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Latent Trait Estimation in Nominal Response Model : Latent Trait 
Asymmetry and Hierarchical and Empirical Framework 

Caio Lucidius Naberezny Azevedo" and Dalton Francisco de Andrade1 

Abstract 

The Bock's Nominal Response Model (Bock, 1972) was proposed to improve the latent trait 
(ability) estimation. In this article we discuss the five of most used latent trait estimation methods: 
Ma,dmum Likelihood (MV) (Baker and Kim, 2004), three bayesian methods, the Expectation a 
Posteriori (EAP), the Expectation a Posteriori through Monte Carlo integrntion (EAPMC) and 
Mode a Posteriori (MAP), that we will call as Classical l:!ayesian Procedures (CBP) and Metropolis­
llastings algorithm within Gibbs Sampling, that will name MCMC + Metropolis Hastings algorithm 
(MCMC + MH). We review the MC and EAP mCLhods, propose the EAP through monte carlo 
integration, develop a suitable modification in MAP and present three schemes of simulation for the 
MCMC. To illustrate these estimation methods we conduct appropriate simulations. We assume 
that the item parameters are known or have been estimated by some appropriate method. 

Key words : Latent trait, nominal response model, dichotomous models, bayesian estimation, 
nsymmetry distribuiion. 

Classifica~ao AMS : QA 277.24. 

1 Introduction 

The Bock's Nominal Response Model (Bock, 1972) was proposed to improve the latent trait 
(ability) estimation. Frequently, the MV and CSP procedures have been used to estimative latent 
traits in IRT models. However, these methods may not produce good results. In counterpoint, the 
MCMC + MH approach constitutes an interesting alternative because its flexibility, even though it 
demands a great computational effort. These methods are applied in the latent trait estimation, 
considering the item para.meters known or not. In this article, we focus on the situation where we 
know the true value of the item parameters. This a common situation, for example, when it is used 
items from an item baking. 

In next section we present the model and introduce some useful notations. In Section 3 we discuss 
the estimation methods considered in this work, in Section 4 we conducted appropriate simulations 
and in Section 5 we give some conclusions. The Appendix brings some algebra and results related to 
the simulation process. 

2 The Model 

The Nominal Response Model (Nfuvl), see Bock (1997) for example, has the following form 
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3 LATENT TRAIT ESTIMATION 

m; (1) 
L e•1n(B,-b1h) 

h=I 

where Y;j,, is the random variable that assumes value 1, if subject j, j = 1,2, ... ,n chooses the 
alternative s, s = 1, 2, ... , m; of item i, i = I, 2, ... , I and 0, otherwise, a;, e b;, represent the 
para.meters related to the discrimination and the difficult of the category, respectively. In this 
model we may have negative values for both type of parameters. For the parameter discrimination, we 
expect negative, or small values, for the wrong alternatives and positive value for the right alternative. 
This mcmns that higher value for individual ability is associated with higher probability of this subject 
chooses the right alternative. The difficult parameter represents, in some way, the ability that a 
subject must have to chooses the referred alternative. 

Notice that, the two parameter logistic model (see Baker and Kim, 2004), is not a particular case 
of the NR.!vl considering only two categories. 

This model has three basically assumptions that are essential to the estimation processes; 

l. The responses of different subjects are independent, 

2. Given the latent trait, the response of the same subject to different items are independent 
(conditional independency), 

3. The probability that a subject chooses an alternative of a specific item can be modelled by the 
multivariate Bernoulli model, that is, 

m, 

P(Y;i, = Y;i_l0, (;) = P(Y;i, = Yij.) = n P/1/;', 
•=I 

where Yij. = (Yiil, . .. , Yijm, )' represents a specific set of responses of a subject to a specific item. 
In the next section we will discuss the estimation procedures. 

3 Latent trait Estimation 

In this section we discuss and present the latent traits estimation procedures. We review the 
Maximum Likelihood, suggest modifications in the CBP procedures and present the MCMC simulation 
trough three schemes of drawing from posterior densities. 

