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In this note we present a sufficient condition for an upper bound on Received 22 June 2018
the rank of a set {A1, A3, ..., Am} of real n x n symmetric matrices to Accepted 15 October 2019
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together with an auxiliary matrix V € R¥*™, The result is inspired by
some problems on second-order necessary optimality conditions for
constrained optimization with quadratic constraints, and we explain
and unify previously known results.
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1. Introduction

In this note we present an upper bound for the rank of a set {41, A,,..., Ay} of real n x n
symmetric matrices in terms of the maximum rank for x € R” of the (n + k) x m matrix
below:

Aix Ayx ... Apux
V1,1 V1,2 e Vim
Ax,V)=| . . s (1)
Vk,1 Vk,2 Vik,m
where
T
Y1
V=11 |= (@ eRbm
T
Yk

is an auxiliary matrix. The rank of {4, A5, ..., A} is defined as the rank of the n* x m
matrix

[vec(A1) -+ vec(Am)],

where vec(A;) € R"™ is the column-wise vectorization of matrix A,i=1,...,m Our
main result is the following:
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Theorem 1.1: Let k be an integer with 0 < k < m and assume that V € RFX™ s such that
every k x (k + 2) submatrix of V is full rank. If the rank of A(x, V) is at most k+ 1 for all
x € R", then the rank of {A1, ..., A} is at most k + 1.

Our result generalizes and unifies two recent results in the optimization literature (see
Section 3 for more information):

Theorem 1.2 (Haeser [1]): If the matrix A(x, V) has rank at most two for every x € R",
where V. = [a,a,...,a] € R\X™ a =0, then {A1, A, . .., A} has rank at most two.

Theorem 1.3 (Mascarenhas [2]): If the matrix A(x, V) has rank at most one for every x €
R”", where V is an empty 0 X m matrix, then {A1, Ay, ..., A} has rank at most one.

The proofs of Theorems 1.2 and 1.3 are based (explicitly or implicitly) on the Spectral
Theorem for real symmetric matrices, but the connections between them are not clear. In
this note we put Theorems 1.2 and 1.3 under a simple general framework, in the sense that
we prove a result for a general k x m matrix V with non-singular submatrices. In this case,
when the rank of A(x, V) is bounded from above by k + 1, the same upper bound holds
for the rank of {A1, ..., A;y}. Note that since rank(A (0, V)) = rank(V) = k, we only allow
an increase of 1 in the rank of A(x, V) with respect to the rank of A(0, V), similarly to
Theorems 1.2 and 1.3.

Remark 1.1: Theorem 1.1 also holds for Hermitian matrices A, ..., A, and complex
matrices V.

Remark 1.2: Theorem 1.1 may not hold if the number of lines of V, or its rank, is less than

k. Notice, for example, that the subspace of symmetric 4 x 4 matrices of the form [1(‘)4 8],

where M is 3 x 3, has dimension 6, but, every basis {A;, Ay, ..., Ag} is such that
Aix Arx Agx
1 2 6
0 o (O A 0
0 0 0
has rank at most 4 for every x € R%.

Remark 1.3: The converse of Theorem 1.1 is not true. For instance, for k = 1,

1 0 0 1
A1 = |:0 1] , Az = |:1 0i| and A3 = OlAl + ,BAz,

we have
. x ¥y oax+ By
A<|::|,V)= y x PBx+oay
4 Vil V12 V13

and this matrix has rank 3 if 22 + y2 # 0 and v 3 — avy) — Bviy # 0. Therefore, the
hypothesis of Theorem 1.1 in this case are only true for (v1,v12,v1,3) in a set of null
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measure in the entire set of parameters {vy1,v12,v1,3}. This example suggests that the
hypothesis of Theorem 1.1 are rarely fulfilled when {A;, . . ., A,,} has rank grater than one,
but we emphasize that examples with k > 1 and rank k + 1 do exist. In fact, for k = 2, take
A1, Ay, As arbitrary symmetric matrices and A4 = A;. We have that

Alx Azx A3x A4x
a b c a |,
o B y o

fulfills the hypothesis of Theorem 1.1 for almost all b, ¢, B, y when a # 0 (or a # 0).

In the next section we prove Theorem 1.1, and in Section 3 we discuss the connections
of Theorem 1.1 to the field of quadratically constrained optimization.

