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Abstract: Normal linear mixed models are frequently used in repeated measures data analysis.
However, the assumption of normality for the error and the random effects makes inference
vulnerable to the presence of outliers, and also depends on the symmetry of the data. Here we
propose to consider a skew-t distribution for both error and random effect terms. This flexible
model includes as special case severals symmetric and asymmetric models considered in the
literature. A Bayesian inference approach is adopted using 8 MCMC algorithms. A robustness
study is carried out showing that the new model is more robust than the normal and skew-
normal models to estimate the fixed effects parameters. An example about toxicology study in
rats is analyzed and, using different bayesian model choice criteria, we concluded that the best

mode! for this data set considers the skew-t distribution for the residuals.
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1 Introduction

Linear mixed models have been used to analyze repeated measures data or when it is assumed
independence between cluster and dependence between the observations in the same cluster
(within-subjects). The popularity of these models can be explained by the flexibility to model
the within-subject correlation, by handling of both balanced and unbalanced data. A commonly

used linear mixed-effects model for continuous response was proposed by Laird & Ware (1982)

and is given by

Yi=Xf+Zibi+e& 1
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where, Y'i(n; x 1) is a vector of observed responses, S(p x 1) a fixed effects vector, X;(n; x p)
is a design matrix for the fixed effects, Z;(n; x g) is a design matrix for the random effects,
b;(g x 1) is a random effects vector and €;(n; x 1) a vector of residuals.

In general a normal distribution is assumed for both the random effects and the residuals.
The b;'s are assumed to be independent with distribution Ny(0, ¥) an the ¢;'s are assumed to be
independent with distribution Ny, (0, ;). Here, the X; matrices depend on a typically small set
of parameters. A special and common case is the homoscedastic specification ; = a21y,, so we
assume independence between the residuals of the same subject. Some authors have suggested
the use of thick-tailed distribution to skip the lack of robustness of the normal model. Pinheiro,
Liu & Wu (2001) suggest to use a joint multivariate t distribution for the random effects and the
residuals. Using the maximum likelihood approach they proposed efficient algorithms to obtain
these estimators. Under a Bayesian approach Rosa, Padovani & Gianola (2003) e Rosa, Gianola
& Padovani (2004) compared multivariate and univariate specifications for the distribution of
the residuals under some thick-tailed distributions. Their results suggest that unless there is a
strong reason to believe in the adequacy of normality, it may be safer to use a robust model.

In another direction, the normality assumption ig not reasonable when there is evidence of
asymmetry in the data set. In this case, a skew distribution can be considered for both random
effects and residuals. Under this view, some authors have been developing their works. Arellano-
Valle, Bolfarine & Lachos (2005) used the multivariate skew-normal distribution proposed by
Azzalini & Dalla Valle (1996) to model the random effects and the residuals. The authors
consider the maximum likelihood approach, which they implement via an EM algorithm. Ghosh,
Branco & Chakraborty (2007) used the multivariate skew-normal given by Sahu, Dey & Branco
(2003) and a Bayesian approach. They applied that model for a HIV-RNA data set, MCMC is
used to carry out the posterior analysis and model comparison . Ma, Genton & Davidian (2004)
considered a generalized version of the multivariate skew-normal, called flexible skew-normal
(Ma & Genton, 2004) for the random effects and normal distribution for the residuals. Since
the skew-normal is not a thick-tailed distribution this is not appropriate for robustness interest.
An alternative is considered a skew-t distribution, as given by Azzalini & Capitanio (2003),
which takes care of both robust and asymmetry problems. Ma et al. (2004) also considered a
flexible skew-t distribution for the random effects. However, they have not given much attention
for this model, since they concluded that their data set was not well fit for the skew-t and they
decided in favor of the skew-normal. Also, they used an improper prior for the degree of the

freedom, so it is not clear if they obtained convergence for the MCMC algorithm. In fact, by
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analogy to the symmetric {-Student model we should avoid to consider improper prior for the
degree of freedom (see Ferndndez & Steel, 1998).

The plan of the paper is as follows. In section 2 we present a little overview about the
multivariate skew-t distribution that will be considered here. Section 3 presents the skew-¢
linear mixed model, and shows how some other models in the literature can be seen as a special
case of the model proposed here. In section 4 the Bayesian inference methodology is presented.
In section 5 a robustness study is considered comparing the normal, skew-normal, t-Student and
skew-¢ models. Finally, in section 6 will be presented an application for reproductive toxicology
data set and also is developed a model comparison analysis using CPO (Conditional Predictive

Ordinate), pseudo-Bayes factor and DIC (Deviance Information Criterion).