In the Intent trait estimation, using ML and CBP, one always consider the item parameter know 
and we introduce the estimatives (or the true values) in the original likelihood and then it uses this 
function to estimative them. This generates a kind of profile likelihood (Van Der Vaart and Murphy, 
2000) and (Fraser and Reid, 1989), that not necessarily leads to the same estimatives obtained from the 
original likelihood (Baker and Kim, 2004). F'111·thermore we use only the estimatives of item parameters 
and not their standard errors. Another important point is that, to estimative the item parameters 
we need to consider a (prior) latent distribution that, in general is set to n standard normal (Baker 
and Kim, 2004), or an empirical distribution estimated by the so-called Nonparametric Maximum 
Likelihood Estimation (Mislevy, 1984), for example. This may leads to poor estimatives of item 
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3 LATENT TRAIT ESTIMATION 

parameters and consequently to poor latent trait cstimatives. Or even, if the true latent distribution 
is dilferent from the distribution used in the estimation processes, the latent cstimatives may not be 
so good. 

Even in the CBP procedure, the prior distribution is set to a standard normal and the quantities 
adopted are commonly the maximum (MAP) or the expectation (EAP) values. In the MAP method, 
one may use a different prior because it is not so complicated to calculate the needed derivates. 
However, in the EAP, we need to use quadrature points that in general, are not available to asymmetric 
distributions. Furthermore, it is not possible to evaluate the posterior distribution of latent traits, 
only some quantities. The classical bayesian methods discussed above are not appropriate to take into 
latent asymmetry distribution account. 

In counterpoint, the MCMC + Metropolis-Hastings simulation proposed by Patz and Junker (1999) 
is a straightforward method that uses a bayesian approach in item response theory. Particulary, one 
may choose to estimative simultaneously the item parameters and latent traits, to consider a wide set 
of priors and to use different quantities to estimative the interesting parameters. In next subsection 
we will presente/revicw the estimation methods. 

3.1 Maximum Likelihood Estimation 

As described in Baker and Kim (2004) and Azevedo (2003), we have the following log-likelihood to an 
individual latent trait 

I m, 
L L Y•i• In P•i• , 
i=l J=l 

where f represents an estimative for the item free parameters (Azevedo, 2003). After some algebra, 
we obtain the score function, 

I 

L a:lT, [Yij. - P,j.) ' (2) 
i=l 

and Hessian Matrix 

I 

II(Oj) = - L {a:fT;W,jTla:,}' (3) 
i=l 

where a:,, T, and W, are convenient matrices (Azevedo, 2003). We may notice, by (3), that the 
Hessian Matrix is non-stochastic, so the Information Matrix is only I(Bj) = -H(Bj), Therefore, 
considering Bi an estimative of Bj in iteration t, we can define the Newton-Raphson / Fisher Scoring 
method (Baker and Kim, 2004) as 

Newton-Raphson 

(4) 
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3 LATENT TRAIT ESTHv!ATION 

F isher Scoring 

(5) 

t = I, 2, . . . , up to achieve an convergence criteria. 
In the next subsection we present the modal and expectation bayes estimation. 

3 .2 Bayes Modal Estimation 

In a general way, in the bayes estimation, we need to use the posterior distribution which follows 
directly from the Bayes Theorem (Bernardo and Smith, 1998), 

9;(0;) = cg(e;1v.;., r. 11) = c P(Y.;.10;, r)y(O;l'T/) 

ex P(Y.;.IO;, J.')g(O;IT/), (6) 

where Y .;. = (Y1;1 , . .. , Y1;m,, . . . , Y1;1, ... , Yr;mY, P(Y.;.IO;, f) is the profile likelihood, g(0;IT/) is u 
convenient prior, T/ are the hyper parameters (or the populational parameters) and C is a normal­
ization constant. To evaluate the bayes modal we need to maximize equation (6). Then taking its 
natural logarithm we have 

lngj(O;) = lj (B;) = I (B;) + In 9 (O;IT/) + const . (7) 

Differentiating (7) , we have the bayesian estimating equation 

(B) 

Notice that the first term in the right-hand side of (8) is exactly the score function defined in 
(2) and, considering a skew-normal distribution, B;IT/; ~ S N(µs1 , ai

