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A B S T R A C T

This paper proposes a novel controller optimization of boost converter by tunning two
controllers of voltage and current in PV (Photovoltaic) boost converters: Sliding Mode Control
(SMC) or Sliding Mode plus Proportional-Integrative. Genetic Algorithm (GA) optimization is
applied in a Internet of Things (IoT) context, in which the server side consists of running the GA
and thereafter used to tune the SMC and SMPIC of the PV plant boost converter. Communication
between the IoT (PV plant) and cloud server comprises to the acquired currents and voltages
from PV to the server and controllers parameters from server to IoT. Data from the IoT is
applied to calculate the fitness function for a given solution, which learns the solar plant
(machine learning). Experimental results using hardware are considered, in order to evaluate
the performance, and results are compared between heuristic and deterministic parameters from
SMC or SMPIC, proving the reduction of overshoot and settling time.

. Introduction

PV power generation is directly influenced by environmental conditions, such as: solar irradiation and temperature of the
odules. In this sense, the optimization of the PV system power generation requires an algorithm that leads to the maximum power
oint of the PV module (solar panel), such as the so called Maximum Power Point Tracking - MPPT [1]. However, the optimization of
he MPPT can be obtained from the investigation on the transient response of the controllers, i.e. the controllers ability to regulate
nd maintain a given output based on a reference value and to respond to sudden changes. Some linear controllers are found in the
echnical literature, such as: the proportional–integral (PI), lead-leg [2] or the state feedback controllers [3]. In addition, there are
lso the nonlinear controllers, i.e. the PV module has a nonlinear behavior of voltage-current curve, which is highly dependent on
he environmental conditions and technical issues. The nonlinear controllers are widely associated with other control techniques,
uch as: Fuzzy Logic controller [4], nonlinear-adaptive controllers [5], adaptive controllers [6], finite control set model predictive
ontrol [7,8], neural network [9] and sliding mode controllers (SMC) [10].

In PV power generation applications, the SMC shows a notable advantage over other nonlinear controllers: a simplified
athematical development and application. In addition, the SMC has been proposed in association with other well-established

echniques: smooth switching function; higher order sliding surface (HOSS), which has an integral component. Such techniques
rove to be robust and accurate in simulations as well as on bench [11].
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The study of optimization methods are presented on the premise of finding the best possible result for the proposed controller.
he optimization methods seek to find the values of the parameters that minimize the objective function while complying with some
estrictions [12], being a powerful tool for controller design. GA is an adaptive heuristic search-based optimization technique were
riginally developed by John Holland in 1960 [13]. GA is a natural selection inspired algorithm which is based on the concepts of
arwinian evolution. It is frequently used to solve optimization problems in research and machine learning solutions for difficult
roblems which would take a lifetime to solve it [14].

In [15], a GA is implemented to determine the parameters for the neural network based PID (Proportional–Integral Derivative)
ontroller and the results are compared with and without using optimization for a boost converter. The new GA searched parameter
lant was computationally simulated and it was observed an overshoot reduction and an improved settling time over the original
ontroller, i.e., without parameter optimization. In [16] the same study was made for a buck converter.

Another type of optimization method applied to a boost converter in PV system is implemented in [10]: A Weighted-Particle
warm Optimization (w-PSO) applied to tune Sliding Mode plus PI controller. Firstly, it was mathematically modeled using AC small
ignal technique and the Slide Mode Control law was defined. Then, w-PSO was used to obtain the optimal parameters thorough
omputational simulation and carried out in a boost converter prototype.

However, most of optimization ran in simulation before carrying over real prototype, which has the following issues: rounds,
pproximation and constraints. How about take advantage over network to monitor, data logging or even optimize the solar plant?