2. Proof of Theorem 1.1

The conclusion of Theorem 1.1 is equivalent to stating that every subset {A; , Aj,, ..., Aj,}
formed by k + 2 of the given matrices must be linearly dependent. Thus, it is sufficient to
prove Theorem 1.1 for m = k4 2.

Let {u; = (uj1,ui2, ..., Uim), i = 1,2} be a basis of the nullspace of V, that is,

(uivj) =0, j=12,... .k i=12, (2)

where (-, -) denotes the usual inner product in R™. Let U;, U, be the symmetric matrices

defined by
m
Ui = Z u,-,jAj, i= 1,2. (3)
j=1
Of course, we can assume that

A;#£0, i=12,....,m and U;#0, i=12, (4)

otherwise there is nothing to be proved.
We claim that there is a subset

B ={x1,x2,...,%x,} (5)

of R" for which each of the following quantities is non-vanishing:

(-xi)Ale—l)) (xi)Ain+1>’~--s(xi)Amxi—‘rl)) i= 132)--~)n_ 1)
(xi» UrXip1), (xi Unxig1), i=1,2,...,n—1, (6)
det[x; x ... x4l

Notice that a set fulfilling the above condition is actually a basis of R". The existence of
such a basis is a direct consequence of the following elementary result in measure theory:

Lemma 2.1 (Caron and Traynor [3]): The set of zeroes of every non-vanishing polynomial
in k real (or complex) variables has measure zero in Rk (Cky.
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In fact, Lemma 2.1 ensures that the zeroes of the polynomials in xj,x2, . . ., x, defined
by each of the expressions in (6) has measure zero in R™ and this proves the existence of
such a basis.

Now, consider the vectors

wij = ((xi, A1x7), (Xi> A2xj), ..., (%, Amxj),  Gj€{1,2,...,n} (7)

in R™, defined in terms of Aj, A,,..., A, and the basis 5 from (5). We claim that the
vectors

Wit V> V25« - > Vk (8)

are linearly independent for all i € {1,2,...,n — 1}. In fact, by the definition of 5,
m
0 # (xi, Urxit1) = Zut,j(xi’iji-i-l) = (ur,wii+1), T €({L,2},
j=1

that is, w; ;11 is not orthogonal to u;, 4, and, therefore, it is not a linear combination of
V1:V2s oo Vi
Since for all x the rank of A(x,V) is at most k+ 1, and m = k+2, for each i €

{1,2,...,n}, there is a non-vanishing vector y; € R™ such that
YigA1xi + yipAsxi + - + YimAmxi = 0 )
and
Wiv) =0, j=12,...,k (10)

By (9), we obtain

(yi»wit1,) =0 and  (yiy1, wiir1) = 0.
Since w := wjiy1 = wit1,i> the relations above and (10) tells us that each of the vec-
tors y; and y;y1 are orthogonal to all the vectors w, vy, v2,..., v It turns out that y;
and y;+1 must be scalar multiples of one another, because by (8) and the assumption
m = k+ 2, the orthogonal complement of the space spanned by w, v;,va,. .., vk is one-
dimensional. Therefore one can choose y; = y;y; foralli = 1,2,...,n — 1, thatis, there is
a non-vanishing vector « = y;, i = 1,2,...,nin R such that

0 =a1A1xi + 0pArx; + - - - + A ApXi
= (1A + Ay + -+ amAn)xi, i=1,2,...,n,
and this shows that €1 A1 + @Ay + - - - + oAy = 0.

3. Connections with quadratically constrained optimization

Both Theorems 1.2 and 1.3 are used in the context of proving the validity of a second-order
necessary optimality condition to the nonlinear optimization problem

Minimize f(x), s.t. g(x) <0,

where f: R” — R and g: R" — R"™ are twice continuously differentiable functions.
Throughout this discussion, x* € R" will be a fixed local solution with g(x*) = 0 and
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such that the linearized feasible set has a non-empty interior near x*, in the sense that
Jo(x*)d < 0 for some d € R" (here Jo(x) € R™*" is the Jacobian matrix of g at x € R").
Under these assumptions, the following first-order necessary optimality condition is well
known [4]: the set of Lagrange multipliers at x*

A@™) :={A e R": V,L(x*,A) = 0,A > 0}
is a non-empty, compact, polyhedral set, where
(x,A) = L(x,A) = f(x) + (g(x), 1)

is the usual Lagrangian function. The following second-order necessary optimality condi-
tion is also well known [4]:

Vd € C(x*), 3 € A(x*) s.t. dT VEL(x*, 1)d > 0, (11)

where V, and V2 denote the gradient vector and Hessian matrix with respect to the
problem variables, respectively, and C(x*) := {d € R" : Vf xTd <o, Jo(x*)d < 0} isthe
critical cone.