1
, >.s1 ) (Gen ton, 2004) it follows 

that 

where T/; = (µo;, ai,, >.o1 )' , µo1 is the mean, ai
1 

is the variance, >.o1 is the asymmetry pare.meter, ¢(.) 
and <I>(.) are the density and cumulative functions of a standard normal distribution. Consequently, 
the hcssian matrix and the Fisher information a.re given by 

Hessian Matrix 
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3 LATENT TRAIT ESTIMATION 

where, 

Fisher Information 

where H(8j) is given by (3). The Fisher information is only the symmetric value of hessian matrix. 
The iterative process may be applied as described in (4) aud (5). In the next subsection we present 
the bayes expectation estimator. 

3.3 Bayes Expectation 

From (6) we have that the bayes expectation is given by 

!JR 8P(Y.j.l8, f)g(8l11)d8 

l P(Y.j.10, I')g(8l11)d(J . 

Generfl!ly, the integrals in (10) do not have an explicit form and then they must be solved by some 
numerical method of integration (Robert and Casella, 1999). Again, considering a SN(110, uJ, .X9) with 
-Xo, = 0, i.e., a normal distribution, the integrals may be solved by Gauss-Hermite method (Stroud 
and Secrest, 1966), or generating quadrature points considering any value to A9. So (10), in terms of 
the quadrature points, becomes 

where 01 and A1, are the quadrature points and the qundrature weights, respecLively. A mea.~ure of 
precision of the EAP estimation is given by the Variance a Posteriori (VAP) that has the following 
form 

q 

,L {o, -IE [oi lY.j.,f,11] r P(Y.j.l01,f)A1 
l=l 

q 

.L P(Y.j.181, I')A1 
I=! 
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3 LATENT TRAIT ESTIMATION 

We need to point that for both MAP and EAP methods we used a nsymmctry sample estimative 
for >.o using the observed scores. To generate quadrature points considering any value for >.s, it was 

written a R-function that generates quite similar values to them used for Bilog (Mislevy and Bock, 

1990) when >.s = 0. 
On the other hand, if we consider a general Skew-Normal distribution , we may use the Monte 

Carlo Integration (Robert and Cnsella, 2000) to solve the integral (10), using the following scheme: 

l. Generate m random Uniform (-1,1) numbers, say ~ 1, ••. , ~m-

2. For r = l , .. . , m , calculate 

1 mi 

P(Y.;.l ln(K,),r) = n TI Pt;. , and 
i=J •=1 

g(ln(K, )111), 

(11) 

(12) 

where P,~. in {I 1) is given by (1) replacing O; by ln(K,), (12) is a skew-normal density evaluated 

in the ln(K,) and K, = - 2- + 1. 
\!Jr - 1 

3. Then, evaluates 

So, the EAP and VAP estimators through Monte Carlo are given by (13) and (14) . 
In the next section, we present the MCMC + MH algorithm. 
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3 LATENT TRAIT ESTIMATION 

3.4 MCMC + MH algorithm 

The MCMC's methods basically consist of simulate random variables through stationary distribu­
tions of mnrkov chains (Geman and Geman, 1984). Particulary, in the !RT context, the MCMC + 
Metropolis - Hastings approach is straightforward and efficient to simulate posterior densities (Patz 
and Junker, 1999). 

We consider three schemes of drawing the posterior distributions (bayesian inference) : classical, 
empirical and hierarchical ones (Bernardo and Smith, 1998). The first consists basically of choosing 
suitable priors and keep constant their hyper parameters. In the second scheme we consider hyper 
priors with the hyper parameters draw from their hyper posteriors, apart from their respective param­
eters, and then, we consider these simulate values in the posterior densities. From these empirical 
posterior densities we draw values for the parameters of interest. Finally, in the third one, we draw 
from a joint posterior density of item parameters and their hyper parameters and take only the 
values of the item parameters. We may note that, the second and the third one scheme are different 
from the hierarchical procedure proposed in Kim et al {1994). 

For this purpose we consider, again, a skew-normal density (Genton, 2004), and µ91 , (qi; , ,J,e1 )1 

and (>-o,. voj as the mean, variance and a.symmetry parameter for the prior and kernel densities. 
The schemes are described below. 