IoT is an interconnected network of objects which devices could be a simple sensor to a smart device [17]. IoT is growing so fast
owadays and it is possible to take advantage over networking usage focused in solar plant. IoT is the core of the modern electronic
evices through the benefit of plant automation and control. This benefit can take advantage of the wealth of information that can
enerate on the plant but also in other areas like process, industrial, and machinery [18]. This technology can provide for the plant
ew set of tools and information to further optimize the plant. This kind of information integrates the plant and its real-time data,
iagnostics through telemetry. It can reduce operational cost, increase lifetime, and performance customization. The information is
xchanged between devices for data logging, monitoring and decision making to create an autonomous mesh of intelligent assets
ia wired or wireless transmission.

In this context, work [19] presents a PV system IoT-based using an Arduino and ESP to monitor and provide online the PV
urrent, PV voltage, load voltage, load current and duty-cycle. It is implemented the most common tracking algorithms and shown
he results. As this is a low cost project, the results are stable but the performance are not satisfactory. Works [20,21], and [22]
ave similar approach as [19], which monitor voltage and current.

An improvement of voltage profiles at different load nodes and reduce power losses in transmission lines presented in work [23].
n optimization algorithm is responsible for finding out the optimal reactive power setpoint for each plant in real time based on
n IoT solution which requires the transmitted data and using the system mathematical model. An improvement up to 68% in the
lobal voltage profiles in the load buses has achieved.

In this way, the proposal of this paper is an adaptive heuristic search algorithm finding parameters for the controllers proposed
y the same authors in SMC [11] and SMPIC [10]. The mathematical model of these two controllers are consolidated in the area and
re detailed in the aforementioned articles. In other works [2,10,15,16], heuristic search runs in simulation and then are applied
he prototype. And, the mentioned solution is not employed in this proposal. This work uses the benefit of IoT concept to find the
arameters of the controllers in runtime, which are evaluated by GA directly in the cloud server from data received using internet
onnection. Data are obtained from tests performed on the prototype with real components. Hence, the modeling approximation
rrors are removed, system can run with optimized controller already found and it is possible to achieve some improvements in the
ystem performance.

This paper is structured as follows. The proposed sliding mode control are shown in Section 2. The GA description is presented
n Section 3. Results using hardware are given in Section 4. Finally, conclusion are presented in Section 5.

. Topology

This Section discusses the PV system, which is compounded by a PV panel connected to a boost converter which is controlled
y SMC [11] or SMPIC [10] and an inverter which converts direct current to alternating current (DC/AC). And the networking
nfrastructure which the PV system connects to a cloud server running the GA to monitor and eventually reconfigure the controller
ver ethernet. The topology is shown in Fig. 1.

.1. Boost converter

Boost converter increases and regulates the PV panel voltage 𝑣𝑃𝑉 to a level needed by a system connected on its output (𝑉𝐷𝐶 ),
for example, an inverter, depending on the application, as shown in Fig. 1.

The input voltage (𝑣𝑃𝑉 ) and inductor current (𝑖𝐿) of boost converter are controlled through a constant switching frequency
(Pulse-Width Modulation - 𝑃𝑊𝑀𝐵𝑜𝑜𝑠𝑡) signal to switch on or off the MOSFET (𝑄𝑆𝑊 ). The block diagram shows the controller
ivided in two loops: The MPPT algorithm provides the reference voltage (𝑣𝑃𝑉 𝑟𝑒𝑓 ) to the outer voltage control loop. This stage
egulates the DC component of 𝑣𝑃𝑉 to its set point, giving an inductor current reference (𝑖𝐿𝑟𝑒𝑓 ) to the inner current control loop.

The inner current control loop calculates the 𝑖𝐿 and generates a duty cycle (𝑑) through a 𝑃𝑊𝑀𝐵𝑜𝑜𝑠𝑡 for 𝑄𝑆𝑊
When the 𝑄𝑆𝑊 is switched on, the output stage is isolated due the diode (𝐷) is reversed biased. The inductor (𝐿) is connected

to the ground and the current flows through it, storing energy [24]. When 𝑄𝑆𝑊 is switched off, the energy from 𝐿, plus the energy
from the input capacitor (𝐶𝑃𝑉 ) flows through 𝐷 to 𝑉𝐷𝐶 . The output capacitor (𝐶𝑂) is assumed to be quite large to ensure a constant
2

output voltage [25].
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Fig. 1. Block diagram of PV system.