2 Skew-t distribution

A random variable Y has a skew- distribution if its probability density function (pdf) is given

by

_ i y—-uf v+1 1/2_
fY(y)—Z‘l(y-#.Uz»V)ﬂ()‘T(W) .0.1,V+I), 2

where t1(.;9,n,7) and Ti(.;4,7n,7) are the pdf and cumulated distribution function (edf) of
a t-Student distribution centered in 3 with scale n and 7 degree of freedom, respectively, and
) = (y - /o

We consider the notation Y ~ St;(u, 0%, A, »), where 4 € R, 2 > 0 are the location and
scale parameters, respectively. Note that, if A = 0 then fy(y) = #;(y; 4, 0% v). X is a shape
parameter, also called skewness parameter, which gives the direction of the asymmetry ( A <0
negative skewness and A > 0 the skewness is positive ). As in the ¢-Student distribution, the
degree of freedom v is associated with the thickness of the tail of the distribution.

A stochastic representation for the skew-t random variable Y with pdf in (2) is given by

1
Y = pt g (et 7). @

, z has a standard normal distribution, u has a positive half

where n = Lo e
"= T T TR
normal and w a gamma distribution with parameters v/2 e v/2 ( w ~ Gamma(%, ¥)) .



If v > 2, the mean and the variance for Y exist and are given, respectively, by

EW]=“+\/§PF(E_S)” and var[}’]=uz2:’—£(rr(lé_;)) 7.

A multivariate version of the skew-¢ distribution can be constructed using the following

stochastic representation

Y =+ W2 (diag(n)u + AYZ) . @

Where u is a vector in R™ and each element u; has a positive half normal distribution; W =
diag((w1, ..., wn)), and each w; ~ Gamma(v/2,v/2), i = 1,..,n; Z has a standard n dimen-
sional normal distribution; A is a positive definitive matrix; 7 and  are vectors in R".

If A is a diagonal matrix then the elements of ¥ are mutually independent and have skew-t
univariate distribution. Several asymmetrical and symmetrical multivariate distributions can

be represented by (4) depending on the values of u; e wj, see table 1, where u has a positive

half normal and w ~ Gamma(}, §).

Table 1: Special cases of stochastic representation (4)

w; Distribution
0 1 Normal
0 w t-Student
u 1 skew-normal type I
u; 1 skew-normal type II
u W skew-t type I
U W skew-t type 1I

The multivariate skew-normal type I was given by Azzalini & Dalla Valle (1996). The multi-
variate skew-t type I was given by Branco & Dey (2001) and Azzalini & Capitanio (2003). The

skew-normal and skew-t type II were given by Sahu et al. (2003).
We consider here the skew-t type I distribution, for both random efect and residuals. How-

ever, it is not difficult to adapt our results for the skew-t type II distribution. The skew-t type

I pdf is given by
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We consider the notation ¥ ~ St,(u, E, A, v). In this case, the mean and the covariance matrix

for ¥ exist if v > 2 and are given by

vl (5
E(Y)=y.+\/:—3n , v>1
T I'(§)

and

2
T v—-1
Var(Y):uzzz—%( (T)) mt , v>2

Ar important property of this distribution is to be closed by linear transformations. Then,
any linear combination of a skew-t random vector is also a skew-t random vector. This property
help us to adopt the skew-¢ distribution to model an additive error in regression models, as we

will do in the next section.

3 Skew t Linear Mixed Model

Let's remember model (1)

Yi=X.0+Zb; +¢;
with all terms as before, but now considering

by ~ Stg (0,%, A, 1),

€ij ~ St (01 ‘73: Ae, V:) )

(6)

i=1,.,mand j = 1,..n;; with b; independent of &;; and the €;;'s are mutually independent.
Using the stochastic representation given in (4), this model can be alternatively written in a

hierarchical way :
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where x;; and z;; are the j-row of X ; and Z; respectively; o2 = 72 4+n2; A, = -Z—‘; ¥ = A+mnT
[
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Some maodels in the literature can be seen as a special case of the Skew-t Linear Mixed Model
(StLMM), depending on the values of weij, Wy, Uei; and up;. For example, when 15 = up =0
and weij = Wy = wy, where w; have independent gamma distributions with parameters 1//2 e

v/2, we obtain a joint multivariate ¢ distribution for the random effects and the residuals,

() ()5 2))

which is the model proposed by Pinheiro et al. (2001). Other examples can be seen in table 2.