1. Classical Scheme 

To simulate o}I),..,, g(81II',y..) (full conditional), for j = 1, ... ,n, considering the prior OilTJJ"' 
SN(µo,,qt,>-o;), where, 'Tlj = (µo1 ,ai;,>-e;)1

, through: 

(a) To .simulate o}•ll(Oy-l),,J,e1 ,vo,) ~ SN(0t1>,,t,s1 ,ve1 ). 

(b) To evaluate the vector of accepting probabilities ey> 
min{Re1 , 1}, where 

(c) To nccept every 0}1> = O)") with probability 1ro
1

, otherwise 0}1> = 0j1-
1>. 

2. Empirical Scheme 

To simulate (0}11 , vtf ~ g ((oj, ve1) 1if, Y ... ) {full conditional), for j = 1, ... , 11 , considering 

the prior O,l'Tlj ~ SN (µe,,ai;,>-s,) nnd vs,l(µ,,1 ,a~,,>.,,1 ) ~ SN(µ,,1 ,a';,,,>.,,,) through: 

2.1 Latent 'Trait Asymmetry hyper parameters 
Different Asymmetry Parameters 
,,.. . ul (•>1( (t-1) .,, ) SN( (t-1) .,. ) (a) 1.0 Sim ate VB; VO; ,'1',,;,VvJ ~ V9J ,'l'vJ,llv;, 
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3 LATENT TRAIT ESTIMATION 

(b) To evaluate the vector of accepting probabilities vJ'> = vj">, 1r.,,
1 

= 1fJ (v~;-1>,vt>) = 
min { R.,,

1
, 1} , 

X 

(c) To accept every 118<
1> = 118(-) with probability r..,, , otherwise 110(1) = 110<t-l)_ 1 ; ; j ; 

Same asymmetry parameters 

( ) "' . I <•>1( (1-1) .,. ) SN( (1-1) ) 8 ,o s1mu ate 119 llo , 'l'v,, llv; ~ V9 , Wv;, 11.,, • 

(b) To evaluate the vector of accepting probabilities 11<1> = 11(•), -rr.,
0 

= 1r, (11~1
-

1>,11J•>) = 
min {R.,,, l}, 

(c) To accept every 11~1
) = 11J·> witb probability 1r.,, , otherwise 11~

1> = 11~t-l) . 

2.2 Latent traits 

( ) "' . I o<·l1 co<t-l ) .,. (t)) S"(8(1-I) .,. (1)) a ,o s1mu ate j i , y,o1 , 1101 ~ " i , '1'81 , 1101 . 

(b) To evaluate the vector of accepting probabilities oy> = o;·>, 1ro1 = 1r; (or-1>,o}•l) = 
min {Ra;, 1} , where R.e1 is given by (15). 

(c) To accept every 0}1> = o;•> with probability 1ro;, otherwise 0;
1> = 0J1

-
1>. 

3. Hierarchical Scheme 

To simulate ( 0;1>, 11~:>r ~ g ( (O;, 1191 )tlf, Y ... ) (full conditional) , for j = l , . .. , n , considering 

the prior 8! 1'7; ~ SN (µo,, ui
1

, Ao1) and 110, l(µ.,1 , u~,, Av1 ) ~ SN(µ.,1 , ui,, >..,, ), through: 

8 



3 LATENT TRAIT ESTil'vIATION 

3.1 Different asymmetry parameters 

( ) "' . I (-)J( (1- 1) ' ) SN( (1-1) .,. ) d 0<•) J(0Ct-1J I (-)) a .LO s1mu ate Voj Vo, , WvJ I llv; _, Vo, I 'f'IIJ I v,.,j an j ; 1 1P01' Voj ,_ 

S ( (t-1) (•)) N oi , iJ•e1 , 1181 . 

(b) To evaluate the vector of accepting probabilities (0!1>, vt>it = (0;"), 11!;>)1, ,r(B;,v,
1

) = 

[(0(1-1) (t-1)) ( 0(,J H)] · {R } h "i i , 1181 , i , 1181 = min (O,,vo, ), I , w ere, 

and R.,,
1 

as in (16). 