2.2. Mathematical model

A method to linearize the PV module at a straight line tangent to its I-V curve at the operation point obtains a linear equivalent
model of the circuit [26].

The dynamic equations corresponding to the state of the circuit when 𝑄𝑆𝑊 is closed are obtained by evaluating the derivatives
of the inductor current and capacitor voltage:

⎧

⎪

⎪

⎨

⎪

⎪

⎩

𝑑𝑖𝐿
𝑑𝑡

=
𝑣𝑃𝑉 (𝑡)
𝐿

𝑑𝑣𝑃𝑉 (𝑡)
𝑑𝑡

=
𝑉𝑒𝑞 − 𝑣𝑃𝑉 (𝑡)
𝑅𝑒𝑞𝐶𝑃𝑉

−
𝑖𝐿(𝑡)
𝐶𝑃𝑉

,
(1)

where 𝑉𝑒𝑞 is a linearization of PV panel voltage and 𝑅𝑒𝑞 is a linearization of PV panel resistance [27].
The dynamic equations when 𝑄𝑆𝑊 is opened are given by:

⎧

⎪

⎪

⎨

⎪

⎪

⎩

𝑑𝑖𝐿(𝑡)
𝑑𝑡

=
𝑣𝑃𝑉 (𝑡) − 𝑉𝐷𝐶

𝐿
𝑑𝑣𝑃𝑉 (𝑡)

𝑑𝑡
=

𝑉𝑒𝑞 − 𝑣𝑃𝑉 (𝑡)
𝑅𝑒𝑞𝐶𝑃𝑉

−
𝑖𝐿(𝑡)
𝐶𝑃𝑉

.
(2)

2.3. Sliding Mode Plus PI Control (SMPIC)

The control objectives for the system are related to the error between the measured variable and the reference, since the control
scheme aims to reduce the error to zero. The sliding surface is defined through the voltage error and the current error.

However, to increase the dynamic response of the controller, the errors (𝑒𝑣 and 𝑒𝑖) derivatives are added, obtaining two second
order sliding surfaces:

𝝈 =
[

𝜎1
𝜎2

]

=
⎡

⎢

⎢

⎣

𝑒𝑣 + 𝑘𝑣
𝑑𝑒𝑣
𝑑𝑡

𝑒𝑖 + 𝑘𝑖
𝑑𝑒𝑖
𝑑𝑡

⎤

⎥

⎥

⎦

= 0, (3)

where the constants 𝑘𝑣 and 𝑘𝑖 are defined according to the desired dynamics.
The sliding variable 𝝈 is switched through the 𝑆(𝑥) function, which is also responsible for determining the reaction of the system

to changes in the state variables. The 𝑆(𝑥) function operates by limiting the surface when it reaches one of its maximum or minimum
3
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2

values and also, due to its linear nature, it is sensitive to the reduction of the chattering when the state approximates the switching
surface [28], as defined by:

𝑆(𝑥) =

⎧

⎪

⎨

⎪

⎩

1 if 𝑥 > 1
𝑥 if − 1 ≤ 𝑥 ≤ 1
−1 if 𝑥 < −1 .

(4)

The control laws for both control loops are defined as [10]:

𝑖𝐿𝑟𝑒𝑓 = (𝑘𝑝𝑣 +
𝑘𝑖𝑣
𝑠
)𝑆(𝜎1) (5)

and

𝑑 = (𝑘𝑝𝑐 +
𝑘𝑖𝑐
𝑠
)𝑆(𝜎2), (6)

where 𝑘𝑝𝑣, 𝑘𝑖𝑣, 𝑘𝑝𝑐 , and 𝑘𝑖𝑐 are gains of PI controller.