Table 2: Special cases of SS(LMM

Ueij Ubjh Weij Whih Model

0 0 1 1 Normal

0 0 w Wi Joint multivariate ¢ ¢
0 0 w; w,; Non-correlated errors ¢ ®
0 0 w.; 1w Independent errors t ®

Uy w1 1 Skew-normal ¢

°Pinheiro et al. (2001)
*Rosa et al. (2004)
¢Arellano-Valle et al. (2005)



Using properties of the skew-¢ distribution, we can see that

-1 ve—1
E[Yi]= X8+ \/%rl"(?i’:;) Zinp+ \/V;_Crr.((g:‘))m ®

and
Var(Y;] = ZiVar[bi)Z; + Var|ei, 9)
where 5
1 % (T (ﬂ;—l) T
Va.r[b.] = ';b-—_—z‘p - p ( T (? MmN
and

4 Bayesian Inference

To complete the Bayesian specification of the model, it is assumed a prior distribution for all
the unknown quantities.

For the univariate skew-normal distribution, Bayes & Branco (2007) in a simulation study
demonstrated that assumed a prior that A ~ £; (0,1/2,2) and p(¢?) o< 1/0? leads to better point
and interval estimates. Considering this prior specifications and using usual variable transfor-
mation methods, it induces the following prior distribution for the parametrization used in the
stochastic representation (3), 7 ~ t;(0,7%/2,2) and p(r?) o 1/72. These prior distributions
are adopted for the skewness and scale parameters of the error distribution, with a slightly

modification, we consider a proper distribution for the scale, -

7e ~ t1(0,72/2,2)
1 (10)
— ~ Gamma (ao, bo)

For the random effects skewness and scale parameters we assumed a multivariate version of prior

distribution (10) considering the multivariate ¢ and a Inverse Wishart distributions,

1
m ~ tq (0, E‘I" 2)

¥ ~ Inv — Wishart (a1, B1).

1)



The prior distributions for the degrees of freedom parameters v, and v, are assumed to be

Plve) x Vc_z-r(”e >3), (12)

Pws) & vy 21 (1> 3),
as in Liu (1995) and Rosa et al. (2003). The truncation point was chasen to assure that the
mean and variance of the skew-t distribution are finite.

We assume a multivariate normal distribution for the fixed effects 3,
B~ Np(pp,Qp). (13)

The augmented joint posterior density is the product of the augmented likelihood function
that can be found from (7) and the prior distribution given by (10)-(13). We can apply Markov
Chain Monte Carlo (MCMC) algorithms to draw samples from the posterior density. It is not
difficult to see that the full conditional distributions have standard form for the prior spec-
ification given by (11), (12) and (13) with exception for the degrees of freedom parameters.
The Gibbs sampler algorithm also can be easily implemented via BUGS software (Spiegelhalter,
Thomas, Best & Lunn, 2004). For obtaining the results in the next section we used this software,

and the programs can be obtained by the authors upon request.

5 Robustness study

We considered the data set in Potthoff & Roy (1964) about an orthodontic study of 16 boys
and 11 girls between 8 and 14 years. It has been analyzed by Pinheiro et al. (2001} using a
joint t-distribution for the random effects and the residuals under a classical approach, and, by
Rosa et al. (2004) under a Bayesian framework and they assumed independent t distributions
for the random effects and residuals. The response variable is the distance, in milimeters, from
the center of the pituitary to the pteryomaxillary fissure, taken at 8, 10, 12 and 14 years. As
did by Pinheiro et al. (2001), to our study of the influence of a single outlier, we consider only
the girls from the Potthofl & Roy (1964) data set. The model is given by

g = Bo+ Bit; + boi + bty + €, (14)

where y;; is the distance in milimeters from the center of the pituitary to the pteryomaxillary

fissure at time j of the subject i; ¢; is the age measured in years; By e f) are the intercept and



the slope fixed effects; &; = (boi, b1;)7 is the random effects vector for the i—th subject; and e;;
is the within-subject error, i =1,...,11 and j =1, ..,,4.