(c) To accept every (0)'), 11t>)1 = (0j•>, 11tl)t with probability "(BJ,"•,l• otherwise (oj'>, 11t>)1 = 
(0(1-1 ) (t-1))1 

j I l/9j . 

3.2 Same asymmetry parameters 

( ) '" . I (-JI( (t-1) .,. ) SN( (t-1) .,. ) d 0<·>1(0<t-l) I (·)) a ,o s1mu ate 110 118 , ..,.,, 11., ~ 110 , ..,.,, 11., an i i , 1/Jo;, 118 ~ 
SN(0(t-l) I (•)) 

J ,1/J0;,110 • 

(b) To evaluate the vector of accepting probabilities 4) = 11~•) and oj1> = oj·>, 110 = 
min {R.,,, 1} and 1ro1 = min { R911.,0 , l }, with Ro11vo is given by (15) o.nd 

( c) To accept 11<1> = 11<•> with probability ""• otherwise, 11(1) = 11<1- 1> and then, to accept 
every o(tJ = e(•l with probability r.o

1 
otherwise, 0<1> = o<t-i)_ ] J ] ] 

In the next section we present a simulation study. 
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4 SIMULATION STUDY 

4 Simulation Study 

In order to assess the behavior of the estimation procedures we conducted a simulation study. We 
considered a set of 30 items with parameters such that the discrimination ones (a) range from 1.1 to 
1.8 (for the right alternative) and the difficult ones (b) range from -2.5 to 2.5 (for the right alternative). 
Concerning the other alternatives the parameters ranges from -1.0 to 1 (discrimination parameter) and 
from -6.0 to 1.5 ( difficult parameter). We also considered three types of latent skew-normal distribution 
with asymmetry parnmcters equal -2, 0 and 2 and two sample sizes for the subjects equals to n = 500 
and n = 1000, this produced 6 situations to analyze. For every of these situations we considered 5 
estimation methods which are: Maximum Likelihood (ML), Mode a Posteriori (MAP), ExpectaLion a 
Posteriori (EAP), Expectation a Posteriori using Monte Carlo Integration (EAPMC) and finally Monte 
Carlo Markov Chain + Metropolis-Hastings (MCMC + MH). Additionally, for MCivlC procedure we 
evaluated the mean and median using a independent and burn-in samples. That is, a spaced and 
non-spaced samples. In the MCMCM + MH approach we took, for both independent (considering 
a lag 30) and burn-in (Laking all sample from the burn-in value) samples, the observed mean and 
median. For all these methods we keep the parameters values as Lhe real item data set. Finally, we 
used a set of R = 50 replications, for each of former six situations. 

In the ML and MAP estimation we set 40 as the maximum iteration number. For MAP, EAP 
and EAPMC methods we set in O and 1 as the priors meo.n and vario.nce, respectively, and estimated 
the asymmetry parameter using o. sample asymmetry coefficient. For the EAP procedure, we use 30 
quadrature points, more points than the literature suggests, in general around 20 (M uraki and Bock, 
1997), in order to dco.l with the asymmetry latent distribution. For the EAPMC method we considered 
5000 uniform numbers in order to ensure the accuracy of this method. Finally, concerning the MCMC 
simulation we adopted the priors and kernel distributions referred in Section 3.4 with µ9J = 0, aJ; = 1, 
As; = 0, and 1/JsJ = 1, for j = l, . . . , n. As we considered only the Empirical Scheme, the a.symmetry 
parameter of the kernel latent distribution was estimated concurrently with the entire estimation 
process. After several preview runs we adopted, for the asymmetry hyper parameters, a~

1 
= 0.10 and 

1/J~; = 0.05, for j = 1, . . . , n, to the -2 and O asymmetry situations and a~! = 0.20 and lf,v, = 0.15, 
for j = 1, ... , n to the 2 asymmetry parameter situation. In a real prob cm, we can decide what 
situation we are dealing with by verifying the value of the asymmetry coefficient of the observed 
scores. The mean and asymmetry hyper parrunetcrs (µ~J, Av,, vvJ )1, were set equal to 0. For the burn­
in we considered B = 1000. We made inference taking a total of 8000 MCMC simulations with a lag 
of 30, that is, with 7000 values and taking the simulated values with distance of 30 observations. 