2.4. Sliding Mode Control (SMC)

2.4.1. Current control loop
Considering a First Order Sliding Mode Control and a First Order Sliding Surface, the (1) and (2) could be written:

𝑑𝑖𝐿(𝑡)
𝑑𝑡

= 1
𝐿

2𝑣𝑃𝑉 (𝑡) − 𝑉𝐷𝐶
2

+ 1
𝐿

𝑉𝐷𝐶
2

sign(𝜎𝐼 ), (7)

where 𝜎𝐼 = 𝑖𝐿𝑟𝑒𝑓 − 𝑖𝐿.
In order to improve dynamic response, mainly for eliminate steady state error due to the use of the soft switching function (4),

an integrative second order sliding surface can be adopted [29]:

𝜎𝑖 = ∫ 𝜆(𝑒𝑖)𝑒𝑖𝑑𝑡 + 𝑒𝑖 = 0, (8)

where 𝜎𝑖 is the sliding variable, 𝑒𝑖 = 𝑖𝐿𝑟𝑒𝑓 − 𝑖𝐿 and 𝜆(𝑒𝑖) is a function that must satisfy the attractiveness condition for the system,
as described in [11]. Thus, the current controller is:

𝑑 =
𝑆(𝑘𝑖𝜎𝑖) + 1

2
, (9)

where 𝑘𝑖 > 0 and can be arbitrarily chosen as a compromise between chattering and speed response.

.4.2. Voltage control loop
For the voltage control loop an integrative second order sliding surface is also chosen:

𝜎𝑣 = ∫ 𝜆(𝑒𝑣)𝑒𝑣𝑑𝑡 + 𝑒𝑣 = 0, (10)

where 𝜎𝑣 is the sliding variable, 𝑒𝑣 = 𝑣𝑃𝑉 𝑟𝑒𝑓 − 𝑣𝑃𝑉 and 𝜆(𝑒𝑣) is a function that must satisfy the attractiveness condition for the
system.

Then, the voltage loop controller is:

𝑖𝐿𝑟𝑒𝑓 = 𝐼𝑀𝐴𝑋
1 − 𝑆(𝑘𝑣𝜎𝑣)

2
, (11)

where 𝐼𝑀𝐴𝑋 is the maximum current value allowed for the components and 𝑘𝑣 is the same as 𝑘𝑖 for (9), the coefficient of the smooth
switching function.

3. Genetic Algorithm - GA

The reliable hardware and software technique evolution is capable to monitor, reconfigure and detect fault in any system. This
technique can be named as machine or deep learning. GA, IoT and big data analytics (BDA) have seen development to automate
plants. These technologies aim to develop innovative, autonomous, and smart condition-monitoring concepts for precise failure
detection and classification as well as intelligent decision making for rapid actions in plants [30].

In this Chapter, it is discussed the GA implementation in the cloud server, which the proposed research, the flowchart of GA is
depicted in Fig. 2. GA starts with an initial given problem and then, plant is evaluated in runtime and assigned for a fitness function,
which gives a chance for possible solution. Otherwise, if not satisfied, this population goes for a recombination and mutation, as
in natural genetics, producing new children, and the process is repeated over various generation. Hence, it keeps evolving better
individuals by every generation until reach the criterion [31]. The proposed GA runs on IoT system composed by cloud server and
real solar plant prototype. The cloud server exchange data through network sending to the real plant the SMC/SMPIC parameters and
cloud server receives the current and voltage acquisition instantaneously. It is important to mention that the solar plant prototype
has the overvoltage and overcurrent protections necessary to guarantee the system operation.
4
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Fig. 2. GA algorithm.

3.1. Initial population

The population is initialized with 𝑁 random parents which represents the possible candidate solution. A chromosome is one
solution for the given problem and gene is one element position of a chromosome.

3.2. Fitness function

Once the initial population is created, it is determined the performance of each individual using an adaptive function, which
assigns to each possible solution a fitness function that reflects its quality [14]. For the proposed topology, the quality criteria are
overshoot and settling time which this definition is very important task because the GA uses the information to choose the best
solution in the final population.

