo, /31 and /h are the fixed effects for treatment; -, is the slope fixed effect for the size of 

the litter; 6 is the fixed effect for the sex of the rat pup; b; is the random effect for the litter i; 

and e;; is the within-litter error, i = 1, ... , 47 , j = 1, ... , L1. 

Figure 3 presents the histogram for birth weights (in grams) of rat pups, which indicates asymme­

try of the data and that could be reasonable to fit a model that takes in account this asymmetry. 

We assumed e1; ~ St1(0,u~, >-., v.) and b; ~ St1(01 ui,>-b, 1'1,). 

We fitted several models that differ in the distribution for random effects and the errors. 

Four distributions are considered: skew-t (St), skew-normal (SN), t and normal(N). To carry 
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Figure 3: Histogram for birth weights (in grams) of rat pups 

out a model comparison, we computed the pseudo Bayes factor (Gelfand, l!l96) for each model 

relative to the normal model. The highest pseudo Bayes factor was obtained when we assume 

St distribution for the residuals, for these models we also calculated the DIC (Spiegelhalter, 

Best, Carlin & Van der Linde, 2002). 

The pseudo Bayes factor (pBF) and DIC for the models with St error are presented in table 

6. These criteria indicate that the model which assumed a normal distribution for the random 

effects presents the best fit. 

Table 6: Model comparison measures for the rats data set 

Random Effects Residuals pFB DIC 

N N 1.00 356.59 

St St 1.36 X 1021 262.74 

SN St 2.24 X 1021 262.14 

St 1.82 X 1021 262.47 

N St 2.32 X 1021 262.12 

We have also considered the values of CPO for each observation over the models (Gelfand, 

1096). In figure 4 is presented the CPO for the following four models: (1) normal for both 
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random effects and errors; (2) normal for random effects and t for the errors; (3) normal for 

random effects and SN for the errors; and (4) normal for random effects and St for the errors. 

Models 2 and 4 are clearly better than the other models, the pBF for model 4 versus model 2 

is 57.14 which leads us to choose the St as the best model for the errors. 

10 '41G 1IO 1C10 250 JCIO IO 100 IIO IDO IIO -

Figure 4: CPO for the models: (1) N-N, (2) N-t, (3) N-SN and (4) N-St 

In table 7 we present the posterior mean and a 95%-HPD interval for the models (1) and 

(4). The HPD for skewness parameter A, does not include zero which confirms the negative 

asymmetry of the data. The narrow interval for the degrees of freedom parameter for the 

residuals (11,) shows us the inadequacy of the normal or skew-normal models in this case. Notice 

that the effect of sex 5 seems to be overestimated under the normal model and also have a wider 

RPO interval, 23.4% wider than the model N-St. 
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Table 7: Posterior mean and 95%-HPD interval for models (1) and (4) 

Parameter N-St N- N 

Po 8.19 7.95 

(7.56 , 8. 79) (7.41 , 8.51) 

/J1 -0.52 -0.43 

(-0.85 , -0.17} (-0.74, -0.12) 

~ -0.94 -0.86 

(-1.34 , -0.53) (-1.25 , -0.50) 

6 0.30 0.36 

(0.23 , 0.38) (0.26 , 0.45) 

..., -0.14 -0.13 

(-0.18 , -0.10) (-0.17 , -0.09) 

Var(b,) 0.14 0.11 

(0.06 , 0.23) (0.04 , 0.19) 

Var[evl 0.16 0.16 

(0.11 , 0.21) (0.14 , 0.19) 

,\• -0.77 

(- 1.58 , -0.003) 

v, 4.13 

(3.00 , 5.81) 

7 Conclusion 

The skew-t linear mixed model shows to be a new robust alternative for modelling repeated 

measures data. The advantage of this model over the t--Student is the flexibility to work with 

asymmetrical data, this avoid variables transformation that many times are considered when 

the condition of symmetry is not observed. Also, many other linear mixed model proposed in 

the literature can be seen as a special case of the StLMM. Although the model is very flexible to 

data fitting, there is not much additional effort to do Bayesian inference. Using the hierarchical 

structure, we showed it can be easily implemented, for example, using the free software BUGS 

(http://www.mrc-bsu.cam.ac.uk/bugs). However, some inferential points need more attention 

when the interest is to estimate the parameters associated with the kurtosis (v) and skewness 

(,\) of the distribution. For example, we observed that the estimates of the degree of freedom 

parameter are very sensitive to prior choice, suggesting the importance of the prior specification 
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for this parameter. This sensibility is not observed in the estimates of the fixed effects, which 

were the main focus of analysis in this paper. 

The hierarchical structure of the StLMM given in section 3 is fundamental to make easier 

the inferential implementation. Similar structure can be easily built if the skew-t type II were 

considered in the place of the skew-t type I distribution. 
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