In order to compare the estimation methods we considered 4 statistics, that are : 

• Variance : the variance of the estimatives obtained from the 50 replicas. 

• Mean Squared Residual (MSR) : the mean of the sums of the squares, that is, is the squared 
difference between the true volue and the estimatives of the 50 replicas. 

• Bias : the sum of the two former statistics. 

• Correlation : the Pearson's correlation coefficient between the true latent trait and their esti­
matives. 

Table l presents these four statistics to all five estimation procedures. The results show that 
bayesian methods produce better cstimatives, specially, in the presence of asymmetry. The correlations 
(Figures l to 6) are quite similar but, the other statistics suggest thnt, ma.inly the EAP and MAP, 
produce more precise results. Considering positive or negative asymmetry we can see that the MCMC 
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methods behaved far from the expected. Basically, we suppose that are two reasons for it. First, for 
the inference purposes, generally, it is better to use some stochastic representation in order to produce 
stable estimation results. We also noted in our work that it is not convenient to use the original form 
of skew-normal densities because its produces full conditionals from which is not possible to drawn 
directly (without using an auxiliary algorithm), sometimes it generates monotonic acceptance rates 
and finally and if >.o = 0, we do not have the symmetry situation studied by Patz and Junker (1999). 
The second reason is, to simulate the asymmetry parameter, to choose a non-informative prior, e.g. a 
uniform, may be produce better results (Bazan ct al, 2004). 

Figures 7 to 24 indicate that the EAPlvlC method presents large bias and variance, mainly for 
extreme values. In the presence of asymmetry, the MCMC methods also presented high values for bias 
and variance. The reasons for this behavior arc those that was pointed out in the former paragraph. 
In general, the EAP and MAP produced the smallest values for the statistics, as we can see in these 
figures, but this depends on the value of latent trait. 

5 Final comments 

We considered modifications in some estimation procedures concerning the laten trait estimation in 
the NIUvl. As we could see. the EAP and MAP methods produced the best results. However, some 
improvement:; may be obtaiued in the MCMC approach through suitable modifications. 

The contributions of this paper were tliree, basically. First, the introduction of asymmetry latent 
trait distribution in NRM, which is an extension of work of Bock (1972). The proposed model is less 
sensitive to depart from normality or even symmetry sssumptions. Second, the modifications in MAP 
in EA P, concerning the prior distribution, permits to deal with asymmetry from the data even though, 
in our work, we did not consider the asymmetry parameter estimation in those methods. Finally, the 
simulation study showed the effects of the presence of latent asymmetry and the superiority of EAP 
and MAP methods. 
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A Appendix 

A.1 MAP estimation expressions 

From (8) and considering the skew-normal density we have, 

So, the needed terms are 

8 lng(Oi l11) 
i){lj 
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and. using the product derivate rule, 

82 In g(0; 111) 
80} 

where h(Atl;, >.o,) is given by (9). 

A.2 EAP-MC estimation expressions 

First, let us call 

l OP(Y.;1O, r)g(Ol11)dO , h = L P(Y.;IO, f)g(Ol11)dO, 

L10 - IE [01Y.;., f' 11]J2 P(Y.;[O, f)g(O[ry)dO 

To solve them, define 1/J = l + h, and notice that, 

So, the Jacobian is 

0 -• -0() ⇒ W -• -1 

0-oo ⇒ w-1 

li=ln{-
2-+1} =lnA 'I/J-1 

{17) 

{18) 

(19) 

(20) 

Then, using {19) and {20) in the integrals (17) and {18), and using Monte Carlo integration 
the expressions {13) and (14) follow. 
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Figure 1: Correlation: true lalent trait and estimatives - >. = 0 and n= 500 
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Figure 2: Correlation : true latenl trait and estimntives - >. = 0 and n= 1000 
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Figure 3: Correlation : true latent trait and cstimatives - ,\ a;; -2 and n= 500 
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Figure 6: Correlation : true latent trait and estimntives - >. = 2 and n= 1000 
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I = 