Since there are two controllers for the proposed PV system topology, for the current control loop and voltage control loop the
fitness function is defined by:

𝐼𝑇𝐴𝐸 = ∫

𝜏

0
𝑡|𝑒(𝑡)| 𝑑𝑡 (12)

and

𝐼𝑆𝐸 = ∫

𝜏

0
𝑒2(𝑡) 𝑑𝑡, (13)

where the first is (useful) to reduce the contribution of error that remains over time and the second is useful to reduce large errors.
It is expected for the PV system a small overshoot and low steady-state oscillation using these 2 equations [10]. So, while running
the optimization process for both controllers, smaller result is better.

3.3. Parent selection

Parent selection is a process to choose parents for recombination and create an offspring for next generation. A good amount of
parents diversity is a very important item to not have a premature convergence. Some well used technique are Proportionate Roulette
Wheel Selection, Linear Ranking Selection, Exponential Rank Selection, Tournament Selection. This last technique is more efficient
in convergence and simple to implement, and low vulnerability to takeover by dominant individuals according to work [31,32].
Nonetheless, this work compared tournament selection and Proportionate Roulette Wheel Selection which was preferred to use this
last one because it found faster the optimal solution.

Proportionate Roulette Wheel Selection gives higher weight for chromosomes in the population according to their fitness value
and a virtual roulette wheel is ‘‘spinned’’ to select one of the parents [33]. The spinned roulette wheel representation is given by
Eq. (14) Smaller fitness value is better, higher weight is set for those parents.

parent = randsample(𝑊1, ..𝑊𝑛),
𝑛
∑

𝑖=1
𝑊𝑖 = 1 (14)

where randsample is a random number representing the roulette wheel, 𝑊 is the 𝑖th weight.
5
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Fig. 3. Experimental bench setup. (1) Code Composer Studio (CCS); (2) Matlab; (3) Ethernet cable; (4) Solar Explorer Kit (TMDSSOLARCEXPKIT); (5) Oscilloscope.

Table 1
Operating point at maximum power of the TMDSSOLARCEXPKIT [36].
Irradiance (W/m2) 𝑃max (W) 𝑉 PV_MPPT (V) 𝐼PV_MPPT (A)

1000 36.02 18.46 1.951
900 32.42 16.42 1.975
800 28.82 14.68 1.963
700 25.22 12.77 1.975
600 21.61 10.98 1.969
500 18.01 9.093 1.98
400 14.41 7.363 1.957
300 10.81 5.473 1.975
200 7.205 3.67 1.963

Table 2
Values used for Booster converter.
Component Value

Inductor (𝐿) 100 μH
Capacitor (𝐶𝑃𝑉 ) 680 μH
Resistor (𝑅𝑒𝑞) 0.1986 Ω
(𝑉DC) Voltage 30 V
𝑃𝑊𝑀𝑏𝑜𝑜𝑠𝑡 100 kHz
Voltage and current sampling time 20 μs

3.4. Crossover and mutation

Crossover is a genetic operator that mix information from the selected parents to reproduce offspring for the new generation,
having better child from the parents [14]. The mathematical representation of parents and children are floating-point numbers. So,
for GA naming convention the chromosome representation of the proposed work is an IEEE 754 single-precision binary floating-point
format [34] by Eq. (15). Floating-point number is converted in 32 gene (bit) of chromosome and random selected each gene from
both parents, mixing its information, generating a new chromosome. Eventually, a mutation happens in one of the 32 gene flipping
the gene value (16). Mutation is used to guarantee diversity of population, in other words, it tries to avoid local optimum and
searches for global optimum solution [35]. After mutation, the 32-bit chromosome returns again to floating-point number:

float = 𝑠.2(128−𝑒).𝑚 , (15)

mutation = bit𝑝.𝑞 , (16)

where s is sign; e is exponent; m is mantissa; 𝑝 is a random number ∈ N = {0, .., 31}; 𝑞 is a random number ∈ N = {0, 1}.

4. Hardware experimental verification

The propose of this work is to show the viability of IoT usage concept for machine learning using GA in order to optimize the
SMC or SMPIC solar plant controllers. IoT has several advantages, like automate and monitoring power delivered by the solar plant
or even diagnostic the system.