Four models were considered: skew-t (St), skew-normal (SN), ¢t and normal(N). In all of them
the same distribution was considered for both random effects and residuals. Since the parameters
Bo e f1 do not have the same interpretation for all models, to make the models comparable we
consider

Elyy5) = By + Bit;

where the expression for G5 and ff are in table 3.

Table 3: Corrected fixed effects parameters

Model I B

wl (%) v L (5 wl (97)

2 2 2
SN fo+ \/;ﬂw + \/;ﬂe B+ \/;Tm

t .ﬁo B

N Bo B

We consider the influence of a change of A units in a single measurement on the posterior
distribution of the corrected fixed effects parameters. That is, we replace a single data point
Vij by the contaminated value y;(A) = yi; + A, re-estimate the model and record the posterior
mean and HPD interval with probability of 95%. In this example, we contaminated the fourth
observation (age of 14 years) of the first girl, and varied A between -20mm and 20mm by
increments of 2mm. ’

Figures 1 and 2 present the posterior mean and the 95%-HPD interval for the four models.
As expected, the skew-t and ¢ models are less sensitive to variations in A than the normal and

skew-normal models. The variations in A have considerable impact, for the normal models, in



both the posterior mean and HPD. Note that, the size of the interval increases as JA| increases.
Table 4 shows the DIC (Spiegelhalter, Best, Carlin & Van der Linde, 2002) and CPO product
(Gelfand, 1996) for the four models for the non-contaminated data set; both criteria choose the

skew-normal model (bigger CPO’s product and smaller DIC). Therefore, a skew model should

be considered for this data set.
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Figure 1: Posterior mean (dashed line) and 95%-HPD interval (solid line) for 35 under

Skew-t, Skew-normal, t and normal distibution for different contaminations of A of a

single observation

Table 5 presents the posterior mean and a 95%-HPD interval for B3 and B;, we note that
the estimates are very close. This suggests that there is not much difference between the maod-
els to estimate the fixed effects, however for the skew-normal and the normal models a single
outlier observation could have a considerable impact on these estimates. Since this behavior

was not observed under the skew-t models, it could be safer to use a robust model instead the

skew-normal model.
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Figure 2: Posterior mean (dashed line) and 95%-HPD interval (solid line) for §; under

Skew-t, Skew-normal, t and normel distibution for different contaminations of A of a

single observation

Table 4: Model comparison measures for the orthodontic data set

Distribution prod CPO  DIC

St 2.39 x 1072 11145
SN 4.00 x 10~%  106.17
t 2.06 x 10~% 115.18
N 2.60 x 10~ 11251
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Table 5: Posterior mean and 95%-HPD interval for the corrected fixed effects.

St SN t N
B; 17.53 17.39 17.54 17.37
(16.01,18.98) (15.98,18.84) (16.07,18.97) (15.93,18.74)
B 0.45 0.47 0.48 0.48

(019,072)  (0.22,073)  (0.23,0.73)  (0.24 ,0.73)

6 Application

The data set considered in this section was analyzed by Dempster, Patel, Selwyn & Roth (1984)
and Rosa et al. (2003). The data are from a reproductive toxicology study in rats, the outcome
variable is birth weights (in grams) of rat pups. In this experiment, 30 dams were randomly
allocated into three equal size treatment groups: control, a low dose, and a high dose of the test
substance. Data from only 7 litters were available for the high dose group, and the number of
pups per litters range from 2 to 18. These data were analyzed according to a mixed model with
two sources of random variation: between and within litters. The model also considered the
following fixed effects: litter size, sex and treatment. We adopted the same linear mixed model

used by Dempster et al. (1984) and Rosa et al. (2003), given by

¥ij = Bo + B1LD;i + B2 HDi +vLi + 65ij + bi + €3, (15)

where y;; is birth weights (in grams) of rat pup j of litter 4; LD; is a dummy variable for the
low dose of the test substance for the litter ; H.D; is a dummy variable for the high dose of the
test substance for the litter ¢; L; is the size of litter #; Sj; is a variable indicator for male rat
pups; By, £ and By are the fixed effects for treatment; + is the slope fixed effect for the size of
the litter; d is the fixed effect for the sex of the rat pup; b; is the random effect for the litter ¢;
and e;; is the within-litter error, i=1,...,47, i =1,..., L;.
Figure 3 presents the histogram for birth weights (in grams) of rat pups, which indicates asymme-
try of the data and that could be reasonable to fit a model that takes in account this asymmetry.
We assumed eij ~ St (0,072, A, V) and b; ~ St1(0,02, Ap, ).