In [1], a particular problem with quadratic constraints is considered: the function g

is given componentwise by g;(x,z) = %xTA,-x —z,i=1,...,m and f(x,z) = z, where
(x,2) € R" x R are the problem variables. Note that ], (x, 2)Tis precisely of the form (3),
namely, Jg(x, 2)T = A(x, V) wherek =1and V = [-1,—1,...,—1] € RI*™,

Hence, whenever (x*, z*) = (0, 0) is a local solution, bounding the growth of the rank of
Jg(x, 2) to at most one in a neighbourhood of the solution (note that rank(Jy (x*, z*)) = 1)
is sufficient, by Theorem 1.2, to have that {A, ..., A} has rank at most two. This allows
the application of a theorem of the alternative to arrive at a more informative second-order
optimality condition, in the sense that it depends on a single Lagrange multiplier. That is,
essentially, the low rank of {4, ..., A,,} allows the exchange of the order of the quantifiers
Yd 3N to ‘ILVd in (11). More precisely, let K C C(x*, z*) be any set defined by the direct
sum of a subspace and a ray {av : « > 0} for some v € R". Then, it holds that

d'V2L((x*,2"),A")d >0, YdeK (12)

for some fixed Lagrange multiplier A* € A(x*,z*), depending on K. The details can be
found in [1] and an example is given below:
Let us consider the following optimization problem in the variables (x, y,z) € R3:

Minimize z,
st x2 — 2xy +y2 <z
—2x2+2xy+y2 <z
4* — 6xy —I—y2 <z
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A simple calculation shows that a solution is given by (x*, y*,z*) = (0,0, 0). Computing
the transposed Jacobian of the constraints, we arrive at

2x—2y —4x+2y 8x—6y
A, y,z2, V) = | —2x+2y 2x+4+2y —6x+2
-1 -1 -1

The main result given by Theorem 1.2 is that by restricting the rank of A(x, y,z, V) to be
at most 2, one necessarily has that the scalars that attest the degeneracy of A(x, y, z, V) can
be taken independently of x, y and z. Here, it is clear that the third column is composed
by twice the first one minus the second one for all x, y and z. This allows by an exten-
sion of Yuan’s Lemma [5] to prove that there are Lagrange multipliers (A1, A2, A3), namely,
(A1, A2, A3) = (0, %, %), such that the second-order necessary optimality condition below
holds:

A — 2xy —|—y2) + Ao (—2x% + 2xy +)/2) + A3(4x? — 6xy —|—y2) >0, VY(xy e R2.

The paper [2] uses Theorem 1.3 in a similar fashion without restricting to the quadratic
case, namely, the second-order optimality condition depending on a single Lagrange mul-
tiplier (12) holds whenever the rank of J,(x) is at most rank(Jy(x*)) + 1, as long as the
cone K is restricted to be the largest subspace contained in C(x*), that is, K = {d € R" :
Jo(x*)d = 0}. This result solved a conjecture formulated in [6], that an increase of one to
the rank of the Jacobian matrix would be sufficient to have a second-order necessary opti-
mality condition to hold. This is clearly a stronger result than the usual ones where the
Jacobian matrix is assumed to be of full rank [7,8] or of constant rank [9,10]. We refer the
reader to [11] for more details on this topic.

Our result is connected with the more general quadratically constrained optimization
problem:

Minimize f (x, z), s.t. g(x,z) <0,

where f : R" x R¥ — R is twice continuously differentiable and g : R” x R¥ — R™ is
defined where each g;,i = 1,. .., m, is ahomogeneous quadratic function with a separable
linear term, that is,

gi(62) = 3x A+ w] z.
Note that J,(x, 2)T = A(x, V), where V = [w] - - - wp,] € RF*™ Let us assume that every
k x (k + 2) submatrix of V is non-singular. Thus, when the rank of J(x, z) increases at
most by one with respect to the rank at (x,z) := (0, 0), which is weaker than the usual

constant or full rank assumptions, we arrive by Theorem 1.1 that {A;, ..., A} has rank at
most k+ 1.
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