Texas Instrument Solar Explorer Kit (TMDSSOLARCEXPKIT) with Digital Signal Processor (DSP) F28M35H52C is employed [36].
This solar explorer kit provides a low voltage platform composed by a PV module/array emulator (laboratory usage [37]), a
buck-boost converter, boost converter, a full bridge single phase-inverter, and Ethernet connection as shown in Fig. 3.

The boost converter input is supplied by the PV emulator which has a nonlinear I-V curve of PV module under different levels
of irradiance, according to Table 1. The output boost capacitor and single-phase inverter maintains boost converter output voltage
around 30 V. Table 2 shows the boost converter characteristics.
6
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Table 3
Custom application commands.
Commands Description

C2 Start PV panel emulator
C3 Stop PV panel emulator
C4 Instantaneous PV power
C5 Theoretical PV power
C6 One acquisition 𝑣PV
C7 One acquisition 𝑖L
C8 One acquisition 𝑉𝐷𝐶
C9 Irradiance value
CA Adjust SMC/SMPIC parameters
CB Start acquisition of 𝑖𝐿ref, and 𝑖L, or 𝑣PV, and 𝑣PVref
CC First buffer acquisition defined by command 0xCB
CD Second buffer acquisition defined by command 0xCB

The DSP is programmed in the C language using Texas Instrument environment called Code Composer Studio which generates
inary file and can download it through an USB cable. The DSP has dual-core which one processor is designed for real-time control
urpose and the ARM Cortex M3 processor is designed for communication purpose, including Ethernet connection. The real-time
ontrol core is programmed to control power electronic as the boost converter and inverter. The control logic has been explored in
ection 2.2.

.1. IoT

As discussed in previous Section, the IoT is developed in ARM Cortex M3 processor. This processor has 2 important peripherals
hich IoT is possible: Ethernet peripheral and Inter Processor Communication peripheral which exchange data between M3 and real-

ime control processor (DSP). Software implementation of the OSI (Open Systems Interconnection) model is necessary. The Network
ccess & Physical layer is provided by ARM processor and external hardware. The others layers are implemented in software.
he Internet layer, source and destination hosts identified by IP addresses. Transport layer is implemented in TCP protocol and
pplication layer are implemented in HTTP and custom application commands shown in Table 3.

.2. GA

The objective of GA is seeking for optimal parameters for SMC and SMPIC. For SMC, the parameters found in (8) and (9) for
urrent control loop and (10) and (11) for voltage control loop. For SMPIC, the parameters found in (6) for current control loop
nd (5) for voltage control loop, as well as the parameters of (6) for both voltage and current control loops (Section 2). Previous
MC work [11] found the parameters by mathematical modeling and SMPIC work [10] found parameters by heuristics algorithm
SO running on simulation and uploaded to the prototype. The boost converter has some characteristics which were not considered
ike component tolerances, component temperature, rounds, and constraints. GA will guarantee best optimal results running in the
eal prototype.

GA is programmed in Matlab programming language using technique shown in Section 3. Some constraint are defined: maximum
teration is 100; size of population is always 10; fitness function defined as 20 ms and 1 ms settling time respectively for voltage
nd current and 10% maximum overshoot during step test.

GA runs in a cloud server and an initial random population (parameters) is created and transmitted through network (commands
efined in Table 3) and these parameters are loaded into SMPIC or SMC in real boost converter prototype. DSP acquires the
oltages/currents and send back to the server every 1 s to GA analyze the quality of voltages and currents using the fitness function
onstraints aforementioned (Plant evaluation), which is viewed in Fig. 2. Several iterations are needed to find an optimal solution.

This kind of setup have some disadvantages: it takes more time than simulation to find an optimum value; undesired bad
hromosomes (which is expected in GA) could cause some spikes during plant evaluation; limited population and iteration due
o the time of running the GA; processor must be powerful to run control and also support TCP/IP connection. Due to these facts,
he system has to be divided into two modes of operation: normal and optimization mode.