We fitted several models that differ in the distribution for random effects and the errors.

Four distributions are considered: skew-t (St), skew-normal (SN), ¢ and normal(N). To carry
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Figure 3: Histogram for birth weights (in grams) of rat pups

out a model comparison, we computed the pseudo Bayes factor (Gelfand, 1996) for each model
relative to the normal model. The highest pseudo Bayes factor was obtained when we assume
St distribution for the residuals, for these models we also calculated the DIC (Spiegelhalter,
Best, Carlin & Van der Linde, 2002).

The pseudo Bayes factor (pBF) and DIC for the models with St error are presented in table

6. These criteria indicate that the model which assumed a normal distribution for the random

effects presents the best fit.

Table 6: Model comparison measures for the rats data set

Random Effects Residuals pFB DIC

N N 1.00 356.59
St St 1.36 x 102 262.74
SN St 2.24 x 108 262.14
t St 1.82x 102 262.47
N St 2.32x 102 262.12

We have also considered the values of CPO for each observation over the models {Gelfand,
1996). In figure 4 is presented the CPO for the following four models: (1)} normal for both
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random effects and errors; (2) normal for random effects and ¢ for the errors; (3) normal for
random effects and SN for the errors; and (4) normal for random effects and St for the errors.
Models 2 and 4 are clearly better than the other models, the pBF for model 4 versus model 2
is 57.14 which leads us to choose the St as the best model for the errors.
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Figure 4: CPQ for the models: (1) N-N, (2) N—t, (3) N—SN and (4) N-St

In table 7 we present the posterior mean and a 95%—HPD interval for the models (1) and
(4). The HPD for skewness parameter . does not include zero which confirms the negative
asymmetry of the data. The narrow interval for the degrees of freedom parameter for the
residuals (v, ) shows us the inadequacy of the normal or skew-normal models in this case. Notice
that the effect of sex 4 seems to be overestimated under the normal model and also have a wider
HPD interval, 23.4% wider than the model N-St.
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Table 7: Posterior mean and 95%—HPD interval for models (1) and (4)

Parameter N =St N-N
B 8.19 7.95
(7.56 , 8.79) (741, 8.51)
B -0.52 -0.43
(-0.85,-0.17) (-0.74, -0.12)
B -0.94 -0.86
(—1.34,-0.53) (-1.25, -0.50)
) 0.30 0.36
(0.23, 0.38) (0.26 , 0.45)
¥ -0.14 -0.13
(-0.18, -0.10) (-0.17, —0.09)
Var(bi) 0.14 0.11
(0.06 , 0.23) (0.04 , 0.19)
Varle;;] 0.16 0.16
(0.11, 0.21) (0.14 , 0.19)
Ae -0.77
(—1.58 , —=0.003) -
Ve 4.13
(3.00, 5.81) -

7 Conclusion

The skew-t linear mixed model shows to be a new robust alternative for modelling repeated
measures data. The advantage of this model over the -Student is the flexibility to work with
asymmetrical data, this avoid variables transformation that many times are considered when
the condition of symmetry is not observed. Also, many other linear mixed model proposed in
the literature can be seen as a special case of the SSLMM. Although the model is very flexible to
data fitting, there is not much additional effort to do Bayesian inference. Using the hierarchical
structure, we showed it can be easily implemented, for example, using the free software BUGS
(http://www.mrc-bsu.cam,ac.uk/bugs). However, some inferential points need more attention
when the interest is to estimate the parameters associated with the kurtosis () and skewness
(A) of the distribution. For example, we obsefved that the estimates of the degree of freedom

parameter are very sensitive to prior choice, suggesting the importance of the prior specification
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for this parameter, This sensibility is not observed in the estimates of the fixed effects, which

were the main focus of analysis in this paper.
The hierarchical structure of the StLMM given in section 3 is fundamental to make easier

the inferential implementation. Similar structure can be easily built if the skew-¢ type II were

considered in the place of the skew-t type I distribution.
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