Figure 7: Variance of estimatives : >. = 0 and n= 
500 

Figure 9: Bias of estimativcs : >. = 0 and n= 500 
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Figure 8: Mean squared residual of estimatives : 
>. = 0 and n= 500 
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Figure 10: Variance of estimatives : >. = 0 aud 
n= 1000 
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Figure 11: Mean squared residual of estimativcs Figure 12: Bias of estimatives : >. = 0 and n= 
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Figure 13: Variance of estimativcs : >. = -2 and 
n= 500 

Figure 15: Bias of estimatives : ). = -2 and n= 
500 
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Figure 14: Mean squared residual of cstimativcs 
>. = -2 and n= 500 
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Figure 16: Variance of estimatives : ). = -2 and 
n= 1000 
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Figure 17: Mean squared residual of estimatives Figure 18: Bias of estimatives : ). = -2 and n= 
: >. = -2 and n= 1000 1000 
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Table 1: Statistits of lat1:n t rait 1:stimntion 
A n Estim. Method S to.tistics 

Variance MSR Dias Corr elation 

-2 500 ML 0.127 0.128 0.255 0.997 
EAi' 0.102 0.115 0.218 0.997 
EAP-MC 0.105 0.170 0.276 0.988 
MAP 0.097 0.106 0.203 0.997 
Me.MCMC.ind 0.075 0.445 0.521 0.994 
Md.MCMC.ind 0.o75 0.446 0.521 0.994 
Mc.i\•!CMC.burn.in 0.075 0.445 0.520 0.994 
Md.MCMC.ind.burn.in 0.075 0.446 0.521 0.994 

-2 1000 ML 0.127 0.128 0.255 0.997 
EAP 0.102 0.114 0.216 0.996 
EAP-MC 0.105 0.173 0.277 0.987 
MAP 0.097 0.105 0.201 0.996 
Me.MCMC.ind 0.073 0.602 0.674 0.990 
Md.MCMC.ind 0.072 0.602 0.674 0.990 
Me.MC~1C.burn.in 0.073 0.602 0.675 0.990 
Md.MCMC.ind.l,urn.in 0.072 0.602 0.674 0.990 

0 500 ML 0.165 0. 166 0.331 0.998 
EAP 0.11 7 0.135 0.252 0.997 
EAP-MC 0.082 0.288 0.370 0.966 
MAP 0.117 0. 136 0.253 0 .997 
:l·le.MCMC.lnd 0.118 0.137 0.255 0 .997 
Md.MCMC.ind 0.118 0.137 0.255 0 .997 
Me.MCi\lC.burn.in 0.118 0.137 0.255 0.997 
Md.MCMC.ind.burn.in 0.1 18 0.137 0.255 0.997 

0 1000 ML 0. 167 0.167 0.334 0.998 
EAP 0.117 0 .138 0.255 0.997 
EAP-MC 0.075 0.317 0.391 0.961 
MAP 0.117 0.139 0.255 0.997 
Me.MCMC.ind 0.132 0.156 0.288 0 .997 
Md.MCMC.ind 0.132 0. 156 0.288 0 .997 
Me.MCMC.bum.in 0.131 0.156 0.287 0 .997 
Md.MCMC.ind.1,urn.in 0.131 0.156 0.287 0 .997 

2 500 ML 0.199 0.200 0.399 0.995 
EAP 0.127 0.157 0.284 0.992 
EAP-MC 0.062 0.474 0.535 0 .911 
MAP 0. )29 0. 160 0.290 0.993 
Mc.MCMC.lnd 0.203 1.374 1.577 0.990 
Md.MCMC.ind 0 .203 1.362 1.565 0.990 
Me.MCMC.burn.in 0.202 1.375 1.577 0.990 
Md.MC.MC.ind.bum .in 0.203 1.362 1.565 0.990 

2 1000 ML 0.199 0.202 0.400 0.993 
EAP 0.128 0.159 0.286 0.993 
EAP-MC 0.056 0.497 0.553 0.905 
M AP 0. 129 0.160 0.290 0.993 
Me.MCMC.ind 0.300 1.880 2.181 0.990 
Md.MCMC.ind 0.299 1.852 2. 15) 0.990 
Me.MCMC.burn.in 0.300 1.879 2.179 0.990 
Md.MCMC.ind.burn.in 0.298 1.851 2.149 0.990 

18 



REFERENCES 

References 

11] Azevedo, C. L. N. (2003). Estimation Methods in Item Response Theory. Unpublisehd Master's 
Dissertation (lu Portuguese). Institute of Mathematics and Statistics. University of Sao Paulo, 
Brazil (www.teses.usp.br). 