Normal mode is the regular PV system usage, it is designed to monitor current, voltage and power, as well as controlling both
ontrol loops and MPPT algorithm. In this operation, no parameter is changed to avoid any transient and loss of performance.

Optimization mode, the designed software has the ability to exchange data between server and reconfigure SMC or SMPIC
hrough custom commands. The optimization process is very slow to find the best performance. So, when communication link fails
hile in optimization mode, system returns back to normal mode using latest best parameters found.

The objective of this first experiment has to determine optimal parameters for current control loop. After ran GA in optimization
ode, it has measured inductor current in normal mode, which have tracked the current reference as shown in Figs. 4(a) and 4(b),

espectively before and after SMPIC parameter adjustment, when a step reference from 1.0 to 2.0 A is applied to verify the current
esponse. These data are better shown in Fig. 4(c) which has acquired by network showing the comparison between w-PSO and
A SMPIC parameters. Same test are depicted in Figs. 5(a) and 5(b), respectively before and after GA adjustment, and Fig. 5(c)
as acquired by network showing the comparison between heuristic and deterministic SMC parameters. In all those cases they have
imilar results as shown in Table 4. Hence, it can be observed the satisfactory performance of the GA tunning regarding steady state
7

nd settling time parameters.
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Fig. 4. Current loop measured on bench.

Fig. 5. Current control loop measured on bench.
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Fig. 6. Voltage control loop measured on bench.

Fig. 7. Voltage loop step test measured on solar explorer kit prototype. Irradiance from 400 W∕m2 to 600 W∕m2.
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Fig. 8. Voltage loop step test measured on solar explorer kit prototype. Irradiance from 600 W∕m2 to 800 W∕m2.

Table 4
Current step test comparison.

SMPIC SMC

w-PSO GA Deterministic GA

Settling time 1 ms 1 ms 0.41 ms 0.4 ms
Overshoot 0% 0% 0% 1.1%
Steady-state error 5.1% 2.6% 2.5% 2.4%

4.3. Current control loop performance comparison

The objective of this first experiment has to determine optimal parameters for current control loop. After ran GA in optimization
mode, it has measured inductor current in normal mode, which have tracked the current reference as shown in Figs. 4(a) and 4(b),
respectively before and after SMPIC parameter adjustment, when a step reference from 1.0 to 2.0 A is applied to verify the current
response. These data are better shown in Fig. 4(c) which has acquired by network showing the comparison between w-PSO and
GA SMPIC parameters. Same test are depicted in Figs. 5(a) and 5(b), respectively before and after GA adjustment, and Fig. 5(c)
has acquired by network showing the comparison between heuristic and deterministic SMC parameters. In all those cases they have
similar results as shown in Table 4. Hence, it can be observed the satisfactory performance of the GA tunning regarding steady state
and settling time parameters.

4.4. Performance voltage control loop comparison

Once the inner control loop are assessed, the next step comprises the evaluation of the parameters of outer voltage control
employing GA, which comprises the inner current control loop. Figs. 6(a) and 6(b), respectively, for SMPIC and SMC, show 4
voltage levels tests of reference (3.7 V, 7.4 V, 11.2 V, and 15.0 V) in which it has null steady state error.

The test for a voltage step using SMPIC have measured on bench are presented in Figs. 7(a)–7(d) from 400 W∕m2 to 600 W∕m2

and Figs. 8(a)–8(d) from 600 W∕m2 to 800 W∕m2 before and after parameters adjustment. And, in the same way for the SMC, the
same tests are depicted in Figs. 9(a), 9(b), 9(c), 9(d) and 10(a), 10(b), 10(c), 10(d). Those data are better presented in Figs. 7(e)
and 9(e), which a step voltage reference varies from two levels: 7.4 V, 11.2 V and also 11.2 V to 15.0 V. It can be observed that the
proposed optimization have better performance than w-PSO SMPIC or deterministic SMC because of their overshoot or settling time
as presented in Table 5. Additionally, the current behavior for both tests have low overshoot when it employs the GA optimization.
10
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Fig. 9. Voltage loop step test measured on solar explorer kit prototype. Irradiance from 400 W∕m2 to 600 W∕m2.

Table 5
Voltage step test comparison.
Voltage SMPIC SMC

w-PSO GA Deterministic GA

Settling time 16 ms 9 ms 10 ms 7 ms
7.4 to 11.2 V Overshoot 4.6% 5.4% 1.8% 0.9%

Steady-state error 0% 0% 0% 0%

Settling time 9 ms 9 ms 10 ms 6 ms
11.2 to 15.0 V Overshoot 2.7% 0.1% 2.7% 1.3%

Steady-state error 0% 0% 0% 0%

4.5. MPPT algorithm

Once the control loops are verified, the next test consists of analyzing the new SMPIC and SMC parameters performance in the
presence of a step irradiation profile. Figs. 11 and 12 presents the PV control system under irradiance variations. Irradiance levels
from 200 until 800 W∕m2 are tested, attesting the functionality of the controller under normal operating conditions. The values
11
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Fig. 10. Voltage loop step test measured on solar explorer kit prototype. Irradiance from 600 W∕m2 to 800 W∕m2.

Fig. 11. Irradiation variation test for SMC.

observed in Figs. 11 and 12 are in agreement with the data presented in Table 1. In this test, the voltage reference is calculated
using the incremental conductance MPPT [36]. The attained results present that the 𝑣𝑃𝑉 tracks the 𝑣𝑃𝑉 𝑟𝑒𝑓 , while the 𝑖𝐿 current also
tracks the reference 𝑖𝐿𝑟𝑒𝑓 and the output voltage of the boost converter remains around 30 V.

On the other hand, Figs. 13 and 14, respectively for SMC and SMPI show an irradiance changing from 200 until 800 W∕m2

and goes back immediately to 200 W∕m2, which shows a very good stability. In each irradiance step, a small irradiance change is
applied to the system, simulating a fast PV shading, which 𝑉𝑃𝑉 tracks 𝑉𝑃𝑉 𝑟𝑒𝑓 .

5. Conclusions

This paper has proposed a continuation of work [10,11] which they were presented respectively a SMPIC and SMC applied
for a boost converter in a PV system using a constant switching frequency operation. In those previous works, for both cases,
experimental tests compared the performances of SMPIC or SMC which presented better performance than lead–lag controller. So,
no further comments on the best performance of these two controllers.

Normally, most of works run GA in simulation like Matlab before using these parameters on real plants, which have some
disadvantages like component tolerances, mainly caused by temperature changes. Moreover, while modeling the SMPIC or SMC,
linearization, approximations, constraints, and assumptions are assumed which can decrease performance. In the present work,
the novelty is increasing the SMC and SMPIC performance using GA in an actual converter on bench using IoT environment, so
12
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Fig. 12. Irradiation variation test for SMPIC.

Fig. 13. Irradiance — fast variance under SMC control.

Fig. 14. Irradiance — fast variance under SMPI control.

those aforementioned disadvantages are minimized. The plant is connected to the cloud server by TCP/IP. The server runs the GA
algorithm that allows to tune the SMC gains. The optimization process is slow and some spikes could happen, so once the parameters
are found, system can run in normal mode. Optimization mode can be active anytime when needed.

As shown in Section 4, this work shows a better performance for the tunned controllers than previous SMC and SMPIC boost
converters for both current control loop and voltage control loops, as seen in voltage steps settling times and overshoot comparison.
In addition, the previous works were simulated employing w-PSO to optimize its parameters before being carried over to prototype,
this new proposed versatile technique has better results due to the possibility of the optimization be executed in runtime. Even in
13
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irradiation variation, the controllers present a satisfactory performance, with boosted output stability, low steady state error and a
faster response.

The implementation of this scheme is possible due to the DSP capability to run real-time control and perform internet
ommunication in parallel. The IoT conception brought the possibility to monitor, diagnose and even calibrate the system.
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