121 Baker, F. B. and Kim, Seock-Ho (2004) . Item Response Theory : Parameter Estimation Tech­
niques. Statistics, Dekker Series of Textbooks and Monographs, New York, NY. 

13] Bazan, J. L., Bolfarine, H. and Leandro, R. A. (2004). Bayesian Estimation via MCMC for 
Probit-Normal model in Item Response Theory. Techincal Report, !ME-USP. 

14] Bernardo, J.M. and Smith, A. F. (2001). Bayesian Theory. John Wiley Sons. 

IS] Bock, R. D. (1972). Estimating item parameteres and latent ability when responses are scored in 
t,wo or more nominal categories. Psychometrika, 37, 29 - 51. 

[G] Bock, R . D. (1997). The Nominal Categories Model. In Handbook of Modern Item Response 
Theory. Wim J . van der Linden and Ronald I<. Hambleton eds. Springer-Verlarg, New York. 

171 Fraser, D . A. S. and Reid, N. (1989). Adjustment to profile likelihood. Biometrika, 76, 477-488. 

[SI Geman, S. and Geman, D. (l!l84). Stochastic relaxation, Gibbs distributions and the Bayesian 
restoration of images. Transaction on Pattern Analysis and Machine Intelligence, 6, 721-741. 

19] Genton, M. C. (2004). Skew-elliptical Distibutions and Their Applications: A Journey Beyond 
Normality. Chapman & Hall/CRC. 

[10] Kim, Seock-Ho, Cohen, A. S., Baker, F. B., Subkoviak, M. J. and Leonard, T . (1994). An in­
vestigation of hierarchical Bayes procedures in item response theory. Psychometrika, 59, 405 -
421. 

Ill] Mislevy, R. J. (1984). Estimating Latent Distribution. Psychometrika, 49, 359 - 381. 

[12] Mislevy, R . J. and Stocking, M. L. (1989). A Consumer's Guide to LOGISTIC and BILOG. 
Applied Psycholig1cal Measurement, 13, 57-75. 

[13] Muraki, E. and Bock, R. D.(1997). PARSCALE: IRT Based Test Seering and Item Analysis for 
Graded Open-Ended Exercises and Perfomance Tasks. Chicago: Scientific Siftware, Inc. 

IJ4j Patz, J. R.. and Junker, B. W. (1999). A Straightforward Approach to Markov Chain Monte Carlo 
Methods for Item Response Models. Journal of Educational and Behavorial Statistics, 24, 146 -
178. 

[151 Robert, C. P. and Casella, C. (2000). Monte Carlo Statistical Methods. Springer-Verlag New York, 
Inc. 

[16] Stroud, A. H. and Secrest, D . (1966). Gaussian Quadmture Formulas. Englewood Cliffs, New 
J ersey : Prentice Hall. 

[l 7j Van Der Vaart, A. W. and Mw·phy, S. A. (2000) . On Profile likelihood. Journal of the American 
Statistical Association, 95 , 2000. 

19 



REFERE;\'CES 

.,-•·• ·.;._,_ .. _ .. _.., _____ .,. -... "'""-.,-.:•::·,1. 

Figure 19: Variance of estimatives : >. = 2 and 
n= 500 

Figure 21: Bias of estimativcs : >. = 2 and n= 
500 
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Figure 20: Mean squared residual of estimativcs 
>. = 2 and n= 500 

Figure 22: Variance of estimativcs : >. = 2 and 
n= 1000 

Figure 23: Mean squared residual of cstimatives Figure 24: Bias of estimatives : >. = 2 and n= 
: >. = 2 and n= 1000 1000 
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